JLicensure User Guide

Note: This is a preliminary version of the JLicensure User Guide. The contents and
layout of this document are subject to change in the near future.

Introduction

Before you can effectively use your own licensing system with JLicensure, there are
some fundamentals that you should understand. This documentation explains the basic
principles of JLicensure and how you can use those principles to design your very own
licensing system on top of them.

Understanding licenses

JLicensure's main design principle is to keep the system as generic and simple as
possible. In JLicensure terms, a license is basically nothing more than a signed license
request. And a license request is basically nothing more than an arbitrary piece of data
sent to the server by the client application.

To examine the nature of a license request, please take a look at the following simple
example:

License Request

Dear license-granting server,
| am John Foobar and | am using your software called ""CoolProduct™, version 2.0.
| was wondering if you could grant me a license to run your software on my personal

computer today. My current hard and software configuration is: (...) / My current
environment parameters are: (...)

Upon reception of a license request, the server decides whether it wants to grant the
license or reject it. To do that, the license request usually contains some sort of
identifying information, for instance a software serial number, or in this case, the name,
software and version number.

Based on the given information, the server either rejects the request or it simply signs it
and sends it back, as shown below:

License

License Request

Dear license-granting server,
| am John Foobar and | am using your software called ""CoolProduct", version 2.0.
| was wondering if you could grant me a license to run your software on my personal

computer today. My current hard and software configuration is: (...) / My current
environment parameters are: (...)

Signature: License Server

The client software checks the validity of the server's signature and proceeds execution
if it is valid.

If you look at the license request above, you can see that the information contained in
the request can actually be divided into two separate parts.

1. One part contains all the information that is needed by the server to identify the
licensee (LicenseeData) (in this case, “John Foobar” using “CoolProduct”,
version “2.0”). The server's decision on whether a license should be granted or
not is based on that information (in our example, the server could use the
information to see whether “John Foobar” actually bought a copy of
“CoolProduct”, version “2.0 earlier).

2. The other part contains the rest of the information provided in the license request
that additionally constrains the validity of the license. The server does not need
to parse that information, it doesn’t even need to understand the contents of that
information, it simply signs it together with the whole license request. Because of
this, the client doesn’t have to transmit this part of the information, instead, a
simple hash value generated from the information is transmitted. We call this
hash value the *“License Token™.

Reflecting the above considerations, the LicenseRequest interface is defined as shown
below:

/*k*k
* A license request consists of the licensee data describing the licensee
* and a unique data token to be part of the issued license.
*/
public interface LicenseRequest extends Command
{
/*k*k
* Getter for property licenseeData.
* @return Value of property licenseeData.
*/

public LicenseeData getLicenseeDatal() ;

/*k*k
* Getter for property token.
* @return Value of property token.

*/

public byte[] getToken();

Licensee Data

To give the licensee data some sort of structure while trying to keep things as simple
and convenient as possible, we defined a LicenseeData which basically holds a generic
set of string properties:

public interface LicenseeData extends java.io.Serializable

{
foool

/*k*k
* Get a specific property value.
* (@param property the property name
* @return the property's value
“/
public String getProperty (String property) ;

/'k*k
* Set a specific property value.
* (@param property the property name
* @param value the property's value
“/
public void setProperty(String property, String wvalue);

(oco)

Using this interface, constructing the licensee data for the above license request would
look something like this:

LicenseeData licenseeData = newlLicenseeData();

licenseeData.setProperty('"name”, "John Foobar');
licenseeData.setProperty ("product”, "CoolProduct”);
licenseeData.setProperty("version”, "2.0");

License Token

Even though the license token is just a small number of bytes containing an arbitrary
hash value, it is in fact a powerful tool to constrain the validity of a license. Since the
token is constructed on the client side, there are numerous ways to bind the license to
any given system parameter available on the client machine — without having to know
about those parameters on the server side. All the information that is used to construct
the token stays where it is, on the client side, only the token is transmitted. This allows
the client software to potentially use personal system properties to bind the license to,
while still ensuring your customer’s privacy.

For example, a common practice to construct a token is to use information that uniquely
identifies the machine the software is run on — that way the license is bound to that
particular machine and is rendered invalid when the software is transferred to different
computer.

Several approaches as to how the token can effectively be used in different types of

licensing scenarios are to be discussed later.
License Table Design

The default-implementation of the JLicensure Server uses an SQL database table to
store licenses. The design of that license table is up to you, you can create a new table
from scratch or, if feasible, use an existing database table. The table should provide the
following columns:

e A token and a signature column of type varchar and a count column of type
integer. Please see the JLicensure Installation Guide for further information.

e® A varchar column for every property to be used by the LicenseeData to identify
incoming license requests. In our example, that is three columns named “name”,
“product” and “version”. A more appropriate way to identify licenses might be a
unique software serial number instead of a person's name.

® A varchar column for every additional property to be contained in the
LicenseeData when adding new licensee data to the table using signed
commands (see Jinstaller Installation Guide, section JLicensure WebModule). For
example, you might want to store a credit card transaction number together with
the newly inserted row if you're adding licenses from an automatic web shop
system.

e Additional arbitrary columns to be used by you or other software parts accessing
the license table.

Licensing Scenarios

Depending on the data that is used to construct the license token, licenses can be
bound to any kind of data available on the client-side, allowing a great variety of
different licensing models. A license stays valid as long as the information used to
construct the license token doesn't change.

To check the existence and the validity of a license, the client software constructs a
license request and invokes the checkLicense method of the LicenseCheck interface.
The default-implementation backs up previously downloaded licenses in the client
computer's local preferences cache. If no license is available in the local cache or if it has
become invalid, a license is automatically requested from the server.

To construct the token, the client software adds data to the LicenseRequestBuilder
interface by calling one of its add-methods.

Machine-based licenses

Probably one of the most common practice is to bind a license to the unique installation
of the local machine. To do that, one may add a number of descriptive hardware
identifiers to the LicenseRequestBuilder interface. For your convenience, the
LicenseRequestBuilder interface has a method addHostUnique() that does the job for
you:

LicenseRequestBuilder requestBuilder = JLicensureFactory.createlicenseRequestBuilder ()

requestBuilder.addHostUnique () ;
LicenseRequest req = requestBuilder.tolLicenseRequest (licenseeData) ;

A license obtained from a license request as shown above will stay valid as long as the
software is not transferred to a different machine. Because of that, it is usually enough
to perform the license check once after the program has been started.

Here's a different example. Let's assume we wanted to create licenses that are valid for
only one specific user name, but for all computers in the same network subnet. In this
case, the license request construction would look like this:

LicenseRequestBuilder requestBuilder = JLicensureFactory.createlLicenseRequestBuilder () ;
requestBuilder.addArbitrary (getSubnetString () .getBytes()) ;
requestBuilder.addArbitrary (getUserName () .getBytes()) ;

LicenseRequest req = requestBuilder.tolLicenseRequest (licenseeData) ;

Expiring licenses
Counter-based:

A license may expire after a program or a program function has been executed for a
certain number of times. In this case, it is necessary to obtain a new license from the
server every time the function or the program is executed (because a counter can only
be safely stored on the server side).

Since the default-implementation of the server’s LicenseGrant interface already uses a
count-based granting mechanism, all you have to do is initialize the “count” column in
the server's license table with the desired number and make sure that the granted
licenses are valid only once when requested. You can do that by adding random data to
the LicenseRequestBuilder:

LicenseRequestBuilder requestBuilder = JLicensureFactory.createlicenseRequestBuilder ()
requestBuilder.addArbitrary (getRandomData ()) ;
LicenseRequest req = requestBuilder.tolLicenseRequest (licenseeData) ;

Time-based:

Even though you could add time-based values (such as the current year) when
constructing the license token, a simple token-based solution might be problematic due
to the following reasons:
® A license that is valid only before a certain expiration date cannot be constructed
on the client-side because the expiration date is not known to the client.
® The date and time information obtainable on the client computer may not be
accurate.

A safe way to install time-based licenses is to add a column “expires” to the server's
license table and install a custom LicenseGrant implementation that rejects license
request after the expiration date.

