
The Pyramid Web Framework
Version 1.5.8

Chris McDonough

Contents

Front Matter i

Copyright, Trademarks, and Attributions iii

Typographical Conventions v

Author Introduction ix

I Narrative Documentation 1

1 Pyramid Introduction 3

2 Installing Pyramid 23

3 Creating Your First Pyramid Application 31

4 Application Configuration 37

5 Creating a Pyramid Project 41

6 Startup 65

7 Request Processing 71

8 URL Dispatch 77

9 Views 103

10 Renderers 115

11 Templates 127

12 View Configuration 135

13 Static Assets 155

14 Request and Response Objects 165

15 Sessions 175

16 Using Events 183

17 Environment Variables and .ini File Settings 189

18 Logging 199

19 PasteDeploy Configuration Files 209

20 Command-Line Pyramid 215

21 Internationalization and Localization 235

22 Virtual Hosting 253

23 Unit, Integration, and Functional Testing 257

24 Resources 267

25 Hello Traversal World 279

26 Much Ado About Traversal 281

27 Traversal 289

28 Security 301

29 Combining Traversal and URL Dispatch 315

30 Invoking a Subrequest 325

31 Using Hooks 331

32 Pyramid Configuration Introspection 359

33 Extending an Existing Pyramid Application 373

34 Advanced Configuration 379

35 Extending Pyramid Configuration 387

36 Creating Pyramid Scaffolds 395

37 Upgrading Pyramid 399

38 Thread Locals 405

39 Using the Zope Component Architecture in Pyramid 409

II Tutorials 415

40 SQLAlchemy + URL Dispatch Wiki Tutorial 417

41 ZODB + Traversal Wiki Tutorial 481

42 Running a Pyramid Application under mod_wsgi 537

III API Documentation 541

43 pyramid.authentication 543

44 pyramid.authorization 555

45 pyramid.compat 557

46 pyramid.config 561

47 pyramid.decorator 601

48 pyramid.events 603

49 pyramid.exceptions 609

50 pyramid.httpexceptions 611

51 pyramid.i18n 625

52 API Documentation 629

IV Glossary and Index 719

Glossary 721

Front Matter

Copyright, Trademarks, and Attributions

The Pyramid Web Framework, Version 1.1

by Chris McDonough

Copyright © 2008-2011, Agendaless Consulting.

ISBN-10: 0615445675

ISBN-13: 978-0615445670

First print publishing: February, 2011

All rights reserved. This material may be copied or distributed only subject to the terms and conditions set
forth in the Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. You
must give the original author credit. You may not use this work for commercial purposes. If you alter,
transform, or build upon this work, you may distribute the resulting work only under the same or similar
license to this one.

While the Pyramid documentation is offered under the Creative Commons Attribution-
Nonconmmercial-Share Alike 3.0 United States License, the Pyramid software is offered under a
less restrictive (BSD-like) license .

All terms mentioned in this book that are known to be trademarks or service marks have been appropri-
ately capitalized. However, use of a term in this book should not be regarded as affecting the validity of
any trademark or service mark.

Every effort has been made to make this book as complete and as accurate as possible, but no warranty
or fitness is implied. The information provided is on an “as-is” basis. The author and the publisher shall
have neither liability nor responsibility to any person or entity with respect to any loss or damages arising
from the information contained in this book. No patent liability is assumed with respect to the use of the
information contained herein.

iii

http://creativecommons.org/licenses/by-nc-sa/3.0/us/
http://repoze.org/license.html

Attributions

Editor: Casey Duncan

Contributors: Ben Bangert, Blaise Laflamme, Rob Miller, Mike Orr, Carlos de la Guardia, Paul Everitt,
Tres Seaver, John Shipman, Marius Gedminas, Chris Rossi, Joachim Krebs, Xavier Spriet, Reed
O’Brien, William Chambers, Charlie Choiniere, Jamaludin Ahmad, Graham Higgins, Patricio Paez,
Michael Merickel, Eric Ongerth, Niall O’Higgins, Christoph Zwerschke, John Anderson, Atsushi
Odagiri, Kirk Strauser, JD Navarro, Joe Dallago, Savoir-Faire Linux, Łukasz Fidosz, Christopher
Lambacher, Claus Conrad, Chris Beelby, Phil Jenvey and a number of people with only pseudonyms
on GitHub.

Cover Designer: Hugues Laflamme of Kemeneur.

Used with permission:

The Request and Response Objects chapter is adapted, with permission, from documentation
originally written by Ian Bicking.

The Much Ado About Traversal chapter is adapted, with permission, from an article written
by Rob Miller.

The Logging is adapted, with permission, from the Pylons documentation logging chapter,
originally written by Phil Jenvey.

Print Production

The print version of this book was produced using the Sphinx documentation generation system and the
LaTeX typesetting system.

Contacting The Publisher

Please send documentation licensing inquiries, translation inquiries, and other business communications
to Agendaless Consulting. Please send software and other technical queries to the Pylons-devel mailing
list.

HTML Version and Source Code

An HTML version of this book is freely available via http://docs.pylonsproject.org/projects/pyramid/en/latest/

The source code for the examples used in this book are available within the Pyramid software distribution,
always available via https://github.com/Pylons/pyramid

iv

http://www.kemeneur.com/
http://sphinx.pocoo.org/
http://www.latex-project.org/
mailto:webmaster@agendaless.com
http://groups.google.com/group/pylons-devel
http://groups.google.com/group/pylons-devel
http://docs.pylonsproject.org/projects/pyramid/en/latest/
https://github.com/Pylons/pyramid

Typographical Conventions

Literals, filenames, and function arguments are presented using the following style:

argument1

Warnings which represent limitations and need-to-know information related to a topic or concept are
presented in the following style:

This is a warning.

Notes which represent additional information related to a topic or concept are presented in the following
style:

This is a note.

We present Python method names using the following style:

pyramid.config.Configurator.add_view()

We present Python class names, module names, attributes, and global variables using the following style:

pyramid.config.Configurator.registry

References to glossary terms are presented using the following style:

Pylons

URLs are presented using the following style:

Pylons

References to sections and chapters are presented using the following style:

Traversal

Code and configuration file blocks are presented in the following style:

v

http://pylonsproject.org

1 def foo(abc):
2 pass

Example blocks representing UNIX shell commands are prefixed with a $ character, e.g.:

$ $VENV/bin/nosetests

(See virtualenv for the meaning of $VENV)

Example blocks representing Windows cmd.exe commands are prefixed with a drive letter and/or a
directory name, e.g.:

c:\examples> %VENV%\Scripts\nosetests

(See virtualenv for the meaning of %VENV%)

Sometimes, when it’s unknown which directory is current, Windows cmd.exe example block commands
are prefixed only with a > character, e.g.:

> %VENV%\Scripts\nosetests

When a command that should be typed on one line is too long to fit on a page, the backslash \ is used to
indicate that the following printed line should actually be part of the command:

c:\bigfntut\tutorial> %VENV%\Scripts\nosetests --cover-package=tutorial \
--cover-erase --with-coverage

A sidebar, which presents a concept tangentially related to content discussed on a page, is rendered like
so:

This is a sidebar

Sidebar information.

When multiple objects are imported from the same package, the following convention is used:

vi

from foo import (
bar,
baz,
)

It may look unusual, but it has advantages:

• It allows one to swap out the higher-level package foo for something else that provides the similar
API. An example would be swapping out one database for another (e.g., graduating from SQLite to
PostgreSQL).

• Looks more neat in cases where a large number of objects get imported from that package.

• Adding or removing imported objects from the package is quicker and results in simpler diffs.

vii

viii

Author Introduction

Welcome to “The Pyramid Web Framework”. In this introduction, I’ll describe the audience for this book,
I’ll describe the book content, I’ll provide some context regarding the genesis of Pyramid, and I’ll thank
some important people.

I hope you enjoy both this book and the software it documents. I’ve had a blast writing both.

Audience

This book is aimed primarily at a reader that has the following attributes:

• At least a moderate amount of Python experience.

• A familiarity with web protocols such as HTTP and CGI.

If you fit into both of these categories, you’re in the direct target audience for this book. But don’t worry,
even if you have no experience with Python or the web, both are easy to pick up “on the fly”.

Python is an excellent language in which to write applications; becoming productive in Python is almost
mind-blowingly easy. If you already have experience in another language such as Java, Visual Basic, Perl,
Ruby, or even C/C++, learning Python will be a snap; it should take you no longer than a couple of days
to become modestly productive. If you don’t have previous programming experience, it will be slightly
harder, and it will take a little longer, but you’d be hard-pressed to find a better “first language.”

Web technology familiarity is assumed in various places within the book. For example, the book doesn’t
try to define common web-related concepts like “URL” or “query string.” Likewise, the book describes
various interactions in terms of the HTTP protocol, but it does not describe how the HTTP protocol works
in detail. Like any good web framework, though, Pyramid shields you from needing to know most of the
gory details of web protocols and low-level data structures. As a result, you can usually avoid becoming
“blocked” while you read this book even if you don’t yet deeply understand web technologies.

ix

Book Content

This book is divided into three major parts:

Narrative Documentation

This is documentation which describes Pyramid concepts in narrative form, written in a
largely conversational tone. Each narrative documentation chapter describes an isolated Pyra-
mid concept. You should be able to get useful information out of the narrative chapters if you
read them out-of-order, or when you need only a reminder about a particular topic while
you’re developing an application.

Tutorials

Each tutorial builds a sample application or implements a set of concepts with a sample;
it then describes the application or concepts in terms of the sample. You should read the
tutorials if you want a guided tour of Pyramid.

API Documentation

Comprehensive reference material for every public API exposed by Pyramid. The API doc-
umentation is organized alphabetically by module name.

The Genesis of repoze.bfg

Before the end of 2010, Pyramid was known as repoze.bfg.

I wrote repoze.bfg after many years of writing applications using Zope. Zope provided me with a lot
of mileage: it wasn’t until almost a decade of successfully creating applications using it that I decided
to write a different web framework. Although repoze.bfg takes inspiration from a variety of web
frameworks, it owes more of its core design to Zope than any other.

The Repoze “brand” existed before repoze.bfg was created. One of the first packages developed as
part of the Repoze brand was a package named repoze.zope2. This was a package that allowed Zope
2 applications to run under a WSGI server without modification. Zope 2 did not have reasonable WSGI
support at the time.

During the development of the repoze.zope2 package, I found that replicating the Zope 2 “publisher”
– the machinery that maps URLs to code – was time-consuming and fiddly. Zope 2 had evolved over
many years, and emulating all of its edge cases was extremely difficult. I finished the repoze.zope2

x

package, and it emulates the normal Zope 2 publisher pretty well. But during its development, it became
clear that Zope 2 had simply begun to exceed my tolerance for complexity, and I began to look around for
simpler options.

I considered using the Zope 3 application server machinery, but it turned out that it had become more
indirect than the Zope 2 machinery it aimed to replace, which didn’t fulfill the goal of simplification. I
also considered using Django and Pylons, but neither of those frameworks offer much along the axes of
traversal, contextual declarative security, or application extensibility; these were features I had become
accustomed to as a Zope developer.

I decided that in the long term, creating a simpler framework that retained features I had become accus-
tomed to when developing Zope applications was a more reasonable idea than continuing to use any Zope
publisher or living with the limitations and unfamiliarities of a different framework. The result is what is
now Pyramid.

The Genesis of Pyramid

What was repoze.bfg has become Pyramid as the result of a coalition built between the Repoze and
Pylons community throughout the year 2010. By merging technology, we’re able to reduce duplication
of effort, and take advantage of more of each others’ technology.

Thanks

This book is dedicated to my grandmother, who gave me my first typewriter (a Royal), and my mother,
who bought me my first computer (a VIC-20).

Thanks to the following people for providing expertise, resources, and software. Without the help of
these folks, neither this book nor the software which it details would exist: Paul Everitt, Tres Seaver,
Andrew Sawyers, Malthe Borch, Carlos de la Guardia, Chris Rossi, Shane Hathaway, Daniel Holth,
Wichert Akkerman, Georg Brandl, Blaise Laflamme, Ben Bangert, Casey Duncan, Hugues Laflamme,
Mike Orr, John Shipman, Chris Beelby, Patricio Paez, Simon Oram, Nat Hardwick, Ian Bicking, Jim
Fulton, Michael Merickel, Tom Moroz of the Open Society Institute, and Todd Koym of Environmental
Health Sciences.

Thanks to Guido van Rossum and Tim Peters for Python.

Special thanks to Tricia for putting up with me.

xi

xii

Part I

Narrative Documentation

CHAPTER 1

Pyramid Introduction

Pyramid is a general, open source, Python web application development framework. Its primary goal is
to make it easier for a Python developer to create web applications.

Frameworks vs. Libraries

A framework differs from a library in one very important way: library code is always called by code
that you write, while a framework always calls code that you write. Using a set of libraries to create
an application is usually easier than using a framework initially, because you can choose to cede
control to library code you have not authored very selectively. But when you use a framework, you
are required to cede a greater portion of control to code you have not authored: code that resides in
the framework itself. You needn’t use a framework at all to create a web application using Python. A
rich set of libraries already exists for the platform. In practice, however, using a framework to create
an application is often more practical than rolling your own via a set of libraries if the framework
provides a set of facilities that fits your application requirements.

Pyramid attempts to follow these design and engineering principles:

Simplicity Pyramid takes a “pay only for what you eat” approach. You can get results even if you have
only a partial understanding of Pyramid. It doesn’t force you to use any particular technology to
produce an application, and we try to keep the core set of concepts that you need to understand to
a minimum.

Minimalism Pyramid tries to solve only the fundamental problems of creating a web application: the
mapping of URLs to code, templating, security, and serving static assets. We consider these to be
the core activities that are common to nearly all web applications.

3

1. PYRAMID INTRODUCTION

Documentation Pyramid’s minimalism means that it is easier for us to maintain complete and up-to-date
documentation. It is our goal that no aspect of Pyramid is undocumented.

Speed Pyramid is designed to provide noticeably fast execution for common tasks such as templating
and simple response generation.

Reliability Pyramid is developed conservatively and tested exhaustively. Where Pyramid source code is
concerned, our motto is: “If it ain’t tested, it’s broke”.

Openness As with Python, the Pyramid software is distributed under a permissive open source license.

1.1 What makes Pyramid unique

Understandably, people don’t usually want to hear about squishy engineering principles; they want to
hear about concrete stuff that solves their problems. With that in mind, what would make someone want
to use Pyramid instead of one of the many other web frameworks available today? What makes Pyramid
unique?

This is a hard question to answer because there are lots of excellent choices, and it’s actually quite hard
to make a wrong choice, particularly in the Python web framework market. But one reasonable answer
is this: you can write very small applications in Pyramid without needing to know a lot. “What?” you
say. “That can’t possibly be a unique feature. Lots of other web frameworks let you do that!” Well,
you’re right. But unlike many other systems, you can also write very large applications in Pyramid if you
learn a little more about it. Pyramid will allow you to become productive quickly, and will grow with
you. It won’t hold you back when your application is small, and it won’t get in your way when your
application becomes large. “Well that’s fine,” you say. “Lots of other frameworks let me write large apps,
too.” Absolutely. But other Python web frameworks don’t seamlessly let you do both. They seem to fall
into two non-overlapping categories: frameworks for “small apps” and frameworks for “big apps”. The
“small app” frameworks typically sacrifice “big app” features, and vice versa.

We don’t think it’s a universally reasonable suggestion to write “small apps” in a “small framework” and
“big apps” in a “big framework”. You can’t really know to what size every application will eventually
grow. We don’t really want to have to rewrite a previously small application in another framework when
it gets “too big”. We believe the current binary distinction between frameworks for small and large
applications is just false. A well-designed framework should be able to be good at both. Pyramid strives
to be that kind of framework.

To this end, Pyramid provides a set of features that combined are unique amongst Python web frameworks.
Lots of other frameworks contain some combination of these features. Pyramid of course actually stole
many of them from those other frameworks. But Pyramid is the only one that has all of them in one place,
documented appropriately, and useful à la carte without necessarily paying for the entire banquet. These
are detailed below.

4

http://repoze.org/license.html

1.1. WHAT MAKES PYRAMID UNIQUE

1.1.1 Single-file applications

You can write a Pyramid application that lives entirely in one Python file, not unlike existing Python mi-
croframeworks. This is beneficial for one-off prototyping, bug reproduction, and very small applications.
These applications are easy to understand because all the information about the application lives in a sin-
gle place, and you can deploy them without needing to understand much about Python distributions and
packaging. Pyramid isn’t really marketed as a microframework, but it allows you to do almost everything
that frameworks that are marketed as “micro” offer in very similar ways.

from wsgiref.simple_server import make_server
from pyramid.config import Configurator
from pyramid.response import Response

def hello_world(request):
return Response('Hello %(name)s!' % request.matchdict)

if __name__ == '__main__':
config = Configurator()
config.add_route('hello', '/hello/{name}')
config.add_view(hello_world, route_name='hello')
app = config.make_wsgi_app()
server = make_server('0.0.0.0', 8080, app)
server.serve_forever()

See also:

See also Creating Your First Pyramid Application.

1.1.2 Decorator-based configuration

If you like the idea of framework configuration statements living next to the code it configures, so you
don’t have to constantly switch between files to refer to framework configuration when adding new code,
you can use Pyramid decorators to localize the configuration. For example:

from pyramid.view import view_config
from pyramid.response import Response

@view_config(route_name='fred')
def fred_view(request):

return Response('fred')

5

1. PYRAMID INTRODUCTION

However, unlike some other systems, using decorators for Pyramid configuration does not make your ap-
plication difficult to extend, test, or reuse. The view_config decorator, for example, does not actually
change the input or output of the function it decorates, so testing it is a “WYSIWYG” operation. You
don’t need to understand the framework to test your own code. You just behave as if the decorator is not
there. You can also instruct Pyramid to ignore some decorators, or use completely imperative configu-
ration instead of decorators to add views. Pyramid decorators are inert instead of eager. You detect and
activate them with a scan.

Example: Adding View Configuration Using the @view_config Decorator.

1.1.3 URL generation

Pyramid is capable of generating URLs for resources, routes, and static assets. Its URL generation APIs
are easy to use and flexible. If you use Pyramid’s various APIs for generating URLs, you can change your
configuration around arbitrarily without fear of breaking a link on one of your web pages.

Example: Generating Route URLs.

1.1.4 Static file serving

Pyramid is perfectly willing to serve static files itself. It won’t make you use some external web server
to do that. You can even serve more than one set of static files in a single Pyramid web application
(e.g., /static and /static2). You can optionally place your files on an external web server and ask
Pyramid to help you generate URLs to those files. This let’s you use Pyramid’s internal file serving while
doing development, and a faster static file server in production, without changing any code.

Example: Serving Static Assets.

1.1.5 Fully interactive development

When developing a Pyramid application, several interactive features are available. Pyramid can auto-
matically utilize changed templates when rendering pages and automatically restart the application to
incorporate changed Python code. Plain old print() calls used for debugging can display to a console.

Pyramid’s debug toolbar comes activated when you use a Pyramid scaffold to render a project. This
toolbar overlays your application in the browser, and allows you access to framework data, such as the
routes configured, the last renderings performed, the current set of packages installed, SQLAlchemy
queries run, logging data, and various other facts. When an exception occurs, you can use its interactive
debugger to poke around right in your browser to try to determine the cause of the exception. It’s handy.

Example: The Debug Toolbar.

6

1.1. WHAT MAKES PYRAMID UNIQUE

1.1.6 Debugging settings

Pyramid has debugging settings that allow you to print Pyramid runtime information to the console when
things aren’t behaving as you’re expecting. For example, you can turn on debug_notfound, which
prints an informative message to the console every time a URL does not match any view. You can turn
on debug_authorization, which lets you know why a view execution was allowed or denied by
printing a message to the console. These features are useful for those WTF moments.

There are also a number of commands that you can invoke within a Pyramid environment that allow you
to introspect the configuration of your system. proutes shows all configured routes for an application
in the order they’ll be evaluated for matching. pviews shows all configured views for any given URL.
These are also WTF-crushers in some circumstances.

Examples: Debugging View Authorization Failures and Command-Line Pyramid.

1.1.7 Add-ons

Pyramid has an extensive set of add-ons held to the same quality standards as the Pyramid core itself. Add-
ons are packages which provide functionality that the Pyramid core doesn’t. Add-on packages already
exist which let you easily send email, let you use the Jinja2 templating system, let you use XML-RPC or
JSON-RPC, let you integrate with jQuery Mobile, etc.

Examples: http://docs.pylonsproject.org/en/latest/docs/pyramid.html#pyramid-add-on-documentation

1.1.8 Class-based and function-based views

Pyramid has a structured, unified concept of a view callable. View callables can be functions, methods
of classes, or even instances. When you add a new view callable, you can choose to make it a function
or a method of a class. In either case Pyramid treats it largely the same way. You can change your mind
later and move code between methods of classes and functions. A collection of similar view callables can
be attached to a single class as methods, if that floats your boat, and they can share initialization code as
necessary. All kinds of views are easy to understand and use, and operate similarly. There is no phony
distinction between them. They can be used for the same purposes.

Here’s a view callable defined as a function:

7

http://docs.pylonsproject.org/en/latest/docs/pyramid.html#pyramid-add-on-documentation

1. PYRAMID INTRODUCTION

1 from pyramid.response import Response
2 from pyramid.view import view_config
3

4 @view_config(route_name='aview')
5 def aview(request):
6 return Response('one')

Here’s a few views defined as methods of a class instead:

1 from pyramid.response import Response
2 from pyramid.view import view_config
3

4 class AView(object):
5 def __init__(self, request):
6 self.request = request
7

8 @view_config(route_name='view_one')
9 def view_one(self):

10 return Response('one')
11

12 @view_config(route_name='view_two')
13 def view_two(self):
14 return Response('two')

See also:

See also @view_config Placement.

1.1.9 Asset specifications

Asset specifications are strings that contain both a Python package name and a file or directory name, e.g.,
MyPackage:static/index.html. Use of these specifications is omnipresent in Pyramid. An asset
specification can refer to a template, a translation directory, or any other package-bound static resource.
This makes a system built on Pyramid extensible because you don’t have to rely on globals (“the static
directory”) or lookup schemes (“the ordered set of template directories”) to address your files. You can
move files around as necessary, and include other packages that may not share your system’s templates or
static files without encountering conflicts.

Because asset specifications are used heavily in Pyramid, we’ve also provided a way to allow users to
override assets. Say you love a system that someone else has created with Pyramid but you just need to
change “that one template” to make it all better. No need to fork the application. Just override the asset
specification for that template with your own inside a wrapper, and you’re good to go.

Examples: Understanding Asset Specifications and Overriding Assets.

8

1.1. WHAT MAKES PYRAMID UNIQUE

1.1.10 Extensible templating

Pyramid has a structured API that allows for pluggability of “renderers”. Templating systems such as
Mako, Genshi, Chameleon, and Jinja2 can be treated as renderers. Renderer bindings for all of these
templating systems already exist for use in Pyramid. But if you’d rather use another, it’s not a big deal.
Just copy the code from an existing renderer package, and plug in your favorite templating system. You’ll
then be able to use that templating system from within Pyramid just as you’d use one of the “built-in”
templating systems.

Pyramid does not make you use a single templating system exclusively. You can use multiple templating
systems, even in the same project.

Example: Using Templates Directly.

1.1.11 Rendered views can return dictionaries

If you use a renderer, you don’t have to return a special kind of “webby” Response object from a
view. Instead you can return a dictionary, and Pyramid will take care of converting that dictionary to a
Response using a template on your behalf. This makes the view easier to test, because you don’t have
to parse HTML in your tests. Instead just make an assertion that the view returns “the right stuff” in the
dictionary. You can write “real” unit tests instead of functionally testing all of your views.

For example, instead of returning a Response object from a render_to_response call:

1 from pyramid.renderers import render_to_response
2

3 def myview(request):
4 return render_to_response('myapp:templates/mytemplate.pt', {'a':1},
5 request=request)

You can return a Python dictionary:

1 from pyramid.view import view_config
2

3 @view_config(renderer='myapp:templates/mytemplate.pt')
4 def myview(request):
5 return {'a':1}

When this view callable is called by Pyramid, the {’a’:1} dictionary will be rendered to a response
on your behalf. The string passed as renderer= above is an asset specification. It is in the form
packagename:directoryname/filename.ext. In this case, it refers to the mytemplate.pt
file in the templates directory within the myapp Python package. Asset specifications are omnipresent
in Pyramid. See Asset specifications for more information.

Example: Renderers.

9

1. PYRAMID INTRODUCTION

1.1.12 Event system

Pyramid emits events during its request processing lifecycle. You can subscribe any number of listeners to
these events. For example, to be notified of a new request, you can subscribe to the NewRequest event.
To be notified that a template is about to be rendered, you can subscribe to the BeforeRender event,
and so forth. Using an event publishing system as a framework notification feature instead of hardcoded
hook points tends to make systems based on that framework less brittle.

You can also use Pyramid’s event system to send your own events. For example, if you’d like to create
a system that is itself a framework, and may want to notify subscribers that a document has just been
indexed, you can create your own event type (DocumentIndexed perhaps) and send the event via
Pyramid. Users of this framework can then subscribe to your event like they’d subscribe to the events that
are normally sent by Pyramid itself.

Example: Using Events and Event Types.

1.1.13 Built-in internationalization

Pyramid ships with internationalization-related features in its core: localization, pluralization, and creat-
ing message catalogs from source files and templates. Pyramid allows for a plurality of message catalogs
via the use of translation domains. You can create a system that has its own translations without conflict
with other translations in other domains.

Example: Internationalization and Localization.

1.1.14 HTTP caching

Pyramid provides an easy way to associate views with HTTP caching policies. You can just tell Pyramid
to configure your view with an http_cache statement, and it will take care of the rest:

@view_config(http_cache=3600) # 60 minutes
def myview(request):

Pyramid will add appropriate Cache-Control and Expires headers to responses generated when
this view is invoked.

See the add_view() method’s http_cache documentation for more information.

10

1.1. WHAT MAKES PYRAMID UNIQUE

1.1.15 Sessions

Pyramid has built-in HTTP sessioning. This allows you to associate data with otherwise anonymous
users between requests. Lots of systems do this. But Pyramid also allows you to plug in your own
sessioning system by creating some code that adheres to a documented interface. Currently there is a
binding package for the third-party Redis sessioning system that does exactly this. But if you have a
specialized need (perhaps you want to store your session data in MongoDB), you can. You can even
switch between implementations without changing your application code.

Example: Sessions.

1.1.16 Speed

The Pyramid core is, as far as we can tell, at least marginally faster than any other existing Python web
framework. It has been engineered from the ground up for speed. It only does as much work as absolutely
necessary when you ask it to get a job done. Extraneous function calls and suboptimal algorithms in its
core codepaths are avoided. It is feasible to get, for example, between 3500 and 4000 requests per second
from a simple Pyramid view on commodity dual-core laptop hardware and an appropriate WSGI server
(mod_wsgi or gunicorn). In any case, performance statistics are largely useless without requirements and
goals, but if you need speed, Pyramid will almost certainly never be your application’s bottleneck; at least
no more than Python will be a bottleneck.

Example: http://blog.curiasolutions.com/pages/the-great-web-framework-shootout.html

1.1.17 Exception views

Exceptions happen. Rather than deal with exceptions that might present themselves to a user in production
in an ad-hoc way, Pyramid allows you to register an exception view. Exception views are like regular
Pyramid views, but they’re only invoked when an exception “bubbles up” to Pyramid itself. For example,
you might register an exception view for the Exception exception, which will catch all exceptions, and
present a pretty “well, this is embarrassing” page. Or you might choose to register an exception view for
only specific kinds of application-specific exceptions, such as an exception that happens when a file is not
found, or an exception that happens when an action cannot be performed because the user doesn’t have
permission to do something. In the former case, you can show a pretty “Not Found” page; in the latter
case you might show a login form.

Example: Custom Exception Views.

11

http://blog.curiasolutions.com/pages/the-great-web-framework-shootout.html
http://docs.python.org/3/library/exceptions.html#Exception

1. PYRAMID INTRODUCTION

1.1.18 No singletons

Pyramid is written in such a way that it requires your application to have exactly zero “singleton”
data structures. Or put another way, Pyramid doesn’t require you to construct any “mutable globals”.
Or put even another different way, an import of a Pyramid application needn’t have any “import-time
side effects”. This is esoteric-sounding, but if you’ve ever tried to cope with parameterizing a Django
settings.py file for multiple installations of the same application, or if you’ve ever needed to monkey-
patch some framework fixture so that it behaves properly for your use case, or if you’ve ever wanted to
deploy your system using an asynchronous server, you’ll end up appreciating this feature. It just won’t be
a problem. You can even run multiple copies of a similar but not identically configured Pyramid applica-
tion within the same Python process. This is good for shared hosting environments, where RAM is at a
premium.

1.1.19 View predicates and many views per route

Unlike many other systems, Pyramid allows you to associate more than one view per route. For example,
you can create a route with the pattern /items and when the route is matched, you can shuffle off the
request to one view if the request method is GET, another view if the request method is POST, etc. A
system known as “view predicates” allows for this. Request method matching is the most basic thing
you can do with a view predicate. You can also associate views with other request parameters, such as
the elements in the query string, the Accept header, whether the request is an XHR request or not, and
lots of other things. This feature allows you to keep your individual views clean. They won’t need much
conditional logic, so they’ll be easier to test.

Example: View Configuration Parameters.

1.1.20 Transaction management

Pyramid’s scaffold system renders projects that include a transaction management system, stolen from
Zope. When you use this transaction management system, you cease being responsible for committing
your data anymore. Instead Pyramid takes care of committing: it commits at the end of a request or
aborts if there’s an exception. Why is that a good thing? Having a centralized place for transaction
management is a great thing. If, instead of managing your transactions in a centralized place, you sprinkle
session.commit calls in your application logic itself, you can wind up in a bad place. Wherever you
manually commit data to your database, it’s likely that some of your other code is going to run after your
commit. If that code goes on to do other important things after that commit, and an error happens in the
later code, you can easily wind up with inconsistent data if you’re not extremely careful. Some data will
have been written to the database that probably should not have. Having a centralized commit point saves
you from needing to think about this; it’s great for lazy people who also care about data integrity. Either

12

1.1. WHAT MAKES PYRAMID UNIQUE

the request completes successfully, and all changes are committed, or it does not, and all changes are
aborted.

Pyramid’s transaction management system allows you to synchronize commits between multiple
databases. It also allows you to do things like conditionally send email if a transaction commits, but
otherwise keep quiet.

Example: SQLAlchemy + URL Dispatch Wiki Tutorial (note the lack of commit statements anywhere in
application code).

1.1.21 Configuration conflict detection

When a system is small, it’s reasonably easy to keep it all in your head. But when systems grow large,
you may have hundreds or thousands of configuration statements which add a view, add a route, and so
forth.

Pyramid’s configuration system keeps track of your configuration statements. If you accidentally add two
that are identical, or Pyramid can’t make sense out of what it would mean to have both statements active
at the same time, it will complain loudly at startup time. It’s not dumb though. It will automatically
resolve conflicting configuration statements on its own if you use the configuration include() system.
“More local” statements are preferred over “less local” ones. This allows you to intelligently factor large
systems into smaller ones.

Example: Conflict Detection.

1.1.22 Configuration extensibility

Unlike other systems, Pyramid provides a structured “include” mechanism (see include()) that allows
you to combine applications from multiple Python packages. All the configuration statements that can be
performed in your “main” Pyramid application can also be performed by included packages, including
the addition of views, routes, subscribers, and even authentication and authorization policies. You can
even extend or override an existing application by including another application’s configuration in your
own, overriding or adding new views and routes to it. This has the potential to allow you to create a big
application out of many other smaller ones. For example, if you want to reuse an existing application that
already has a bunch of routes, you can just use the include statement with a route_prefix. The
new application will live within your application at an URL prefix. It’s not a big deal, and requires little
up-front engineering effort.

For example:

13

1. PYRAMID INTRODUCTION

1 from pyramid.config import Configurator
2

3 if __name__ == '__main__':
4 config = Configurator()
5 config.include('pyramid_jinja2')
6 config.include('pyramid_exclog')
7 config.include('some.other.guys.package', route_prefix='/someotherguy')

See also:

See also Including Configuration from External Sources and Rules for Building an Extensible Application.

1.1.23 Flexible authentication and authorization

Pyramid includes a flexible, pluggable authentication and authorization system. No matter where your
user data is stored, or what scheme you’d like to use to permit your users to access your data, you can
use a predefined Pyramid plugpoint to plug in your custom authentication and authorization code. If you
want to change these schemes later, you can just change it in one place rather than everywhere in your
code. It also ships with prebuilt well-tested authentication and authorization schemes out of the box. But
what if you don’t want to use Pyramid’s built-in system? You don’t have to. You can just write your own
bespoke security code as you would in any other system.

Example: Enabling an Authorization Policy.

1.1.24 Traversal

Traversal is a concept stolen from Zope. It allows you to create a tree of resources, each of which can
be addressed by one or more URLs. Each of those resources can have one or more views associated with
it. If your data isn’t naturally treelike, or you’re unwilling to create a treelike representation of your data,
you aren’t going to find traversal very useful. However, traversal is absolutely fantastic for sites that need
to be arbitrarily extensible. It’s a lot easier to add a node to a tree than it is to shoehorn a route into an
ordered list of other routes, or to create another entire instance of an application to service a department
and glue code to allow disparate apps to share data. It’s a great fit for sites that naturally lend themselves
to changing departmental hierarchies, such as content management systems and document management
systems. Traversal also lends itself well to systems that require very granular security (“Bob can edit this
document” as opposed to “Bob can edit documents”).

Examples: Hello Traversal World and Much Ado About Traversal.

14

1.1. WHAT MAKES PYRAMID UNIQUE

1.1.25 Tweens

Pyramid has a sort of internal WSGI-middleware-ish pipeline that can be hooked by arbitrary add-ons
named “tweens”. The debug toolbar is a “tween”, and the pyramid_tm transaction manager is also.
Tweens are more useful than WSGI middleware in some circumstances because they run in the context
of Pyramid itself, meaning you have access to templates and other renderers, a “real” request object, and
other niceties.

Example: Registering Tweens.

1.1.26 View response adapters

A lot is made of the aesthetics of what kinds of objects you’re allowed to return from view callables in
various frameworks. In a previous section in this document, we showed you that, if you use a renderer,
you can usually return a dictionary from a view callable instead of a full-on Response object. But some
frameworks allow you to return strings or tuples from view callables. When frameworks allow for this,
code looks slightly prettier, because fewer imports need to be done, and there is less code. For example,
compare this:

1 def aview(request):
2 return "Hello world!"

To this:

1 from pyramid.response import Response
2

3 def aview(request):
4 return Response("Hello world!")

The former is “prettier”, right?

Out of the box, if you define the former view callable (the one that simply returns a string) in Pyramid,
when it is executed, Pyramid will raise an exception. This is because “explicit is better than implicit”, in
most cases, and by default Pyramid wants you to return a Response object from a view callable. This is
because there’s usually a heck of a lot more to a response object than just its body. But if you’re the kind
of person who values such aesthetics, we have an easy way to allow for this sort of thing:

15

1. PYRAMID INTRODUCTION

1 from pyramid.config import Configurator
2 from pyramid.response import Response
3

4 def string_response_adapter(s):
5 response = Response(s)
6 response.content_type = 'text/html'
7 return response
8

9 if __name__ == '__main__':
10 config = Configurator()
11 config.add_response_adapter(string_response_adapter, basestring)

Do that once in your Pyramid application at startup. Now you can return strings from any of your view
callables, e.g.:

1 def helloview(request):
2 return "Hello world!"
3

4 def goodbyeview(request):
5 return "Goodbye world!"

Oh noes! What if you want to indicate a custom content type? And a custom status code? No fear:

1 from pyramid.config import Configurator
2

3 def tuple_response_adapter(val):
4 status_int, content_type, body = val
5 response = Response(body)
6 response.content_type = content_type
7 response.status_int = status_int
8 return response
9

10 def string_response_adapter(body):
11 response = Response(body)
12 response.content_type = 'text/html'
13 response.status_int = 200
14 return response
15

16 if __name__ == '__main__':
17 config = Configurator()
18 config.add_response_adapter(string_response_adapter, basestring)
19 config.add_response_adapter(tuple_response_adapter, tuple)

Once this is done, both of these view callables will work:

16

1.1. WHAT MAKES PYRAMID UNIQUE

1 def aview(request):
2 return "Hello world!"
3

4 def anotherview(request):
5 return (403, 'text/plain', "Forbidden")

Pyramid defaults to explicit behavior, because it’s the most generally useful, but provides hooks that allow
you to adapt the framework to localized aesthetic desires.

See also:

See also Changing How Pyramid Treats View Responses.

1.1.27 “Global” response object

“Constructing these response objects in my view callables is such a chore! And I’m way too lazy to
register a response adapter, as per the prior section,” you say. Fine. Be that way:

1 def aview(request):
2 response = request.response
3 response.body = 'Hello world!'
4 response.content_type = 'text/plain'
5 return response

See also:

See also Varying Attributes of Rendered Responses.

1.1.28 Automating repetitive configuration

Does Pyramid’s configurator allow you to do something, but you’re a little adventurous and just want it a
little less verbose? Or you’d like to offer up some handy configuration feature to other Pyramid users with-
out requiring that we change Pyramid? You can extend Pyramid’s Configurator with your own directives.
For example, let’s say you find yourself calling pyramid.config.Configurator.add_view()
repetitively. Usually you can take the boring away by using existing shortcuts, but let’s say that this is a
case where there is no such shortcut:

17

1. PYRAMID INTRODUCTION

1 from pyramid.config import Configurator
2

3 config = Configurator()
4 config.add_route('xhr_route', '/xhr/{id}')
5 config.add_view('my.package.GET_view', route_name='xhr_route',
6 xhr=True, permission='view', request_method='GET')
7 config.add_view('my.package.POST_view', route_name='xhr_route',
8 xhr=True, permission='view', request_method='POST')
9 config.add_view('my.package.HEAD_view', route_name='xhr_route',

10 xhr=True, permission='view', request_method='HEAD')

Pretty tedious right? You can add a directive to the Pyramid configurator to automate some of the tedium
away:

1 from pyramid.config import Configurator
2

3 def add_protected_xhr_views(config, module):
4 module = config.maybe_dotted(module)
5 for method in ('GET', 'POST', 'HEAD'):
6 view = getattr(module, 'xhr_%s_view' % method, None)
7 if view is not None:
8 config.add_view(view, route_name='xhr_route', xhr=True,
9 permission='view', request_method=method)

10

11 config = Configurator()
12 config.add_directive('add_protected_xhr_views', add_protected_xhr_views)

Once that’s done, you can call the directive you’ve just added as a method of the Configurator object:

1 config.add_route('xhr_route', '/xhr/{id}')
2 config.add_protected_xhr_views('my.package')

Your previously repetitive configuration lines have now morphed into one line.

You can share your configuration code with others this way, too, by packaging it up and calling
add_directive() from within a function called when another user uses the include() method
against your code.

See also:

See also Adding Methods to the Configurator via add_directive.

18

1.1. WHAT MAKES PYRAMID UNIQUE

1.1.29 Programmatic introspection

If you’re building a large system that other users may plug code into, it’s useful to be able to get an
enumeration of what code they plugged in at application runtime. For example, you might want to show
them a set of tabs at the top of the screen based on an enumeration of views they registered.

This is possible using Pyramid’s introspector.

Here’s an example of using Pyramid’s introspector from within a view callable:

1 from pyramid.view import view_config
2 from pyramid.response import Response
3

4 @view_config(route_name='bar')
5 def show_current_route_pattern(request):
6 introspector = request.registry.introspector
7 route_name = request.matched_route.name
8 route_intr = introspector.get('routes', route_name)
9 return Response(str(route_intr['pattern']))

See also:

See also Pyramid Configuration Introspection.

1.1.30 Python 3 compatibility

Pyramid and most of its add-ons are Python 3 compatible. If you develop a Pyramid application today,
you won’t need to worry that five years from now you’ll be backwatered because there are language
features you’d like to use but your framework doesn’t support newer Python versions.

1.1.31 Testing

Every release of Pyramid has 100% statement coverage via unit and integration tests, as measured by the
coverage tool available on PyPI. It also has greater than 95% decision/condition coverage as measured
by the instrumental tool available on PyPI. It is automatically tested by the Jenkins tool on Python
2.6, Python 2.7, Python 3.2, Python 3.3, Python 3.4, Python 3.5, PyPy, and PyPy3 after each commit to
its GitHub repository. Official Pyramid add-ons are held to a similar testing standard. We still find bugs
in Pyramid and its official add-ons, but we’ve noticed we find a lot more of them while working on other
projects that don’t have a good testing regime.

Example: http://jenkins.pylonsproject.org/

19

http://jenkins.pylonsproject.org/

1. PYRAMID INTRODUCTION

1.1.32 Support

It’s our goal that no Pyramid question go unanswered. Whether you ask a question on IRC, on the Pylons-
discuss mailing list, or on StackOverflow, you’re likely to get a reasonably prompt response. We don’t
tolerate “support trolls” or other people who seem to get their rocks off by berating fellow users in our
various official support channels. We try to keep it well-lit and new-user-friendly.

Example: Visit irc://freenode.net#pyramid (the #pyramid channel on irc.freenode.net in an IRC client)
or the pylons-discuss maillist at http://groups.google.com/group/pylons-discuss/.

1.1.33 Documentation

It’s a constant struggle, but we try to maintain a balance between completeness and new-user-friendliness
in the official narrative Pyramid documentation (concrete suggestions for improvement are always ap-
preciated, by the way). We also maintain a “cookbook” of recipes, which are usually demonstrations of
common integration scenarios too specific to add to the official narrative docs. In any case, the Pyramid
documentation is comprehensive.

Example: The Pyramid Community Cookbook.

1.2 What Is The Pylons Project?

Pyramid is a member of the collection of software published under the Pylons Project. Pylons software
is written by a loose-knit community of contributors. The Pylons Project website includes details about
how Pyramid relates to the Pylons Project.

1.3 Pyramid and Other Web Frameworks

The first release of Pyramid’s predecessor (named repoze.bfg) was made in July of 2008. At the end
of 2010, we changed the name of repoze.bfg to Pyramid. It was merged into the Pylons project as
Pyramid in November of that year.

Pyramid was inspired by Zope, Pylons (version 1.0), and Django. As a result, Pyramid borrows several
concepts and features from each, combining them into a unique web framework.

20

http://groups.google.com/group/pylons-discuss/
http://docs.pylonsproject.org/projects/pyramid-cookbook/en/latest/index.html#pyramid-cookbook
http://pylonsproject.org

1.3. PYRAMID AND OTHER WEB FRAMEWORKS

Many features of Pyramid trace their origins back to Zope. Like Zope applications, Pyramid applications
can be easily extended. If you obey certain constraints, the application you produce can be reused, mod-
ified, re-integrated, or extended by third-party developers without forking the original application. The
concepts of traversal and declarative security in Pyramid were pioneered first in Zope.

The Pyramid concept of URL dispatch is inspired by the Routes system used by Pylons version 1.0. Like
Pylons version 1.0, Pyramid is mostly policy-free. It makes no assertions about which database you
should use. Pyramid no longer has built-in templating facilities as of version 1.5a2, but instead officially
supports bindings for templating languages, including Chameleon, Jinja2, and Mako. In essence, it only
supplies a mechanism to map URLs to view code, along with a set of conventions for calling those views.
You are free to use third-party components that fit your needs in your applications.

The concept of view is used by Pyramid mostly as it would be by Django. Pyramid has a documentation
culture more like Django’s than like Zope’s.

Like Pylons version 1.0, but unlike Zope, a Pyramid application developer may use completely imperative
code to perform common framework configuration tasks such as adding a view or a route. In Zope, ZCML
is typically required for similar purposes. In Grok, a Zope-based web framework, decorator objects
and class-level declarations are used for this purpose. Out of the box, Pyramid supports imperative and
decorator-based configuration. ZCML may be used via an add-on package named pyramid_zcml.

Also unlike Zope and other “full-stack” frameworks such as Django, Pyramid makes no assumptions
about which persistence mechanisms you should use to build an application. Zope applications are typ-
ically reliant on ZODB. Pyramid allows you to build ZODB applications, but it has no reliance on the
ZODB software. Likewise, Django tends to assume that you want to store your application’s data in a
relational database. Pyramid makes no such assumption, allowing you to use a relational database, and
neither encouraging nor discouraging the decision.

Other Python web frameworks advertise themselves as members of a class of web frameworks named
model-view-controller frameworks. Insofar as this term has been claimed to represent a class of web
frameworks, Pyramid also generally fits into this class.

You Say Pyramid is MVC, but Where’s the Controller?

The Pyramid authors believe that the MVC pattern just doesn’t really fit the web very well. In a
Pyramid application, there is a resource tree which represents the site structure, and views which
tend to present the data stored in the resource tree and a user-defined “domain model”. However,
no facility provided by the framework actually necessarily maps to the concept of a “controller”
or “model”. So if you had to give it some acronym, I guess you’d say Pyramid is actually an
“RV” framework rather than an “MVC” framework. “MVC”, however, is close enough as a general
classification moniker for purposes of comparison with other web frameworks.

21

http://en.wikipedia.org/wiki/Model\T1\textendash view\T1\textendash controller

1. PYRAMID INTRODUCTION

22

CHAPTER 2

Installing Pyramid

2.1 Before You Install

You will need Python version 2.6 or better to run Pyramid.

Python Versions

As of this writing, Pyramid has been tested under Python 2.6, Python 2.7, Python 3.2, Python 3.3,
Python 3.4, Python 3.5, PyPy, and PyPy3. Pyramid does not run under any version of Python before
2.6.

Pyramid is known to run on all popular UNIX-like systems such as Linux, Mac OS X, and FreeBSD as
well as on Windows platforms. It is also known to run on PyPy (1.9+).

Pyramid installation does not require the compilation of any C code, so you need only a Python interpreter
that meets the requirements mentioned.

Some Pyramid dependencies may attempt to build C extensions for performance speedups. If a compiler
or Python headers are unavailable the dependency will fall back to using pure Python instead.

2.1.1 For Mac OS X Users

Python comes pre-installed on Mac OS X, but due to Apple’s release cycle, it is often out of date. Unless
you have a need for a specific earlier version, it is recommended to install the latest 2.x or 3.x version of
Python.

You can install the latest verion of Python for Mac OS X from the binaries on python.org.

Alternatively, you can use the homebrew package manager.

23

http://python.org
https://www.python.org/downloads/mac-osx/
http://brew.sh/

2. INSTALLING PYRAMID

for python 2.7
$ brew install python

for python 3.5
$ brew install python3

If you use an installer for your Python, then you can skip to the section Installing Pyramid on a UNIX
System.

2.1.2 If You Don’t Yet Have a Python Interpreter (UNIX)

If your system doesn’t have a Python interpreter, and you’re on UNIX, you can either install Python using
your operating system’s package manager or you can install Python from source fairly easily on any
UNIX system that has development tools.

Package Manager Method

You can use your system’s “package manager” to install Python. Each package manager is slightly dif-
ferent, but the “flavor” of them is usually the same.

For example, on a Debian or Ubuntu system, use the following command:

$ sudo apt-get install python2.7-dev

This command will install both the Python interpreter and its development header files. Note that the
headers are required by some (optional) C extensions in software depended upon by Pyramid, not by
Pyramid itself.

Once these steps are performed, the Python interpreter will usually be invokable via python2.7 from a
shell prompt.

24

2.1. BEFORE YOU INSTALL

Source Compile Method

It’s useful to use a Python interpreter that isn’t the “system” Python interpreter to develop your
software. The authors of Pyramid tend not to use the system Python for development pur-
poses; always a self-compiled one. Compiling Python is usually easy, and often the “system”
Python is compiled with options that aren’t optimal for web development. For an explanation, see
https://github.com/Pylons/pyramid/issues/747.

To compile software on your UNIX system, typically you need development tools. Often these can be
installed via the package manager. For example, this works to do so on an Ubuntu Linux system:

$ sudo apt-get install build-essential

On Mac OS X, installing XCode has much the same effect.

Once you’ve got development tools installed on your system, you can install a Python 2.7 interpreter from
source, on the same system, using the following commands:

$ cd ~
$ mkdir tmp
$ mkdir opt
$ cd tmp
$ wget http://www.python.org/ftp/python/2.7.3/Python-2.7.3.tgz
$ tar xvzf Python-2.7.3.tgz
$ cd Python-2.7.3
$./configure --prefix=$HOME/opt/Python-2.7.3
$ make && make install

Once these steps are performed, the Python interpreter will be invokable via
$HOME/opt/Python-2.7.3/bin/python from a shell prompt.

2.1.3 If You Don’t Yet Have a Python Interpreter (Windows)

If your Windows system doesn’t have a Python interpreter, you’ll need to install it by downloading a
Python 2.7-series interpreter executable from python.org’s download section (the files labeled “Windows
Installer”). Once you’ve downloaded it, double click on the executable and accept the defaults during the
installation process. You may also need to download and install the Python for Windows extensions.

After you install Python on Windows, you may need to add the C:\Python27 directory to
your environment’s Path in order to make it possible to invoke Python from a command prompt by
typing python. To do so, right click My Computer, select Properties –> Advanced Tab –>
Environment Variables and add that directory to the end of the Path environment variable.

25

https://github.com/Pylons/pyramid/issues/747
http://developer.apple.com/tools/xcode/
http://python.org/download/

2. INSTALLING PYRAMID

2.2 Installing Pyramid on a UNIX System

It is best practice to install Pyramid into a “virtual” Python environment in order to obtain isolation
from any “system” packages you’ve got installed in your Python version. This can be done by using
the virtualenv package. Using a virtualenv will also prevent Pyramid from globally installing versions of
packages that are not compatible with your system Python.

To set up a virtualenv in which to install Pyramid, first ensure that setuptools is installed. To do so, invoke
import setuptools within the Python interpreter you’d like to run Pyramid under.

The following command will not display anything if setuptools is already installed:

$ python2.7 -c 'import setuptools'

Running the same command will yield the following output if setuptools is not yet installed:

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ImportError: No module named setuptools

If import setuptools raises an ImportError as it does above, you will need to install setuptools
manually.

If you are using a “system” Python (one installed by your OS distributor or a third-party packager such
as Fink or MacPorts), you can usually install the setuptools package by using your system’s package
manager. If you cannot do this, or if you’re using a self-installed version of Python, you will need to
install setuptools “by hand”. Installing setuptools “by hand” is always a reasonable thing to do, even if
your package manager already has a pre-chewed version of setuptools for installation.

2.2.1 Installing Setuptools

To install setuptools by hand under Python 2, first download ez_setup.py then invoke it using the Python
interpreter into which you want to install setuptools.

$ python ez_setup.py

Once this command is invoked, setuptools should be installed on your system. If the command fails due
to permission errors, you may need to be the administrative user on your system to successfully invoke
the script. To remediate this, you may need to do:

26

http://docs.python.org/3/library/exceptions.html#ImportError
https://bootstrap.pypa.io/ez_setup.py

2.2. INSTALLING PYRAMID ON A UNIX SYSTEM

$ sudo python ez_setup.py

2.2.2 Installing the virtualenv Package

Once you’ve got setuptools installed, you should install the virtualenv package. To install the virtualenv
package into your setuptools-enabled Python interpreter, use the easy_install command.

Python 3.3 includes pyvenv out of the box, which provides similar functionality to
virtualenv. We however suggest using virtualenv instead, which works well with Python
3.3. This isn’t a recommendation made for technical reasons; it’s made because it’s not feasible for
the authors of this guide to explain setup using multiple virtual environment systems. We are aiming
to not need to make the installation documentation Turing-complete.
If you insist on using pyvenv, you’ll need to understand how to install software such as
setuptools into the virtual environment manually, which this guide does not cover.

$ easy_install virtualenv

This command should succeed, and tell you that the virtualenv package is now installed. If it fails due to
permission errors, you may need to install it as your system’s administrative user. For example:

$ sudo easy_install virtualenv

2.2.3 Creating the Virtual Python Environment

Once the virtualenv package is installed in your Python environment, you can then create a virtual envi-
ronment. To do so, invoke the following:

$ export VENV=~/env
$ virtualenv $VENV
New python executable in /home/foo/env/bin/python
Installing setuptools.............done.

27

2. INSTALLING PYRAMID

You can either follow the use of the environment variable, $VENV, or replace it with the root directory
of the virtualenv. In that case, the export command can be skipped. If you choose the former approach,
ensure that it’s an absolute path.

Avoid using the --system-site-packages option when creating the virtualenv un-
less you know what you are doing. For versions of virtualenv prior to 1.7, make sure to use the
--no-site-packages option, because this option was formerly not the default and may produce
undesirable results.

do not use sudo to run the virtualenv script. It’s perfectly acceptable (and desirable) to
create a virtualenv as a normal user.

2.2.4 Installing Pyramid into the Virtual Python Environment

After you’ve got your virtualenv installed, you may install Pyramid itself using the following commands:

$ $VENV/bin/easy_install ``pyramid==1.5.8``

The easy_install command will take longer than the previous ones to complete, as it downloads and
installs a number of dependencies.

If you see any warnings and/or errors related to failing to compile the C extensions, in most
cases you may safely ignore those errors. If you wish to use the C extensions, please verify that you
have a functioning compiler and the Python header files installed.

2.3 Installing Pyramid on a Windows System

You can use Pyramid on Windows under Python 2 or 3.

1. Download and install the most recent Python 2.7.x or 3.3.x version for your system.

2. Download and install the Python for Windows extensions. Carefully read the README.txt file at
the end of the list of builds, and follow its directions. Make sure you get the proper 32- or 64-bit
build and Python version.

3. Install latest setuptools distribution into the Python from step 1 above: download ez_setup.py and
run it using the python interpreter of your Python 2.7 or 3.3 installation using a command prompt:

28

http://www.python.org/download/
http://sourceforge.net/projects/pywin32/files/pywin32/
https://bootstrap.pypa.io/ez_setup.py

2.4. WHAT GETS INSTALLED

modify the command according to the python version, e.g.:
for Python 2.7:
c:\> c:\Python27\python ez_setup.py
for Python 3.3:
c:\> c:\Python33\python ez_setup.py

4. Install virtualenv:

modify the command according to the python version, e.g.:
for Python 2.7:
c:\> c:\Python27\Scripts\easy_install virtualenv
for Python 3.3:
c:\> c:\Python33\Scripts\easy_install virtualenv

5. Make a virtualenv workspace:

c:\> set VENV=c:\env
modify the command according to the python version, e.g.:
for Python 2.7:
c:\> c:\Python27\Scripts\virtualenv %VENV%
for Python 3.3:
c:\> c:\Python33\Scripts\virtualenv %VENV%

You can either follow the use of the environment variable, %VENV%, or replace it with the root
directory of the virtualenv. In that case, the set command can be skipped. If you choose the former
approach, ensure that it’s an absolute path.

6. (Optional) Consider using %VENV%\Scripts\activate.bat to make your shell environment
wired to use the virtualenv.

7. Use easy_install to get Pyramid and its direct dependencies installed:

c:\env> %VENV%\Scripts\easy_install ``pyramid==1.5.8``

2.4 What Gets Installed

When you easy_install Pyramid, various other libraries such as WebOb, PasteDeploy, and others
are installed.

Additionally, as chronicled in Creating a Pyramid Project, scaffolds will be registered, which make it
easy to start a new Pyramid project.

29

2. INSTALLING PYRAMID

30

CHAPTER 3

Creating Your First Pyramid Application

In this chapter, we will walk through the creation of a tiny Pyramid application. After we’re finished
creating the application, we’ll explain in more detail how it works. It assumes you already have Pyramid
installed. If you do not, head over to the Installing Pyramid section.

3.1 Hello World

Here’s one of the very simplest Pyramid applications:

1 from wsgiref.simple_server import make_server
2 from pyramid.config import Configurator
3 from pyramid.response import Response
4

5

6 def hello_world(request):
7 return Response('Hello %(name)s!' % request.matchdict)
8

9 if __name__ == '__main__':
10 config = Configurator()
11 config.add_route('hello', '/hello/{name}')
12 config.add_view(hello_world, route_name='hello')
13 app = config.make_wsgi_app()
14 server = make_server('0.0.0.0', 8080, app)
15 server.serve_forever()
16

31

3. CREATING YOUR FIRST PYRAMID APPLICATION

When this code is inserted into a Python script named helloworld.py and executed by a Python
interpreter which has the Pyramid software installed, an HTTP server is started on TCP port 8080.

On UNIX:

$ $VENV/bin/python helloworld.py

On Windows:

C:\> %VENV%\Scripts\python.exe helloworld.py

This command will not return and nothing will be printed to the console. When port 8080 is visited
by a browser on the URL /hello/world, the server will simply serve up the text “Hello world!”. If
your application is running on your local system, using http://localhost:8080/hello/world in a browser will
show this result.

Each time you visit a URL served by the application in a browser, a logging line will be emitted to the
console displaying the hostname, the date, the request method and path, and some additional information.
This output is done by the wsgiref server we’ve used to serve this application. It logs an “access log” in
Apache combined logging format to the console.

Press Ctrl-C (or Ctrl-Break on Windows) to stop the application.

Now that we have a rudimentary understanding of what the application does, let’s examine it piece by
piece.

3.1.1 Imports

The above helloworld.py script uses the following set of import statements:

1 from wsgiref.simple_server import make_server
2 from pyramid.config import Configurator
3 from pyramid.response import Response

The script imports the Configurator class from the pyramid.config module. An instance of the
Configurator class is later used to configure your Pyramid application.

Like many other Python web frameworks, Pyramid uses the WSGI protocol to connect an application and
a web server together. The wsgiref server is used in this example as a WSGI server for convenience,
as it is shipped within the Python standard library.

The script also imports the pyramid.response.Response class for later use. An instance of this
class will be used to create a web response.

32

http://localhost:8080/hello/world
http://docs.python.org/3/library/wsgiref.html#module-wsgiref

3.1. HELLO WORLD

3.1.2 View Callable Declarations

The above script, beneath its set of imports, defines a function named hello_world.

1 def hello_world(request):
2 return Response('Hello %(name)s!' % request.matchdict)

The function accepts a single argument (request) and it returns an instance of the
pyramid.response.Response class. The single argument to the class’ constructor is a string com-
puted from parameters matched from the URL. This value becomes the body of the response.

This function is known as a view callable. A view callable accepts a single argument, request. It is
expected to return a response object. A view callable doesn’t need to be a function; it can be represented
via another type of object, like a class or an instance, but for our purposes here, a function serves us well.

A view callable is always called with a request object. A request object is a representation of an HTTP
request sent to Pyramid via the active WSGI server.

A view callable is required to return a response object because a response object has all the information
necessary to formulate an actual HTTP response; this object is then converted to text by the WSGI server
which called Pyramid and it is sent back to the requesting browser. To return a response, each view
callable creates an instance of the Response class. In the hello_world function, a string is passed
as the body to the response.

3.1.3 Application Configuration

In the above script, the following code represents the configuration of this simple application. The ap-
plication is configured using the previously defined imports and function definitions, placed within the
confines of an if statement:

1 if __name__ == '__main__':
2 config = Configurator()
3 config.add_route('hello', '/hello/{name}')
4 config.add_view(hello_world, route_name='hello')
5 app = config.make_wsgi_app()
6 server = make_server('0.0.0.0', 8080, app)
7 server.serve_forever()

Let’s break this down piece by piece.

3.1.4 Configurator Construction

33

3. CREATING YOUR FIRST PYRAMID APPLICATION

1 if __name__ == '__main__':
2 config = Configurator()

The if __name__ == ’__main__’: line in the code sample above represents a Python idiom: the
code inside this if clause is not invoked unless the script containing this code is run directly from the
operating system command line. For example, if the file named helloworld.py contains the entire
script body, the code within the if statement will only be invoked when python helloworld.py is
executed from the command line.

Using the if clause is necessary—or at least best practice—because code in a Python .py file may be
eventually imported via the Python import statement by another .py file. .py files that are imported
by other .py files are referred to as modules. By using the if __name__ == ’__main__’: idiom,
the script above is indicating that it does not want the code within the if statement to execute if this
module is imported from another; the code within the if block should only be run during a direct script
execution.

The config = Configurator() line above creates an instance of the Configurator class. The
resulting config object represents an API which the script uses to configure this particular Pyramid
application. Methods called on the Configurator will cause registrations to be made in an application
registry associated with the application.

3.1.5 Adding Configuration

1 config.add_route('hello', '/hello/{name}')
2 config.add_view(hello_world, route_name='hello')

The first line above calls the pyramid.config.Configurator.add_route() method, which
registers a route to match any URL path that begins with /hello/ followed by a string.

The second line registers the hello_world function as a view callable and makes sure that it will be
called when the hello route is matched.

3.1.6 WSGI Application Creation

1 app = config.make_wsgi_app()

34

3.1. HELLO WORLD

After configuring views and ending configuration, the script creates a WSGI application via the
pyramid.config.Configurator.make_wsgi_app() method. A call to make_wsgi_app
implies that all configuration is finished (meaning all method calls to the configurator, which sets up
views and various other configuration settings, have been performed). The make_wsgi_app method
returns a WSGI application object that can be used by any WSGI server to present an application to a
requestor. WSGI is a protocol that allows servers to talk to Python applications. We don’t discuss WSGI
in any depth within this book, but you can learn more about it by visiting wsgi.org.

The Pyramid application object, in particular, is an instance of a class representing a Pyramid router. It
has a reference to the application registry which resulted from method calls to the configurator used to
configure it. The router consults the registry to obey the policy choices made by a single application.
These policy choices were informed by method calls to the Configurator made earlier; in our case, the
only policy choices made were implied by calls to its add_view and add_route methods.

3.1.7 WSGI Application Serving

1 server = make_server('0.0.0.0', 8080, app)
2 server.serve_forever()

Finally, we actually serve the application to requestors by starting up a WSGI server. We happen to use the
wsgiref make_server server maker for this purpose. We pass in as the first argument ’0.0.0.0’,
which means “listen on all TCP interfaces”. By default, the HTTP server listens only on the 127.0.0.1
interface, which is problematic if you’re running the server on a remote system and you wish to access
it with a web browser from a local system. We also specify a TCP port number to listen on, which is
8080, passing it as the second argument. The final argument is the app object (a router), which is the
application we wish to serve. Finally, we call the server’s serve_forever method, which starts the
main loop in which it will wait for requests from the outside world.

When this line is invoked, it causes the server to start listening on TCP port 8080. The server will serve
requests forever, or at least until we stop it by killing the process which runs it (usually by pressing
Ctrl-C or Ctrl-Break in the terminal we used to start it).

3.1.8 Conclusion

Our hello world application is one of the simplest possible Pyramid applications, configured “impera-
tively”. We can see that it’s configured imperatively because the full power of Python is available to us as
we perform configuration tasks.

35

http://wsgi.org
http://docs.python.org/3/library/wsgiref.html#module-wsgiref

3. CREATING YOUR FIRST PYRAMID APPLICATION

3.2 References

For more information about the API of a Configurator object, see Configurator .

For more information about view configuration, see View Configuration.

36

CHAPTER 4

Application Configuration

Most people already understand “configuration” as settings that influence the operation of an application.
For instance, it’s easy to think of the values in a .ini file parsed at application startup time as “configu-
ration”. However, if you’re reasonably open-minded, it’s easy to think of code as configuration too. Since
Pyramid, like most other web application platforms, is a framework, it calls into code that you write (as
opposed to a library, which is code that exists purely for you to call). The act of plugging application
code that you’ve written into Pyramid is also referred to within this documentation as “configuration”;
you are configuring Pyramid to call the code that makes up your application.

See also:

For information on .ini files for Pyramid applications see the Startup chapter.

There are two ways to configure a Pyramid application: imperative configuration and declarative config-
uration. Both are described below.

4.1 Imperative Configuration

“Imperative configuration” just means configuration done by Python statements, one after the next. Here’s
one of the simplest Pyramid applications, configured imperatively:

37

4. APPLICATION CONFIGURATION

1 from wsgiref.simple_server import make_server
2 from pyramid.config import Configurator
3 from pyramid.response import Response
4

5 def hello_world(request):
6 return Response('Hello world!')
7

8 if __name__ == '__main__':
9 config = Configurator()

10 config.add_view(hello_world)
11 app = config.make_wsgi_app()
12 server = make_server('0.0.0.0', 8080, app)
13 server.serve_forever()

We won’t talk much about what this application does yet. Just note that the “configuration’ statements
take place underneath the if __name__ == ’__main__’: stanza in the form of method calls on a
Configurator object (e.g., config.add_view(...)). These statements take place one after the other,
and are executed in order, so the full power of Python, including conditionals, can be employed in this
mode of configuration.

4.2 Declarative Configuration

It’s sometimes painful to have all configuration done by imperative code, because often the code for a
single application may live in many files. If the configuration is centralized in one place, you’ll need to
have at least two files open at once to see the “big picture”: the file that represents the configuration, and
the file that contains the implementation objects referenced by the configuration. To avoid this, Pyramid
allows you to insert configuration decoration statements very close to code that is referred to by the
declaration itself. For example:

1 from pyramid.response import Response
2 from pyramid.view import view_config
3

4 @view_config(name='hello', request_method='GET')
5 def hello(request):
6 return Response('Hello')

The mere existence of configuration decoration doesn’t cause any configuration registration to be per-
formed. Before it has any effect on the configuration of a Pyramid application, a configuration decoration
within application code must be found through a process known as a scan.

38

4.3. SUMMARY

For example, the pyramid.view.view_config decorator in the code example above adds an at-
tribute to the hello function, making it available for a scan to find it later.

A scan of a module or a package and its subpackages for decorations happens when the
pyramid.config.Configurator.scan() method is invoked: scanning implies searching for
configuration declarations in a package and its subpackages. For example:

1 from wsgiref.simple_server import make_server
2 from pyramid.config import Configurator
3 from pyramid.response import Response
4 from pyramid.view import view_config
5

6 @view_config()
7 def hello(request):
8 return Response('Hello')
9

10 if __name__ == '__main__':
11 config = Configurator()
12 config.scan()
13 app = config.make_wsgi_app()
14 server = make_server('0.0.0.0', 8080, app)
15 server.serve_forever()

The scanning machinery imports each module and subpackage in a package or module recursively, look-
ing for special attributes attached to objects defined within a module. These special attributes are typically
attached to code via the use of a decorator. For example, the view_config decorator can be attached
to a function or instance method.

Once scanning is invoked, and configuration decoration is found by the scanner, a set of calls are made
to a Configurator on your behalf. These calls replace the need to add imperative configuration statements
that don’t live near the code being configured.

The combination of configuration decoration and the invocation of a scan is collectively known as declar-
ative configuration.

In the example above, the scanner translates the arguments to view_config into a call to the
pyramid.config.Configurator.add_view() method, effectively:

config.add_view(hello)

4.3 Summary

There are two ways to configure a Pyramid application: declaratively and imperatively. You can choose
the mode with which you’re most comfortable; both are completely equivalent. Examples in this docu-
mentation will use both modes interchangeably.

39

4. APPLICATION CONFIGURATION

40

CHAPTER 5

Creating a Pyramid Project

As we saw in Creating Your First Pyramid Application, it’s possible to create a Pyramid application
completely manually. However, it’s usually more convenient to use a scaffold to generate a basic Pyramid
project.

A project is a directory that contains at least one Python package. You’ll use a scaffold to create a project,
and you’ll create your application logic within a package that lives inside the project. Even if your
application is extremely simple, it is useful to place code that drives the application within a package,
because (1) a package is more easily extended with new code, and (2) an application that lives inside a
package can also be distributed more easily than one which does not live within a package.

Pyramid comes with a variety of scaffolds that you can use to generate a project. Each scaffold makes
different configuration assumptions about what type of application you’re trying to construct.

These scaffolds are rendered using the pcreate command that is installed as part of Pyramid.

5.1 Scaffolds Included with Pyramid

The convenience scaffolds included with Pyramid differ from each other on a number of axes:

• the persistence mechanism they offer (no persistence mechanism, ZODB, or SQLAlchemy)

• the mechanism they use to map URLs to code (traversal or URL dispatch)

The included scaffolds are these:

starter URL mapping via URL dispatch and no persistence mechanism

zodb URL mapping via traversal and persistence via ZODB

alchemy URL mapping via URL dispatch and persistence via SQLAlchemy

41

5. CREATING A PYRAMID PROJECT

5.2 Creating the Project

See also:

See also the output of pcreate –help.

In Installing Pyramid, you created a virtual Python environment via the virtualenv command. To
start a Pyramid project, use the pcreate command installed within the virtualenv. We’ll choose the
starter scaffold for this purpose. When we invoke pcreate, it will create a directory that represents
our project.

In Installing Pyramid we called the virtualenv directory env. The following commands assume that our
current working directory is the env directory.

The below example uses the pcreate command to create a project with the starter scaffold.

On UNIX:

$ $VENV/bin/pcreate -s starter MyProject

Or on Windows:

> %VENV%\Scripts\pcreate -s starter MyProject

Here’s sample output from a run of pcreate on UNIX for a project we name MyProject:

$ $VENV/bin/pcreate -s starter MyProject
Creating template pyramid
Creating directory ./MyProject
... more output ...
Running /Users/chrism/projects/pyramid/bin/python setup.py egg_info

As a result of invoking the pcreate command, a directory named MyProject is created. That direc-
tory is a project directory. The setup.py file in that directory can be used to distribute your application,
or install your application for deployment or development.

A .ini file named development.ini will be created in the project directory. You will use this .ini
file to configure a server, to run your application, and to debug your application. It contains configuration
that enables an interactive debugger and settings optimized for development.

42

5.3. INSTALLING YOUR NEWLY CREATED PROJECT FOR DEVELOPMENT

Another .ini file named production.ini will also be created in the project directory. It contains
configuration that disables any interactive debugger (to prevent inappropriate access and disclosure), and
turns off a number of debugging settings. You can use this file to put your application into production.

The MyProject project directory contains an additional subdirectory named myproject (note the
case difference) representing a Python package which holds very simple Pyramid sample code. This is
where you’ll edit your application’s Python code and templates.

We created this project within an env virtualenv directory. However, note that this is not mandatory. The
project directory can go more or less anywhere on your filesystem. You don’t need to put it in a special
“web server” directory, and you don’t need to put it within a virtualenv directory. The author uses Linux
mainly, and tends to put project directories which he creates within his ~/projects directory. On
Windows, it’s a good idea to put project directories within a directory that contains no space characters,
so it’s wise to avoid a path that contains, i.e., My Documents. As a result, the author, when he uses
Windows, just puts his projects in C:\projects.

You’ll need to avoid using pcreate to create a project with the same name as a Python
standard library component. In particular, this means you should avoid using the names site or
test, both of which conflict with Python standard library packages. You should also avoid using the
name pyramid, which will conflict with Pyramid itself.

5.3 Installing your Newly Created Project for Development

To install a newly created project for development, you should cd to the newly created project directory
and use the Python interpreter from the virtualenv you created during Installing Pyramid to invoke the
command python setup.py develop

The file named setup.py will be in the root of the pcreate-generated project directory. The python
you’re invoking should be the one that lives in the bin (or Scripts on Windows) directory of your
virtual Python environment. Your terminal’s current working directory must be the newly created project
directory.

On UNIX:

$ cd MyProject
$ $VENV/bin/python setup.py develop

Or on Windows:

43

5. CREATING A PYRAMID PROJECT

> cd MyProject
> %VENV%\Scripts\python.exe setup.py develop

Elided output from a run of this command on UNIX is shown below:

$ cd MyProject
$ $VENV/bin/python setup.py develop
...
Finished processing dependencies for MyProject==0.0

This will install a distribution representing your project into the virtual environment interpreter’s library
set so it can be found by import statements and by other console scripts such as pserve, pshell,
proutes, and pviews.

5.4 Running the Tests for Your Application

To run unit tests for your application, you should invoke them using the Python interpreter from the
virtualenv you created during Installing Pyramid (the python command that lives in the bin directory
of your virtualenv).

On UNIX:

$ $VENV/bin/python setup.py test -q

Or on Windows:

> %VENV%\Scripts\python.exe setup.py test -q

Here’s sample output from a test run on UNIX:

$ $VENV/bin/python setup.py test -q
running test
running egg_info
writing requirements to MyProject.egg-info/requires.txt
writing MyProject.egg-info/PKG-INFO
writing top-level names to MyProject.egg-info/top_level.txt
writing dependency_links to MyProject.egg-info/dependency_links.txt
writing entry points to MyProject.egg-info/entry_points.txt

44

5.5. RUNNING THE PROJECT APPLICATION

reading manifest file 'MyProject.egg-info/SOURCES.txt'
writing manifest file 'MyProject.egg-info/SOURCES.txt'
running build_ext
..
--
Ran 1 test in 0.108s

OK

The tests themselves are found in the tests.py module in your pcreate generated project. Within a
project generated by the starter scaffold, a single sample test exists.

The -q option is passed to the setup.py test command to limit the output to a stream
of dots. If you don’t pass -q, you’ll see more verbose test result output (which normally isn’t very
useful).

5.5 Running the Project Application

See also:

See also the output of pserve –help.

Once a project is installed for development, you can run the application it represents using the pserve
command against the generated configuration file. In our case, this file is named development.ini.

On UNIX:

$ $VENV/bin/pserve development.ini

On Windows:

> %VENV%\Scripts\pserve development.ini

Here’s sample output from a run of pserve on UNIX:

45

5. CREATING A PYRAMID PROJECT

$ $VENV/bin/pserve development.ini
Starting server in PID 16601.
serving on http://0.0.0.0:6543

When you use pserve to start the application implied by the default rendering of a scaffold, it will
respond to requests on all IP addresses possessed by your system, not just requests to localhost.
This is what the 0.0.0.0 in serving on http://0.0.0.0:6543 means. The server will
respond to requests made to 127.0.0.1 and on any external IP address. For example, your sys-
tem might be configured to have an external IP address 192.168.1.50. If that’s the case, if you
use a browser running on the same system as Pyramid, it will be able to access the application via
http://127.0.0.1:6543/ as well as via http://192.168.1.50:6543/. However, other
people on other computers on the same network will also be able to visit your Pyramid application in
their browser by visiting http://192.168.1.50:6543/.

If you want to restrict access such that only a browser running on the same machine as Pyramid will be
able to access your Pyramid application, edit the development.ini file, and replace the host value
in the [server:main] section. Change it from 0.0.0.0 to 127.0.0.1. For example:

[server:main]
use = egg:waitress#main
host = 127.0.0.1
port = 6543

You can change the port on which the server runs on by changing the same portion of
the development.ini file. For example, you can change the port = 6543 line in the
development.ini file’s [server:main] section to port = 8080 to run the server on port 8080
instead of port 6543.

You can shut down a server started this way by pressing Ctrl-C (or Ctrl-Break on Windows).

The default server used to run your Pyramid application when a project is created from a scaffold is named
Waitress. This server is what prints the serving on... line when you run pserve. It’s a good idea
to use this server during development because it’s very simple. It can also be used for light production.
Setting your application up under a different server is not advised until you’ve done some development
work under the default server, particularly if you’re not yet experienced with Python web development.
Python web server setup can be complex, and you should get some confidence that your application
works in a default environment before trying to optimize it or make it “more like production”. It’s awfully
easy to get sidetracked trying to set up a non-default server for hours without actually starting to do any
development. One of the nice things about Python web servers is that they’re largely interchangeable, so
if your application works under the default server, it will almost certainly work under any other server in
production if you eventually choose to use a different one. Don’t worry about it right now.

For more detailed information about the startup process, see Startup. For more information about environ-
ment variables and configuration file settings that influence startup and runtime behavior, see Environment
Variables and .ini File Settings.

46

5.6. VIEWING THE APPLICATION

5.5.1 Reloading Code

During development, it’s often useful to run pserve using its --reload option. When --reload is
passed to pserve, changes to any Python module your project uses will cause the server to restart. This
typically makes development easier, as changes to Python code made within a Pyramid application is not
put into effect until the server restarts.

For example, on UNIX:

$ $VENV/bin/pserve development.ini --reload
Starting subprocess with file monitor
Starting server in PID 16601.
serving on http://0.0.0.0:6543

Now if you make a change to any of your project’s .py files or .ini files, you’ll see the server restart
automatically:

development.ini changed; reloading...
-------------------- Restarting --------------------
Starting server in PID 16602.
serving on http://0.0.0.0:6543

Changes to template files (such as .pt or .mak files) won’t cause the server to restart. Changes to
template files don’t require a server restart as long as the pyramid.reload_templates setting in
the development.ini file is true. Changes made to template files when this setting is true will take
effect immediately without a server restart.

5.6 Viewing the Application

Once your application is running via pserve, you may visit http://localhost:6543/ in your
browser. You will see something in your browser like what is displayed in the following image:

47

5. CREATING A PYRAMID PROJECT

This is the page shown by default when you visit an unmodified pcreate generated starter applica-
tion in a browser.

5.6.1 The Debug Toolbar

48

5.6. VIEWING THE APPLICATION

If you click on the Pyramid logo at the top right of the page, a new target window will open to present
a debug toolbar that provides various niceties while you’re developing. This logo will float above every
HTML page served by Pyramid while you develop an application, and allows you to show the toolbar as
necessary.

If you don’t see the Pyramid logo on the top right of the page, it means you’re browsing from a system
that does not have debugging access. By default, for security reasons, only a browser originating from
localhost (127.0.0.1) can see the debug toolbar. To allow your browser on a remote system to
access the server, add a line within the [app:main] section of the development.ini file in the
form debugtoolbar.hosts = X .X.X.X. For example, if your Pyramid application is running
on a remote system, and you’re browsing from a host with the IP address 192.168.1.1, you’d add
something like this to enable the toolbar when your system contacts Pyramid:

[app:main]
.. other settings ...
debugtoolbar.hosts = 192.168.1.1

49

5. CREATING A PYRAMID PROJECT

For more information about what the debug toolbar allows you to do, see the documentation for pyra-
mid_debugtoolbar.

The debug toolbar will not be shown (and all debugging will be turned off) when you use the
production.ini file instead of the development.ini ini file to run the application.

You can also turn the debug toolbar off by editing development.ini and commenting out a line. For
example, instead of:

1 [app:main]
2 # ... elided configuration
3 pyramid.includes =
4 pyramid_debugtoolbar

Put a hash mark at the beginning of the pyramid_debugtoolbar line:

1 [app:main]
2 # ... elided configuration
3 pyramid.includes =
4 # pyramid_debugtoolbar

Then restart the application to see that the toolbar has been turned off.

Note that if you comment out the pyramid_debugtoolbar line, the # must be in the first column.
If you put it anywhere else, and then attempt to restart the application, you’ll receive an error that ends
something like this:

ImportError: No module named #pyramid_debugtoolbar

5.7 The Project Structure

The starter scaffold generated a project (named MyProject), which contains a Python package. The
package is also named myproject, but it’s lowercased; the scaffold generates a project which contains
a package that shares its name except for case.

All Pyramid pcreate-generated projects share a similar structure. The MyProject project we’ve
generated has the following directory structure:

50

http://docs.pylonsproject.org/projects/pyramid_debugtoolbar/en/latest/
http://docs.pylonsproject.org/projects/pyramid_debugtoolbar/en/latest/

5.8. THE MYPROJECT PROJECT

MyProject/
|-- CHANGES.txt
|-- development.ini
|-- MANIFEST.in
|-- myproject
| |-- __init__.py
| |-- static
| | |-- pyramid-16x16.png
| | |-- pyramid.png
| | |-- theme.css
| | `-- theme.min.css
| |-- templates
| | `-- mytemplate.pt
| |-- tests.py
| `-- views.py
|-- production.ini
|-- README.txt
`-- setup.py

5.8 The MyProject Project

The MyProject project directory is the distribution and deployment wrapper for your application. It
contains both the myproject package representing your application as well as files used to describe,
run, and test your application.

1. CHANGES.txt describes the changes you’ve made to the application. It is conventionally written
in ReStructuredText format.

2. README.txt describes the application in general. It is conventionally written in ReStructuredText
format.

3. development.ini is a PasteDeploy configuration file that can be used to execute your applica-
tion during development.

4. production.ini is a PasteDeploy configuration file that can be used to execute your application
in a production configuration.

5. MANIFEST.in is a distutils “manifest” file, naming which files should be included in a source
distribution of the package when python setup.py sdist is run.

6. setup.py is the file you’ll use to test and distribute your application. It is a standard setuptools
setup.py file.

51

5. CREATING A PYRAMID PROJECT

5.8.1 development.ini

The development.ini file is a PasteDeploy configuration file. Its purpose is to specify an application
to run when you invoke pserve, as well as the deployment settings provided to that application.

The generated development.ini file looks like so:

1 ###
2 # app configuration
3 # http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/environment.html
4 ###
5

6 [app:main]
7 use = egg:MyProject
8

9 pyramid.reload_templates = true
10 pyramid.debug_authorization = false
11 pyramid.debug_notfound = false
12 pyramid.debug_routematch = false
13 pyramid.default_locale_name = en
14 pyramid.includes =
15 pyramid_debugtoolbar
16

17 # By default, the toolbar only appears for clients from IP addresses
18 # '127.0.0.1' and '::1'.
19 # debugtoolbar.hosts = 127.0.0.1 ::1
20

21 ###
22 # wsgi server configuration
23 ###
24

25 [server:main]
26 use = egg:waitress#main
27 host = 0.0.0.0
28 port = 6543
29

30 ###
31 # logging configuration
32 # http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/logging.html
33 ###
34

35 [loggers]
36 keys = root, myproject
37

38 [handlers]
39 keys = console

52

5.8. THE MYPROJECT PROJECT

40

41 [formatters]
42 keys = generic
43

44 [logger_root]
45 level = INFO
46 handlers = console
47

48 [logger_myproject]
49 level = DEBUG
50 handlers =
51 qualname = myproject
52

53 [handler_console]
54 class = StreamHandler
55 args = (sys.stderr,)
56 level = NOTSET
57 formatter = generic
58

59 [formatter_generic]
60 format = %(asctime)s %(levelname)-5.5s [%(name)s][%(threadName)s] %(message)s

This file contains several sections including [app:main], [server:main], and several other sec-
tions related to logging configuration.

The [app:main] section represents configuration for your Pyramid application. The use setting is the
only setting required to be present in the [app:main] section. Its default value, egg:MyProject,
indicates that our MyProject project contains the application that should be served. Other settings
added to this section are passed as keyword arguments to the function named main in our package’s
__init__.py module. You can provide startup-time configuration parameters to your application by
adding more settings to this section.

See also:

See Entry Points and PasteDeploy .ini Files for more information about the meaning of the use =
egg:MyProject value in this section.

The pyramid.reload_templates setting in the [app:main] section is a Pyramid-specific setting
which is passed into the framework. If it exists, and its value is true, supported template changes
will not require an application restart to be detected. See Automatically Reloading Templates for more
information.

The pyramid.reload_templates option should be turned off for production applications,
as template rendering is slowed when it is turned on.

53

5. CREATING A PYRAMID PROJECT

The pyramid.includes setting in the [app:main] section tells Pyramid to “include” configuration
from another package. In this case, the line pyramid.includes = pyramid_debugtoolbar
tells Pyramid to include configuration from the pyramid_debugtoolbar package. This turns on a
debugging panel in development mode which can be opened by clicking on the Pyramid logo on the top
right of the screen. Including the debug toolbar will also make it possible to interactively debug exceptions
when an error occurs.

Various other settings may exist in this section having to do with debugging or influencing runtime be-
havior of a Pyramid application. See Environment Variables and .ini File Settings for more information
about these settings.

The name main in [app:main] signifies that this is the default application run by pserve when it is
invoked against this configuration file. The name main is a convention used by PasteDeploy signifying
that it is the default application.

The [server:main] section of the configuration file configures a WSGI server which listens on
TCP port 6543. It is configured to listen on all interfaces (0.0.0.0). This means that any re-
mote system which has TCP access to your system can see your Pyramid application. The sec-
tions that live between the markers # Begin logging configuration and # End logging
configuration represent Python’s standard library logging module configuration for your applica-
tion. The sections between these two markers are passed to the logging module’s config file configuration
engine when the pserve or pshell commands are executed. The default configuration sends appli-
cation logging output to the standard error output of your terminal. For more information about logging
configuration, see Logging.

See the PasteDeploy documentation for more information about other types of things you can put into this
.ini file, such as other applications, middleware, and alternate WSGI server implementations.

5.8.2 production.ini

The production.ini file is a PasteDeploy configuration file with a purpose much like that of
development.ini. However, it disables the debug toolbar, and filters all log messages except those
above the WARN level. It also turns off template development options such that templates are not au-
tomatically reloaded when changed, and turns off all debugging options. This file is appropriate to use
instead of development.ini when you put your application into production.

It’s important to use production.ini (and not development.ini) to benchmark your application
and put it into production. development.ini configures your system with a debug toolbar that helps
development, but the inclusion of this toolbar slows down page rendering times by over an order of
magnitude. The debug toolbar is also a potential security risk if you have it configured incorrectly.

54

http://docs.python.org/3/library/logging.html#module-logging
http://docs.python.org/howto/logging.html#configuring-logging
http://docs.python.org/howto/logging.html#configuring-logging

5.8. THE MYPROJECT PROJECT

5.8.3 MANIFEST.in

The MANIFEST.in file is a distutils configuration file which specifies the non-Python files that should
be included when a distribution of your Pyramid project is created when you run python setup.py
sdist. Due to the information contained in the default MANIFEST.in, an sdist of your Pyramid project
will include .txt files, .ini files, .rst files, graphics files, and template files, as well as .py files.
See http://docs.python.org/distutils/sourcedist.html#the-manifest-in-template for more information about
the syntax and usage of MANIFEST.in.

Without the presence of a MANIFEST.in file or without checking your source code into a version
control repository, setup.py sdist places only Python source files (files ending with a .py ex-
tension) into tarballs generated by python setup.py sdist. This means, for example, if your
project was not checked into a setuptools-compatible source control system, and your project direc-
tory didn’t contain a MANIFEST.in file that told the sdist machinery to include *.pt files, the
myproject/templates/mytemplate.pt file would not be included in the generated tarball.

Projects generated by Pyramid scaffolds include a default MANIFEST.in file. The MANIFEST.in
file contains declarations which tell it to include files like *.pt, *.css and *.js in the gen-
erated tarball. If you include files with extensions other than the files named in the project’s
MANIFEST.in and you don’t make use of a setuptools-compatible version control system, you’ll need
to edit the MANIFEST.in file and include the statements necessary to include your new files. See
http://docs.python.org/distutils/sourcedist.html#principle for more information about how to do this.

You can also delete MANIFEST.in from your project and rely on a setuptools feature which simply
causes all files checked into a version control system to be put into the generated tarball. To allow this to
happen, check all the files that you’d like to be distributed along with your application’s Python files into
Subversion. After you do this, when you rerun setup.py sdist, all files checked into the version
control system will be included in the tarball. If you don’t use Subversion, and instead use a different
version control system, you may need to install a setuptools add-on such as setuptools-git or
setuptools-hg for this behavior to work properly.

5.8.4 setup.py

The setup.py file is a setuptools setup file. It is meant to be run directly from the command line to
perform a variety of functions, such as testing, packaging, and distributing your application.

setup.py is the de facto standard which Python developers use to distribute their reusable
code. You can read more about setup.py files and their usage in the Setuptools documentation and
Python Packaging User Guide.

Our generated setup.py looks like this:

55

http://docs.python.org/distutils/sourcedist.html#the-manifest-in-template
http://docs.python.org/distutils/sourcedist.html#principle
http://peak.telecommunity.com/DevCenter/setuptools
https://packaging.python.org/en/latest/

5. CREATING A PYRAMID PROJECT

1 import os
2

3 from setuptools import setup, find_packages
4

5 here = os.path.abspath(os.path.dirname(__file__))
6 with open(os.path.join(here, 'README.txt')) as f:
7 README = f.read()
8 with open(os.path.join(here, 'CHANGES.txt')) as f:
9 CHANGES = f.read()

10

11 requires = [
12 'pyramid',
13 'pyramid_chameleon',
14 'pyramid_debugtoolbar',
15 'waitress',
16]
17

18 setup(name='MyProject',
19 version='0.0',
20 description='MyProject',
21 long_description=README + '\n\n' + CHANGES,
22 classifiers=[
23 "Programming Language :: Python",
24 "Framework :: Pyramid",
25 "Topic :: Internet :: WWW/HTTP",
26 "Topic :: Internet :: WWW/HTTP :: WSGI :: Application",
27],
28 author='',
29 author_email='',
30 url='',
31 keywords='web pyramid pylons',
32 packages=find_packages(),
33 include_package_data=True,
34 zip_safe=False,
35 install_requires=requires,
36 tests_require=requires,
37 test_suite="myproject",
38 entry_points="""\
39 [paste.app_factory]
40 main = myproject:main
41 """,
42)

The setup.py file calls the setuptools setup function, which does various things depending on the
arguments passed to setup.py on the command line.

56

5.9. THE MYPROJECT PACKAGE

Within the arguments to this function call, information about your application is kept. While it’s be-
yond the scope of this documentation to explain everything about setuptools setup files, we’ll provide a
whirlwind tour of what exists in this file in this section.

Your application’s name can be any string; it is specified in the name field. The version number is
specified in the version value. A short description is provided in the description field. The
long_description is conventionally the content of the README and CHANGES file appended to-
gether. The classifiers field is a list of Trove classifiers describing your application. author and
author_email are text fields which probably don’t need any description. url is a field that should
point at your application project’s URL (if any). packages=find_packages() causes all packages
within the project to be found when packaging the application. include_package_data will in-
clude non-Python files when the application is packaged if those files are checked into version control.
zip_safe indicates that this package is not safe to use as a zipped egg; instead it will always unpack as
a directory, which is more convenient. install_requires and tests_require indicate that this
package depends on the pyramid package. test_suite points at the package for our application,
which means all tests found in the package will be run when setup.py test is invoked. We ex-
amined entry_points in our discussion of the development.ini file; this file defines the main
entry point that represents our project’s application.

Usually you only need to think about the contents of the setup.py file when distributing your applica-
tion to other people, when adding Python package dependencies, or when versioning your application for
your own use. For fun, you can try this command now:

$ $VENV/bin/python setup.py sdist

This will create a tarball of your application in a dist subdirectory named MyProject-0.1.tar.gz.
You can send this tarball to other people who want to install and use your application.

5.9 The myproject Package

The myproject package lives inside the MyProject project. It contains:

1. An __init__.py file signifies that this is a Python package. It also contains code that helps
users run the application, including a main function which is used as a entry point for commands
such as pserve, pshell, pviews, and others.

2. A templates directory, which contains Chameleon (or other types of) templates.

3. A tests.py module, which contains unit test code for the application.

4. A views.py module, which contains view code for the application.

These are purely conventions established by the scaffold. Pyramid doesn’t insist that you name things in
any particular way. However, it’s generally a good idea to follow Pyramid standards for naming, so that
other Pyramid developers can get up to speed quickly on your code when you need help.

57

http://pypi.python.org/pypi?%3Aaction=list_classifiers

5. CREATING A PYRAMID PROJECT

5.9.1 __init__.py

We need a small Python module that configures our application and which advertises an entry point
for use by our PasteDeploy .ini file. This is the file named __init__.py. The presence of an
__init__.py also informs Python that the directory which contains it is a package.

1 from pyramid.config import Configurator
2

3

4 def main(global_config, **settings):
5 """ This function returns a Pyramid WSGI application.
6 """
7 config = Configurator(settings=settings)
8 config.include('pyramid_chameleon')
9 config.add_static_view('static', 'static', cache_max_age=3600)

10 config.add_route('home', '/')
11 config.scan()
12 return config.make_wsgi_app()

1. Line 1 imports the Configurator class from pyramid.config that we use later.

2. Lines 4-12 define a function named main that returns a Pyramid WSGI application. This function
is meant to be called by the PasteDeploy framework as a result of running pserve.

Within this function, application configuration is performed.

Line 7 creates an instance of a Configurator.

Line 8 adds support for Chameleon templating bindings, allowing us to specify renderers with the
.pt extension.

Line 9 registers a static view, which will serve up the files from the myproject:static asset
specification (the static directory of the myproject package).

Line 10 adds a route to the configuration. This route is later used by a view in the views module.

Line 11 calls config.scan(), which picks up view registrations declared elsewhere in the pack-
age (in this case, in the views.py module).

Line 12 returns a WSGI application to the caller of the function (Pyramid’s pserve).

5.9.2 views.py

Much of the heavy lifting in a Pyramid application is done by view callables. A view callable is the main
tool of a Pyramid web application developer; it is a bit of code which accepts a request and which returns
a response.

58

5.9. THE MYPROJECT PACKAGE

1 from pyramid.view import view_config
2

3

4 @view_config(route_name='home', renderer='templates/mytemplate.pt')
5 def my_view(request):
6 return {'project': 'MyProject'}

Lines 4-6 define and register a view callable named my_view. The function named my_view is
decorated with a view_config decorator (which is processed by the config.scan() line in our
__init__.py). The view_config decorator asserts that this view be found when a route named home is
matched. In our case, because our __init__.pymaps the route named home to the URL pattern /, this
route will match when a visitor visits the root URL. The view_config decorator also names a renderer,
which in this case is a template that will be used to render the result of the view callable. This particular
view declaration points at templates/mytemplate.pt, which is an asset specification that speci-
fies the mytemplate.pt file within the templates directory of the myproject package. The as-
set specification could have also been specified as myproject:templates/mytemplate.pt; the
leading package name and colon is optional. The template file pointed to is a Chameleon ZPT template
file (templates/my_template.pt).

This view callable function is handed a single piece of information: the request. The request is an instance
of the WebOb Request class representing the browser’s request to our server.

This view is configured to invoke a renderer on a template. The dictionary the view returns (on line 6)
provides the value the renderer substitutes into the template when generating HTML. The renderer then
returns the HTML in a response.

Dictionaries provide values to templates.

When the application is run with the scaffold’s default development.ini configuration, logging is
set up to aid debugging. If an exception is raised, uncaught tracebacks are displayed after the startup
messages on the console running the server. Also print() statements may be inserted into the
application for debugging to send output to this console.

development.ini has a setting that controls how templates are reloaded,
pyramid.reload_templates.

• When set to True (as in the scaffold development.ini), changed templates automatically
reload without a server restart. This is convenient while developing, but slows template render-
ing speed.

• When set to False (the default value), changing templates requires a server restart to reload
them. Production applications should use pyramid.reload_templates = False.

59

5. CREATING A PYRAMID PROJECT

See also:

See also Writing View Callables Which Use a Renderer for more information about how views, renderers,
and templates relate and cooperate.

See also:

Pyramid can also dynamically reload changed Python files. See also Reloading Code.

See also:

See also the The Debug Toolbar, which provides interactive access to your application’s internals and,
should an exception occur, allows interactive access to traceback execution stack frames from the Python
interpreter.

5.9.3 static

This directory contains static assets which support the mytemplate.pt template. It includes CSS and
images.

5.9.4 templates/mytemplate.pt

This is the single Chameleon template that exists in the project. Its contents are too long to show here,
but it displays a default page when rendered. It is referenced by the call to @view_config as the
renderer of the my_view view callable in the views.py file. See Writing View Callables Which
Use a Renderer for more information about renderers.

Templates are accessed and used by view configurations and sometimes by view functions themselves.
See Using Templates Directly and Templates Used as Renderers via Configuration.

5.9.5 tests.py

The tests.py module includes unit tests for your application.

60

5.10. MODIFYING PACKAGE STRUCTURE

1 import unittest
2

3 from pyramid import testing
4

5

6 class ViewTests(unittest.TestCase):
7 def setUp(self):
8 self.config = testing.setUp()
9

10 def tearDown(self):
11 testing.tearDown()
12

13 def test_my_view(self):
14 from .views import my_view
15 request = testing.DummyRequest()
16 info = my_view(request)
17 self.assertEqual(info['project'], 'MyProject')
18

This sample tests.py file has a single unit test defined within it. This test is executed when you run
python setup.py test. You may add more tests here as you build your application. You are not
required to write tests to use Pyramid. This file is simply provided for convenience and example.

See Unit, Integration, and Functional Testing for more information about writing Pyramid unit tests.

5.10 Modifying Package Structure

It is best practice for your application’s code layout to not stray too much from accepted Pyramid scaffold
defaults. If you refrain from changing things very much, other Pyramid coders will be able to more
quickly understand your application. However, the code layout choices made for you by a scaffold are in
no way magical or required. Despite the choices made for you by any scaffold, you can decide to lay your
code out any way you see fit.

For example, the configuration method named add_view() requires you to pass a dotted Python name
or a direct object reference as the class or function to be used as a view. By default, the starter scaffold
would have you add view functions to the views.py module in your package. However, you might be
more comfortable creating a views directory, and adding a single file for each view.

If your project package name was myproject and you wanted to arrange all your views in a Python
subpackage within the myproject package named views instead of within a single views.py file,
you might do the following.

61

5. CREATING A PYRAMID PROJECT

• Create a views directory inside your myproject package directory (the same directory which
holds views.py).

• Create a file within the new views directory named __init__.py. (It can be empty. This just
tells Python that the views directory is a package.)

• Move the content from the existing views.py file to a file inside the new views directory named,
say, blog.py. Because the templates directory remains in the myproject package, the
template asset specification values in blog.py must now be fully qualified with the project’s
package name (myproject:templates/blog.pt).

You can then continue to add view callable functions to the blog.py module, but you can also add
other .py files which contain view callable functions to the views directory. As long as you use the
@view_config directive to register views in conjunction with config.scan(), they will be picked
up automatically when the application is restarted.

5.11 Using the Interactive Shell

It is possible to use the pshell command to load a Python interpreter prompt with a similar configuration
as would be loaded if you were running your Pyramid application via pserve. This can be a useful
debugging tool. See The Interactive Shell for more details.

5.12 What Is This pserve Thing

The code generated by a Pyramid scaffold assumes that you will be using the pserve command to start
your application while you do development. pserve is a command that reads a PasteDeploy .ini file
(e.g., development.ini), and configures a server to serve a Pyramid application based on the data in
the file.

pserve is by no means the only way to start up and serve a Pyramid application. As we saw in Creating
Your First Pyramid Application, pserve needn’t be invoked at all to run a Pyramid application. The
use of pserve to run a Pyramid application is purely conventional based on the output of its scaffold-
ing. But we strongly recommend using pserve while developing your application because many other
convenience introspection commands (such as pviews, prequest, proutes, and others) are also
implemented in terms of configuration availability of this .ini file format. It also configures Pyramid
logging and provides the --reload switch for convenient restarting of the server when code changes.

62

5.13. USING AN ALTERNATE WSGI SERVER

5.13 Using an Alternate WSGI Server

Pyramid scaffolds generate projects which use the Waitress WSGI server. Waitress is a server that is
suited for development and light production usage. It’s not the fastest nor the most featureful WSGI
server. Instead, its main feature is that it works on all platforms that Pyramid needs to run on, making it a
good choice as a default server from the perspective of Pyramid’s developers.

Any WSGI server is capable of running a Pyramid application. But we suggest you stick with the default
server for development, and that you wait to investigate other server options until you’re ready to deploy
your application to production. Unless for some reason you need to develop on a non-local system, inves-
tigating alternate server options is usually a distraction until you’re ready to deploy. But we recommend
developing using the default configuration on a local system that you have complete control over; it will
provide the best development experience.

One popular production alternative to the default Waitress server is mod_wsgi. You can use mod_wsgi to
serve your Pyramid application using the Apache web server rather than any “pure-Python” server like
Waitress. It is fast and featureful. See Running a Pyramid Application under mod_wsgi for details.

Another good production alternative is Green Unicorn (aka gunicorn). It’s faster than Waitress and
slightly easier to configure than mod_wsgi, although it depends, in its default configuration, on having a
buffering HTTP proxy in front of it. It does not, as of this writing, work on Windows.

63

5. CREATING A PYRAMID PROJECT

64

CHAPTER 6

Startup

When you cause a Pyramid application to start up in a console window, you’ll see something much like
this show up on the console:

$ pserve development.ini
Starting server in PID 16601.
serving on 0.0.0.0:6543 view at http://127.0.0.1:6543

This chapter explains what happens between the time you press the “Return” key on your keyboard after
typing pserve development.ini and the time the line serving on 0.0.0.0:6543 ... is
output to your console.

6.1 The Startup Process

The easiest and best-documented way to start and serve a Pyramid application is to use the pserve
command against a PasteDeploy .ini file. This uses the .ini file to infer settings and starts a server
listening on a port. For the purposes of this discussion, we’ll assume that you are using this command to
run your Pyramid application.

Here’s a high-level time-ordered overview of what happens when you press return after running
pserve development.ini.

1. The pserve command is invoked under your shell with the argument development.ini. As
a result, Pyramid recognizes that it is meant to begin to run and serve an application using the
information contained within the development.ini file.

65

6. STARTUP

2. The framework finds a section named either [app:main], [pipeline:main], or
[composite:main] in the .ini file. This section represents the configuration of a WSGI
application that will be served. If you’re using a simple application (e.g., [app:main]), the
application’s paste.app_factory entry point will be named on the use= line within the
section’s configuration. If instead of a simple application, you’re using a WSGI pipeline (e.g.,
a [pipeline:main] section), the application named on the “last” element will refer to your
Pyramid application. If instead of a simple application or a pipeline, you’re using a “composite”
(e.g., [composite:main]), refer to the documentation for that particular composite to under-
stand how to make it refer to your Pyramid application. In most cases, a Pyramid application built
from a scaffold will have a single [app:main] section in it, and this will be the application
served.

3. The framework finds all logging related configuration in the .ini file and uses it to configure
the Python standard library logging system for this application. See Logging Configuration for
more information.

4. The application’s constructor named by the entry point referenced on the use= line of the section
representing your Pyramid application is passed the key/value parameters mentioned within the
section in which it’s defined. The constructor is meant to return a router instance, which is a WSGI
application.

For Pyramid applications, the constructor will be a function named main in the __init__.py
file within the package in which your application lives. If this function succeeds, it will return a
Pyramid router instance. Here’s the contents of an example __init__.py module:

1 from pyramid.config import Configurator
2

3

4 def main(global_config, **settings):
5 """ This function returns a Pyramid WSGI application.
6 """
7 config = Configurator(settings=settings)
8 config.include('pyramid_chameleon')
9 config.add_static_view('static', 'static', cache_max_age=3600)

10 config.add_route('home', '/')
11 config.scan()
12 return config.make_wsgi_app()

Note that the constructor function accepts a global_config argument, which is a dictionary of
key/value pairs mentioned in the [DEFAULT] section of an .ini file (if [DEFAULT] is present).
It also accepts a **settings argument, which collects another set of arbitrary key/value pairs.
The arbitrary key/value pairs received by this function in **settingswill be composed of all the
key/value pairs that are present in the [app:main] section (except for the use= setting) when
this function is called when you run pserve.

Our generated development.ini file looks like so:

66

http://docs.python.org/3/library/logging.html#module-logging

6.1. THE STARTUP PROCESS

1 ###
2 # app configuration
3 # http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/environment.html
4 ###
5

6 [app:main]
7 use = egg:MyProject
8

9 pyramid.reload_templates = true
10 pyramid.debug_authorization = false
11 pyramid.debug_notfound = false
12 pyramid.debug_routematch = false
13 pyramid.default_locale_name = en
14 pyramid.includes =
15 pyramid_debugtoolbar
16

17 # By default, the toolbar only appears for clients from IP addresses
18 # '127.0.0.1' and '::1'.
19 # debugtoolbar.hosts = 127.0.0.1 ::1
20

21 ###
22 # wsgi server configuration
23 ###
24

25 [server:main]
26 use = egg:waitress#main
27 host = 0.0.0.0
28 port = 6543
29

30 ###
31 # logging configuration
32 # http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/logging.html
33 ###
34

35 [loggers]
36 keys = root, myproject
37

38 [handlers]
39 keys = console
40

41 [formatters]
42 keys = generic
43

44 [logger_root]
45 level = INFO
46 handlers = console

67

6. STARTUP

47

48 [logger_myproject]
49 level = DEBUG
50 handlers =
51 qualname = myproject
52

53 [handler_console]
54 class = StreamHandler
55 args = (sys.stderr,)
56 level = NOTSET
57 formatter = generic
58

59 [formatter_generic]
60 format = %(asctime)s %(levelname)-5.5s [%(name)s][%(threadName)s] %(message)s

In this case, the myproject.__init__:main function referred to by
the entry point URI egg:MyProject (see development.ini for more infor-
mation about entry point URIs, and how they relate to callables) will re-
ceive the key/value pairs {’pyramid.reload_templates’:’true’,
’pyramid.debug_authorization’:’false’, ’pyramid.debug_notfound’:’false’,
’pyramid.debug_routematch’:’false’, ’pyramid.debug_templates’:’true’,
’pyramid.default_locale_name’:’en’}. See Environment Variables and .ini File
Settings for the meanings of these keys.

5. The main function first constructs a Configurator instance, passing the settings dictionary
captured via the **settings kwarg as its settings argument.

The settings dictionary contains all the options in the [app:main] section of our .ini file ex-
cept the use option (which is internal to PasteDeploy) such as pyramid.reload_templates,
pyramid.debug_authorization, etc.

6. The main function then calls various methods on the instance of the class Configurator cre-
ated in the previous step. The intent of calling these methods is to populate an application registry,
which represents the Pyramid configuration related to the application.

7. The make_wsgi_app()method is called. The result is a router instance. The router is associated
with the application registry implied by the configurator previously populated by other methods run
against the Configurator. The router is a WSGI application.

8. An ApplicationCreated event is emitted (see Using Events for more information about
events).

9. Assuming there were no errors, the main function in myproject returns the router instance
created by pyramid.config.Configurator.make_wsgi_app() back to pserve. As
far as pserve is concerned, it is “just another WSGI application”.

68

6.2. DEPLOYMENT SETTINGS

10. pserve starts the WSGI server defined within the [server:main] section. In our case, this is
the Waitress server (use = egg:waitress#main), and it will listen on all interfaces (host
= 0.0.0.0), on port number 6543 (port = 6543). The server code itself is what prints
serving on 0.0.0.0:6543 view at http://127.0.0.1:6543. The server serves
the application, and the application is running, waiting to receive requests.

See also:

Logging configuration is described in the Logging chapter. There, in Request Logging with Paste’s
TransLogger, you will also find an example of how to configure middleware to add pre-packaged func-
tionality to your application.

6.2 Deployment Settings

Note that an augmented version of the values passed as **settings to the Configurator con-
structor will be available in Pyramid view callable code as request.registry.settings. You
can create objects you wish to access later from view code, and put them into the dictionary you pass to
the configurator as settings. They will then be present in the request.registry.settings
dictionary at application runtime.

69

6. STARTUP

70

71

7. REQUEST PROCESSING

CHAPTER 7

Request Processing

72

Once a Pyramid application is up and running, it is ready to accept requests and return responses. What
happens from the time a WSGI request enters a Pyramid application through to the point that Pyramid
hands off a response back to WSGI for upstream processing?

1. A user initiates a request from their browser to the hostname and port number of the WSGI server
used by the Pyramid application.

2. The WSGI server used by the Pyramid application passes the WSGI environment to the __call__
method of the Pyramid router object.

3. A request object is created based on the WSGI environment.

4. The application registry and the request object created in the last step are pushed on to the thread
local stack that Pyramid uses to allow the functions named get_current_request() and
get_current_registry() to work.

5. A NewRequest event is sent to any subscribers.

6. If any route has been defined within application configuration, the Pyramid router calls a URL
dispatch “route mapper.” The job of the mapper is to examine the request to determine whether
any user-defined route matches the current WSGI environment. The router passes the request as an
argument to the mapper.

7. If any route matches, the route mapper adds attributes to the request: matchdict and
matched_route attributes are added to the request object. The former contains a dictionary
representing the matched dynamic elements of the request’s PATH_INFO value, and the latter con-
tains the IRoute object representing the route which matched. The root object associated with the
route found is also generated: if the route configuration which matched has an associated factory
argument, this factory is used to generate the root object, otherwise a default root factory is used.

8. If a route match was not found, and a root_factory argument was passed to the Configurator
constructor, that callable is used to generate the root object. If the root_factory argument
passed to the Configurator constructor was None, a default root factory is used to generate a root
object.

9. The Pyramid router calls a “traverser” function with the root object and the request. The traverser
function attempts to traverse the root object (using any existing __getitem__ on the root object
and subobjects) to find a context. If the root object has no __getitem__ method, the root itself
is assumed to be the context. The exact traversal algorithm is described in Traversal. The traverser
function returns a dictionary, which contains a context and a view name as well as other ancillary
information.

10. The request is decorated with various names returned from the traverser (such as context,
view_name, and so forth), so they can be accessed via, for example, request.contextwithin
view code.

73

7. REQUEST PROCESSING

11. A ContextFound event is sent to any subscribers.

12. Pyramid looks up a view callable using the context, the request, and the view name. If a view
callable doesn’t exist for this combination of objects (based on the type of the context, the type
of the request, and the value of the view name, and any predicate attributes applied to the view
configuration), Pyramid raises a HTTPNotFound exception, which is meant to be caught by a
surrounding exception view.

13. If a view callable was found, Pyramid attempts to call it. If an authorization policy is in use,
and the view configuration is protected by a permission, Pyramid determines whether the view
callable being asked for can be executed by the requesting user based on credential information
in the request and security information attached to the context. If the view execution is allowed,
Pyramid calls the view callable to obtain a response. If view execution is forbidden, Pyramid raises
a HTTPForbidden exception.

14. If any exception is raised within a root factory, by traversal, by a view callable, or by Pyramid itself
(such as when it raises HTTPNotFound or HTTPForbidden), the router catches the exception,
and attaches it to the request as the exception attribute. It then attempts to find a exception view
for the exception that was caught. If it finds an exception view callable, that callable is called, and is
presumed to generate a response. If an exception view that matches the exception cannot be found,
the exception is reraised.

15. The following steps occur only when a response could be successfully generated by a normal view
callable or an exception view callable. Pyramid will attempt to execute any response callback
functions attached via add_response_callback(). A NewResponse event is then sent
to any subscribers. The response object’s __call__ method is then used to generate a WSGI
response. The response is sent back to the upstream WSGI server.

16. Pyramid will attempt to execute any finished callback functions attached via
add_finished_callback().

17. The thread local stack is popped.

74

75

7. REQUEST PROCESSING

This is a very high-level overview that leaves out various details. For more detail about subsystems
invoked by the Pyramid router, such as traversal, URL dispatch, views, and event processing, see URL
Dispatch, Views, and Using Events.

76

CHAPTER 8

URL Dispatch

URL dispatch provides a simple way to map URLs to view code using a simple pattern matching language.
An ordered set of patterns is checked one by one. If one of the patterns matches the path information
associated with a request, a particular view callable is invoked. A view callable is a specific bit of code,
defined in your application, that receives the request and returns a response object.

8.1 High-Level Operational Overview

If any route configuration is present in an application, the Pyramid Router checks every incoming request
against an ordered set of URL matching patterns present in a route map.

If any route pattern matches the information in the request, Pyramid will invoke the view lookup process
to find a matching view.

If no route pattern in the route map matches the information in the request provided in your application,
Pyramid will fail over to using traversal to perform resource location and view lookup.

8.2 Route Configuration

Route configuration is the act of adding a new route to an application. A route has a name, which
acts as an identifier to be used for URL generation. The name also allows developers to asso-
ciate a view configuration with the route. A route also has a pattern, meant to match against the
PATH_INFO portion of a URL (the portion following the scheme and port, e.g., /foo/bar in the
URL http://localhost:8080/foo/bar). It also optionally has a factory and a set of route
predicate attributes.

77

8. URL DISPATCH

8.2.1 Configuring a Route to Match a View

The pyramid.config.Configurator.add_route() method adds a single route configuration
to the application registry. Here’s an example:

"config" below is presumed to be an instance of the
pyramid.config.Configurator class; "myview" is assumed
to be a "view callable" function
from views import myview
config.add_route('myroute', '/prefix/{one}/{two}')
config.add_view(myview, route_name='myroute')

When a view callable added to the configuration by way of add_view() becomes associated with a
route via its route_name predicate, that view callable will always be found and invoked when the
associated route pattern matches during a request.

More commonly, you will not use any add_view statements in your project’s “setup” code. You will
instead use add_route statements, and use a scan to associate view callables with routes. For example,
if this is a portion of your project’s __init__.py:

config.add_route('myroute', '/prefix/{one}/{two}')
config.scan('mypackage')

Note that we don’t call add_view() in this setup code. However, the above scan execution
config.scan(’mypackage’) will pick up each configuration decoration, including any objects
decorated with the pyramid.view.view_config decorator in the mypackage Python package.
For example, if you have a views.py in your package, a scan will pick up any of its configuration
decorators, so we can add one there that references myroute as a route_name parameter:

from pyramid.view import view_config
from pyramid.response import Response

@view_config(route_name='myroute')
def myview(request):

return Response('OK')

The above combination of add_route and scan is completely equivalent to using the previous combi-
nation of add_route and add_view.

78

8.2. ROUTE CONFIGURATION

8.2.2 Route Pattern Syntax

The syntax of the pattern matching language used by Pyramid URL dispatch in the pattern argument is
straightforward. It is close to that of the Routes system used by Pylons.

The pattern used in route configuration may start with a slash character. If the pattern does not start with
a slash character, an implicit slash will be prepended to it at matching time. For example, the following
patterns are equivalent:

{foo}/bar/baz

and:

/{foo}/bar/baz

If a pattern is a valid URL it won’t be matched against an incoming request. Instead it can be useful for
generating external URLs. See External routes for details.

A pattern segment (an individual item between / characters in the pattern) may either be a literal string
(e.g., foo) or it may be a replacement marker (e.g., {foo}), or a certain combination of both. A
replacement marker does not need to be preceded by a / character.

A replacement marker is in the format {name}, where this means “accept any characters up to the next
slash character and use this as the name matchdict value.”

A replacement marker in a pattern must begin with an uppercase or lowercase ASCII letter or an under-
score, and can be composed only of uppercase or lowercase ASCII letters, underscores, and numbers. For
example: a, a_b, _b, and b9 are all valid replacement marker names, but 0a is not.

Changed in version 1.2: A replacement marker could not start with an underscore until Pyramid 1.2.
Previous versions required that the replacement marker start with an uppercase or lowercase letter.

A matchdict is the dictionary representing the dynamic parts extracted from a URL based on the routing
pattern. It is available as request.matchdict. For example, the following pattern defines one literal
segment (foo) and two replacement markers (baz, and bar):

foo/{baz}/{bar}

The above pattern will match these URLs, generating the following matchdicts:

79

8. URL DISPATCH

foo/1/2 -> {'baz':u'1', 'bar':u'2'}
foo/abc/def -> {'baz':u'abc', 'bar':u'def'}

It will not match the following patterns however:

foo/1/2/ -> No match (trailing slash)
bar/abc/def -> First segment literal mismatch

The match for a segment replacement marker in a segment will be done only up to the first non-
alphanumeric character in the segment in the pattern. So, for instance, if this route pattern was used:

foo/{name}.html

The literal path /foo/biz.html will match the above route pattern, and the match result will be
{’name’:u’biz’}. However, the literal path /foo/biz will not match, because it does not contain
a literal .html at the end of the segment represented by {name}.html (it only contains biz, not
biz.html).

To capture both segments, two replacement markers can be used:

foo/{name}.{ext}

The literal path /foo/biz.html will match the above route pattern, and the match result will be
{’name’: ’biz’, ’ext’: ’html’}. This occurs because there is a literal part of . (period)
between the two replacement markers {name} and {ext}.

Replacement markers can optionally specify a regular expression which will be used to decide whether a
path segment should match the marker. To specify that a replacement marker should match only a specific
set of characters as defined by a regular expression, you must use a slightly extended form of replacement
marker syntax. Within braces, the replacement marker name must be followed by a colon, then directly
thereafter, the regular expression. The default regular expression associated with a replacement marker
[^/]+ matches one or more characters which are not a slash. For example, under the hood, the replace-
ment marker {foo} can more verbosely be spelled as {foo:[^/]+}. You can change this to be an
arbitrary regular expression to match an arbitrary sequence of characters, such as {foo:\d+} to match
only digits.

It is possible to use two replacement markers without any literal characters between them, for instance
/{foo}{bar}. However, this would be a nonsensical pattern without specifying a custom regular
expression to restrict what each marker captures.

Segments must contain at least one character in order to match a segment replacement marker. For
example, for the URL /abc/:

80

8.2. ROUTE CONFIGURATION

• /abc/{foo} will not match.

• /{foo}/ will match.

Note that values representing matched path segments will be URL-unquoted and decoded from UTF-8
into Unicode within the matchdict. So for instance, the following pattern:

foo/{bar}

When matching the following URL:

http://example.com/foo/La%20Pe%C3%B1a

The matchdict will look like so (the value is URL-decoded / UTF-8 decoded):

{'bar':u'La Pe\xf1a'}

Literal strings in the path segment should represent the decoded value of the PATH_INFO provided to
Pyramid. You don’t want to use a URL-encoded value or a bytestring representing the literal encoded as
UTF-8 in the pattern. For example, rather than this:

/Foo%20Bar/{baz}

You’ll want to use something like this:

/Foo Bar/{baz}

For patterns that contain “high-order” characters in its literals, you’ll want to use a Unicode value as the
pattern as opposed to any URL-encoded or UTF-8-encoded value. For example, you might be tempted to
use a bytestring pattern like this:

/La Pe\xc3\xb1a/{x}

But this will either cause an error at startup time or it won’t match properly. You’ll want to use a Unicode
value as the pattern instead rather than raw bytestring escapes. You can use a high-order Unicode value
as the pattern by using Python source file encoding plus the “real” character in the Unicode pattern in the
source, like so:

81

http://www.python.org/dev/peps/pep-0263/

8. URL DISPATCH

/La Peña/{x}

Or you can ignore source file encoding and use equivalent Unicode escape characters in the pattern.

/La Pe\xf1a/{x}

Dynamic segment names cannot contain high-order characters, so this applies only to literals in the pat-
tern.

If the pattern has a * in it, the name which follows it is considered a “remainder match”. A remainder
match must come at the end of the pattern. Unlike segment replacement markers, it does not need to be
preceded by a slash. For example:

foo/{baz}/{bar}*fizzle

The above pattern will match these URLs, generating the following matchdicts:

foo/1/2/ ->
{'baz':u'1', 'bar':u'2', 'fizzle':()}

foo/abc/def/a/b/c ->
{'baz':u'abc', 'bar':u'def', 'fizzle':(u'a', u'b', u'c')}

Note that when a *stararg remainder match is matched, the value put into the matchdict is turned into
a tuple of path segments representing the remainder of the path. These path segments are URL-unquoted
and decoded from UTF-8 into Unicode. For example, for the following pattern:

foo/*fizzle

When matching the following path:

/foo/La%20Pe%C3%B1a/a/b/c

Will generate the following matchdict:

{'fizzle':(u'La Pe\xf1a', u'a', u'b', u'c')}

By default, the *stararg will parse the remainder sections into a tuple split by segment. Changing the
regular expression used to match a marker can also capture the remainder of the URL, for example:

82

8.2. ROUTE CONFIGURATION

foo/{baz}/{bar}{fizzle:.*}

The above pattern will match these URLs, generating the following matchdicts:

foo/1/2/ -> {'baz':u'1', 'bar':u'2', 'fizzle':u''}
foo/abc/def/a/b/c -> {'baz':u'abc', 'bar':u'def', 'fizzle': u'a/b/c'}

This occurs because the default regular expression for a marker is [^/]+ which will match everything
up to the first /, while {fizzle:.*} will result in a regular expression match of .* capturing the
remainder into a single value.

8.2.3 Route Declaration Ordering

Route configuration declarations are evaluated in a specific order when a request enters the system. As a
result, the order of route configuration declarations is very important. The order in which route declara-
tions are evaluated is the order in which they are added to the application at startup time. (This is unlike a
different way of mapping URLs to code that Pyramid provides, named traversal, which does not depend
on pattern ordering).

For routes added via the add_route method, the order that routes are evaluated is the order in which
they are added to the configuration imperatively.

For example, route configuration statements with the following patterns might be added in the following
order:

members/{def}
members/abc

In such a configuration, the members/abc pattern would never be matched. This is because the match
ordering will always match members/{def} first; the route configuration with members/abc will
never be evaluated.

8.2.4 Route Configuration Arguments

Route configuration add_route statements may specify a large number of arguments. They are docu-
mented as part of the API documentation at pyramid.config.Configurator.add_route().

Many of these arguments are route predicate arguments. A route predicate argument specifies that some
aspect of the request must be true for the associated route to be considered a match during the route
matching process. Examples of route predicate arguments are pattern, xhr, and request_method.

Other arguments are name and factory. These arguments represent neither predicates nor view con-
figuration information.

83

8. URL DISPATCH

8.3 Route Matching

The main purpose of route configuration is to match (or not match) the PATH_INFO present in the WSGI
environment provided during a request against a URL path pattern. PATH_INFO represents the path
portion of the URL that was requested.

The way that Pyramid does this is very simple. When a request enters the system, for each
route configuration declaration present in the system, Pyramid checks the request’s PATH_INFO
against the pattern declared. This checking happens in the order that the routes were declared via
pyramid.config.Configurator.add_route().

When a route configuration is declared, it may contain route predicate arguments. All route predicates
associated with a route declaration must be True for the route configuration to be used for a given request
during a check. If any predicate in the set of route predicate arguments provided to a route configuration
returns False during a check, that route is skipped and route matching continues through the ordered set
of routes.

If any route matches, the route matching process stops and the view lookup subsystem takes over to find
the most reasonable view callable for the matched route. Most often, there’s only one view that will
match (a view configured with a route_name argument matching the matched route). To gain a better
understanding of how routes and views are associated in a real application, you can use the pviews
command, as documented in Displaying Matching Views for a Given URL.

If no route matches after all route patterns are exhausted, Pyramid falls back to traversal to do resource
location and view lookup.

8.3.1 The Matchdict

When the URL pattern associated with a particular route configuration is matched by a request, a dictio-
nary named matchdict is added as an attribute of the request object. Thus, request.matchdict
will contain the values that match replacement patterns in the pattern element. The keys in a matchdict
will be strings. The values will be Unicode objects.

If no route URL pattern matches, the matchdict object attached to the request will be None.

84

8.4. ROUTING EXAMPLES

8.3.2 The Matched Route

When the URL pattern associated with a particular route configuration is matched by a re-
quest, an object named matched_route is added as an attribute of the request object. Thus,
request.matched_route will be an object implementing the IRoute interface which matched
the request. The most useful attribute of the route object is name, which is the name of the route that
matched.

If no route URL pattern matches, the matched_route object attached to the request will be
None.

8.4 Routing Examples

Let’s check out some examples of how route configuration statements might be commonly declared, and
what will happen if they are matched by the information present in a request.

8.4.1 Example 1

The simplest route declaration which configures a route match to directly result in a particular view
callable being invoked:

1 config.add_route('idea', 'site/{id}')
2 config.scan()

When a route configuration with a view attribute is added to the system, and an incoming request matches
the pattern of the route configuration, the view callable named as the view attribute of the route config-
uration will be invoked.

Recall that the @view_config is equivalent to calling config.add_view, because
the config.scan() call will import mypackage.views, shown below, and execute
config.add_view under the hood. Each view then maps the route name to the matching view
callable. In the case of the above example, when the URL of a request matches /site/{id}, the view
callable at the Python dotted path name mypackage.views.site_view will be called with the
request. In other words, we’ve associated a view callable directly with a route pattern.

When the /site/{id} route pattern matches during a request, the site_view view callable is in-
voked with that request as its sole argument. When this route matches, a matchdict will be generated

85

8. URL DISPATCH

and attached to the request as request.matchdict. If the specific URL matched is /site/1,
the matchdict will be a dictionary with a single key, id; the value will be the string ’1’, ex.:
{’id’:’1’}.

The mypackage.views module referred to above might look like so:

1 from pyramid.view import view_config
2 from pyramid.response import Response
3

4 @view_config(route_name='idea')
5 def site_view(request):
6 return Response(request.matchdict['id'])

The view has access to the matchdict directly via the request, and can access variables within it that match
keys present as a result of the route pattern.

See Views, and View Configuration for more information about views.

8.4.2 Example 2

Below is an example of a more complicated set of route statements you might add to your application:

1 config.add_route('idea', 'ideas/{idea}')
2 config.add_route('user', 'users/{user}')
3 config.add_route('tag', 'tags/{tag}')
4 config.scan()

Here is an example of a corresponding mypackage.views module:

1 from pyramid.view import view_config
2 from pyramid.response import Response
3

4 @view_config(route_name='idea')
5 def idea_view(request):
6 return Response(request.matchdict['id'])
7

8 @view_config(route_name='user')
9 def user_view(request):

10 user = request.matchdict['user']
11 return Response(u'The user is {}.'.format(user))
12

86

8.4. ROUTING EXAMPLES

13 @view_config(route_name='tag')
14 def tag_view(request):
15 tag = request.matchdict['tag']
16 return Response(u'The tag is {}.'.format(tag))

The above configuration will allow Pyramid to service URLs in these forms:

/ideas/{idea}
/users/{user}
/tags/{tag}

• When a URL matches the pattern /ideas/{idea}, the view callable available at the dot-
ted Python pathname mypackage.views.idea_view will be called. For the specific
URL /ideas/1, the matchdict generated and attached to the request will consist of
{’idea’:’1’}.

• When a URL matches the pattern /users/{user}, the view callable available at the dot-
ted Python pathname mypackage.views.user_view will be called. For the specific
URL /users/1, the matchdict generated and attached to the request will consist of
{’user’:’1’}.

• When a URL matches the pattern /tags/{tag}, the view callable available at the dotted Python
pathname mypackage.views.tag_view will be called. For the specific URL /tags/1, the
matchdict generated and attached to the request will consist of {’tag’:’1’}.

In this example we’ve again associated each of our routes with a view callable directly. In all cases,
the request, which will have a matchdict attribute detailing the information found in the URL by the
process will be passed to the view callable.

8.4.3 Example 3

The context resource object passed in to a view found as the result of URL dispatch will, by default, be
an instance of the object returned by the root factory configured at startup time (the root_factory
argument to the Configurator used to configure the application).

You can override this behavior by passing in a factory argument to the add_route() method for a
particular route. The factory should be a callable that accepts a request and returns an instance of a
class that will be the context resource used by the view.

An example of using a route with a factory:

87

8. URL DISPATCH

1 config.add_route('idea', 'ideas/{idea}', factory='myproject.resources.Idea')
2 config.scan()

The above route will manufacture an Idea resource as a context, assuming that
mypackage.resources.Idea resolves to a class that accepts a request in its __init__.
For example:

1 class Idea(object):
2 def __init__(self, request):
3 pass

In a more complicated application, this root factory might be a class representing a SQLAlchemy model.
The view mypackage.views.idea_view might look like this:

1 @view_config(route_name='idea')
2 def idea_view(request):
3 idea = request.context
4 return Response(idea)

Here, request.context is an instance of Idea. If indeed the resource object is a SQLAlchemy
model, you do not even have to perform a query in the view callable, since you have access to the resource
via request.context.

See Route Factories for more details about how to use route factories.

8.5 Matching the Root URL

It’s not entirely obvious how to use a route pattern to match the root URL (“/”). To do so, give the empty
string as a pattern in a call to add_route():

1 config.add_route('root', '')

Or provide the literal string / as the pattern:

1 config.add_route('root', '/')

88

8.6. GENERATING ROUTE URLS

8.6 Generating Route URLs

Use the pyramid.request.Request.route_url() method to generate URLs based on route
patterns. For example, if you’ve configured a route with the name “foo” and the pattern
“{a}/{b}/{c}”, you might do this.

1 url = request.route_url('foo', a='1', b='2', c='3')

This would return something like the string http://example.com/1/2/3 (at least if the current
protocol and hostname implied http://example.com).

To generate only the path portion of a URL from a route, use the
pyramid.request.Request.route_path() API instead of route_url().

url = request.route_path('foo', a='1', b='2', c='3')

This will return the string /1/2/3 rather than a full URL.

Replacement values passed to route_url or route_path must be Unicode or bytestrings encoded
in UTF-8. One exception to this rule exists: if you’re trying to replace a “remainder” match value (a
*stararg replacement value), the value may be a tuple containing Unicode strings or UTF-8 strings.

Note that URLs and paths generated by route_url and route_path are always URL-quoted string
types (they contain no non-ASCII characters). Therefore, if you’ve added a route like so:

config.add_route('la', u'/La Peña/{city}')

And you later generate a URL using route_path or route_url like so:

url = request.route_path('la', city=u'Québec')

You will wind up with the path encoded to UTF-8 and URL-quoted like so:

/La%20Pe%C3%B1a/Qu%C3%A9bec

If you have a *stararg remainder dynamic part of your route pattern:

89

8. URL DISPATCH

config.add_route('abc', 'a/b/c/*foo')

And you later generate a URL using route_path or route_url using a string as the replacement
value:

url = request.route_path('abc', foo=u'Québec/biz')

The value you pass will be URL-quoted except for embedded slashes in the result:

/a/b/c/Qu%C3%A9bec/biz

You can get a similar result by passing a tuple composed of path elements:

url = request.route_path('abc', foo=(u'Québec', u'biz'))

Each value in the tuple will be URL-quoted and joined by slashes in this case:

/a/b/c/Qu%C3%A9bec/biz

8.7 Static Routes

Routes may be added with a static keyword argument. For example:

1 config = Configurator()
2 config.add_route('page', '/page/{action}', static=True)

Routes added with a True static keyword argument will never be considered for matching at request
time. Static routes are useful for URL generation purposes only. As a result, it is usually nonsensical to
provide other non-name and non-pattern arguments to add_route() when static is passed as
True, as none of the other arguments will ever be employed. A single exception to this rule is use of the
pregenerator argument, which is not ignored when static is True.

External routes are implicitly static.

New in version 1.1: the static argument to add_route().

90

8.8. EXTERNAL ROUTES

8.8 External Routes

New in version 1.5.

Route patterns that are valid URLs, are treated as external routes. Like static routes they are useful for
URL generation purposes only and are never considered for matching at request time.

1 >>> config = Configurator()
2 >>> config.add_route('youtube', 'https://youtube.com/watch/{video_id}')
3 ...
4 >>> request.route_url('youtube', video_id='oHg5SJYRHA0')
5 >>> "https://youtube.com/watch/oHg5SJYRHA0"

Most pattern replacements and calls to pyramid.request.Request.route_url() will work as
expected. However, calls to pyramid.request.Request.route_path() against external pat-
terns will raise an exception, and passing _app_url to route_url() to generate a URL against a
route that has an external pattern will also raise an exception.

8.9 Redirecting to Slash-Appended Routes

For behavior like Django’s APPEND_SLASH=True, use the append_slash argument
to pyramid.config.Configurator.add_notfound_view() or the equivalent
append_slash argument to the pyramid.view.notfound_view_config decorator.

Adding append_slash=True is a way to automatically redirect requests where the URL lacks a trail-
ing slash, but requires one to match the proper route. When configured, along with at least one other
route in your application, this view will be invoked if the value of PATH_INFO does not already end
in a slash, and if the value of PATH_INFO plus a slash matches any route’s pattern. In this case it
does an HTTP redirect to the slash-appended PATH_INFO. In addition you may pass anything that im-
plements pyramid.interfaces.IResponse which will then be used in place of the default class
(pyramid.httpexceptions.HTTPFound).

Let’s use an example. If the following routes are configured in your application:

1 from pyramid.httpexceptions import HTTPNotFound
2

3 def notfound(request):
4 return HTTPNotFound('Not found, bro.')
5

91

8. URL DISPATCH

6 def no_slash(request):
7 return Response('No slash')
8

9 def has_slash(request):
10 return Response('Has slash')
11

12 def main(g, **settings):
13 config = Configurator()
14 config.add_route('noslash', 'no_slash')
15 config.add_route('hasslash', 'has_slash/')
16 config.add_view(no_slash, route_name='noslash')
17 config.add_view(has_slash, route_name='hasslash')
18 config.add_notfound_view(notfound, append_slash=True)

If a request enters the application with the PATH_INFO value of /no_slash, the first route will match
and the browser will show “No slash”. However, if a request enters the application with the PATH_INFO
value of /no_slash/, no route will match, and the slash-appending not found view will not find a
matching route with an appended slash. As a result, the notfound view will be called and it will return
a “Not found, bro.” body.

If a request enters the application with the PATH_INFO value of /has_slash/, the second route will
match. If a request enters the application with the PATH_INFO value of /has_slash, a route will be
found by the slash-appending Not Found View. An HTTP redirect to /has_slash/ will be returned to
the user’s browser. As a result, the notfound view will never actually be called.

The following application uses the pyramid.view.notfound_view_config and
pyramid.view.view_config decorators and a scan to do exactly the same job:

1 from pyramid.httpexceptions import HTTPNotFound
2 from pyramid.view import notfound_view_config, view_config
3

4 @notfound_view_config(append_slash=True)
5 def notfound(request):
6 return HTTPNotFound('Not found, bro.')
7

8 @view_config(route_name='noslash')
9 def no_slash(request):

10 return Response('No slash')
11

12 @view_config(route_name='hasslash')
13 def has_slash(request):
14 return Response('Has slash')
15

16 def main(g, **settings):

92

8.10. DEBUGGING ROUTE MATCHING

17 config = Configurator()
18 config.add_route('noslash', 'no_slash')
19 config.add_route('hasslash', 'has_slash/')
20 config.scan()

You should not rely on this mechanism to redirect POST requests. The redirect of the slash-
appending Not Found View will turn a POST request into a GET, losing any POST data in the original
request.

See pyramid.view and Changing the Not Found View for a more general description of how to configure a
view and/or a Not Found View.

8.10 Debugging Route Matching

It’s useful to be able to take a peek under the hood when requests that enter your applica-
tion aren’t matching your routes as you expect them to. To debug route matching, use the
PYRAMID_DEBUG_ROUTEMATCH environment variable or the pyramid.debug_routematch
configuration file setting (set either to true). Details of the route matching decision for a particular
request to the Pyramid application will be printed to the stderr of the console which you started the
application from. For example:

1 $ PYRAMID_DEBUG_ROUTEMATCH=true $VENV/bin/pserve development.ini
2 Starting server in PID 13586.
3 serving on 0.0.0.0:6543 view at http://127.0.0.1:6543
4 2010-12-16 14:45:19,956 no route matched for url \
5 http://localhost:6543/wontmatch
6 2010-12-16 14:45:20,010 no route matched for url \
7 http://localhost:6543/favicon.ico
8 2010-12-16 14:41:52,084 route matched for url \
9 http://localhost:6543/static/logo.png; \

10 route_name: 'static/',

See Environment Variables and .ini File Settings for more information about how and where to set these
values.

You can also use the proutes command to see a display of all the routes configured in your application.
For more information, see Displaying All Application Routes.

93

8. URL DISPATCH

8.11 Using a Route Prefix to Compose Applications

New in version 1.2.

The pyramid.config.Configurator.include() method allows configuration statements to
be included from separate files. See Rules for Building an Extensible Application for information about
this method. Using pyramid.config.Configurator.include() allows you to build your ap-
plication from small and potentially reusable components.

The pyramid.config.Configurator.include() method accepts an argument named
route_prefix which can be useful to authors of URL-dispatch-based applications. If
route_prefix is supplied to the include method, it must be a string. This string represents a route
prefix that will be prepended to all route patterns added by the included configuration. Any calls to
pyramid.config.Configurator.add_route() within the included callable will have their
pattern prefixed with the value of route_prefix. This can be used to help mount a set of routes
at a different location than the included callable’s author intended while still maintaining the same route
names. For example:

1 from pyramid.config import Configurator
2

3 def users_include(config):
4 config.add_route('show_users', '/show')
5

6 def main(global_config, **settings):
7 config = Configurator()
8 config.include(users_include, route_prefix='/users')

In the above configuration, the show_users route will have an effective route pattern of
/users/show instead of /show because the route_prefix argument will be prepended
to the pattern. The route will then only match if the URL path is /users/show, and
when the pyramid.request.Request.route_url() function is called with the route name
show_users, it will generate a URL with that same path.

Route prefixes are recursive, so if a callable executed via an include itself turns around and includes
another callable, the second-level route prefix will be prepended with the first:

1 from pyramid.config import Configurator
2

3 def timing_include(config):
4 config.add_route('show_times', '/times')
5

6 def users_include(config):

94

8.12. CUSTOM ROUTE PREDICATES

7 config.add_route('show_users', '/show')
8 config.include(timing_include, route_prefix='/timing')
9

10 def main(global_config, **settings):
11 config = Configurator()
12 config.include(users_include, route_prefix='/users')

In the above configuration, the show_users route will still have an effective route pat-
tern of /users/show. The show_times route, however, will have an effective pattern of
/users/timing/times.

Route prefixes have no impact on the requirement that the set of route names in any given Pyramid
configuration must be entirely unique. If you compose your URL dispatch application out of many small
subapplications using pyramid.config.Configurator.include(), it’s wise to use a dotted
name for your route names so they’ll be unlikely to conflict with other packages that may be added in the
future. For example:

1 from pyramid.config import Configurator
2

3 def timing_include(config):
4 config.add_route('timing.show_times', '/times')
5

6 def users_include(config):
7 config.add_route('users.show_users', '/show')
8 config.include(timing_include, route_prefix='/timing')
9

10 def main(global_config, **settings):
11 config = Configurator()
12 config.include(users_include, route_prefix='/users')

8.12 Custom Route Predicates

Each of the predicate callables fed to the custom_predicates argument of add_route() must
be a callable accepting two arguments. The first argument passed to a custom predicate is a dictionary
conventionally named info. The second argument is the current request object.

The info dictionary has a number of contained values, including match and route. match is a
dictionary which represents the arguments matched in the URL by the route. route is an object rep-
resenting the route which was matched (see pyramid.interfaces.IRoute for the API of such a
route object).

info[’match’] is useful when predicates need access to the route match. For example:

95

8. URL DISPATCH

1 def any_of(segment_name, *allowed):
2 def predicate(info, request):
3 if info['match'][segment_name] in allowed:
4 return True
5 return predicate
6

7 num_one_two_or_three = any_of('num', 'one', 'two', 'three')
8

9 config.add_route('route_to_num', '/{num}',
10 custom_predicates=(num_one_two_or_three,))

The above any_of function generates a predicate which ensures that the match value named
segment_name is in the set of allowable values represented by allowed. We use this any_of func-
tion to generate a predicate function named num_one_two_or_three, which ensures that the num
segment is one of the values one, two, or three , and use the result as a custom predicate by feeding it
inside a tuple to the custom_predicates argument to add_route().

A custom route predicate may also modify the match dictionary. For instance, a predicate might do some
type conversion of values:

1 def integers(*segment_names):
2 def predicate(info, request):
3 match = info['match']
4 for segment_name in segment_names:
5 try:
6 match[segment_name] = int(match[segment_name])
7 except (TypeError, ValueError):
8 pass
9 return True

10 return predicate
11

12 ymd_to_int = integers('year', 'month', 'day')
13

14 config.add_route('ymd', '/{year}/{month}/{day}',
15 custom_predicates=(ymd_to_int,))

Note that a conversion predicate is still a predicate, so it must return True or False. A predicate that
does only conversion, such as the one we demonstrate above, should unconditionally return True.

To avoid the try/except uncertainty, the route pattern can contain regular expressions specifying require-
ments for that marker. For instance:

96

8.12. CUSTOM ROUTE PREDICATES

1 def integers(*segment_names):
2 def predicate(info, request):
3 match = info['match']
4 for segment_name in segment_names:
5 match[segment_name] = int(match[segment_name])
6 return True
7 return predicate
8

9 ymd_to_int = integers('year', 'month', 'day')
10

11 config.add_route('ymd', '/{year:\d+}/{month:\d+}/{day:\d+}',
12 custom_predicates=(ymd_to_int,))

Now the try/except is no longer needed because the route will not match at all unless these markers match
\d+ which requires them to be valid digits for an int type conversion.

The match dictionary passed within info to each predicate attached to a route will be the same dictio-
nary. Therefore, when registering a custom predicate which modifies the match dict, the code registering
the predicate should usually arrange for the predicate to be the last custom predicate in the custom predi-
cate list. Otherwise, custom predicates which fire subsequent to the predicate which performs the match
modification will receive the modified match dictionary.

It is a poor idea to rely on ordering of custom predicates to build a conversion pipeline, where
one predicate depends on the side effect of another. For instance, it’s a poor idea to register two custom
predicates, one which handles conversion of a value to an int, the next which handles conversion of
that integer to some custom object. Just do all that in a single custom predicate.

The route object in the info dict is an object that has two useful attributes: name and pattern. The
name attribute is the route name. The pattern attribute is the route pattern. Here’s an example of using
the route in a set of route predicates:

1 def twenty_ten(info, request):
2 if info['route'].name in ('ymd', 'ym', 'y'):
3 return info['match']['year'] == '2010'
4

5 config.add_route('y', '/{year}', custom_predicates=(twenty_ten,))
6 config.add_route('ym', '/{year}/{month}', custom_predicates=(twenty_ten,))
7 config.add_route('ymd', '/{year}/{month}/{day}',
8 custom_predicates=(twenty_ten,))

97

8. URL DISPATCH

The above predicate, when added to a number of route configurations ensures that the year match argu-
ment is ‘2010’ if and only if the route name is ‘ymd’, ‘ym’, or ‘y’.

You can also caption the predicates by setting the __text__ attribute. This will help you with the
pviews command (see Displaying All Application Routes) and the pyramid_debugtoolbar.

If a predicate is a class, just add __text__ property in a standard manner.

1 class DummyCustomPredicate1(object):
2 def __init__(self):
3 self.__text__ = 'my custom class predicate'
4

5 class DummyCustomPredicate2(object):
6 __text__ = 'my custom class predicate'

If a predicate is a method, you’ll need to assign it after method declaration (see PEP 232).

1 def custom_predicate():
2 pass
3 custom_predicate.__text__ = 'my custom method predicate'

If a predicate is a classmethod, using @classmethod will not work, but you can still easily do it by
wrapping it in a classmethod call.

1 def classmethod_predicate():
2 pass
3 classmethod_predicate.__text__ = 'my classmethod predicate'
4 classmethod_predicate = classmethod(classmethod_predicate)

The same will work with staticmethod, using staticmethod instead of classmethod.

See also:

See also pyramid.interfaces.IRoute for more API documentation about route objects.

8.13 Route Factories

Although it is not a particularly common need in basic applications, a “route” configuration declaration
can mention a “factory”. When a route matches a request, and a factory is attached to the route, the root
factory passed at startup time to the Configurator is ignored. Instead the factory associated with the route
is used to generate a root object. This object will usually be used as the context resource of the view
callable ultimately found via view lookup.

98

http://www.python.org/dev/peps/pep-0232/

8.14. USING PYRAMID SECURITY WITH URL DISPATCH

1 config.add_route('abc', '/abc',
2 factory='myproject.resources.root_factory')
3 config.add_view('myproject.views.theview', route_name='abc')

The factory can either be a Python object or a dotted Python name (a string) which points to such a Python
object, as it is above.

In this way, each route can use a different factory, making it possible to supply a different context resource
object to the view related to each particular route.

A factory must be a callable which accepts a request and returns an arbitrary Python object. For example,
the below class can be used as a factory:

1 class Mine(object):
2 def __init__(self, request):
3 pass

A route factory is actually conceptually identical to the root factory described at The Resource Tree.

Supplying a different resource factory for each route is useful when you’re trying to use a Pyramid au-
thorization policy to provide declarative, “context sensitive” security checks. Each resource can maintain
a separate ACL, as documented in Using Pyramid Security with URL Dispatch. It is also useful when
you wish to combine URL dispatch with traversal as documented within Combining Traversal and URL
Dispatch.

8.14 Using Pyramid Security with URL Dispatch

Pyramid provides its own security framework which consults an authorization policy before allowing any
application code to be called. This framework operates in terms of an access control list, which is stored
as an __acl__ attribute of a resource object. A common thing to want to do is to attach an __acl__ to
the resource object dynamically for declarative security purposes. You can use the factory argument
that points at a factory which attaches a custom __acl__ to an object at its creation time.

Such a factory might look like so:

1 class Article(object):
2 def __init__(self, request):
3 matchdict = request.matchdict
4 article = matchdict.get('article', None)
5 if article == '1':
6 self.__acl__ = [(Allow, 'editor', 'view')]

99

8. URL DISPATCH

If the route archives/{article} is matched, and the article number is 1, Pyramid will generate an
Article context resource with an ACL on it that allows the editor principal the view permission.
Obviously you can do more generic things than inspect the route’s match dict to see if the article
argument matches a particular string. Our sample Article factory class is not very ambitious.

See Security for more information about Pyramid security and ACLs.

8.15 Route View Callable Registration and Lookup Details

When a request enters the system which matches the pattern of the route, the usual result is simple: the
view callable associated with the route is invoked with the request that caused the invocation.

For most usage, you needn’t understand more than this. How it works is an implementation detail. In the
interest of completeness, however, we’ll explain how it does work in this section. You can skip it if you’re
uninterested.

When a view is associated with a route configuration, Pyramid ensures that a view configuration is regis-
tered that will always be found when the route pattern is matched during a request. To do so:

• A special route-specific interface is created at startup time for each route configuration declaration.

• When an add_view statement mentions a route name attribute, a view configuration is regis-
tered at startup time. This view configuration uses a route-specific interface as a request type.

• At runtime, when a request causes any route to match, the request object is decorated with the
route-specific interface.

• The fact that the request is decorated with a route-specific interface causes the view lookup ma-
chinery to always use the view callable registered using that interface by the route configuration to
service requests that match the route pattern.

As we can see from the above description, technically, URL dispatch doesn’t actually map a URL pattern
directly to a view callable. Instead URL dispatch is a resource location mechanism. A Pyramid resource
location subsystem (i.e., URL dispatch or traversal) finds a resource object that is the context of a request.
Once the context is determined, a separate subsystem named view lookup is then responsible for finding
and invoking a view callable based on information available in the context and the request. When URL
dispatch is used, the resource location and view lookup subsystems provided by Pyramid are still being
utilized, but in a way which does not require a developer to understand either of them in detail.

If no route is matched using URL dispatch, Pyramid falls back to traversal to handle the request.

100

8.16. REFERENCES

8.16 References

A tutorial showing how URL dispatch can be used to create a Pyramid application exists in SQLAlchemy
+ URL Dispatch Wiki Tutorial.

101

8. URL DISPATCH

102

CHAPTER 9

Views

One of the primary jobs of Pyramid is to find and invoke a view callable when a request reaches your
application. View callables are bits of code which do something interesting in response to a request made
to your application. They are the “meat” of any interesting web application.

A Pyramid view callable is often referred to in conversational shorthand as a view. In this
documentation, however, we need to use less ambiguous terminology because there are significant
differences between view configuration, the code that implements a view callable, and the process of
view lookup.

This chapter describes how view callables should be defined. We’ll have to wait until a following chap-
ter (entitled View Configuration) to find out how we actually tell Pyramid to wire up view callables to
particular URL patterns and other request circumstances.

9.1 View Callables

View callables are, at the risk of sounding obvious, callable Python objects. Specifically, view callables
can be functions, classes, or instances that implement a __call__ method (making the instance
callable).

View callables must, at a minimum, accept a single argument named request. This argument represents
a Pyramid Request object. A request object represents a WSGI environment provided to Pyramid by the
upstream WSGI server. As you might expect, the request object contains everything your application
needs to know about the specific HTTP request being made.

A view callable’s ultimate responsibility is to create a Pyramid Response object. This can be done by
creating a Response object in the view callable code and returning it directly or by raising special kinds
of exceptions from within the body of a view callable.

103

9. VIEWS

9.2 Defining a View Callable as a Function

One of the easiest way to define a view callable is to create a function that accepts a single argument
named request, and which returns a Response object. For example, this is a “hello world” view callable
implemented as a function:

1 from pyramid.response import Response
2

3 def hello_world(request):
4 return Response('Hello world!')

9.3 Defining a View Callable as a Class

A view callable may also be represented by a Python class instead of a function. When a view callable is
a class, the calling semantics are slightly different than when it is a function or another non-class callable.
When a view callable is a class, the class’s __init__ method is called with a request parameter. As
a result, an instance of the class is created. Subsequently, that instance’s __call__ method is invoked
with no parameters. Views defined as classes must have the following traits.

• an __init__ method that accepts a request argument

• a __call__ (or other) method that accepts no parameters and which returns a response

For example:

1 from pyramid.response import Response
2

3 class MyView(object):
4 def __init__(self, request):
5 self.request = request
6

7 def __call__(self):
8 return Response('hello')

The request object passed to __init__ is the same type of request object described in Defining a View
Callable as a Function.

If you’d like to use a different attribute than __call__ to represent the method expected to return a
response, you can use an attr value as part of the configuration for the view. See View Configuration
Parameters. The same view callable class can be used in different view configuration statements with
different attr values, each pointing at a different method of the class if you’d like the class to represent
a collection of related view callables.

104

9.4. VIEW CALLABLE RESPONSES

9.4 View Callable Responses

A view callable may return an object that implements the Pyramid Response interface. The
easiest way to return something that implements the Response interface is to return a
pyramid.response.Response object instance directly. For example:

1 from pyramid.response import Response
2

3 def view(request):
4 return Response('OK')

Pyramid provides a range of different “exception” classes which inherit from
pyramid.response.Response. For example, an instance of the class
pyramid.httpexceptions.HTTPFound is also a valid response object because it inherits
from Response. For examples, see HTTP Exceptions and Using a View Callable to do an HTTP
Redirect.

You can also return objects from view callables that aren’t instances of
pyramid.response.Response in various circumstances. This can be helpful when writ-
ing tests and when attempting to share code between view callables. See Renderers for the common
way to allow for this. A much less common way to allow for view callables to return non-Response
objects is documented in Changing How Pyramid Treats View Responses.

9.5 Using Special Exceptions in View Callables

Usually when a Python exception is raised within a view callable, Pyramid allows the exception to prop-
agate all the way out to the WSGI server which invoked the application. It is usually caught and logged
there.

However, for convenience, a special set of exceptions exists. When one of these exceptions is raised
within a view callable, it will always cause Pyramid to generate a response. These are known as HTTP
exception objects.

105

9. VIEWS

9.5.1 HTTP Exceptions

All pyramid.httpexceptions classes which are documented as inheriting from the
pyramid.httpexceptions.HTTPException are http exception objects. Instances of an
HTTP exception object may either be returned or raised from within view code. In either case (return or
raise) the instance will be used as the view’s response.

For example, the pyramid.httpexceptions.HTTPUnauthorized exception can be raised. This
will cause a response to be generated with a 401 Unauthorized status:

1 from pyramid.httpexceptions import HTTPUnauthorized
2

3 def aview(request):
4 raise HTTPUnauthorized()

An HTTP exception, instead of being raised, can alternately be returned (HTTP exceptions are also valid
response objects):

1 from pyramid.httpexceptions import HTTPUnauthorized
2

3 def aview(request):
4 return HTTPUnauthorized()

A shortcut for creating an HTTP exception is the pyramid.httpexceptions.exception_response()
function. This function accepts an HTTP status code and returns the corresponding HTTP exception. For
example, instead of importing and constructing a HTTPUnauthorized response object, you can use
the exception_response() function to construct and return the same object.

1 from pyramid.httpexceptions import exception_response
2

3 def aview(request):
4 raise exception_response(401)

This is the case because 401 is the HTTP status code for “HTTP Unauthorized”. Therefore, raise
exception_response(401) is functionally equivalent to raise HTTPUnauthorized().
Documentation which maps each HTTP response code to its purpose and its associated HTTP excep-
tion object is provided within pyramid.httpexceptions.

New in version 1.1: The exception_response() function.

106

9.6. CUSTOM EXCEPTION VIEWS

9.5.2 How Pyramid Uses HTTP Exceptions

HTTP exceptions are meant to be used directly by application developers. However, Pyramid itself will
raise two HTTP exceptions at various points during normal operations.

• HTTPNotFound gets raised when a view to service a request is not found.

• HTTPForbidden gets raised when authorization was forbidden by a security policy.

If HTTPNotFound is raised by Pyramid itself or within view code, the result of the Not Found View will
be returned to the user agent which performed the request.

If HTTPForbidden is raised by Pyramid itself within view code, the result of the Forbidden View will
be returned to the user agent which performed the request.

9.6 Custom Exception Views

The machinery which allows HTTP exceptions to be raised and caught by specialized views as described
in Using Special Exceptions in View Callables can also be used by application developers to convert
arbitrary exceptions to responses.

To register a view that should be called whenever a particular exception is raised from within Pyramid
view code, use the exception class (or one of its superclasses) as the context of a view configuration which
points at a view callable for which you’d like to generate a response.

For example, given the following exception class in a module named helloworld.exceptions:

1 class ValidationFailure(Exception):
2 def __init__(self, msg):
3 self.msg = msg

You can wire a view callable to be called whenever any of your other code raises a
helloworld.exceptions.ValidationFailure exception:

1 from pyramid.view import view_config
2 from helloworld.exceptions import ValidationFailure
3

4 @view_config(context=ValidationFailure)
5 def failed_validation(exc, request):
6 response = Response('Failed validation: %s' % exc.msg)
7 response.status_int = 500
8 return response

107

9. VIEWS

Assuming that a scan was run to pick up this view registration, this view callable will be invoked whenever
a helloworld.exceptions.ValidationFailure is raised by your application’s view code.
The same exception raised by a custom root factory, a custom traverser, or a custom view or route predicate
is also caught and hooked.

Other normal view predicates can also be used in combination with an exception view registration:

1 from pyramid.view import view_config
2 from helloworld.exceptions import ValidationFailure
3

4 @view_config(context=ValidationFailure, route_name='home')
5 def failed_validation(exc, request):
6 response = Response('Failed validation: %s' % exc.msg)
7 response.status_int = 500
8 return response

The above exception view names the route_name of home, meaning that it will only be called when
the route matched has a name of home. You can therefore have more than one exception view for any
given exception in the system: the “most specific” one will be called when the set of request circumstances
match the view registration.

The only view predicate that cannot be used successfully when creating an exception view configuration
is name. The name used to look up an exception view is always the empty string. Views registered as
exception views which have a name will be ignored.

Normal (i.e., non-exception) views registered against a context resource type which inherits from
Exception will work normally. When an exception view configuration is processed, two views are
registered. One as a “normal” view, the other as an “exception” view. This means that you can use an
exception as context for a normal view.

Exception views can be configured with any view registration mechanism: @view_config decorator
or imperative add_view styles.

Pyramid’s exception view handling logic is implemented as a tween factory func-
tion: pyramid.tweens.excview_tween_factory(). If Pyramid exception view han-
dling is desired, and tween factories are specified via the pyramid.tweens configuration set-
ting, the pyramid.tweens.excview_tween_factory() function must be added to the
pyramid.tweens configuration setting list explicitly. If it is not present, Pyramid will not per-
form exception view handling.

108

http://docs.python.org/3/library/exceptions.html#Exception

9.7. USING A VIEW CALLABLE TO DO AN HTTP REDIRECT

9.7 Using a View Callable to do an HTTP Redirect

You can issue an HTTP redirect by using the pyramid.httpexceptions.HTTPFound class. Rais-
ing or returning an instance of this class will cause the client to receive a “302 Found” response.

To do so, you can return a pyramid.httpexceptions.HTTPFound instance.

1 from pyramid.httpexceptions import HTTPFound
2

3 def myview(request):
4 return HTTPFound(location='http://example.com')

Alternately, you can raise an HTTPFound exception instead of returning one.

1 from pyramid.httpexceptions import HTTPFound
2

3 def myview(request):
4 raise HTTPFound(location='http://example.com')

When the instance is raised, it is caught by the default exception response handler and turned into a
response.

9.8 Handling Form Submissions in View Callables (Unicode
and Character Set Issues)

Most web applications need to accept form submissions from web browsers and various other clients.
In Pyramid, form submission handling logic is always part of a view. For a general overview of how to
handle form submission data using the WebOb API, see Request and Response Objects and “Query and
POST variables” within the WebOb documentation. Pyramid defers to WebOb for its request and re-
sponse implementations, and handling form submission data is a property of the request implementation.
Understanding WebOb’s request API is the key to understanding how to process form submission data.

There are some defaults that you need to be aware of when trying to handle form submission data in a
Pyramid view. Having high-order (i.e., non-ASCII) characters in data contained within form submissions
is exceedingly common, and the UTF-8 encoding is the most common encoding used on the web for
character data. Since Unicode values are much saner than working with and storing bytestrings, Pyramid
configures the WebOb request machinery to attempt to decode form submission values into Unicode from
UTF-8 implicitly. This implicit decoding happens when view code obtains form field values via the

109

http://docs.webob.org/en/latest/reference.html#query-post-variables
http://docs.webob.org/en/latest/reference.html#query-post-variables

9. VIEWS

request.params, request.GET, or request.POST APIs (see pyramid.request for details about
these APIs).

Many people find the difference between Unicode and UTF-8 confusing. Unicode is a standard
for representing text that supports most of the world’s writing systems. However, there are many ways
that Unicode data can be encoded into bytes for transit and storage. UTF-8 is a specific encoding for
Unicode that is backwards-compatible with ASCII. This makes UTF-8 very convenient for encoding
data where a large subset of that data is ASCII characters, which is largely true on the web. UTF-8 is
also the standard character encoding for URLs.

As an example, let’s assume that the following form page is served up to a browser client, and its action
points at some Pyramid view code:

1 <html xmlns="http://www.w3.org/1999/xhtml">
2 <head>
3 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
4 </head>
5 <form method="POST" action="myview">
6 <div>
7 <input type="text" name="firstname"/>
8 </div>
9 <div>

10 <input type="text" name="lastname"/>
11 </div>
12 <input type="submit" value="Submit"/>
13 </form>
14 </html>

The myview view code in the Pyramid application must expect that the values returned by
request.params will be of type unicode, as opposed to type str. The following will work to
accept a form post from the above form:

1 def myview(request):
2 firstname = request.params['firstname']
3 lastname = request.params['lastname']

But the following myview view code may not work, as it tries to decode already-decoded (unicode)
values obtained from request.params:

110

9.9. ALTERNATE VIEW CALLABLE ARGUMENT/CALLING CONVENTIONS

1 def myview(request):
2 # the .decode('utf-8') will break below if there are any high-order
3 # characters in the firstname or lastname
4 firstname = request.params['firstname'].decode('utf-8')
5 lastname = request.params['lastname'].decode('utf-8')

For implicit decoding to work reliably, you should ensure that every form you render that posts to a
Pyramid view explicitly defines a charset encoding of UTF-8. This can be done via a response that
has a ;charset=UTF-8 in its Content-Type header; or, as in the form above, with a meta
http-equiv tag that implies that the charset is UTF-8 within the HTML head of the page containing
the form. This must be done explicitly because all known browser clients assume that they should encode
form data in the same character set implied by the Content-Type value of the response containing the
form when subsequently submitting that form. There is no other generally accepted way to tell browser
clients which charset to use to encode form data. If you do not specify an encoding explicitly, the browser
client will choose to encode form data in its default character set before submitting it, which may not
be UTF-8 as the server expects. If a request containing form data encoded in a non-UTF-8 charset is
handled by your view code, eventually the request code accessed within your view will throw an error
when it can’t decode some high-order character encoded in another character set within form data, e.g.,
when request.params[’somename’] is accessed.

If you are using the Response class to generate a response, or if you use the render_template_*
templating APIs, the UTF-8 charset is set automatically as the default via the Content-Type
header. If you return a Content-Type header without an explicit charset, a request will add a
;charset=utf-8 trailer to the Content-Type header value for you for response content types that
are textual (e.g., text/html or application/xml) as it is rendered. If you are using your own
response object, you will need to ensure you do this yourself.

Only the values of request params obtained via request.params, request.GET or
request.POST are decoded to Unicode objects implicitly in the Pyramid default configuration.
The keys are still (byte) strings.

9.9 Alternate View Callable Argument/Calling Conventions

Usually view callables are defined to accept only a single argument: request. However, view callables
may alternately be defined as classes, functions, or any callable that accept two positional arguments: a
context resource as the first argument and a request as the second argument.

The context and request arguments passed to a view function defined in this style can be defined as
follows:

111

9. VIEWS

context The resource object found via tree traversal or URL dispatch.

request A Pyramid Request object representing the current WSGI request.

The following types work as view callables in this style:

1. Functions that accept two arguments: context and request, e.g.:

1 from pyramid.response import Response
2

3 def view(context, request):
4 return Response('OK')

2. Classes that have an __init__ method that accepts context, request, and a __call__
method which accepts no arguments, e.g.:

1 from pyramid.response import Response
2

3 class view(object):
4 def __init__(self, context, request):
5 self.context = context
6 self.request = request
7

8 def __call__(self):
9 return Response('OK')

3. Arbitrary callables that have a __call__ method that accepts context, request, e.g.:

1 from pyramid.response import Response
2

3 class View(object):
4 def __call__(self, context, request):
5 return Response('OK')
6 view = View() # this is the view callable

This style of calling convention is most useful for traversal based applications, where the context object
is frequently used within the view callable code itself.

No matter which view calling convention is used, the view code always has access to the context via
request.context.

112

9.10. PASSING CONFIGURATION VARIABLES TO A VIEW

9.10 Passing Configuration Variables to a View

For information on passing a variable from the configuration .ini files to a view, see Deployment Settings.

9.11 Pylons-1.0-Style “Controller” Dispatch

A package named pyramid_handlers (available from PyPI) provides an analogue of Pylons-style “con-
trollers”, which are a special kind of view class which provides more automation when your application
uses URL dispatch solely.

113

9. VIEWS

114

CHAPTER 10

Renderers

A view callable needn’t always return a Response object. If a view happens to return something which
does not implement the Pyramid Response interface, Pyramid will attempt to use a renderer to construct
a response. For example:

1 from pyramid.view import view_config
2

3 @view_config(renderer='json')
4 def hello_world(request):
5 return {'content':'Hello!'}

The above example returns a dictionary from the view callable. A dictionary does not implement the Pyra-
mid response interface, so you might believe that this example would fail. However, since a renderer
is associated with the view callable through its view configuration (in this case, using a renderer ar-
gument passed to view_config()), if the view does not return a Response object, the renderer will
attempt to convert the result of the view to a response on the developer’s behalf.

Of course, if no renderer is associated with a view’s configuration, returning anything except an object
which implements the Response interface will result in an error. And, if a renderer is used, whatever is
returned by the view must be compatible with the particular kind of renderer used, or an error may occur
during view invocation.

One exception exists: it is always OK to return a Response object, even when a renderer is configured.
In such cases, the renderer is bypassed entirely.

Various types of renderers exist, including serialization renderers and renderers which use templating
systems.

115

10. RENDERERS

10.1 Writing View Callables Which Use a Renderer

As we’ve seen, a view callable needn’t always return a Response object. Instead, it may return an arbitrary
Python object, with the expectation that a renderer will convert that object into a response instance on
your behalf. Some renderers use a templating system, while other renderers use object serialization
techniques. In practice, renderers obtain application data values from Python dictionaries so, in practice,
view callables which use renderers return Python dictionaries.

View callables can explicitly call renderers, but typically don’t. Instead view configuration declares the
renderer used to render a view callable’s results. This is done with the renderer attribute. For example,
this call to add_view() associates the json renderer with a view callable:

config.add_view('myproject.views.my_view', renderer='json')

When this configuration is added to an application, the myproject.views.my_view view callable
will now use a json renderer, which renders view return values to a JSON response serialization.

Pyramid defines several Built-in Renderers, and additional renderers can be added by developers to the
system as necessary. See Adding and Changing Renderers.

Views which use a renderer and return a non-Response value can vary non-body response attributes (such
as headers and the HTTP status code) by attaching a property to the request.response attribute.
See Varying Attributes of Rendered Responses.

As already mentioned, if the view callable associated with a view configuration returns a Response object
(or its instance), any renderer associated with the view configuration is ignored, and the response is passed
back to Pyramid unchanged. For example:

1 from pyramid.response import Response
2 from pyramid.view import view_config
3

4 @view_config(renderer='json')
5 def view(request):
6 return Response('OK') # json renderer avoided

Likewise for an HTTP exception response:

1 from pyramid.httpexceptions import HTTPFound
2 from pyramid.view import view_config
3

4 @view_config(renderer='json')
5 def view(request):
6 return HTTPFound(location='http://example.com') # json renderer avoided

116

10.2. BUILT-IN RENDERERS

You can of course also return the request.response attribute instead to avoid rendering:

1 from pyramid.view import view_config
2

3 @view_config(renderer='json')
4 def view(request):
5 request.response.body = 'OK'
6 return request.response # json renderer avoided

10.2 Built-in Renderers

Several built-in renderers exist in Pyramid. These renderers can be used in the renderer attribute of
view configurations.

Bindings for officially supported templating languages can be found at Available Add-On Tem-
plate System Bindings.

10.2.1 string: String Renderer

The string renderer renders a view callable result to a string. If a view callable returns a non-Response
object, and the string renderer is associated in that view’s configuration, the result will be to run the
object through the Python str function to generate a string. Note that if a Unicode object is returned by
the view callable, it is not str()-ified.

Here’s an example of a view that returns a dictionary. If the string renderer is specified in the con-
figuration for this view, the view will render the returned dictionary to the str() representation of the
dictionary:

1 from pyramid.view import view_config
2

3 @view_config(renderer='string')
4 def hello_world(request):
5 return {'content':'Hello!'}

The body of the response returned by such a view will be a string representing the str() serialization of
the return value:

117

10. RENDERERS

{'content': 'Hello!'}

Views which use the string renderer can vary non-body response attributes by using the API of the
request.response attribute. See Varying Attributes of Rendered Responses.

10.2.2 JSON Renderer

The json renderer renders view callable results to JSON. By default, it passes the return value through
the json.dumps standard library function, and wraps the result in a response object. It also sets the
response content-type to application/json.

Here’s an example of a view that returns a dictionary. Since the json renderer is specified in the config-
uration for this view, the view will render the returned dictionary to a JSON serialization:

1 from pyramid.view import view_config
2

3 @view_config(renderer='json')
4 def hello_world(request):
5 return {'content':'Hello!'}

The body of the response returned by such a view will be a string representing the JSON serialization of
the return value:

{"content": "Hello!"}

The return value needn’t be a dictionary, but the return value must contain values serializable by the
configured serializer (by default json.dumps).

You can configure a view to use the JSON renderer by naming json as the renderer argument of a
view configuration, e.g., by using add_view():

1 config.add_view('myproject.views.hello_world',
2 name='hello',
3 context='myproject.resources.Hello',
4 renderer='json')

Views which use the JSON renderer can vary non-body response attributes by using the API of the
request.response attribute. See Varying Attributes of Rendered Responses.

118

10.2. BUILT-IN RENDERERS

Serializing Custom Objects

Some objects are not, by default, JSON-serializable (such as datetimes and other arbitrary Python objects).
You can, however, register code that makes non-serializable objects serializable in two ways:

• Define a __json__ method on objects in your application.

• For objects you don’t “own”, you can register a JSON renderer that knows about an adapter for
that kind of object.

Using a Custom __json__ Method

Custom objects can be made easily JSON-serializable in Pyramid by defining a __json__ method
on the object’s class. This method should return values natively JSON-serializable (such as ints, lists,
dictionaries, strings, and so forth). It should accept a single additional argument, request, which will
be the active request object at render time.

1 from pyramid.view import view_config
2

3 class MyObject(object):
4 def __init__(self, x):
5 self.x = x
6

7 def __json__(self, request):
8 return {'x':self.x}
9

10 @view_config(renderer='json')
11 def objects(request):
12 return [MyObject(1), MyObject(2)]
13

14 # the JSON value returned by ``objects`` will be:
15 # [{"x": 1}, {"x": 2}]

Using the add_adapter Method of a Custom JSON Renderer

If you aren’t the author of the objects being serialized, it won’t be possible (or at least not reasonable) to
add a custom __json__ method to their classes in order to influence serialization. If the object passed
to the renderer is not a serializable type and has no __json__ method, usually a TypeError will be
raised during serialization. You can change this behavior by creating a custom JSON renderer and adding
adapters to handle custom types. The renderer will attempt to adapt non-serializable objects using the
registered adapters. A short example follows:

119

http://docs.python.org/3/library/exceptions.html#TypeError

10. RENDERERS

1 from pyramid.renderers import JSON
2

3 if __name__ == '__main__':
4 config = Configurator()
5 json_renderer = JSON()
6 def datetime_adapter(obj, request):
7 return obj.isoformat()
8 json_renderer.add_adapter(datetime.datetime, datetime_adapter)
9 config.add_renderer('json', json_renderer)

The add_adapter method should accept two arguments: the class of the object that you want this
adapter to run for (in the example above, datetime.datetime), and the adapter itself.

The adapter should be a callable. It should accept two arguments: the object needing to be serialized
and request, which will be the current request object at render time. The adapter should raise a
TypeError if it can’t determine what to do with the object.

See pyramid.renderers.JSON and Adding and Changing Renderers for more information.

New in version 1.4: Serializing custom objects.

10.2.3 JSONP Renderer

New in version 1.1.

pyramid.renderers.JSONP is a JSONP renderer factory helper which implements a hybrid
JSON/JSONP renderer. JSONP is useful for making cross-domain AJAX requests.

Unlike other renderers, a JSONP renderer needs to be configured at startup time “by hand”. Configure a
JSONP renderer using the pyramid.config.Configurator.add_renderer() method:

from pyramid.config import Configurator
from pyramid.renderers import JSONP

config = Configurator()
config.add_renderer('jsonp', JSONP(param_name='callback'))

Once this renderer is registered via add_renderer() as above, you
can use jsonp as the renderer= parameter to @view_config or
pyramid.config.Configurator.add_view():

120

http://docs.python.org/3/library/exceptions.html#TypeError
http://en.wikipedia.org/wiki/JSONP

10.3. VARYING ATTRIBUTES OF RENDERED RESPONSES

from pyramid.view import view_config

@view_config(renderer='jsonp')
def myview(request):

return {'greeting':'Hello world'}

When a view is called that uses a JSONP renderer:

• If there is a parameter in the request’s HTTP query string (aka request.GET) that matches the
param_name of the registered JSONP renderer (by default, callback), the renderer will return
a JSONP response.

• If there is no callback parameter in the request’s query string, the renderer will return a “plain”
JSON response.

Javscript library AJAX functionality will help you make JSONP requests. For example, JQuery has a
getJSON function, and has equivalent (but more complicated) functionality in its ajax function.

For example (JavaScript):

var api_url = 'http://api.geonames.org/timezoneJSON' +
'?lat=38.301733840000004' +
'&lng=-77.45869621' +
'&username=fred' +
'&callback=?';

jqhxr = $.getJSON(api_url);

The string callback=? above in the url param to the JQuery getJSON function indicates to jQuery
that the query should be made as a JSONP request; the callback parameter will be automatically filled
in for you and used.

The same custom-object serialization scheme defined used for a “normal” JSON renderer in Serializing
Custom Objects can be used when passing values to a JSONP renderer too.

10.3 Varying Attributes of Rendered Responses

Before a response constructed by a renderer is returned to Pyramid, several attributes of the request are
examined which have the potential to influence response behavior.

121

http://api.jquery.com/jQuery.getJSON/
http://api.jquery.com/jQuery.ajax/

10. RENDERERS

View callables that don’t directly return a response should use the API of the
pyramid.response.Response attribute, available as request.response during their
execution, to influence associated response behavior.

For example, if you need to change the response status from within a view callable that uses a renderer,
assign the status attribute to the response attribute of the request before returning a result:

1 from pyramid.view import view_config
2

3 @view_config(name='gone', renderer='templates/gone.pt')
4 def myview(request):
5 request.response.status = '404 Not Found'
6 return {'URL':request.URL}

Note that mutations of request.response in views which return a Response object directly will
have no effect unless the response object returned is request.response. For example, the following
example calls request.response.set_cookie, but this call will have no effect because a different
Response object is returned.

1 from pyramid.response import Response
2

3 def view(request):
4 request.response.set_cookie('abc', '123') # this has no effect
5 return Response('OK') # because we're returning a different response

If you mutate request.response and you’d like the mutations to have an effect, you must return
request.response:

1 def view(request):
2 request.response.set_cookie('abc', '123')
3 return request.response

For more information on attributes of the request, see the API documentation in
pyramid.request. For more information on the API of request.response, see
pyramid.request.Request.response.

10.4 Adding and Changing Renderers

New templating systems and serializers can be associated with Pyramid renderer names. To this end,
configuration declarations can be made which change an existing renderer factory, and which add a new
renderer factory.

122

10.4. ADDING AND CHANGING RENDERERS

Renderers can be registered imperatively using the pyramid.config.Configurator.add_renderer()
API.

For example, to add a renderer which renders views which have a renderer attribute that is a path that
ends in .jinja2:

config.add_renderer('.jinja2', 'mypackage.MyJinja2Renderer')

The first argument is the renderer name. The second argument is a reference to an implementation of a
renderer factory or a dotted Python name referring to such an object.

10.4.1 Adding a New Renderer

You may add a new renderer by creating and registering a renderer factory.

A renderer factory implementation should conform to the pyramid.interfaces.IRendererFactory
interface. It should be capable of creating an object that conforms to the
pyramid.interfaces.IRenderer interface. A typical class that follows this setup is as
follows:

1 class RendererFactory:
2 def __init__(self, info):
3 """ Constructor: info will be an object having the
4 following attributes: name (the renderer name), package
5 (the package that was 'current' at the time the
6 renderer was registered), type (the renderer type
7 name), registry (the current application registry) and
8 settings (the deployment settings dictionary). """
9

10 def __call__(self, value, system):
11 """ Call the renderer implementation with the value
12 and the system value passed in as arguments and return
13 the result (a string or unicode object). The value is
14 the return value of a view. The system value is a
15 dictionary containing available system values
16 (e.g., view, context, and request). """

The formal interface definition of the info object passed to a renderer factory constructor is available as
pyramid.interfaces.IRendererInfo.

There are essentially two different kinds of renderer factories:

123

10. RENDERERS

• A renderer factory which expects to accept an asset specification, or an absolute path, as the name
attribute of the info object fed to its constructor. These renderer factories are registered with a
name value that begins with a dot (.). These types of renderer factories usually relate to a file on
the filesystem, such as a template.

• A renderer factory which expects to accept a token that does not represent a filesystem path or an
asset specification in the name attribute of the info object fed to its constructor. These renderer
factories are registered with a name value that does not begin with a dot. These renderer factories
are typically object serializers.

Asset Specifications

An asset specification is a colon-delimited identifier for an asset. The colon separates
a Python package name from a package subpath. For example, the asset specification
my.package:static/baz.css identifies the file named baz.css in the static subdirec-
tory of the my.package Python package.

Here’s an example of the registration of a simple renderer factory via add_renderer(), where
config is an instance of pyramid.config.Configurator():

config.add_renderer(name='amf', factory='my.package.MyAMFRenderer')

Adding the above code to your application startup configuration will allow you to use the
my.package.MyAMFRenderer renderer factory implementation in view configurations. Your ap-
plication can use this renderer by specifying amf in the renderer attribute of a view configuration:

1 from pyramid.view import view_config
2

3 @view_config(renderer='amf')
4 def myview(request):
5 return {'Hello':'world'}

At startup time, when a view configuration is encountered which has a name attribute that does not contain
a dot, the full name value is used to construct a renderer from the associated renderer factory. In this case,
the view configuration will create an instance of an MyAMFRenderer for each view configuration which
includes amf as its renderer value. The name passed to the MyAMFRenderer constructor will always
be amf.

Here’s an example of the registration of a more complicated renderer factory, which expects to be passed
a filesystem path:

124

10.4. ADDING AND CHANGING RENDERERS

config.add_renderer(name='.jinja2', factory='my.package.MyJinja2Renderer')

Adding the above code to your application startup will allow you to use the
my.package.MyJinja2Renderer renderer factory implementation in view configurations by
referring to any renderer which ends in .jinja2 in the renderer attribute of a view configura-
tion:

1 from pyramid.view import view_config
2

3 @view_config(renderer='templates/mytemplate.jinja2')
4 def myview(request):
5 return {'Hello':'world'}

When a view configuration is encountered at startup time which has a name attribute that does contain a
dot, the value of the name attribute is split on its final dot. The second element of the split is typically the
filename extension. This extension is used to look up a renderer factory for the configured view. Then the
value of renderer is passed to the factory to create a renderer for the view. In this case, the view con-
figuration will create an instance of a MyJinja2Renderer for each view configuration which includes
anything ending with .jinja2 in its renderer value. The name passed to the MyJinja2Renderer
constructor will be the full value that was set as renderer= in the view configuration.

10.4.2 Adding a Default Renderer

To associate a default renderer with all view configurations (even ones which do not possess a renderer
attribute), pass None as the name attribute to the renderer tag:

config.add_renderer(None, 'mypackage.json_renderer_factory')

10.4.3 Changing an Existing Renderer

Pyramid supports overriding almost every aspect of its setup through its Conflict Resolution
mechanism. This means that, in most cases, overriding a renderer is as simple as using the
pyramid.config.Configurator.add_renderer() method to redefine the template exten-
sion. For example, if you would like to override the json renderer to specify a new renderer, you
could do the following:

125

10. RENDERERS

json_renderer = pyramid.renderers.JSON()
config.add_renderer('json', json_renderer)

After doing this, any views registered with the json renderer will use the new renderer.

10.5 Overriding a Renderer at Runtime

This is an advanced feature, not typically used by “civilians”.

In some circumstances, it is necessary to instruct the system to ignore the static renderer declaration
provided by the developer in view configuration, replacing the renderer with another after a request
starts. For example, an “omnipresent” XML-RPC implementation that detects that the request is from
an XML-RPC client might override a view configuration statement made by the user instructing the view
to use a template renderer with one that uses an XML-RPC renderer. This renderer would produce an
XML-RPC representation of the data returned by an arbitrary view callable.

To use this feature, create a NewRequest subscriber which sniffs at the request data and which con-
ditionally sets an override_renderer attribute on the request itself, which in turn is the name of a
registered renderer. For example:

1 from pyramid.events import subscriber
2 from pyramid.events import NewRequest
3

4 @subscriber(NewRequest)
5 def set_xmlrpc_params(event):
6 request = event.request
7 if (request.content_type == 'text/xml'
8 and request.method == 'POST'
9 and not 'soapaction' in request.headers

10 and not 'x-pyramid-avoid-xmlrpc' in request.headers):
11 params, method = parse_xmlrpc_request(request)
12 request.xmlrpc_params, request.xmlrpc_method = params, method
13 request.is_xmlrpc = True
14 request.override_renderer = 'xmlrpc'
15 return True

The result of such a subscriber will be to replace any existing static renderer configured by the developer
with a (notional, nonexistent) XML-RPC renderer, if the request appears to come from an XML-RPC
client.

126

CHAPTER 11

Templates

A template is a file on disk which can be used to render dynamic data provided by a view. Pyramid offers
a number of ways to perform templating tasks out of the box, and provides add-on templating support
through a set of bindings packages.

Before discussing how built-in templates are used in detail, we’ll discuss two ways to render templates
within Pyramid in general: directly and via renderer configuration.

11.1 Using Templates Directly

The most straightforward way to use a template within Pyramid is to cause it to be rendered directly
within a view callable. You may use whatever API is supplied by a given templating engine to do so.

Pyramid provides various APIs that allow you to render templates directly from within a view callable.
For example, if there is a Chameleon ZPT template named foo.pt in a directory named templates
in your application, you can render the template from within the body of a view callable like so:

1 from pyramid.renderers import render_to_response
2

3 def sample_view(request):
4 return render_to_response('templates/foo.pt',
5 {'foo':1, 'bar':2},
6 request=request)

127

11. TEMPLATES

The sample_view view callable function above returns a response object which contains the body
of the templates/foo.pt template. In this case, the templates directory should live in the same
directory as the module containing the sample_view function. The template author will have the names
foo and bar available as top-level names for replacement or comparison purposes.

In the example above, the path templates/foo.pt is relative to the directory containing the
file which defines the view configuration. In this case, this is the directory containing the file
that defines the sample_view function. Although a renderer path is usually just a simple rela-
tive pathname, a path named as a renderer can be absolute, starting with a slash on UNIX or a
drive letter prefix on Windows. The path can alternatively be an asset specification in the form
some.dotted.package_name:relative/path. This makes it possible to address template as-
sets which live in another package. For example:

1 from pyramid.renderers import render_to_response
2

3 def sample_view(request):
4 return render_to_response('mypackage:templates/foo.pt',
5 {'foo':1, 'bar':2},
6 request=request)

An asset specification points at a file within a Python package. In this case, it points at a file named
foo.pt within the templates directory of the mypackage package. Using an asset specification
instead of a relative template name is usually a good idea, because calls to render_to_response()
using asset specifications will continue to work properly if you move the code containing them to another
location.

In the examples above we pass in a keyword argument named request representing the current Pyramid
request. Passing a request keyword argument will cause the render_to_response function to supply
the renderer with more correct system values (see System Values Used During Rendering), because most
of the information required to compose proper system values is present in the request. If your template
relies on the name request or context, or if you’ve configured special renderer globals, make sure to
pass request as a keyword argument in every call to a pyramid.renderers.render_* function.

Every view must return a response object, except for views which use a renderer named via view configu-
ration (which we’ll see shortly). The pyramid.renderers.render_to_response() function is
a shortcut function that actually returns a response object. This allows the example view above to simply
return the result of its call to render_to_response() directly.

Obviously not all APIs you might call to get response data will return a response object. For exam-
ple, you might render one or more templates to a string that you want to use as response data. The
pyramid.renderers.render() API renders a template to a string. We can manufacture a re-
sponse object directly, and use that string as the body of the response:

128

11.1. USING TEMPLATES DIRECTLY

1 from pyramid.renderers import render
2 from pyramid.response import Response
3

4 def sample_view(request):
5 result = render('mypackage:templates/foo.pt',
6 {'foo':1, 'bar':2},
7 request=request)
8 response = Response(result)
9 return response

Because view callable functions are typically the only code in Pyramid that need to know anything about
templates, and because view functions are very simple Python, you can use whatever templating system
with which you’re most comfortable within Pyramid. Install the templating system, import its API func-
tions into your views module, use those APIs to generate a string, then return that string as the body of a
Pyramid Response object.

For example, here’s an example of using “raw” Mako from within a Pyramid view:

1 from mako.template import Template
2 from pyramid.response import Response
3

4 def make_view(request):
5 template = Template(filename='/templates/template.mak')
6 result = template.render(name=request.params['name'])
7 response = Response(result)
8 return response

You probably wouldn’t use this particular snippet in a project, because it’s easier to use the supported
Mako bindings. But if your favorite templating system is not supported as a renderer extension for Pyra-
mid, you can create your own simple combination as shown above.

If you use third-party templating languages without cooperating Pyramid bindings directly
within view callables, the auto-template-reload strategy explained in Automatically Reloading Tem-
plates will not be available, nor will the template asset overriding capability explained in Overriding
Assets be available, nor will it be possible to use any template using that language as a renderer. How-
ever, it’s reasonably easy to write custom templating system binding packages for use under Pyramid
so that templates written in the language can be used as renderers. See Adding and Changing Ren-
derers for instructions on how to create your own template renderer and Available Add-On Template
System Bindings for example packages.

If you need more control over the status code and content-type, or other response attributes from views
that use direct templating, you may set attributes on the response that influence these values.

129

http://www.makotemplates.org/

11. TEMPLATES

Here’s an example of changing the content-type and status of the response object returned by
render_to_response():

1 from pyramid.renderers import render_to_response
2

3 def sample_view(request):
4 response = render_to_response('templates/foo.pt',
5 {'foo':1, 'bar':2},
6 request=request)
7 response.content_type = 'text/plain'
8 response.status_int = 204
9 return response

Here’s an example of manufacturing a response object using the result of render() (a string):

1 from pyramid.renderers import render
2 from pyramid.response import Response
3

4 def sample_view(request):
5 result = render('mypackage:templates/foo.pt',
6 {'foo':1, 'bar':2},
7 request=request)
8 response = Response(result)
9 response.content_type = 'text/plain'

10 return response

11.2 System Values Used During Rendering

When a template is rendered using render_to_response() or render(), or a renderer= ar-
gument to view configuration (see Templates Used as Renderers via Configuration), the renderer repre-
senting the template will be provided with a number of system values. These values are provided to the
template:

request The value provided as the request keyword argument to render_to_response or
render or the request object passed to the view when the renderer= argument to view config-
uration is being used to render the template.

req An alias for request.

context The current Pyramid context if request was provided as a keyword argument to
render_to_response or render, or None if the request keyword argument was not pro-
vided. This value will always be provided if the template is rendered as the result of a renderer=
argument to the view configuration being used.

130

11.3. TEMPLATES USED AS RENDERERS VIA CONFIGURATION

renderer_name The renderer name used to perform the rendering, e.g.,
mypackage:templates/foo.pt.

renderer_info An object implementing the pyramid.interfaces.IRendererInfo inter-
face. Basically, an object with the following attributes: name, package, and type.

view The view callable object that was used to render this template. If the view callable is a method of
a class-based view, this will be an instance of the class that the method was defined on. If the view
callable is a function or instance, it will be that function or instance. Note that this value will only
be automatically present when a template is rendered as a result of a renderer= argument; it will
be None when the render_to_response or render APIs are used.

You can define more values which will be passed to every template executed as a result of rendering by
defining renderer globals.

What any particular renderer does with these system values is up to the renderer itself, but most template
renderers make these names available as top-level template variables.

11.3 Templates Used as Renderers via Configuration

An alternative to using render_to_response() to render templates manually in your view callable
code is to specify the template as a renderer in your view configuration. This can be done with any of the
templating languages supported by Pyramid.

To use a renderer via view configuration, specify a template asset specification as the renderer ar-
gument, or attribute to the view configuration of a view callable. Then return a dictionary from that
view callable. The dictionary items returned by the view callable will be made available to the renderer
template as top-level names.

The association of a template as a renderer for a view configuration makes it possible to replace code
within a view callable that handles the rendering of a template.

Here’s an example of using a view_config decorator to specify a view configuration that names a
template renderer:

1 from pyramid.view import view_config
2

3 @view_config(renderer='templates/foo.pt')
4 def my_view(request):
5 return {'foo':1, 'bar':2}

131

11. TEMPLATES

You do not need to supply the request value as a key in the dictionary result returned from
a renderer-configured view callable. Pyramid automatically supplies this value for you, so that the
“most correct” system values are provided to the renderer.

The renderer argument to the @view_config configuration decorator shown above is the
template path. In the example above, the path templates/foo.pt is relative. Relative to what,
you ask? Because we’re using a Chameleon renderer, it means “relative to the directory in which
the file that defines the view configuration lives”. In this case, this is the directory containing the
file that defines the my_view function. View-configuration-relative asset specifications work only in
Chameleon, not in Mako templates.

Similar renderer configuration can be done imperatively. See Writing View Callables Which Use a Ren-
derer.

See also:

See also Built-in Renderers.

Although a renderer path is usually just a simple relative pathname, a path named as a renderer can be
absolute, starting with a slash on UNIX or a drive letter prefix on Windows. The path can alternatively
be an asset specification in the form some.dotted.package_name:relative/path, making it
possible to address template assets which live in another package.

Not just any template from any arbitrary templating system may be used as a renderer. Bindings must
exist specifically for Pyramid to use a templating language template as a renderer.

Why Use a Renderer via View Configuration

Using a renderer in view configuration is usually a better way to render templates than using any ren-
dering API directly from within a view callable because it makes the view callable more unit-testable.
Views which use templating or rendering APIs directly must return a Response object. Making test-
ing assertions about response objects is typically an indirect process, because it means that your
test code often needs to somehow parse information out of the response body (often HTML). View
callables configured with renderers externally via view configuration typically return a dictionary,
as above. Making assertions about results returned in a dictionary is almost always more direct and
straightforward than needing to parse HTML.

132

11.4. DEBUGGING TEMPLATES

By default, views rendered via a template renderer return a Response object which has a status code
of 200 OK, and a content-type of text/html. To vary attributes of the response of a view that
uses a renderer, such as the content-type, headers, or status attributes, you must use the API of the
pyramid.response.Response object exposed as request.response within the view before
returning the dictionary. See Varying Attributes of Rendered Responses for more information.

The same set of system values are provided to templates rendered via a renderer view configuration as
those provided to templates rendered imperatively. See System Values Used During Rendering.

11.4 Debugging Templates

A NameError exception resulting from rendering a template with an undefined variable (e.g.
${wrong}) might end up looking like this:

RuntimeError: Caught exception rendering template.
- Expression: ``wrong``
- Filename: /home/fred/env/proj/proj/templates/mytemplate.pt
- Arguments: renderer_name: proj:templates/mytemplate.pt

template: <PageTemplateFile - at 0x1d2ecf0>
xincludes: <XIncludes - at 0x1d3a130>
request: <Request - at 0x1d2ecd0>
project: proj
macros: <Macros - at 0x1d3aed0>
context: <MyResource None at 0x1d39130>
view: <function my_view at 0x1d23570>

NameError: wrong

The output tells you which template the error occurred in, as well as displaying the arguments passed to
the template itself.

11.5 Automatically Reloading Templates

It’s often convenient to see changes you make to a template file appear immediately without needing to
restart the application process. Pyramid allows you to configure your application development environ-
ment so that a change to a template will be automatically detected, and the template will be reloaded on
the next rendering.

133

http://docs.python.org/3/library/exceptions.html#NameError

11. TEMPLATES

Auto-template-reload behavior is not recommended for production sites as it slows rendering
slightly; it’s usually only desirable during development.

In order to turn on automatic reloading of templates, you can use an environment variable or a configura-
tion file setting.

To use an environment variable, start your application under a shell using the
PYRAMID_RELOAD_TEMPLATES operating system environment variable set to 1, For example:

$ PYRAMID_RELOAD_TEMPLATES=1 $VENV/bin/pserve myproject.ini

To use a setting in the application .ini file for the same purpose, set the
pyramid.reload_templates key to true within the application’s configuration section,
e.g.:

1 [app:main]
2 use = egg:MyProject
3 pyramid.reload_templates = true

11.6 Available Add-On Template System Bindings

The Pylons Project maintains several packages providing bindings to different templating languages in-
cluding the following:

Template Language Pyramid Bindings Default Extensions
Chameleon pyramid_chameleon .pt, .txt
Jinja2 pyramid_jinja2 .jinja2
Mako pyramid_mako .mak, .mako

134

http://chameleon.readthedocs.org/en/latest/
https://pypi.python.org/pypi/pyramid_chameleon
http://jinja.pocoo.org/docs/
https://pypi.python.org/pypi/pyramid_jinja2
http://www.makotemplates.org/
https://pypi.python.org/pypi/pyramid_mako

CHAPTER 12

View Configuration

View lookup is the Pyramid subsystem responsible for finding and invoking a view callable. View config-
uration controls how view lookup operates in your application. During any given request, view config-
uration information is compared against request data by the view lookup subsystem in order to find the
“best” view callable for that request.

In earlier chapters, you have been exposed to a few simple view configuration declarations without much
explanation. In this chapter we will explore the subject in detail.

12.1 Mapping a Resource or URL Pattern to a View Callable

A developer makes a view callable available for use within a Pyramid application via view configura-
tion. A view configuration associates a view callable with a set of statements that determine the set of
circumstances which must be true for the view callable to be invoked.

A view configuration statement is made about information present in the context resource and the request.

View configuration is performed in one of two ways:

• By running a scan against application source code which has a pyramid.view.view_config
decorator attached to a Python object as per Adding View Configuration Using the @view_config
Decorator.

• By using the pyramid.config.Configurator.add_view() method as per Adding View
Configuration Using add_view().

135

12. VIEW CONFIGURATION

12.1.1 View Configuration Parameters

All forms of view configuration accept the same general types of arguments.

Many arguments supplied during view configuration are view predicate arguments. View predicate argu-
ments used during view configuration are used to narrow the set of circumstances in which view lookup
will find a particular view callable.

View predicate attributes are an important part of view configuration that enables the view lookup subsys-
tem to find and invoke the appropriate view. The greater the number of predicate attributes possessed by
a view’s configuration, the more specific the circumstances need to be before the registered view callable
will be invoked. The fewer the number of predicates which are supplied to a particular view configuration,
the more likely it is that the associated view callable will be invoked. A view with five predicates will
always be found and evaluated before a view with two, for example.

This does not mean however, that Pyramid “stops looking” when it finds a view registration with pred-
icates that don’t match. If one set of view predicates does not match, the “next most specific” view (if
any) is consulted for predicates, and so on, until a view is found, or no view can be matched up with
the request. The first view with a set of predicates all of which match the request environment will be
invoked.

If no view can be found with predicates which allow it to be matched up with the request, Pyramid will
return an error to the user’s browser, representing a “not found” (404) page. See Changing the Not Found
View for more information about changing the default Not Found View.

Other view configuration arguments are non-predicate arguments. These tend to modify the response of
the view callable or prevent the view callable from being invoked due to an authorization policy. The
presence of non-predicate arguments in a view configuration does not narrow the circumstances in which
the view callable will be invoked.

Non-Predicate Arguments

permission The name of a permission that the user must possess in order to invoke the view callable.
See Configuring View Security for more information about view security and permissions.

If permission is not supplied, no permission is registered for this view (it’s accessible by any
caller).

136

12.1. MAPPING A RESOURCE OR URL PATTERN TO A VIEW CALLABLE

attr The view machinery defaults to using the __call__ method of the view callable (or the function
itself, if the view callable is a function) to obtain a response. The attr value allows you to vary the
method attribute used to obtain the response. For example, if your view was a class, and the class
has a method named index and you wanted to use this method instead of the class’s __call__
method to return the response, you’d say attr="index" in the view configuration for the view.
This is most useful when the view definition is a class.

If attr is not supplied, None is used (implying the function itself if the view is a function, or the
__call__ callable attribute if the view is a class).

renderer Denotes the renderer implementation which will be used to construct a response from the
associated view callable’s return value.

See also:

See also Renderers.

This is either a single string term (e.g., json) or a string implying a path or asset specification (e.g.,
templates/views.pt) naming a renderer implementation. If the renderer value does not
contain a dot (.), the specified string will be used to look up a renderer implementation, and that
renderer implementation will be used to construct a response from the view return value. If the
renderer value contains a dot (.), the specified term will be treated as a path, and the filename
extension of the last element in the path will be used to look up the renderer implementation, which
will be passed the full path.

When the renderer is a path—although a path is usually just a simple relative pathname (e.g.,
templates/foo.pt, implying that a template named “foo.pt” is in the “templates” directory
relative to the directory of the current package)—the path can be absolute, starting with a slash
on UNIX or a drive letter prefix on Windows. The path can alternatively be a asset specification
in the form some.dotted.package_name:relative/path, making it possible to address
template assets which live in a separate package.

The renderer attribute is optional. If it is not defined, the “null” renderer is assumed (no ren-
dering is performed and the value is passed back to the upstream Pyramid machinery unchanged).
Note that if the view callable itself returns a response (see View Callable Responses), the specified
renderer implementation is never called.

http_cache When you supply an http_cache value to a view configuration, the Expires and
Cache-Control headers of a response generated by the associated view callable are modified.
The value for http_cache may be one of the following:

• A nonzero integer. If it’s a nonzero integer, it’s treated as a number of seconds. This num-
ber of seconds will be used to compute the Expires header and the Cache-Control:
max-age parameter of responses to requests which call this view. For example:
http_cache=3600 instructs the requesting browser to ‘cache this response for an hour,
please’.

137

12. VIEW CONFIGURATION

• A datetime.timedelta instance. If it’s a datetime.timedelta in-
stance, it will be converted into a number of seconds, and that number of sec-
onds will be used to compute the Expires header and the Cache-Control:
max-age parameter of responses to requests which call this view. For example:
http_cache=datetime.timedelta(days=1) instructs the requesting browser
to ‘cache this response for a day, please’.

• Zero (0). If the value is zero, the Cache-Control and Expires headers present in all re-
sponses from this view will be composed such that client browser cache (and any intermediate
caches) are instructed to never cache the response.

• A two-tuple. If it’s a two-tuple (e.g., http_cache=(1, {’public’:True})), the
first value in the tuple may be a nonzero integer or a datetime.timedelta in-
stance. In either case this value will be used as the number of seconds to cache
the response. The second value in the tuple must be a dictionary. The values
present in the dictionary will be used as input to the Cache-Control response
header. For example: http_cache=(3600, {’public’:True}) means ‘cache
for an hour, and add public to the Cache-Control header of the response’. All keys
and values supported by the webob.cachecontrol.CacheControl interface may
be added to the dictionary. Supplying {’public’:True} is equivalent to calling
response.cache_control.public = True.

Providing a non-tuple value as http_cache is equivalent to calling
response.cache_expires(value) within your view’s body.

Providing a two-tuple value as http_cache is equivalent to calling
response.cache_expires(value[0], **value[1]) within your view’s body.

If you wish to avoid influencing the Expires header, and instead wish to only influence
Cache-Control headers, pass a tuple as http_cache with the first element of None, i.e.,
(None, {’public’:True}).

wrapper The view name of a different view configuration which will receive the response body
of this view as the request.wrapped_body attribute of its own request, and the re-
sponse returned by this view as the request.wrapped_response attribute of its own re-
quest. Using a wrapper makes it possible to “chain” views together to form a composite re-
sponse. The response of the outermost wrapper view will be returned to the user. The wrap-
per view will be found as any view is found. See View Configuration. The “best” wrap-
per view will be found based on the lookup ordering. “Under the hood” this wrapper view
is looked up via pyramid.view.render_view_to_response(context, request,
’wrapper_viewname’). The context and request of a wrapper view is the same context and
request of the inner view.

If wrapper is not supplied, no wrapper view is used.

138

12.1. MAPPING A RESOURCE OR URL PATTERN TO A VIEW CALLABLE

decorator A dotted Python name to a function (or the function itself) which will be used to deco-
rate the registered view callable. The decorator function will be called with the view callable as a
single argument. The view callable it is passed will accept (context, request). The deco-
rator must return a replacement view callable which also accepts (context, request). The
decorator may also be an iterable of decorators, in which case they will be applied one after the
other to the view, in reverse order. For example:

@view_config(..., decorator=(decorator2, decorator1))
def myview(request):
...

Is similar to doing:

@view_config(...)
@decorator2
@decorator1
def myview(request):
...

All view callables in the decorator chain must return a response object implementing
pyramid.interfaces.IResponse or raise an exception:

def log_timer(wrapped):
def wrapper(context, request):

start = time.time()
response = wrapped(context, request)
duration = time.time() - start
response.headers['X-View-Time'] = '%.3f' % (duration,)
log.info('view took %.3f seconds', duration)
return response

return wrapper

mapper A Python object or dotted Python name which refers to a view mapper, or None. By default it is
None, which indicates that the view should use the default view mapper. This plug-point is useful
for Pyramid extension developers, but it’s not very useful for “civilians” who are just developing
stock Pyramid applications. Pay no attention to the man behind the curtain.

Predicate Arguments

These arguments modify view lookup behavior. In general the more predicate arguments that are supplied,
the more specific and narrower the usage of the configured view.

139

12. VIEW CONFIGURATION

name The view name required to match this view callable. A name argument is typically only used
when your application uses traversal. Read Traversal to understand the concept of a view name.

If name is not supplied, the empty string is used (implying the default view).

context An object representing a Python class of which the context resource must be an instance or the
interface that the context resource must provide in order for this view to be found and called. This
predicate is true when the context resource is an instance of the represented class or if the context
resource provides the represented interface; it is otherwise false.

If context is not supplied, the value None, which matches any resource, is used.

route_name If route_name is supplied, the view callable will be invoked only when the named
route has matched.

This value must match the name of a route configuration declaration (see URL Dispatch) that
must match before this view will be called. Note that the route configuration referred to by
route_name will usually have a *traverse token in the value of its pattern, representing a
part of the path that will be used by traversal against the result of the route’s root factory.

If route_name is not supplied, the view callable will only have a chance of being invoked if no
other route was matched. This is when the request/context pair found via resource location does
not indicate it matched any configured route.

request_type This value should be an interface that the request must provide in order for this view
to be found and called.

If request_type is not supplied, the value None is used, implying any request type.

This is an advanced feature, not often used by “civilians”.

request_method This value can be either a string (such as "GET", "POST", "PUT", "DELETE",
"HEAD", or "OPTIONS") representing an HTTP REQUEST_METHOD or a tuple containing one
or more of these strings. A view declaration with this argument ensures that the view will only
be called when the method attribute of the request (i.e., the REQUEST_METHOD of the WSGI
environment) matches a supplied value.

Changed in version 1.4: The use of "GET" also implies that the view will respond to "HEAD".

If request_method is not supplied, the view will be invoked regardless of the
REQUEST_METHOD of the WSGI environment.

140

12.1. MAPPING A RESOURCE OR URL PATTERN TO A VIEW CALLABLE

request_param This value can be any string or a sequence of strings. A view declaration with
this argument ensures that the view will only be called when the request has a key in the
request.params dictionary (an HTTP GET or POST variable) that has a name which matches
the supplied value.

If any value supplied has an = sign in it, e.g., request_param="foo=123", then the key (foo)
must both exist in the request.params dictionary, and the value must match the right hand side
of the expression (123) for the view to “match” the current request.

If request_param is not supplied, the view will be invoked without consideration of keys and
values in the request.params dictionary.

match_param This param may be either a single string of the format “key=value” or a tuple containing
one or more of these strings.

This argument ensures that the view will only be called when the request has key/value
pairs in its matchdict that equal those supplied in the predicate. For example,
match_param="action=edit"would require the action parameter in the matchdict match
the right hand side of the expression (edit) for the view to “match” the current request.

If the match_param is a tuple, every key/value pair must match for the predicate to pass.

If match_param is not supplied, the view will be invoked without consideration of the keys and
values in request.matchdict.

New in version 1.2.

containment This value should be a reference to a Python class or interface that a parent object in the
context resource’s lineage must provide in order for this view to be found and called. The resources
in your resource tree must be “location-aware” to use this feature.

If containment is not supplied, the interfaces and classes in the lineage are not considered when
deciding whether or not to invoke the view callable.

See Location-Aware Resources for more information about location-awareness.

xhr This value should be either True or False. If this value is specified and is True, the WSGI
environment must possess an HTTP_X_REQUESTED_WITH header (i.e., X-Requested-With)
that has the value XMLHttpRequest for the associated view callable to be found and called. This
is useful for detecting AJAX requests issued from jQuery, Prototype, and other Javascript libraries.

If xhr is not specified, the HTTP_X_REQUESTED_WITH HTTP header is not taken into consid-
eration when deciding whether or not to invoke the associated view callable.

141

12. VIEW CONFIGURATION

accept The value of this argument represents a match query for one or more mimetypes in the Accept
HTTP request header. If this value is specified, it must be in one of the following forms: a mimetype
match token in the form text/plain, a wildcard mimetype match token in the form text/*,
or a match-all wildcard mimetype match token in the form */*. If any of the forms matches the
Accept header of the request, this predicate will be true.

If accept is not specified, the HTTP_ACCEPT HTTP header is not taken into consideration when
deciding whether or not to invoke the associated view callable.

header This value represents an HTTP header name or a header name/value pair.

If header is specified, it must be a header name or a headername:headervalue pair.

If header is specified without a value (a bare header name only, e.g., If-Modified-Since),
the view will only be invoked if the HTTP header exists with any value in the request.

If header is specified, and possesses a name/value pair (e.g., User-Agent:Mozilla/.*),
the view will only be invoked if the HTTP header exists and the HTTP header matches the value
requested. When the headervalue contains a : (colon), it will be considered a name/value
pair (e.g., User-Agent:Mozilla/.* or Host:localhost). The value portion should be a
regular expression.

Whether or not the value represents a header name or a header name/value pair, the case of the
header name is not significant.

If header is not specified, the composition, presence, or absence of HTTP headers is not taken
into consideration when deciding whether or not to invoke the associated view callable.

path_info This value represents a regular expression pattern that will be tested against the
PATH_INFO WSGI environment variable to decide whether or not to call the associated view
callable. If the regex matches, this predicate will be True.

If path_info is not specified, the WSGI PATH_INFO is not taken into consideration when
deciding whether or not to invoke the associated view callable.

check_csrf If specified, this value should be one of None, True, False, or a string representing
the “check name”. If the value is True or a string, CSRF checking will be performed. If the value
is False or None, CSRF checking will not be performed.

If the value provided is a string, that string will be used as the “check name”. If the value provided
is True, csrf_token will be used as the check name.

If CSRF checking is performed, the checked value will be the value of
request.params[check_name]. This value will be compared against the value of

142

12.1. MAPPING A RESOURCE OR URL PATTERN TO A VIEW CALLABLE

request.session.get_csrf_token(), and the check will pass if these two values are the
same. If the check passes, the associated view will be permitted to execute. If the check fails, the
associated view will not be permitted to execute.

Note that using this feature requires a session factory to have been configured.

New in version 1.4a2.

physical_path If specified, this value should be a string or a tuple representing the physical
path of the context found via traversal for this predicate to match as true. For example,
physical_path=’/’, physical_path=’/a/b/c’, or physical_path=(’’, ’a’,
’b’, ’c’). This is not a path prefix match or a regex, but a whole-path match. It’s useful when
you want to always potentially show a view when some object is traversed to, but you can’t be sure
about what kind of object it will be, so you can’t use the context predicate. The individual path
elements between slash characters or in tuple elements should be the Unicode representation of the
name of the resource and should not be encoded in any way.

New in version 1.4a3.

effective_principals If specified, this value should be a principal identifier or a sequence of
principal identifiers. If the pyramid.request.Request.effective_principals()
method indicates that every principal named in the argument list is present in the cur-
rent request, this predicate will return True; otherwise it will return False. For ex-
ample: effective_principals=pyramid.security.Authenticated or
effective_principals=(’fred’, ’group:admins’).

New in version 1.4a4.

custom_predicates If custom_predicates is specified, it must be a sequence of references to
custom predicate callables. Use custom predicates when no set of predefined predicates do what you
need. Custom predicates can be combined with predefined predicates as necessary. Each custom
predicate callable should accept two arguments, context and request, and should return either
True or False after doing arbitrary evaluation of the context resource and/or the request. If all
callables return True, the associated view callable will be considered viable for a given request.

If custom_predicates is not specified, no custom predicates are used.

predicates Pass a key/value pair here to use a third-party predicate registered via
pyramid.config.Configurator.add_view_predicate(). More than one key/value
pair can be used at the same time. See View and Route Predicates for more information about
third-party predicates.

New in version 1.4a1.

143

12. VIEW CONFIGURATION

Inverting Predicate Values

You can invert the meaning of any predicate value by wrapping it in a call to pyramid.config.not_.

1 from pyramid.config import not_
2

3 config.add_view(
4 'mypackage.views.my_view',
5 route_name='ok',
6 request_method=not_('POST')
7)

The above example will ensure that the view is called if the request method is not POST, at least if no
other view is more specific.

This technique of wrapping a predicate value in not_ can be used anywhere predicate values are ac-
cepted:

• pyramid.config.Configurator.add_view()

• pyramid.view.view_config()

New in version 1.5.

12.1.2 Adding View Configuration Using the @view_config Decorator

Using this feature tends to slow down application startup slightly, as more work is performed
at application startup to scan for view configuration declarations. For maximum startup performance,
use the view configuration method described in Adding View Configuration Using add_view() instead.

The view_config decorator can be used to associate view configuration information with a function,
method, or class that acts as a Pyramid view callable.

Here’s an example of the view_config decorator that lives within a Pyramid application module
views.py:

144

12.1. MAPPING A RESOURCE OR URL PATTERN TO A VIEW CALLABLE

1 from resources import MyResource
2 from pyramid.view import view_config
3 from pyramid.response import Response
4

5 @view_config(route_name='ok', request_method='POST', permission='read')
6 def my_view(request):
7 return Response('OK')

Using this decorator as above replaces the need to add this imperative configuration stanza:

1 config.add_view('mypackage.views.my_view', route_name='ok',
2 request_method='POST', permission='read')

All arguments to view_config may be omitted. For example:

1 from pyramid.response import Response
2 from pyramid.view import view_config
3

4 @view_config()
5 def my_view(request):
6 """ My view """
7 return Response()

Such a registration as the one directly above implies that the view name will be my_view, registered with
a context argument that matches any resource type, using no permission, registered against requests
with any request method, request type, request param, route name, or containment.

The mere existence of a @view_config decorator doesn’t suffice to perform view configuration. All
that the decorator does is “annotate” the function with your configuration declarations, it doesn’t process
them. To make Pyramid process your pyramid.view.view_config declarations, you must use the
scan method of a pyramid.config.Configurator:

1 # config is assumed to be an instance of the
2 # pyramid.config.Configurator class
3 config.scan()

Please see Declarative Configuration for detailed information about what happens when code is scanned
for configuration declarations resulting from use of decorators like view_config.

See pyramid.config for additional API arguments to the scan()method. For example, the method allows
you to supply a package argument to better control exactly which code will be scanned.

145

12. VIEW CONFIGURATION

All arguments to the view_config decorator mean precisely the same thing as they would if they were
passed as arguments to the pyramid.config.Configurator.add_view() method save for the
view argument. Usage of the view_config decorator is a form of declarative configuration, while
pyramid.config.Configurator.add_view() is a form of imperative configuration. However,
they both do the same thing.

@view_config Placement

A view_config decorator can be placed in various points in your application.

If your view callable is a function, it may be used as a function decorator:

1 from pyramid.view import view_config
2 from pyramid.response import Response
3

4 @view_config(route_name='edit')
5 def edit(request):
6 return Response('edited!')

If your view callable is a class, the decorator can also be used as a class decorator. All the arguments to
the decorator are the same when applied against a class as when they are applied against a function. For
example:

1 from pyramid.response import Response
2 from pyramid.view import view_config
3

4 @view_config(route_name='hello')
5 class MyView(object):
6 def __init__(self, request):
7 self.request = request
8

9 def __call__(self):
10 return Response('hello')

More than one view_config decorator can be stacked on top of any number of others. Each decorator
creates a separate view registration. For example:

1 from pyramid.view import view_config
2 from pyramid.response import Response
3

4 @view_config(route_name='edit')
5 @view_config(route_name='change')
6 def edit(request):
7 return Response('edited!')

146

12.1. MAPPING A RESOURCE OR URL PATTERN TO A VIEW CALLABLE

This registers the same view under two different names.

The decorator can also be used against a method of a class:

1 from pyramid.response import Response
2 from pyramid.view import view_config
3

4 class MyView(object):
5 def __init__(self, request):
6 self.request = request
7

8 @view_config(route_name='hello')
9 def amethod(self):

10 return Response('hello')

When the decorator is used against a method of a class, a view is registered for the class, so the class
constructor must accept an argument list in one of two forms: either a single argument, request, or two
arguments, context, request.

The method which is decorated must return a response.

Using the decorator against a particular method of a class is equivalent to using the attr parameter in a
decorator attached to the class itself. For example, the above registration implied by the decorator being
used against the amethod method could be written equivalently as follows:

1 from pyramid.response import Response
2 from pyramid.view import view_config
3

4 @view_config(attr='amethod', route_name='hello')
5 class MyView(object):
6 def __init__(self, request):
7 self.request = request
8

9 def amethod(self):
10 return Response('hello')

12.1.3 Adding View Configuration Using add_view()

The pyramid.config.Configurator.add_view() method within pyramid.config is used to
configure a view “imperatively” (without a view_config decorator). The arguments to this method
are very similar to the arguments that you provide to the view_config decorator. For example:

147

12. VIEW CONFIGURATION

1 from pyramid.response import Response
2

3 def hello_world(request):
4 return Response('hello!')
5

6 # config is assumed to be an instance of the
7 # pyramid.config.Configurator class
8 config.add_view(hello_world, route_name='hello')

The first argument, a view callable, is the only required argument. It must either be a Python object which
is the view itself or a dotted Python name to such an object. In the above example, the view callable
is the hello_world function.

When you use only add_view() to add view configurations, you don’t need to issue a scan in order for
the view configuration to take effect.

12.2 @view_defaults Class Decorator

New in version 1.3.

If you use a class as a view, you can use the pyramid.view.view_defaults class decorator on the
class to provide defaults to the view configuration information used by every @view_config decorator
that decorates a method of that class.

For instance, if you’ve got a class that has methods that represent “REST actions”, all of which are mapped
to the same route but different request methods, instead of this:

1 from pyramid.view import view_config
2 from pyramid.response import Response
3

4 class RESTView(object):
5 def __init__(self, request):
6 self.request = request
7

8 @view_config(route_name='rest', request_method='GET')
9 def get(self):

10 return Response('get')
11

12 @view_config(route_name='rest', request_method='POST')
13 def post(self):
14 return Response('post')

148

12.2. @VIEW_DEFAULTS CLASS DECORATOR

15

16 @view_config(route_name='rest', request_method='DELETE')
17 def delete(self):
18 return Response('delete')

You can do this:

1 from pyramid.view import view_defaults
2 from pyramid.view import view_config
3 from pyramid.response import Response
4

5 @view_defaults(route_name='rest')
6 class RESTView(object):
7 def __init__(self, request):
8 self.request = request
9

10 @view_config(request_method='GET')
11 def get(self):
12 return Response('get')
13

14 @view_config(request_method='POST')
15 def post(self):
16 return Response('post')
17

18 @view_config(request_method='DELETE')
19 def delete(self):
20 return Response('delete')

In the above example, we were able to take the route_name=’rest’ argument out of the call to each
individual @view_config statement because we used a @view_defaults class decorator to provide
the argument as a default to each view method it possessed.

Arguments passed to @view_config will override any default passed to @view_defaults.

The view_defaults class decorator can also provide defaults to the
pyramid.config.Configurator.add_view() directive when a decorated class is passed
to that directive as its view argument. For example, instead of this:

1 from pyramid.response import Response
2 from pyramid.config import Configurator
3

4 class RESTView(object):
5 def __init__(self, request):

149

12. VIEW CONFIGURATION

6 self.request = request
7

8 def get(self):
9 return Response('get')

10

11 def post(self):
12 return Response('post')
13

14 def delete(self):
15 return Response('delete')
16

17 def main(global_config, **settings):
18 config = Configurator()
19 config.add_route('rest', '/rest')
20 config.add_view(
21 RESTView, route_name='rest', attr='get', request_method='GET')
22 config.add_view(
23 RESTView, route_name='rest', attr='post', request_method='POST')
24 config.add_view(
25 RESTView, route_name='rest', attr='delete', request_method='DELETE')
26 return config.make_wsgi_app()

To reduce the amount of repetition in the config.add_view statements, we can move the
route_name=’rest’ argument to a @view_defaults class decorator on the RESTView class:

1 from pyramid.view import view_defaults
2 from pyramid.response import Response
3 from pyramid.config import Configurator
4

5 @view_defaults(route_name='rest')
6 class RESTView(object):
7 def __init__(self, request):
8 self.request = request
9

10 def get(self):
11 return Response('get')
12

13 def post(self):
14 return Response('post')
15

16 def delete(self):
17 return Response('delete')
18

19 def main(global_config, **settings):
20 config = Configurator()

150

12.2. @VIEW_DEFAULTS CLASS DECORATOR

21 config.add_route('rest', '/rest')
22 config.add_view(RESTView, attr='get', request_method='GET')
23 config.add_view(RESTView, attr='post', request_method='POST')
24 config.add_view(RESTView, attr='delete', request_method='DELETE')
25 return config.make_wsgi_app()

pyramid.view.view_defaults accepts the same set of arguments that
pyramid.view.view_config does, and they have the same meaning. Each argument passed to
view_defaults provides a default for the view configurations of methods of the class it’s decorating.

Normal Python inheritance rules apply to defaults added via view_defaults. For example:

1 @view_defaults(route_name='rest')
2 class Foo(object):
3 pass
4

5 class Bar(Foo):
6 pass

The Bar class above will inherit its view defaults from the arguments passed to the view_defaults
decorator of the Foo class. To prevent this from happening, use a view_defaults decorator without
any arguments on the subclass:

1 @view_defaults(route_name='rest')
2 class Foo(object):
3 pass
4

5 @view_defaults()
6 class Bar(Foo):
7 pass

The view_defaults decorator only works as a class decorator; using it against a function or a method
will produce nonsensical results.

12.2.1 Configuring View Security

If an authorization policy is active, any permission attached to a view configuration found during view
lookup will be verified. This will ensure that the currently authenticated user possesses that permission
against the context resource before the view function is actually called. Here’s an example of specifying
a permission in a view configuration using add_view():

151

12. VIEW CONFIGURATION

1 # config is an instance of pyramid.config.Configurator
2

3 config.add_route('add', '/add.html', factory='mypackage.Blog')
4 config.add_view('myproject.views.add_entry', route_name='add',
5 permission='add')

When an authorization policy is enabled, this view will be protected with the add permission. The view
will not be called if the user does not possess the add permission relative to the current context. Instead
the forbidden view result will be returned to the client as per Protecting Views with Permissions.

12.2.2 NotFound Errors

It’s useful to be able to debug NotFound error responses when they occur unexpectedly due to an
application registry misconfiguration. To debug these errors, use the PYRAMID_DEBUG_NOTFOUND
environment variable or the pyramid.debug_notfound configuration file setting. Details of why a
view was not found will be printed to stderr, and the browser representation of the error will include
the same information. See Environment Variables and .ini File Settings for more information about how,
and where to set these values.

12.3 Influencing HTTP Caching

New in version 1.1.

When a non-None http_cache argument is passed to a view configuration, Pyramid will set Expires
and Cache-Control response headers in the resulting response, causing browsers to cache the re-
sponse data for some time. See http_cache in Non-Predicate Arguments for the allowable values and
what they mean.

Sometimes it’s undesirable to have these headers set as the result of returning a response from a view,
even though you’d like to decorate the view with a view configuration decorator that has http_cache.
Perhaps there’s an alternative branch in your view code that returns a response that should never be
cacheable, while the “normal” branch returns something that should always be cacheable. If this is the
case, set the prevent_auto attribute of the response.cache_control object to a non-False
value. For example, the below view callable is configured with a @view_config decorator that indi-
cates any response from the view should be cached for 3600 seconds. However, the view itself prevents
caching from taking place unless there’s a should_cache GET or POST variable:

152

12.4. DEBUGGING VIEW CONFIGURATION

from pyramid.view import view_config

@view_config(http_cache=3600)
def view(request):

response = Response()
if 'should_cache' not in request.params:

response.cache_control.prevent_auto = True
return response

Note that the http_cache machinery will overwrite or add to caching headers you set within the view
itself, unless you use prevent_auto.

You can also turn off the effect of http_cache entirely for the duration of a Pyramid applica-
tion lifetime. To do so, set the PYRAMID_PREVENT_HTTP_CACHE environment variable or the
pyramid.prevent_http_cache configuration value setting to a true value. For more information,
see Preventing HTTP Caching.

Note that setting pyramid.prevent_http_cache will have no effect on caching headers that your
application code itself sets. It will only prevent caching headers that would have been set by the Pyramid
HTTP caching machinery invoked as the result of the http_cache argument to view configuration.

12.4 Debugging View Configuration

See Displaying Matching Views for a Given URL for information about how to display each of the view
callables that might match for a given URL. This can be an effective way to figure out why a particular
view callable is being called instead of the one you’d like to be called.

153

12. VIEW CONFIGURATION

154

CHAPTER 13

Static Assets

An asset is any file contained within a Python package which is not a Python source code file. For
example, each of the following is an asset:

• a GIF image file contained within a Python package or contained within any subdirectory of a
Python package.

• a CSS file contained within a Python package or contained within any subdirectory of a Python
package.

• a JavaScript source file contained within a Python package or contained within any subdirectory of
a Python package.

• A directory within a package that does not have an __init__.py in it (if it possessed an
__init__.py it would be a package).

• a Chameleon or Mako template file contained within a Python package.

The use of assets is quite common in most web development projects. For example, when you create
a Pyramid application using one of the available scaffolds, as described in Creating the Project, the
directory representing the application contains a Python package. Within that Python package, there are
directories full of files which are static assets. For example, there’s a static directory which contains
.css, .js, and .gif files. These asset files are delivered when a user visits an application URL.

13.1 Understanding Asset Specifications

Let’s imagine you’ve created a Pyramid application that uses a Chameleon ZPT template via the
pyramid.renderers.render_to_response() API. For example, the application might ad-
dress the asset using the asset specification myapp:templates/some_template.pt using that
API within a views.py file inside a myapp package:

155

13. STATIC ASSETS

1 from pyramid.renderers import render_to_response
2 render_to_response('myapp:templates/some_template.pt', {}, request)

“Under the hood”, when this API is called, Pyramid attempts to make sense out of the string
myapp:templates/some_template.pt provided by the developer. This string is an asset speci-
fication. It is composed of two parts:

• The package name (myapp)

• The asset name (templates/some_template.pt), relative to the package directory.

The two parts are separated by a colon : character.

Pyramid uses the Python pkg_resources API to resolve the package name and asset name to an absolute
(operating system-specific) file name. It eventually passes this resolved absolute filesystem path to the
Chameleon templating engine, which then uses it to load, parse, and execute the template file.

There is a second form of asset specification: a relative asset specification. Instead of using an “absolute”
asset specification which includes the package name, in certain circumstances you can omit the package
name from the specification. For example, you might be able to use templates/mytemplate.pt
instead of myapp:templates/some_template.pt. Such asset specifications are usually relative
to a “current package”. The “current package” is usually the package which contains the code that uses
the asset specification. Pyramid APIs which accept relative asset specifications typically describe to what
the asset is relative in their individual documentation.

13.2 Serving Static Assets

Pyramid makes it possible to serve up static asset files from a directory on a filesystem to an application
user’s browser. Use the pyramid.config.Configurator.add_static_view() to instruct
Pyramid to serve static assets, such as JavaScript and CSS files. This mechanism makes a directory of
static files available at a name relative to the application root URL, e.g., /static, or as an external
URL.

add_static_view() cannot serve a single file, nor can it serve a directory of static files
directly relative to the root URL of a Pyramid application. For these features, see Advanced: Serving
Static Assets Using a View Callable.

Here’s an example of a use of add_static_view() that will serve files up from the
/var/www/static directory of the computer which runs the Pyramid application as URLs beneath
the /static URL prefix.

156

13.2. SERVING STATIC ASSETS

1 # config is an instance of pyramid.config.Configurator
2 config.add_static_view(name='static', path='/var/www/static')

The name represents a URL prefix. In order for files that live in the path directory to be served,
a URL that requests one of them must begin with that prefix. In the example above, name is
static and path is /var/www/static. In English this means that you wish to serve the
files that live in /var/www/static as sub-URLs of the /static URL prefix. Therefore, the
file /var/www/static/foo.css will be returned when the user visits your application’s URL
/static/foo.css.

A static directory named at path may contain subdirectories recursively, and any subdirectories may
hold files; these will be resolved by the static view as you would expect. The Content-Type header
returned by the static view for each particular type of file is dependent upon its file extension.

By default, all files made available via add_static_view() are accessible by completely anonymous
users. Simple authorization can be required, however. To protect a set of static files using a permission, in
addition to passing the required name and path arguments, also pass the permission keyword argu-
ment to add_static_view(). The value of the permission argument represents the permission
that the user must have relative to the current context when the static view is invoked. A user will be
required to possess this permission to view any of the files represented by path of the static view. If your
static assets must be protected by a more complex authorization scheme, see Advanced: Serving Static
Assets Using a View Callable.

Here’s another example that uses an asset specification instead of an absolute path as the path ar-
gument. To convince add_static_view() to serve files up under the /static URL from the
a/b/c/static directory of the Python package named some_package, we can use a fully qualified
asset specification as the path:

1 # config is an instance of pyramid.config.Configurator
2 config.add_static_view(name='static', path='some_package:a/b/c/static')

The path provided to add_static_view()may be a fully qualified asset specification or an absolute
path.

Instead of representing a URL prefix, the name argument of a call to add_static_view() can
alternately be a URL. Each of the examples we’ve seen so far have shown usage of the name ar-
gument as a URL prefix. However, when name is a URL, static assets can be served from an ex-
ternal webserver. In this mode, the name is used as the URL prefix when generating a URL using
pyramid.request.Request.static_url().

For example, add_static_view() may be fed a name argument which is
http://example.com/images:

157

13. STATIC ASSETS

1 # config is an instance of pyramid.config.Configurator
2 config.add_static_view(name='http://example.com/images',
3 path='mypackage:images')

Because add_static_view() is provided with a name argument that is the URL
http://example.com/images, subsequent calls to static_url() with paths that start
with the path argument passed to add_static_view() will generate a URL something like
http://example.com/images/logo.png. The external webserver listening on example.com
must be itself configured to respond properly to such a request. The static_url() API is discussed
in more detail later in this chapter.

13.2.1 Generating Static Asset URLs

When an add_static_view() method is used to register a static asset directory, a special helper
API named pyramid.request.Request.static_url() can be used to generate the appropriate
URL for an asset that lives in one of the directories named by the static registration path attribute.

For example, let’s assume you create a set of static declarations like so:

1 config.add_static_view(name='static1', path='mypackage:assets/1')
2 config.add_static_view(name='static2', path='mypackage:assets/2')

These declarations create URL-accessible directories which have URLs that begin with /static1 and
/static2, respectively. The assets in the assets/1 directory of the mypackage package are con-
sulted when a user visits a URL which begins with /static1, and the assets in the assets/2 directory
of the mypackage package are consulted when a user visits a URL which begins with /static2.

You needn’t generate the URLs to static assets “by hand” in such a configuration. Instead, use the
static_url() API to generate them for you. For example:

1 from pyramid.renderers import render_to_response
2

3 def my_view(request):
4 css_url = request.static_url('mypackage:assets/1/foo.css')
5 js_url = request.static_url('mypackage:assets/2/foo.js')
6 return render_to_response('templates/my_template.pt',
7 dict(css_url=css_url, js_url=js_url),
8 request=request)

158

13.3. ADVANCED: SERVING STATIC ASSETS USING A VIEW CALLABLE

If the request “application URL” of the running system is http://example.com, the css_url
generated above would be: http://example.com/static1/foo.css. The js_url generated
above would be http://example.com/static2/foo.js.

One benefit of using the static_url() function rather than constructing static URLs “by hand” is that
if you need to change the name of a static URL declaration, the generated URLs will continue to resolve
properly after the rename.

URLs may also be generated by static_url() to static assets that live outside the Pyramid ap-
plication. This will happen when the add_static_view() API associated with the path fed to
static_url() is a URL instead of a view name. For example, the name argument may be
http://example.com while the path given may be mypackage:images:

1 config.add_static_view(name='http://example.com/images',
2 path='mypackage:images')

Under such a configuration, the URL generated by static_url for assets which begin with
mypackage:images will be prefixed with http://example.com/images:

1 request.static_url('mypackage:images/logo.png')
2 # -> http://example.com/images/logo.png

Using static_url() in conjunction with a add_static_view() makes it possible to put static
media on a separate webserver during production (if the name argument to add_static_view()
is a URL), while keeping static media package-internal and served by the development webserver dur-
ing development (if the name argument to add_static_view() is a URL prefix). To create such
a circumstance, we suggest using the pyramid.registry.Registry.settings API in con-
junction with a setting in the application .ini file named media_location. Then set the value
of media_location to either a prefix or a URL depending on whether the application is being run
in development or in production (use a different .ini file for production than you do for development).
This is just a suggestion for a pattern; any setting name other than media_location could be used.

13.3 Advanced: Serving Static Assets Using a View Callable

For more flexibility, static assets can be served by a view callable which you register manually. For
example, if you’re using URL dispatch, you may want static assets to only be available as a fallback if no
previous route matches. Alternatively, you might like to serve a particular static asset manually, because
its download requires authentication.

Note that you cannot use the static_url() API to generate URLs against assets made accessible by
registering a custom static view.

159

13. STATIC ASSETS

13.3.1 Root-Relative Custom Static View (URL Dispatch Only)

The pyramid.static.static_view helper class generates a Pyramid view callable. This view
callable can serve static assets from a directory. An instance of this class is actually used by the
add_static_view() configuration method, so its behavior is almost exactly the same once it’s con-
figured.

The following example will not work for applications that use traversal; it will only work if
you use URL dispatch exclusively. The root-relative route we’ll be registering will always be matched
before traversal takes place, subverting any views registered via add_view (at least those without a
route_name). A static_view static view cannot be made root-relative when you use traversal
unless it’s registered as a Not Found View.

To serve files within a directory located on your filesystem at /path/to/static/dir as the result of
a “catchall” route hanging from the root that exists at the end of your routing table, create an instance of
the static_view class inside a static.py file in your application root as below.

1 from pyramid.static import static_view
2 static_view = static_view('/path/to/static/dir', use_subpath=True)

For better cross-system flexibility, use an asset specification as the argument to
static_view instead of a physical absolute filesystem path, e.g., mypackage:static, instead
of /path/to/mypackage/static.

Subsequently, you may wire the files that are served by this view up to be accessible as /<filename>
using a configuration method in your application’s startup code.

1 # .. every other add_route declaration should come
2 # before this one, as it will, by default, catch all requests
3

4 config.add_route('catchall_static', '/*subpath')
5 config.add_view('myapp.static.static_view', route_name='catchall_static')

The special name *subpath above is used by the static_view view callable to signify the path of
the file relative to the directory you’re serving.

160

13.4. OVERRIDING ASSETS

13.3.2 Registering a View Callable to Serve a “Static” Asset

You can register a simple view callable to serve a single static asset. To do so, do things “by hand”. First
define the view callable.

1 import os
2 from pyramid.response import FileResponse
3

4 def favicon_view(request):
5 here = os.path.dirname(__file__)
6 icon = os.path.join(here, 'static', 'favicon.ico')
7 return FileResponse(icon, request=request)

The above bit of code within favicon_view computes “here”, which is a path relative to the Python
file in which the function is defined. It then creates a pyramid.response.FileResponse using
the file path as the response’s path argument and the request as the response’s request argument.
pyramid.response.FileResponse will serve the file as quickly as possible when it’s used this
way. It makes sure to set the right content length and content_type, too, based on the file extension of the
file you pass.

You might register such a view via configuration as a view callable that should be called as the result of a
traversal:

1 config.add_view('myapp.views.favicon_view', name='favicon.ico')

Or you might register it to be the view callable for a particular route:

1 config.add_route('favicon', '/favicon.ico')
2 config.add_view('myapp.views.favicon_view', route_name='favicon')

Because this is a simple view callable, it can be protected with a permission or can be configured to
respond under different circumstances using view predicate arguments.

13.4 Overriding Assets

It can often be useful to override specific assets from “outside” a given Pyramid application. For example,
you may wish to reuse an existing Pyramid application more or less unchanged. However, some specific
template file owned by the application might have inappropriate HTML, or some static asset (such as a
logo file or some CSS file) might not be appropriate. You could just fork the application entirely, but

161

13. STATIC ASSETS

it’s often more convenient to just override the assets that are inappropriate and reuse the application “as
is”. This is particularly true when you reuse some “core” application over and over again for some set of
customers (such as a CMS application, or some bug tracking application), and you want to make arbitrary
visual modifications to a particular application deployment without forking the underlying code.

To this end, Pyramid contains a feature that makes it possible to “override” one asset with
one or more other assets. In support of this feature, a Configurator API exists named
pyramid.config.Configurator.override_asset(). This API allows you to override the
following kinds of assets defined in any Python package:

• Individual template files.

• A directory containing multiple template files.

• Individual static files served up by an instance of the pyramid.static.static_view helper
class.

• A directory of static files served up by an instance of the pyramid.static.static_view
helper class.

• Any other asset (or set of assets) addressed by code that uses the setuptools pkg_resources API.

13.4.1 The override_asset API

An individual call to override_asset() can override a single asset. For example:

1 config.override_asset(
2 to_override='some.package:templates/mytemplate.pt',
3 override_with='another.package:othertemplates/anothertemplate.pt')

The string value passed to both to_override and override_with sent to the override_asset
API is called an asset specification. The colon separator in a specification separates the package name
from the asset name. The colon and the following asset name are optional. If they are not specified,
the override attempts to resolve every lookup into a package from the directory of another package. For
example:

1 config.override_asset(to_override='some.package',
2 override_with='another.package')

Individual subdirectories within a package can also be overridden:

162

13.4. OVERRIDING ASSETS

1 config.override_asset(to_override='some.package:templates/',
2 override_with='another.package:othertemplates/')

If you wish to override a directory with another directory, you must make sure to attach the slash to the
end of both the to_override specification and the override_with specification. If you fail to
attach a slash to the end of a specification that points to a directory, you will get unexpected results.

You cannot override a directory specification with a file specification, and vice versa; a startup error will
occur if you try. You cannot override an asset with itself; a startup error will occur if you try.

Only individual package assets may be overridden. Overrides will not traverse through subpack-
ages within an overridden package. This means that if you want to override assets for both
some.package:templates, and some.package.views:templates, you will need to reg-
ister two overrides.

The package name in a specification may start with a dot, meaning that the package is relative to
the package in which the configuration construction file resides (or the package argument to the
Configurator class construction). For example:

1 config.override_asset(to_override='.subpackage:templates/',
2 override_with='another.package:templates/')

Multiple calls to override_asset which name a shared to_override but a different
override_with specification can be “stacked” to form a search path. The first asset that exists in
the search path will be used; if no asset exists in the override path, the original asset is used.

Asset overrides can actually override assets other than templates and static files.
Any software which uses the pkg_resources.get_resource_filename(),
pkg_resources.get_resource_stream(), or pkg_resources.get_resource_string()
APIs will obtain an overridden file when an override is used.

163

13. STATIC ASSETS

164

CHAPTER 14

Request and Response Objects

This chapter is adapted from a portion of the WebOb documentation, originally written by Ian
Bicking.

Pyramid uses the WebOb package as a basis for its request and response object implementations. The re-
quest object that is passed to a Pyramid view is an instance of the pyramid.request.Request class,
which is a subclass of webob.Request. The response returned from a Pyramid view renderer is an in-
stance of the pyramid.response.Response class, which is a subclass of the webob.Response
class. Users can also return an instance of pyramid.response.Response directly from a view as
necessary.

WebOb is a project separate from Pyramid with a separate set of authors and a fully separate set of
documentation. Pyramid adds some functionality to the standard WebOb request, which is documented
in the pyramid.request API documentation.

WebOb provides objects for HTTP requests and responses. Specifically it does this by wrapping the
WSGI request environment and response status, header list, and app_iter (body) values.

WebOb request and response objects provide many conveniences for parsing WSGI requests and forming
WSGI responses. WebOb is a nice way to represent “raw” WSGI requests and responses. However, we
won’t cover that use case in this document, as users of Pyramid don’t typically need to use the WSGI-
related features of WebOb directly. The reference documentation shows many examples of creating re-
quests and using response objects in this manner, however.

165

http://docs.pylonsproject.org/projects/pylons-webframework/en/latest/thirdparty/webob.html#webob.Request
http://docs.pylonsproject.org/projects/pylons-webframework/en/latest/thirdparty/webob.html#webob.Response
http://docs.webob.org/en/latest/index.html
http://docs.webob.org/en/latest/index.html
http://wsgi.org
http://docs.webob.org/en/latest/reference.html

14. REQUEST AND RESPONSE OBJECTS

14.1 Request

The request object is a wrapper around the WSGI environ dictionary. This dictionary contains keys for
each header, keys that describe the request (including the path and query string), a file-like object for the
request body, and a variety of custom keys. You can always access the environ with req.environ.

Some of the most important and interesting attributes of a request object are below.

req.method The request method, e.g., GET, POST

req.GET A multidict with all the variables in the query string.

req.POST A multidict with all the variables in the request body. This only has variables if the request
was a POST and it is a form submission.

req.params A multidict with a combination of everything in req.GET and req.POST.

req.body The contents of the body of the request. This contains the entire request body as a string.
This is useful when the request is a POST that is not a form submission, or a request like a PUT.
You can also get req.body_file for a file-like object.

req.json_body The JSON-decoded contents of the body of the request. See Dealing with a JSON-
Encoded Request Body.

req.cookies A simple dictionary of all the cookies.

req.headers A dictionary of all the headers. This dictionary is case-insensitive.

req.urlvars and req.urlargs req.urlvars are the keyword parameters associated with the
request URL. req.urlargs are the positional parameters. These are set by products like Routes
and Selector.

Also for standard HTTP request headers, there are usually attributes such as req.accept_language,
req.content_length, and req.user_agent. These properties expose the parsed form of
each header, for whatever parsing makes sense. For instance, req.if_modified_since returns
a datetime object (or None if the header is was not provided).

Full API documentation for the Pyramid request object is available in pyramid.request.

166

http://www.python.org/dev/peps/pep-0333/#environ-variables
http://routes.readthedocs.org/en/latest/
https://github.com/lukearno/selector
http://docs.python.org/3/library/datetime.html#module-datetime

14.1. REQUEST

14.1.1 Special Attributes Added to the Request by Pyramid

In addition to the standard WebOb attributes, Pyramid adds special attributes to every re-
quest: context, registry, root, subpath, traversed, view_name, virtual_root,
virtual_root_path, session, matchdict, and matched_route. These attributes are docu-
mented further within the pyramid.request.Request API documentation.

14.1.2 URLs

In addition to these attributes, there are several ways to get the URL of the request and its parts. We’ll show
various values for an example URL http://localhost/app/blog?id=10, where the application
is mounted at http://localhost/app.

req.url The full request URL with query string, e.g., http://localhost/app/blog?id=10

req.host The host information in the URL, e.g., localhost

req.host_url The URL with the host, e.g., http://localhost

req.application_url The URL of the application (just the SCRIPT_NAME portion of the path,
not PATH_INFO), e.g., http://localhost/app

req.path_url The URL of the application including the PATH_INFO, e.g.,
http://localhost/app/blog

req.path The URL including PATH_INFO without the host or scheme, e.g., /app/blog

req.path_qs The URL including PATH_INFO and the query string, e.g, /app/blog?id=10

req.query_string The query string in the URL, e.g., id=10

req.relative_url(url, to_application=False) Gives a URL relative to the current
URL. If to_application is True, then resolves it relative to req.application_url.

14.1.3 Methods

There are methods of request objects documented in pyramid.request.Request but you’ll find
that you won’t use very many of them. Here are a couple that might be useful:

Request.blank(base_url) Creates a new request with blank information, based at the given
URL. This can be useful for subrequests and artificial requests. You can also use req.copy()
to copy an existing request, or for subrequests req.copy_get() which copies the request but
always turns it into a GET (which is safer to share for subrequests).

req.get_response(wsgi_application) This method calls the given WSGI application with
this request, and returns a pyramid.response.Response object. You can also use this for
subrequests or testing.

167

14. REQUEST AND RESPONSE OBJECTS

14.1.4 Text (Unicode)

Many of the properties of the request object will be text values (unicode under Python 2 or
str under Python 3) if the request encoding/charset is provided. If it is provided, the values in
req.POST, req.GET, req.params, and req.cookies will contain text. The client can indicate
the charset with something like Content-Type: application/x-www-form-urlencoded;
charset=utf8, but browsers seldom set this. You can reset the charset of an existing request
with newreq = req.decode(’utf-8’), or during instantiation with Request(environ,
charset=’utf8’).

14.1.5 Multidict

Several attributes of a WebOb request are multidict structures (such as request.GET,
request.POST, and request.params). A multidict is a dictionary where a key can have mul-
tiple values. The quintessential example is a query string like ?pref=red&pref=blue; the pref
variable has two values: red and blue.

In a multidict, when you do request.GET[’pref’], you’ll get back only "blue" (the last value
of pref). This returned result might not be expected—sometimes returning a string, and sometimes
returning a list—and may be cause of frequent exceptions. If you want all the values back, use
request.GET.getall(’pref’). If you want to be sure there is one and only one value, use
request.GET.getone(’pref’), which will raise an exception if there is zero or more than one
value for pref.

When you use operations like request.GET.items(), you’ll get back something like
[(’pref’, ’red’), (’pref’, ’blue’)]. All the key/value pairs will show up. Similarly
request.GET.keys() returns [’pref’, ’pref’]. Multidict is a view on a list of tuples; all the
keys are ordered, and all the values are ordered.

API documentation for a multidict exists as pyramid.interfaces.IMultiDict.

14.1.6 Dealing with a JSON-Encoded Request Body

New in version 1.1.

pyramid.request.Request.json_body is a property that returns a JSON-decoded representa-
tion of the request body. If the request does not have a body, or the body is not a properly JSON-encoded
value, an exception will be raised when this attribute is accessed.

This attribute is useful when you invoke a Pyramid view callable via, for example, jQuery’s $.ajax
function, which has the potential to send a request with a JSON-encoded body.

Using request.json_body is equivalent to:

168

14.1. REQUEST

from json import loads
loads(request.body, encoding=request.charset)

Here’s how to construct an AJAX request in JavaScript using jQuery that allows you to use the
request.json_body attribute when the request is sent to a Pyramid application:

jQuery.ajax({type:'POST',
url: 'http://localhost:6543/', // the pyramid server
data: JSON.stringify({'a':1}),
contentType: 'application/json; charset=utf-8'});

When such a request reaches a view in your application, the request.json_body attribute will be
available in the view callable body.

@view_config(renderer='string')
def aview(request):

print(request.json_body)
return 'OK'

For the above view, printed to the console will be:

{u'a': 1}

For bonus points, here’s a bit of client-side code that will produce a request that has a body suitable for
reading via request.json_body using Python’s urllib2 instead of a JavaScript AJAX request:

import urllib2
import json

json_payload = json.dumps({'a':1})
headers = {'Content-Type':'application/json; charset=utf-8'}
req = urllib2.Request('http://localhost:6543/', json_payload, headers)
resp = urllib2.urlopen(req)

If you are doing Cross-origin resource sharing (CORS), then the standard requires the browser to do a
pre-flight HTTP OPTIONS request. The easiest way to handle this is to add an extra view_config for
the same route, with request_method set to OPTIONS, and set the desired response header before
returning. You can find examples of response headers Access control CORS, Preflighted requests.

169

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS#Preflighted_requests

14. REQUEST AND RESPONSE OBJECTS

14.1.7 Cleaning up after a Request

Sometimes it’s required to perform some cleanup at the end of a request when a database connection is
involved.

For example, let’s say you have a mypackage Pyramid application package that uses SQLAlchemy, and
you’d like the current SQLAlchemy database session to be removed after each request. Put the following
in the mypackage.__init__ module:

1 from mypackage.models import DBSession
2

3 from pyramid.events import subscriber
4 from pyramid.events import NewRequest
5

6 def cleanup_callback(request):
7 DBSession.remove()
8

9 @subscriber(NewRequest)
10 def add_cleanup_callback(event):
11 event.request.add_finished_callback(cleanup_callback)

Registering the cleanup_callback finished callback at the start of a request (by causing the
add_cleanup_callback to receive a pyramid.events.NewRequest event at the start of
each request) will cause the DBSession to be removed whenever request processing has ended.
Note that in the example above, for the pyramid.events.subscriber decorator to work, the
pyramid.config.Configurator.scan() method must be called against your mypackage
package during application initialization.

This is only an example. In particular, it is not necessary to cause DBSession.remove to be
called in an application generated from any Pyramid scaffold, because these all use the pyramid_tm
package. The cleanup done by DBSession.remove is unnecessary when pyramid_tm middle-
ware is configured into the application.

14.1.8 More Details

More detail about the request object API is available as follows.

• pyramid.request.Request API documentation

• WebOb documentation. All methods and attributes of a webob.Request documented within the
WebOb documentation will work with request objects created by Pyramid.

170

http://docs.webob.org/en/latest/index.html

14.2. RESPONSE

14.2 Response

The Pyramid response object can be imported as pyramid.response.Response. This class is a
subclass of the webob.Response class. The subclass does not add or change any functionality, so the
WebOb Response documentation will be completely relevant for this class as well.

A response object has three fundamental parts:

response.status The response code plus reason message, like 200 OK. To set the code without a
message, use status_int, i.e., response.status_int = 200.

response.headerlist A list of all the headers, like [(’Content-Type’, ’text/html’)].
There’s a case-insensitive multidict in response.headers that also allows you to access these
same headers.

response.app_iter An iterable (such as a list or generator) that will produce the content of the
response. This is also accessible as response.body (a string), response.text (a unicode
object, informed by response.charset), and response.body_file (a file-like object;
writing to it appends to app_iter).

Everything else in the object typically derives from this underlying state. Here are some highlights:

response.content_type The content type not including the charset parameter.

Typical use: response.content_type = ’text/html’.

Default value: response.content_type = ’text/html’.

response.charset The charset parameter of the content-type, it also informs encoding in
response.text. response.content_type_params is a dictionary of all the parame-
ters.

response.charset: The charset parameter of the content-type, it also informs encoding in
response.text. response.content_type_params is a dictionary of all the parame-
ters.

response.set_cookie(key, value, max_age=None, path=’/’, ...) Set a cookie.
The keyword arguments control the various cookie parameters. The max_age argument is the
length for the cookie to live in seconds (you may also use a timedelta object). The Expires key
will also be set based on the value of max_age.

response.delete_cookie(key, path=’/’, domain=None) Delete a cookie from the
client. This sets max_age to 0 and the cookie value to ’’.

response.cache_expires(seconds=0) This makes the response cacheable for the given num-
ber of seconds, or if seconds is 0 then the response is uncacheable (this also sets the Expires
header).

response(environ, start_response) The response object is a WSGI application. As an
application, it acts according to how you create it. It can do conditional responses if you pass
conditional_response=True when instantiating (or set that attribute later). It can also do
HEAD and Range requests.

171

14. REQUEST AND RESPONSE OBJECTS

14.2.1 Headers

Like the request, most HTTP response headers are available as properties. These are parsed, so you can
do things like response.last_modified = os.path.getmtime(filename).

The details are available in the webob.response API documentation.

14.2.2 Instantiating the Response

Of course most of the time you just want to make a response. Generally any attribute of the response can
be passed in as a keyword argument to the class, e.g.:

1 from pyramid.response import Response
2 response = Response(body='hello world!', content_type='text/plain')

The status defaults to ’200 OK’.

The value of content_type defaults to webob.response.Response.default_content_type,
which is text/html. You can subclass pyramid.response.Response and set
default_content_type to override this behavior. The status defaults to ’200 OK’. The
content_type does not default to anything, though if you subclass pyramid.response.Response
and set default_content_type you can override this behavior.

14.2.3 Exception Responses

To facilitate error responses like 404 Not Found, the module pyramid.httpexceptions con-
tains classes for each kind of error response. These include boring but appropriate error bodies.
The exceptions exposed by this module, when used under Pyramid, should be imported from the
pyramid.httpexceptions module. This import location contains subclasses and replacements that
mirror those in the webob.exc module.

Each class is named pyramid.httpexceptions.HTTP*, where * is the reason for
the error. For instance, pyramid.httpexceptions.HTTPNotFound subclasses
pyramid.response.Response, so you can manipulate the instances in the same way. A
typical example is:

1 from pyramid.httpexceptions import HTTPNotFound
2 from pyramid.httpexceptions import HTTPMovedPermanently
3

4 response = HTTPNotFound('There is no such resource')
5 # or:
6 response = HTTPMovedPermanently(location=new_url)

172

http://docs.webob.org/en/latest/api/response.html#module-webob.response

14.2. RESPONSE

14.2.4 More Details

More details about the response object API are available in the pyramid.response documentation.
More details about exception responses are in the pyramid.httpexceptions API documentation.
The WebOb documentation is also useful.

173

http://docs.webob.org/en/latest/index.html

14. REQUEST AND RESPONSE OBJECTS

174

CHAPTER 15

Sessions

A session is a namespace which is valid for some period of continual activity that can be used to represent
a user’s interaction with a web application.

This chapter describes how to configure sessions, what session implementations Pyramid provides out of
the box, how to store and retrieve data from sessions, and two session-specific features: flash messages,
and cross-site request forgery attack prevention.

15.1 Using the Default Session Factory

In order to use sessions, you must set up a session factory during your Pyramid configuration.

A very basic, insecure sample session factory implementation is provided in the Pyramid core. It uses a
cookie to store session information. This implementation has the following limitations:

• The session information in the cookies used by this implementation is not encrypted, so it can be
viewed by anyone with access to the cookie storage of the user’s browser or anyone with access to
the network along which the cookie travels.

• The maximum number of bytes that are storable in a serialized representation of the session is fewer
than 4000. This is suitable only for very small data sets.

It is digitally signed, however, and thus its data cannot easily be tampered with.

You can configure this session factory in your Pyramid application by using the
pyramid.config.Configurator.set_session_factory() method.

175

15. SESSIONS

1 from pyramid.session import SignedCookieSessionFactory
2 my_session_factory = SignedCookieSessionFactory('itsaseekreet')
3

4 from pyramid.config import Configurator
5 config = Configurator()
6 config.set_session_factory(my_session_factory)

By default the SignedCookieSessionFactory() implementation is unencrypted. You
should not use it when you keep sensitive information in the session object, as the information can be
easily read by both users of your application and third parties who have access to your users’ network
traffic. And, if you use this sessioning implementation, and you inadvertently create a cross-site
scripting vulnerability in your application, because the session data is stored unencrypted in a cookie,
it will also be easier for evildoers to obtain the current user’s cross-site scripting token. In short, use
a different session factory implementation (preferably one which keeps session data on the server) for
anything but the most basic of applications where “session security doesn’t matter”, and you are sure
your application has no cross-site scripting vulnerabilities.

15.2 Using a Session Object

Once a session factory has been configured for your application, you can access session objects provided
by the session factory via the session attribute of any request object. For example:

1 from pyramid.response import Response
2

3 def myview(request):
4 session = request.session
5 if 'abc' in session:
6 session['fred'] = 'yes'
7 session['abc'] = '123'
8 if 'fred' in session:
9 return Response('Fred was in the session')

10 else:
11 return Response('Fred was not in the session')

The first time this view is invoked produces Fred was not in the session. Subsequent invo-
cations produce Fred was in the session, assuming of course that the client side maintains the
session’s identity across multiple requests.

176

15.3. USING ALTERNATE SESSION FACTORIES

You can use a session much like a Python dictionary. It supports all dictionary methods, along with some
extra attributes and methods.

Extra attributes:

created An integer timestamp indicating the time that this session was created.

new A boolean. If new is True, this session is new. Otherwise, it has been constituted from data that was
already serialized.

Extra methods:

changed() Call this when you mutate a mutable value in the session namespace. See the gotchas
below for details on when and why you should call this.

invalidate() Call this when you want to invalidate the session (dump all data, and perhaps set a
clearing cookie).

The formal definition of the methods and attributes supported by the session object are in the
pyramid.interfaces.ISession documentation.

Some gotchas:

• Keys and values of session data must be pickleable. This means, typically, that they are instances
of basic types of objects, such as strings, lists, dictionaries, tuples, integers, etc. If you place an
object in a session data key or value that is not pickleable, an error will be raised when the session
is serialized.

• If you place a mutable value (for example, a list or a dictionary) in a session object, and you
subsequently mutate that value, you must call the changed() method of the session object. In
this case, the session has no way to know that it was modified. However, when you modify a session
object directly, such as setting a value (i.e., __setitem__), or removing a key (e.g., del or pop),
the session will automatically know that it needs to re-serialize its data, thus calling changed()
is unnecessary. There is no harm in calling changed() in either case, so when in doubt, call it
after you’ve changed sessioning data.

15.3 Using Alternate Session Factories

The following session factories exist at the time of this writing.

Session Factory Back-
end

Description

pyra-
mid_redis_sessions

Redis Server-side session library for Pyramid, using Redis for storage.

pyramid_beaker Beaker Session factory for Pyramid backed by the Beaker sessioning
system.

177

https://pypi.python.org/pypi/pyramid_redis_sessions
https://pypi.python.org/pypi/pyramid_redis_sessions
http://redis.io/
https://pypi.python.org/pypi/pyramid_beaker
http://beaker.readthedocs.org/en/latest/

15. SESSIONS

15.4 Creating Your Own Session Factory

If none of the default or otherwise available sessioning implementations for Pyramid suit you, you may
create your own session object by implementing a session factory. Your session factory should return a
session. The interfaces for both types are available in pyramid.interfaces.ISessionFactory
and pyramid.interfaces.ISession. You might use the cookie implementation in the
pyramid.session module as inspiration.

15.5 Flash Messages

“Flash messages” are simply a queue of message strings stored in the session. To use flash messaging,
you must enable a session factory as described in Using the Default Session Factory or Using Alternate
Session Factories.

Flash messaging has two main uses: to display a status message only once to the user after performing an
internal redirect, and to allow generic code to log messages for single-time display without having direct
access to an HTML template. The user interface consists of a number of methods of the session object.

15.5.1 Using the session.flash Method

To add a message to a flash message queue, use a session object’s flash() method:

request.session.flash('mymessage')

The flash() method appends a message to a flash queue, creating the queue if necessary.

flash() accepts three arguments:

flash(message, queue=’‘, allow_duplicate=True)

The message argument is required. It represents a message you wish to later display to a user. It is
usually a string but the message you provide is not modified in any way.

The queue argument allows you to choose a queue to which to append the message you provide. This
can be used to push different kinds of messages into flash storage for later display in different places on
a page. You can pass any name for your queue, but it must be a string. Each queue is independent, and
can be popped by pop_flash() or examined via peek_flash() separately. queue defaults to the
empty string. The empty string represents the default flash message queue.

178

15.5. FLASH MESSAGES

request.session.flash(msg, 'myappsqueue')

The allow_duplicate argument defaults to True. If this is False, and you attempt to add a
message value which is already present in the queue, it will not be added.

15.5.2 Using the session.pop_flash Method

Once one or more messages have been added to a flash queue by the session.flash() API, the
session.pop_flash() API can be used to pop an entire queue and return it for use.

To pop a particular queue of messages from the flash object, use the session object’s pop_flash()
method. This returns a list of the messages that were added to the flash queue, and empties the queue.

pop_flash(queue=’‘)

>>> request.session.flash('info message')
>>> request.session.pop_flash()
['info message']

Calling session.pop_flash() again like above without a corresponding call to
session.flash() will return an empty list, because the queue has already been popped.

>>> request.session.flash('info message')
>>> request.session.pop_flash()
['info message']
>>> request.session.pop_flash()
[]

15.5.3 Using the session.peek_flash Method

Once one or more messages have been added to a flash queue by the session.flash()
API, the session.peek_flash() API can be used to “peek” at that queue. Unlike
session.pop_flash(), the queue is not popped from flash storage.

peek_flash(queue=’‘)

179

15. SESSIONS

>>> request.session.flash('info message')
>>> request.session.peek_flash()
['info message']
>>> request.session.peek_flash()
['info message']
>>> request.session.pop_flash()
['info message']
>>> request.session.peek_flash()
[]

15.6 Preventing Cross-Site Request Forgery Attacks

Cross-site request forgery attacks are a phenomenon whereby a user who is logged in to your website
might inadvertantly load a URL because it is linked from, or embedded in, an attacker’s website. If the
URL is one that may modify or delete data, the consequences can be dire.

You can avoid most of these attacks by issuing a unique token to the browser and then requiring that it be
present in all potentially unsafe requests. Pyramid sessions provide facilities to create and check CSRF
tokens.

To use CSRF tokens, you must first enable a session factory as described in Using the Default Session
Factory or Using Alternate Session Factories.

15.6.1 Using the session.get_csrf_token Method

To get the current CSRF token from the session, use the session.get_csrf_token() method.

token = request.session.get_csrf_token()

The session.get_csrf_token() method accepts no arguments. It returns a CSRF token string.
If session.get_csrf_token() or session.new_csrf_token() was invoked previously for
this session, then the existing token will be returned. If no CSRF token previously existed for this session,
then a new token will be set into the session and returned. The newly created token will be opaque and
randomized.

You can use the returned token as the value of a hidden field in a form that posts to a method that requires
elevated privileges, or supply it as a request header in AJAX requests.

For example, include the CSRF token as a hidden field:

180

http://en.wikipedia.org/wiki/Cross-site_request_forgery

15.6. PREVENTING CROSS-SITE REQUEST FORGERY ATTACKS

<form method="post" action="/myview">
<input type="hidden" name="csrf_token" value="${request.session.get_csrf_token()}">
<input type="submit" value="Delete Everything">

</form>

Or include it as a header in a jQuery AJAX request:

var csrfToken = ${request.session.get_csrf_token()};
$.ajax({

type: "POST",
url: "/myview",
headers: { 'X-CSRF-Token': csrfToken }

}).done(function() {
alert("Deleted");

});

The handler for the URL that receives the request should then require that the correct CSRF token is
supplied.

15.6.2 Checking CSRF Tokens Manually

In request handling code, you can check the presence and validity of a CSRF token with
pyramid.session.check_csrf_token(). If the token is valid, it will return True, otherwise it
will raise HTTPBadRequest. Optionally, you can specify raises=False to have the check return
False instead of raising an exception.

By default, it checks for a GET or POST parameter named csrf_token or a header named
X-CSRF-Token.

from pyramid.session import check_csrf_token

def myview(request):
Require CSRF Token
check_csrf_token(request)

...

181

15. SESSIONS

15.6.3 Checking CSRF Tokens with a View Predicate

A convenient way to require a valid CSRF token for a particular view is to include check_csrf=True
as a view predicate. See pyramid.config.Configurator.add_view().

@view_config(request_method='POST', check_csrf=True, ...)
def myview(request):

...

A mismatch of a CSRF token is treated like any other predicate miss,
and the predicate system, when it doesn’t find a view, raises HTTPNotFound in-
stead of HTTPBadRequest, so check_csrf=True behavior is different from calling
pyramid.session.check_csrf_token().

15.6.4 Using the session.new_csrf_token Method

To explicitly create a new CSRF token, use the session.new_csrf_token() method. This differs
only from session.get_csrf_token() inasmuch as it clears any existing CSRF token, creates a
new CSRF token, sets the token into the session, and returns the token.

token = request.session.new_csrf_token()

182

CHAPTER 16

Using Events

An event is an object broadcast by the Pyramid framework at interesting points during the lifetime of an
application. You don’t need to use events in order to create most Pyramid applications, but they can be
useful when you want to perform slightly advanced operations. For example, subscribing to an event can
allow you to run some code as the result of every new request.

Events in Pyramid are always broadcast by the framework. However, they only become useful when you
register a subscriber. A subscriber is a function that accepts a single argument named event:

1 def mysubscriber(event):
2 print(event)

The above is a subscriber that simply prints the event to the console when it’s called.

The mere existence of a subscriber function, however, is not sufficient to arrange for
it to be called. To arrange for the subscriber to be called, you’ll need to use the
pyramid.config.Configurator.add_subscriber() method or you’ll need to use the
pyramid.events.subscriber() decorator to decorate a function found via a scan.

16.1 Configuring an Event Listener Imperatively

You can imperatively configure a subscriber function to be called for some event type via the
add_subscriber() method:

183

16. USING EVENTS

1 from pyramid.events import NewRequest
2

3 from subscribers import mysubscriber
4

5 # "config" below is assumed to be an instance of a
6 # pyramid.config.Configurator object
7

8 config.add_subscriber(mysubscriber, NewRequest)

The first argument to add_subscriber() is the subscriber function (or a dotted Python name which
refers to a subscriber callable); the second argument is the event type.

See also:

See also Configurator.

16.2 Configuring an Event Listener Using a Decorator

You can configure a subscriber function to be called for some event type via the
pyramid.events.subscriber() function.

1 from pyramid.events import NewRequest
2 from pyramid.events import subscriber
3

4 @subscriber(NewRequest)
5 def mysubscriber(event):
6 event.request.foo = 1

When the subscriber() decorator is used, a scan must be performed against the package containing
the decorated function for the decorator to have any effect.

Either of the above registration examples implies that every time the Pyramid framework emits an event
object that supplies an pyramid.events.NewRequest interface, the mysubscriber function
will be called with an event object.

As you can see, a subscription is made in terms of a class (such as
pyramid.events.NewResponse). The event object sent to a subscriber will always be an
object that possesses an interface. For pyramid.events.NewResponse, that interface is
pyramid.interfaces.INewResponse. The interface documentation provides information about
available attributes and methods of the event objects.

The return value of a subscriber function is ignored. Subscribers to the same event type are not guaranteed
to be called in any particular order relative to each other.

All the concrete Pyramid event types are documented in the pyramid.events API documentation.

184

16.3. AN EXAMPLE

16.3 An Example

If you create event listener functions in a subscribers.py file in your application like so:

1 def handle_new_request(event):
2 print('request', event.request)
3

4 def handle_new_response(event):
5 print('response', event.response)

You may configure these functions to be called at the appropriate times by adding the following code to
your application’s configuration startup:

1 # config is an instance of pyramid.config.Configurator
2

3 config.add_subscriber('myproject.subscribers.handle_new_request',
4 'pyramid.events.NewRequest')
5 config.add_subscriber('myproject.subscribers.handle_new_response',
6 'pyramid.events.NewResponse')

Either mechanism causes the functions in subscribers.py to be registered as event subscribers. Un-
der this configuration, when the application is run, each time a new request or response is detected, a
message will be printed to the console.

Each of our subscriber functions accepts an event object and prints an attribute of the event object. This
begs the question: how can we know which attributes a particular event has?

We know that pyramid.events.NewRequest event objects have a request attribute, which is
a request object, because the interface defined at pyramid.interfaces.INewRequest says it
must. Likewise, we know that pyramid.interfaces.NewResponse events have a response
attribute, which is a response object constructed by your application, because the interface defined at
pyramid.interfaces.INewResponse says it must (pyramid.events.NewResponse ob-
jects also have a request).

16.4 Creating Your Own Events

In addition to using the events that the Pyramid framework creates, you can create your own events for
use in your application. This can be useful to decouple parts of your application.

185

16. USING EVENTS

For example, suppose your application has to do many things when a new document is created. Rather
than putting all this logic in the view that creates the document, you can create the document in your view
and then fire a custom event. Subscribers to the custom event can take other actions, such as indexing the
document, sending email, or sending a message to a remote system.

An event is simply an object. There are no required attributes or method for your custom events. In
general, your events should keep track of the information that subscribers will need. Here are some
example custom event classes:

1 class DocCreated(object):
2 def __init__(self, doc, request):
3 self.doc = doc
4 self.request = request
5

6 class UserEvent(object):
7 def __init__(self, user):
8 self.user = user
9

10 class UserLoggedIn(UserEvent):
11 pass

Some Pyramid applications choose to define custom events classes in an events module.

You can subscribe to custom events in the same way that you subscribe to Pyramid events—either impera-
tively or with a decorator. You can also use custom events with subscriber predicates. Here’s an example
of subscribing to a custom event with a decorator:

1 from pyramid.events import subscriber
2 from .events import DocCreated
3 from .index import index_doc
4

5 @subscriber(DocCreated)
6 def index_doc(event):
7 # index the document using our application's index_doc function
8 index_doc(event.doc, event.request)

The above example assumes that the application defines a DocCreated event class and an index_doc
function.

To fire your custom events use the pyramid.registry.Registry.notify() method, which is
most often accessed as request.registry.notify. For example:

186

16.4. CREATING YOUR OWN EVENTS

1 from .events import DocCreated
2

3 def new_doc_view(request):
4 doc = MyDoc()
5 event = DocCreated(doc, request)
6 request.registry.notify(event)
7 return {'document': doc}

This example view will notify all subscribers to the custom DocCreated event.

Note that when you fire an event, all subscribers are run synchronously so it’s generally not a good idea to
create event handlers that may take a long time to run. Although event handlers could be used as a central
place to spawn tasks on your own message queues.

187

16. USING EVENTS

188

CHAPTER 17

Environment Variables and .ini File Settings

Pyramid behavior can be configured through a combination of operating system environment variables
and .ini configuration file application section settings. The meaning of the environment variables and
the configuration file settings overlap.

Where a configuration file setting exists with the same meaning as an environment variable, and
both are present at application startup time, the environment variable setting takes precedence.

The term “configuration file setting name” refers to a key in the .ini configuration for your application.
The configuration file setting names documented in this chapter are reserved for Pyramid use. You should
not use them to indicate application-specific configuration settings.

17.1 Reloading Templates

When this value is true, templates are automatically reloaded whenever they are modified without restart-
ing the application, so you can see changes to templates take effect immediately during development.
This flag is meaningful to Chameleon and Mako templates, as well as most third-party template rendering
extensions.

Environment Variable Name Config File Setting Name
PYRAMID_RELOAD_TEMPLATES

pyramid.reload_templates or
reload_templates

189

17. ENVIRONMENT VARIABLES AND .INI FILE SETTINGS

17.2 Reloading Assets

Don’t cache any asset file data when this value is true.

See also:

See also Overriding Assets.

Environment Variable Name Config File Setting Name
PYRAMID_RELOAD_ASSETS pyramid.reload_assets or reload_assets

For backwards compatibility purposes, aliases can be used for configuring asset reloading:
PYRAMID_RELOAD_RESOURCES (envvar) and pyramid.reload_resources (config file).

17.3 Debugging Authorization

Print view authorization failure and success information to stderr when this value is true.

See also:

See also Debugging View Authorization Failures.

Environment Variable Name Config File Setting Name
PYRAMID_DEBUG_AUTHORIZATIONpyramid.debug_authorization or

debug_authorization

17.4 Debugging Not Found Errors

Print view-related NotFound debug messages to stderr when this value is true.

See also:

See also NotFound Errors.

Environment Variable Name Config File Setting Name
PYRAMID_DEBUG_NOTFOUND pyramid.debug_notfound or debug_notfound

190

17.5. DEBUGGING ROUTE MATCHING

17.5 Debugging Route Matching

Print debugging messages related to url dispatch route matching when this value is true.

See also:

See also Debugging Route Matching.

Environment Variable Name Config File Setting Name
PYRAMID_DEBUG_ROUTEMATCH pyramid.debug_routematch or

debug_routematch

17.6 Preventing HTTP Caching

Prevent the http_cache view configuration argument from having any effect globally in this pro-
cess when this value is true. No HTTP caching-related response headers will be set by the Pyramid
http_cache view configuration feature when this is true.

See also:

See also Influencing HTTP Caching.

Environment Variable Name Config File Setting Name
PYRAMID_PREVENT_HTTP_CACHEpyramid.prevent_http_cache or

prevent_http_cache

17.7 Debugging All

Turns on all debug* settings.

Environment Variable Name Config File Setting Name
PYRAMID_DEBUG_ALL pyramid.debug_all or debug_all

191

17. ENVIRONMENT VARIABLES AND .INI FILE SETTINGS

17.8 Reloading All

Turns on all reload* settings.

Environment Variable Name Config File Setting Name
PYRAMID_RELOAD_ALL pyramid.reload_all or reload_all

17.9 Default Locale Name

The value supplied here is used as the default locale name when a locale negotiator is not registered.

See also:

See also Localization-Related Deployment Settings.

Environment Variable Name Config File Setting Name
PYRAMID_DEFAULT_LOCALE_NAMEpyramid.default_locale_name or

default_locale_name

17.10 Including Packages

pyramid.includes instructs your application to include other packages. Using the setting is equiva-
lent to using the pyramid.config.Configurator.include() method.

Config File Setting Name
pyramid.includes

The value assigned to pyramid.includes should be a sequence. The sequence can take several
different forms.

1. It can be a string.

If it is a string, the package names can be separated by spaces:

package1 package2 package3

The package names can also be separated by carriage returns:

192

17.10. INCLUDING PACKAGES

package1
package2
package3

2. It can be a Python list, where the values are strings:

['package1', 'package2', 'package3']

Each value in the sequence should be a dotted Python name.

17.10.1 pyramid.includes vs. pyramid.config.Configurator.include()

Two methods exist for including packages: pyramid.includes and
pyramid.config.Configurator.include(). This section explains their equivalence.

Using PasteDeploy

Using the following pyramid.includes setting in the PasteDeploy .ini file in your application:

[app:main]
pyramid.includes = pyramid_debugtoolbar

pyramid_tm

Is equivalent to using the following statements in your configuration code:

1 from pyramid.config import Configurator
2

3 def main(global_config, **settings):
4 config = Configurator(settings=settings)
5 # ...
6 config.include('pyramid_debugtoolbar')
7 config.include('pyramid_tm')
8 # ...

It is fine to use both or either form.

Plain Python

Using the following pyramid.includes setting in your plain-Python Pyramid application:

193

17. ENVIRONMENT VARIABLES AND .INI FILE SETTINGS

1 from pyramid.config import Configurator
2

3 if __name__ == '__main__':
4 settings = {'pyramid.includes':'pyramid_debugtoolbar pyramid_tm'}
5 config = Configurator(settings=settings)

Is equivalent to using the following statements in your configuration code:

1 from pyramid.config import Configurator
2

3 if __name__ == '__main__':
4 settings = {}
5 config = Configurator(settings=settings)
6 config.include('pyramid_debugtoolbar')
7 config.include('pyramid_tm')

It is fine to use both or either form.

17.11 Explicit Tween Configuration

This value allows you to perform explicit tween ordering in your configuration. Tweens are bits of code
used by add-on authors to extend Pyramid. They form a chain, and require ordering.

Ideally you won’t need to use the pyramid.tweens setting at all. Tweens are generally ordered
and included “implicitly” when an add-on package which registers a tween is “included”. Packages
are included when you name a pyramid.includes setting in your configuration or when you call
pyramid.config.Configurator.include().

Authors of included add-ons provide “implicit” tween configuration ordering hints to Pyramid when their
packages are included. However, the implicit tween ordering is only best-effort. Pyramid will attempt
to provide an implicit order of tweens as best it can using hints provided by add-on authors, but because
it’s only best-effort, if very precise tween ordering is required, the only surefire way to get it is to use an
explicit tween order. You may be required to inspect your tween ordering (see Displaying “Tweens”) and
add a pyramid.tweens configuration value at the behest of an add-on author.

Config File Setting Name
pyramid.tweens

The value assigned to pyramid.tweens should be a sequence. The sequence can take several different
forms.

194

17.11. EXPLICIT TWEEN CONFIGURATION

1. It can be a string.

If it is a string, the tween names can be separated by spaces:

pkg.tween_factory1 pkg.tween_factory2 pkg.tween_factory3

The tween names can also be separated by carriage returns:

pkg.tween_factory1
pkg.tween_factory2
pkg.tween_factory3

2. It can be a Python list, where the values are strings:

['pkg.tween_factory1', 'pkg.tween_factory2', 'pkg.tween_factory3']

Each value in the sequence should be a dotted Python name.

17.11.1 PasteDeploy Configuration vs. Plain-Python Configuration

Using the following pyramid.tweens setting in the PasteDeploy .ini file in your application:

[app:main]
pyramid.tweens = pyramid_debugtoolbar.toolbar.tween_factory

pyramid.tweens.excview_tween_factory
pyramid_tm.tm_tween_factory

Is equivalent to using the following statements in your configuration code:

1 from pyramid.config import Configurator
2

3 def main(global_config, **settings):
4 settings['pyramid.tweens'] = [
5 'pyramid_debugtoolbar.toolbar.tween_factory',
6 'pyramid.tweebs.excview_tween_factory',
7 'pyramid_tm.tm_tween_factory',
8]
9 config = Configurator(settings=settings)

It is fine to use both or either form.

195

17. ENVIRONMENT VARIABLES AND .INI FILE SETTINGS

17.12 Examples

Let’s presume your configuration file is named MyProject.ini, and there is a section representing
your application named [app:main] within the file that represents your Pyramid application. The
configuration file settings documented in the above “Config File Setting Name” column would go in the
[app:main] section. Here’s an example of such a section:

1 [app:main]
2 use = egg:MyProject
3 pyramid.reload_templates = true
4 pyramid.debug_authorization = true

You can also use environment variables to accomplish the same purpose for settings documented as such.
For example, you might start your Pyramid application using the following command line:

$ PYRAMID_DEBUG_AUTHORIZATION=1 PYRAMID_RELOAD_TEMPLATES=1 \
$VENV/bin/pserve MyProject.ini

If you started your application this way, your Pyramid application would behave in the same manner as if
you had placed the respective settings in the [app:main] section of your application’s .ini file.

If you want to turn all debug settings (every setting that starts with pyramid.debug_) on in one
fell swoop, you can use PYRAMID_DEBUG_ALL=1 as an environment variable setting or you may use
pyramid.debug_all=true in the config file. Note that this does not affect settings that do not start
with pyramid.debug_* such as pyramid.reload_templates.

If you want to turn all pyramid.reload settings (every setting that starts with pyramid.reload_)
on in one fell swoop, you can use PYRAMID_RELOAD_ALL=1 as an environment variable setting or you
may use pyramid.reload_all=true in the config file. Note that this does not affect settings that
do not start with pyramid.reload_* such as pyramid.debug_notfound.

Specifying configuration settings via environment variables is generally most useful during
development, where you may wish to augment or override the more permanent settings in the config-
uration file. This is useful because many of the reload and debug settings may have performance or
security (i.e., disclosure) implications that make them undesirable in a production environment.

196

17.13. UNDERSTANDING THE DISTINCTION BETWEEN RELOAD_TEMPLATES AND
RELOAD_ASSETS

17.13 Understanding the Distinction Between
reload_templates and reload_assets

The difference between pyramid.reload_assets and pyramid.reload_templates is a bit
subtle. Templates are themselves also treated by Pyramid as asset files (along with other static files), so
the distinction can be confusing. It’s helpful to read Overriding Assets for some context about assets in
general.

When pyramid.reload_templates is true, Pyramid takes advantage of the underlying tem-
plating system’s ability to check for file modifications to an individual template file. When
pyramid.reload_templates is true, but pyramid.reload_assets is not true, the template
filename returned by the pkg_resources package (used under the hood by asset resolution) is cached
by Pyramid on the first request. Subsequent requests for the same template file will return a cached tem-
plate filename. The underlying templating system checks for modifications to this particular file for every
request. Setting pyramid.reload_templates to True doesn’t affect performance dramatically
(although it should still not be used in production because it has some effect).

However, when pyramid.reload_assets is true, Pyramid will not cache the template filename,
meaning you can see the effect of changing the content of an overridden asset directory for tem-
plates without restarting the server after every change. Subsequent requests for the same template
file may return different filenames based on the current state of overridden asset directories. Setting
pyramid.reload_assets to True affects performance dramatically, slowing things down by an
order of magnitude for each template rendering. However, it’s convenient to enable when moving files
around in overridden asset directories. pyramid.reload_assets makes the system very slow when
templates are in use. Never set pyramid.reload_assets to True on a production system.

17.14 Adding a Custom Setting

From time to time, you may need to add a custom setting to your application. Here’s how:

• If you’re using an .ini file, change the .ini file, adding the setting to the [app:foo] section
representing your Pyramid application. For example:

[app:main]
.. other settings
debug_frobnosticator = True

197

17. ENVIRONMENT VARIABLES AND .INI FILE SETTINGS

• In the main() function that represents the place that your Pyramid WSGI application is created,
anticipate that you’ll be getting this key/value pair as a setting and do any type conversion necessary.

If you’ve done any type conversion of your custom value, reset the converted values into the
settings dictionary before you pass the dictionary as settings to the Configurator. For
example:

def main(global_config, **settings):
...
from pyramid.settings import asbool
debug_frobnosticator = asbool(settings.get(

'debug_frobnosticator', 'false'))
settings['debug_frobnosticator'] = debug_frobnosticator
config = Configurator(settings=settings)

It’s especially important that you mutate the settings dictionary with the converted
version of the variable before passing it to the Configurator: the configurator makes a copy of
settings, it doesn’t use the one you pass directly.

• When creating an includeme function that will be later added to your application’s configuration
you may access the settings dictionary through the instance of the Configurator that is passed
into the function as its only argument. For Example:

def includeme(config):
settings = config.registry.settings
debug_frobnosticator = settings['debug_frobnosticator']

• In the runtime code from where you need to access the new settings value, find the value in the
registry.settings dictionary and use it. In view code (or any other code that has access to
the request), the easiest way to do this is via request.registry.settings. For example:

settings = request.registry.settings
debug_frobnosticator = settings['debug_frobnosticator']

If you wish to use the value in code that does not have access to the request and you wish to use the
value, you’ll need to use the pyramid.threadlocal.get_current_registry() API to
obtain the current registry, then ask for its settings attribute. For example:

registry = pyramid.threadlocal.get_current_registry()
settings = registry.settings
debug_frobnosticator = settings['debug_frobnosticator']

198

CHAPTER 18

Logging

Pyramid allows you to make use of the Python standard library logging module. This chapter describes
how to configure logging and how to send log messages to loggers that you’ve configured.

This chapter assumes you’ve used a scaffold to create a project which contains
development.ini and production.ini files which help configure logging. All of the scaf-
folds which ship with Pyramid do this. If you’re not using a scaffold, or if you’ve used a third-party
scaffold which does not create these files, the configuration information in this chapter may not be
applicable.

18.1 Logging Configuration

A Pyramid project created from a scaffold is configured to allow you to send messages to Python
standard library logging package loggers from within your application. In particular, the
PasteDeploy development.ini and production.ini files created when you use a scaffold in-
clude a basic configuration for the Python logging package.

PasteDeploy .ini files use the Python standard library ConfigParser format. This is the same
format used as the Python logging module’s Configuration file format. The application-related and
logging-related sections in the configuration file can coexist peacefully, and the logging-related sections
in the file are used from when you run pserve.

The pserve command calls the pyramid.paster.setup_logging() function, a thin wrap-
per around the logging.config.fileConfig() using the specified .ini file, if it contains a

199

http://docs.python.org/3/library/logging.html#module-logging
http://docs.python.org/3/library/logging.html#module-logging
http://docs.python.org/3/library/logging.html#module-logging
http://docs.python.org/3/library/logging.html#module-logging
http://docs.python.org/library/configparser.html#module-ConfigParser
http://docs.python.org/3/library/logging.config.html#logging-config-fileformat
http://docs.python.org/3/library/logging.config.html#logging.config.fileConfig

18. LOGGING

[loggers] section (all of the scaffold-generated .ini files do). setup_logging reads the logging
configuration from the ini file upon which pserve was invoked.

Default logging configuration is provided in both the default development.ini and the
production.ini file. The logging configuration in the development.ini file is as follows:

1 # Begin logging configuration
2

3 [loggers]
4 keys = root, {{package_logger}}
5

6 [handlers]
7 keys = console
8

9 [formatters]
10 keys = generic
11

12 [logger_root]
13 level = INFO
14 handlers = console
15

16 [logger_{{package_logger}}]
17 level = DEBUG
18 handlers =
19 qualname = {{package}}
20

21 [handler_console]
22 class = StreamHandler
23 args = (sys.stderr,)
24 level = NOTSET
25 formatter = generic
26

27 [formatter_generic]
28 format = %(asctime)s %(levelname)-5.5s [%(name)s][%(threadName)s] %(message)s
29

30 # End logging configuration

The production.ini file uses the WARN level in its logger configuration, but it is otherwise identical.

The name {{package_logger}} above will be replaced with the name of your project’s package,
which is derived from the name you provide to your project. For instance, if you do:

1 pcreate -s starter MyApp

The logging configuration will literally be:

200

18.1. LOGGING CONFIGURATION

1 # Begin logging configuration
2

3 [loggers]
4 keys = root, myapp
5

6 [handlers]
7 keys = console
8

9 [formatters]
10 keys = generic
11

12 [logger_root]
13 level = INFO
14 handlers = console
15

16 [logger_myapp]
17 level = DEBUG
18 handlers =
19 qualname = myapp
20

21 [handler_console]
22 class = StreamHandler
23 args = (sys.stderr,)
24 level = NOTSET
25 formatter = generic
26

27 [formatter_generic]
28 format = %(asctime)s %(levelname)-5.5s [%(name)s][%(threadName)s] %(message)s
29

30 # End logging configuration

In this logging configuration:

• a logger named root is created that logs messages at a level above or equal to the INFO level to
stderr, with the following format:

2007-08-17 15:04:08,704 INFO [packagename] Loading resource, id: 86

• a logger named myapp is configured that logs messages sent at a level above or equal to DEBUG to
stderr in the same format as the root logger.

The root logger will be used by all applications in the Pyramid process that ask for a logger (via
logging.getLogger) that has a name which begins with anything except your project’s package
name (e.g., myapp). The logger with the same name as your package name is reserved for your own

201

18. LOGGING

usage in your Pyramid application. Its existence means that you can log to a known logging location from
any Pyramid application generated via a scaffold.

Pyramid and many other libraries (such as Beaker, SQLAlchemy, Paste) log a number of messages to the
root logger for debugging purposes. Switching the root logger level to DEBUG reveals them:

[logger_root]
#level = INFO
level = DEBUG
handlers = console

Some scaffolds configure additional loggers for additional subsystems they use (such as SQLALchemy).
Take a look at the production.ini and development.ini files rendered when you create a
project from a scaffold.

18.2 Sending Logging Messages

Python’s special __name__ variable refers to the current module’s fully qualified name. From any mod-
ule in a package named myapp, the __name__ builtin variable will always be something like myapp, or
myapp.subpackage or myapp.package.subpackage if your project is named myapp. Sending
a message to this logger will send it to the myapp logger.

To log messages to the package-specific logger configured in your .ini file, simply create a logger object
using the __name__ builtin and call methods on it.

1 import logging
2 log = logging.getLogger(__name__)
3

4 def myview(request):
5 content_type = 'text/plain'
6 content = 'Hello World!'
7 log.debug('Returning: %s (content-type: %s)', content, content_type)
8 request.response.content_type = content_type
9 return request.response

This will result in the following printed to the console, on stderr:

16:20:20,440 DEBUG [myapp.views] Returning: Hello World!
(content-type: text/plain)

202

18.3. FILTERING LOG MESSAGES

18.3 Filtering log messages

Often there’s too much log output to sift through, such as when switching the root logger’s level to DEBUG.

For example, you’re diagnosing database connection issues in your application and only want to see
SQLAlchemy’s DEBUG messages in relation to database connection pooling. You can leave the root
logger’s level at the less verbose INFO level and set that particular SQLAlchemy logger to DEBUG on its
own, apart from the root logger:

[logger_sqlalchemy.pool]
level = DEBUG
handlers =
qualname = sqlalchemy.pool

then add it to the list of loggers:

[loggers]
keys = root, myapp, sqlalchemy.pool

No handlers need to be configured for this logger as by default non-root loggers will propagate their log
records up to their parent logger’s handlers. The root logger is the top level parent of all loggers.

This technique is used in the default development.ini. The root logger’s level is set to INFO,
whereas the application’s log level is set to DEBUG:

Begin logging configuration

[loggers]
keys = root, myapp

[logger_myapp]
level = DEBUG
handlers =
qualname = myapp

All of the child loggers of the myapp logger will inherit the DEBUG level unless they’re explicitly set
differently. Meaning the myapp.views, myapp.models, and all your app’s modules’ loggers by
default have an effective level of DEBUG too.

For more advanced filtering, the logging module provides a logging.Filter object; however it can-
not be used directly from the configuration file.

203

http://docs.python.org/3/library/logging.html#logging.Filter

18. LOGGING

18.4 Advanced Configuration

To capture log output to a separate file, use logging.FileHandler (or
logging.handlers.RotatingFileHandler):

[handler_filelog]
class = FileHandler
args = ('%(here)s/myapp.log','a')
level = INFO
formatter = generic

Before it’s recognized, it needs to be added to the list of handlers:

[handlers]
keys = console, myapp, filelog

and finally utilized by a logger.

[logger_root]
level = INFO
handlers = console, filelog

These final three lines of configuration direct all of the root logger’s output to the myapp.log as well as
the console.

18.5 Logging Exceptions

To log or email exceptions generated by your Pyramid application, use the pyramid_exclog package.
Details about its configuration are in its documentation.

18.6 Request Logging with Paste’s TransLogger

The WSGI design is modular. Waitress logs error conditions, debugging output, etc., but not web traffic.
For web traffic logging, Paste provides the TransLogger middleware. TransLogger produces logs in the
Apache Combined Log Format. But TransLogger does not write to files; the Python logging system must

204

http://docs.python.org/3/library/logging.handlers.html#logging.FileHandler
http://docs.python.org/3/library/logging.handlers.html#logging.handlers.RotatingFileHandler
http://docs.pylonsproject.org/projects/pyramid_exclog/dev/
http://pythonpaste.org/modules/translogger.html
http://httpd.apache.org/docs/2.2/logs.html#combined

18.6. REQUEST LOGGING WITH PASTE’S TRANSLOGGER

be configured to do this. The Python logging.FileHandler logging handler can be used alongside
TransLogger to create an access.log file similar to Apache’s.

Like any standard middleware with a Paste entry point, TransLogger can be configured to wrap
your application using .ini file syntax. First rename your Pyramid .ini file’s [app:main]
section to [app:mypyramidapp], then add a [filter:translogger] section, then use a
[pipeline:main] section file to form a WSGI pipeline with both the translogger and your appli-
cation in it. For instance, change from this:

[app:main]
use = egg:MyProject

To this:

[app:mypyramidapp]
use = egg:MyProject

[filter:translogger]
use = egg:Paste#translogger
setup_console_handler = False

[pipeline:main]
pipeline = translogger

mypyramidapp

Using PasteDeploy this way to form and serve a pipeline is equivalent to wrapping your app in a TransLog-
ger instance via the bottom of the main function of your project’s __init__ file:

...
app = config.make_wsgi_app()
from paste.translogger import TransLogger
app = TransLogger(app, setup_console_handler=False)
return app

TransLogger will automatically setup a logging handler to the console when called with no
arguments, so it “just works” in environments that don’t configure logging. Since our logging handlers
are configured, we disable the automation via setup_console_handler = False.

With the filter in place, TransLogger’s logger (named the wsgi logger) will propagate its log messages
to the parent logger (the root logger), sending its output to the console when we request a page:

205

http://docs.python.org/3/library/logging.handlers.html#logging.FileHandler

18. LOGGING

00:50:53,694 INFO [myapp.views] Returning: Hello World!
(content-type: text/plain)

00:50:53,695 INFO [wsgi] 192.168.1.111 - - [11/Aug/2011:20:09:33 -0700] "GET /hello
HTTP/1.1" 404 - "-"
"Mozilla/5.0 (Macintosh; U; Intel Mac OS X; en-US; rv:1.8.1.6) Gecko/20070725
Firefox/2.0.0.6"

To direct TransLogger to an access.log FileHandler, we need the following to add a FileHandler
(named accesslog) to the list of handlers, and ensure that the wsgi logger is configured and uses this
handler accordingly:

Begin logging configuration

[loggers]
keys = root, myapp, wsgi

[handlers]
keys = console, accesslog

[logger_wsgi]
level = INFO
handlers = accesslog
qualname = wsgi
propagate = 0

[handler_accesslog]
class = FileHandler
args = ('%(here)s/access.log','a')
level = INFO
formatter = generic

As mentioned above, non-root loggers by default propagate their log records to the root logger’s handlers
(currently the console handler). Setting propagate to 0 (False) here disables this; so the wsgi logger
directs its records only to the accesslog handler.

Finally, there’s no need to use the generic formatter with TransLogger as TransLogger itself provides
all the information we need. We’ll use a formatter that passes through the log messages as is. Add a new
formatter called accesslog by including the following in your configuration file:

[formatters]
keys = generic, accesslog

[formatter_accesslog]
format = %(message)s

206

18.6. REQUEST LOGGING WITH PASTE’S TRANSLOGGER

Finally alter the existing configuration to wire this new accesslog formatter into the FileHandler:

[handler_accesslog]
class = FileHandler
args = ('%(here)s/access.log','a')
level = INFO
formatter = accesslog

207

18. LOGGING

208

CHAPTER 19

PasteDeploy Configuration Files

Packages generated via a scaffold make use of a system created by Ian Bicking named PasteDeploy.
PasteDeploy defines a way to declare WSGI application configuration in an .ini file.

Pyramid uses this configuration file format as input to its WSGI server runner pserve, as well as other
commands such as pviews, pshell, proutes, and ptweens.

PasteDeploy is not a particularly integral part of Pyramid. It’s possible to create a Pyramid application
which does not use PasteDeploy at all. We show a Pyramid application that doesn’t use PasteDeploy in
Creating Your First Pyramid Application. However, all Pyramid scaffolds render PasteDeploy configura-
tion files, to provide new developers with a standardized way of setting deployment values, and to provide
new users with a standardized way of starting, stopping, and debugging an application.

This chapter is not a replacement for documentation about PasteDeploy; it only contextualizes the use of
PasteDeploy within Pyramid. For detailed documentation, see http://pythonpaste.org/deploy/.

19.1 PasteDeploy

PasteDeploy is the system that Pyramid uses to allow deployment settings to be specified using an .ini
configuration file format. It also allows the pserve command to work. Its configuration format provides
a convenient place to define application deployment settings and WSGI server settings, and its server
runner allows you to stop and start a Pyramid application easily.

209

http://pythonpaste.org/deploy/

19. PASTEDEPLOY CONFIGURATION FILES

19.1.1 Entry Points and PasteDeploy .ini Files

In the Creating a Pyramid Project chapter, we breezed over the meaning of a configuration line in the
deployment.ini file. This was the use = egg:MyProject line in the [app:main] section.
We breezed over it because it’s pretty confusing and “too much information” for an introduction to the
system. We’ll try to give it a bit of attention here. Let’s see the config file again:

1 ###
2 # app configuration
3 # http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/environment.html
4 ###
5

6 [app:main]
7 use = egg:MyProject
8

9 pyramid.reload_templates = true
10 pyramid.debug_authorization = false
11 pyramid.debug_notfound = false
12 pyramid.debug_routematch = false
13 pyramid.default_locale_name = en
14 pyramid.includes =
15 pyramid_debugtoolbar
16

17 # By default, the toolbar only appears for clients from IP addresses
18 # '127.0.0.1' and '::1'.
19 # debugtoolbar.hosts = 127.0.0.1 ::1
20

21 ###
22 # wsgi server configuration
23 ###
24

25 [server:main]
26 use = egg:waitress#main
27 host = 0.0.0.0
28 port = 6543
29

30 ###
31 # logging configuration
32 # http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/logging.html
33 ###
34

35 [loggers]
36 keys = root, myproject
37

38 [handlers]
39 keys = console

210

19.1. PASTEDEPLOY

40

41 [formatters]
42 keys = generic
43

44 [logger_root]
45 level = INFO
46 handlers = console
47

48 [logger_myproject]
49 level = DEBUG
50 handlers =
51 qualname = myproject
52

53 [handler_console]
54 class = StreamHandler
55 args = (sys.stderr,)
56 level = NOTSET
57 formatter = generic
58

59 [formatter_generic]
60 format = %(asctime)s %(levelname)-5.5s [%(name)s][%(threadName)s] %(message)s

The line in [app:main] above that says use = egg:MyProject is actually shorthand for a longer
spelling: use = egg:MyProject#main. The #main part is omitted for brevity, as #main is a
default defined by PasteDeploy. egg:MyProject#main is a string which has meaning to PasteDeploy.
It points at a setuptools entry point named main defined in the MyProject project.

Take a look at the generated setup.py file for this project.

1 import os
2

3 from setuptools import setup, find_packages
4

5 here = os.path.abspath(os.path.dirname(__file__))
6 with open(os.path.join(here, 'README.txt')) as f:
7 README = f.read()
8 with open(os.path.join(here, 'CHANGES.txt')) as f:
9 CHANGES = f.read()

10

11 requires = [
12 'pyramid',
13 'pyramid_chameleon',
14 'pyramid_debugtoolbar',
15 'waitress',
16]

211

19. PASTEDEPLOY CONFIGURATION FILES

17

18 setup(name='MyProject',
19 version='0.0',
20 description='MyProject',
21 long_description=README + '\n\n' + CHANGES,
22 classifiers=[
23 "Programming Language :: Python",
24 "Framework :: Pyramid",
25 "Topic :: Internet :: WWW/HTTP",
26 "Topic :: Internet :: WWW/HTTP :: WSGI :: Application",
27],
28 author='',
29 author_email='',
30 url='',
31 keywords='web pyramid pylons',
32 packages=find_packages(),
33 include_package_data=True,
34 zip_safe=False,
35 install_requires=requires,
36 tests_require=requires,
37 test_suite="myproject",
38 entry_points="""\
39 [paste.app_factory]
40 main = myproject:main
41 """,
42)

Note that entry_points is assigned a string which looks a lot like an .ini file. This string represen-
tation of an .ini file has a section named [paste.app_factory]. Within this section, there is a
key named main (the entry point name) which has a value myproject:main. The key main is what
our egg:MyProject#main value of the use section in our config file is pointing at, although it is
actually shortened to egg:MyProject there. The value represents a dotted Python name path, which
refers to a callable in our myproject package’s __init__.py module.

The egg: prefix in egg:MyProject indicates that this is an entry point URI specifier, where the
“scheme” is “egg”. An “egg” is created when you run setup.py install or setup.py develop
within your project.

In English, this entry point can thus be referred to as a “PasteDeploy application factory in the
MyProject project which has the entry point named main where the entry point refers to a main
function in the mypackage module”. Indeed, if you open up the __init__.py module generated
within any scaffold-generated package, you’ll see a main function. This is the function called by Past-
eDeploy when the pserve command is invoked against our application. It accepts a global configuration
object and returns an instance of our application.

212

19.1. PASTEDEPLOY

19.1.2 [DEFAULT] Section of a PasteDeploy .ini File

You can add a [DEFAULT] section to your PasteDeploy .ini file. Such a section should consist of
global parameters that are shared by all the applications, servers, and middleware defined within the con-
figuration file. The values in a [DEFAULT] section will be passed to your application’s main function
as global_config (see the reference to the main function in __init__.py).

213

19. PASTEDEPLOY CONFIGURATION FILES

214

CHAPTER 20

Command-Line Pyramid

Your Pyramid application can be controlled and inspected using a variety of command-line utilities. These
utilities are documented in this chapter.

20.1 Displaying Matching Views for a Given URL

See also:

See also the output of pviews –help.

For a big application with several views, it can be hard to keep the view configuration details in your head,
even if you defined all the views yourself. You can use the pviews command in a terminal window
to print a summary of matching routes and views for a given URL in your application. The pviews
command accepts two arguments. The first argument to pviews is the path to your application’s .ini
file and section name inside the .ini file which points to your application. This should be of the format
config_file#section_name. The second argument is the URL to test for matching views. The
section_name may be omitted; if it is, it’s considered to be main.

Here is an example for a simple view configuration using traversal:

215

20. COMMAND-LINE PYRAMID

1 $ $VENV/bin/pviews development.ini#tutorial /FrontPage
2

3 URL = /FrontPage
4

5 context: <tutorial.models.Page object at 0xa12536c>
6 view name:
7

8 View:
9 -----

10 tutorial.views.view_page
11 required permission = view

The output always has the requested URL at the top and below that all the views that matched with their
view configuration details. In this example only one view matches, so there is just a single View section.
For each matching view, the full code path to the associated view callable is shown, along with any
permissions and predicates that are part of that view configuration.

A more complex configuration might generate something like this:

1 $ $VENV/bin/pviews development.ini#shootout /about
2

3 URL = /about
4

5 context: <shootout.models.RootFactory object at 0xa56668c>
6 view name: about
7

8 Route:
9 ------

10 route name: about
11 route pattern: /about
12 route path: /about
13 subpath:
14 route predicates (request method = GET)
15

16 View:
17 -----
18 shootout.views.about_view
19 required permission = view
20 view predicates (request_param testing, header X/header)
21

22 Route:
23 ------
24 route name: about_post
25 route pattern: /about
26 route path: /about

216

20.2. THE INTERACTIVE SHELL

27 subpath:
28 route predicates (request method = POST)
29

30 View:
31 -----
32 shootout.views.about_view_post
33 required permission = view
34 view predicates (request_param test)
35

36 View:
37 -----
38 shootout.views.about_view_post2
39 required permission = view
40 view predicates (request_param test2)

In this case, we are dealing with a URL dispatch application. This specific URL has two matching routes.
The matching route information is displayed first, followed by any views that are associated with that
route. As you can see from the second matching route output, a route can be associated with more than
one view.

For a URL that doesn’t match any views, pviews will simply print out a Not found message.

20.2 The Interactive Shell

See also:

See also the output of pshell –help.

Once you’ve installed your program for development using setup.py develop, you can use an inter-
active Python shell to execute expressions in a Python environment exactly like the one that will be used
when your application runs “for real”. To do so, use the pshell command line utility.

The argument to pshell follows the format config_file#section_name where config_file
is the path to your application’s .ini file and section_name is the app section name inside the
.ini file which points to your application. For example, your application .ini file might have an
[app:main] section that looks like so:

217

20. COMMAND-LINE PYRAMID

1 [app:main]
2 use = egg:MyProject
3 pyramid.reload_templates = true
4 pyramid.debug_authorization = false
5 pyramid.debug_notfound = false
6 pyramid.debug_templates = true
7 pyramid.default_locale_name = en

If so, you can use the following command to invoke a debug shell using the name main as a section
name:

$ $VENV/bin/pshell starter/development.ini#main
Python 2.6.5 (r265:79063, Apr 29 2010, 00:31:32)
[GCC 4.4.3] on linux2
Type "help" for more information.

Environment:
app The WSGI application.
registry Active Pyramid registry.
request Active request object.
root Root of the default resource tree.
root_factory Default root factory used to create `root`.

>>> root
<myproject.resources.MyResource object at 0x445270>
>>> registry
<Registry myproject>
>>> registry.settings['pyramid.debug_notfound']
False
>>> from myproject.views import my_view
>>> from pyramid.request import Request
>>> r = Request.blank('/')
>>> my_view(r)
{'project': 'myproject'}

The WSGI application that is loaded will be available in the shell as the app global. Also, if the applica-
tion that is loaded is the Pyramid app with no surrounding middleware, the root object returned by the
default root factory, registry, and request will be available.

You can also simply rely on the main default section name by omitting any hash after the filename:

$ $VENV/bin/pshell starter/development.ini

Press Ctrl-D to exit the interactive shell (or Ctrl-Z on Windows).

218

20.2. THE INTERACTIVE SHELL

20.2.1 Extending the Shell

It is convenient when using the interactive shell often to have some variables significant to your application
already loaded as globals when you start the pshell. To facilitate this, pshell will look for a special
[pshell] section in your INI file and expose the subsequent key/value pairs to the shell. Each key
is a variable name that will be global within the pshell session; each value is a dotted Python name. If
specified, the special key setup should be a dotted Python name pointing to a callable that accepts the
dictionary of globals that will be loaded into the shell. This allows for some custom initializing code to be
executed each time the pshell is run. The setup callable can also be specified from the commandline
using the --setup option which will override the key in the INI file.

For example, you want to expose your model to the shell along with the database session so that you can
mutate the model on an actual database. Here, we’ll assume your model is stored in the myapp.models
package.

1 [pshell]
2 setup = myapp.lib.pshell.setup
3 m = myapp.models
4 session = myapp.models.DBSession
5 t = transaction

By defining the setup callable, we will create the module myapp.lib.pshell containing a callable
named setup that will receive the global environment before it is exposed to the shell. Here we mutate
the environment’s request as well as add a new value containing a WebTest version of the application to
which we can easily submit requests.

1 # myapp/lib/pshell.py
2 from webtest import TestApp
3

4 def setup(env):
5 env['request'].host = 'www.example.com'
6 env['request'].scheme = 'https'
7 env['testapp'] = TestApp(env['app'])

When this INI file is loaded, the extra variables m, session and t will be available for use immediately.
Since a setup callable was also specified, it is executed and a new variable testapp is exposed, and
the request is configured to generate urls from the host http://www.example.com. For example:

$ $VENV/bin/pshell starter/development.ini
Python 2.6.5 (r265:79063, Apr 29 2010, 00:31:32)
[GCC 4.4.3] on linux2
Type "help" for more information.

219

20. COMMAND-LINE PYRAMID

Environment:
app The WSGI application.
registry Active Pyramid registry.
request Active request object.
root Root of the default resource tree.
root_factory Default root factory used to create `root`.
testapp <webtest.TestApp object at ...>

Custom Variables:
m myapp.models
session myapp.models.DBSession
t transaction

>>> testapp.get('/')
<200 OK text/html body='<!DOCTYPE...l>\n'/3337>
>>> request.route_url('home')
'https://www.example.com/'

20.2.2 IPython or bpython

If you have IPython and/or bpython in the interpreter you use to invoke the pshell command, pshell
will autodiscover and use the first one found, in this order: IPython, bpython, standard Python inter-
preter. However you could specifically invoke your choice with the -p choice or --python-shell
choice option.

$ $VENV/bin/pshell -p ipython | bpython | python development.ini#MyProject

20.3 Displaying All Application Routes

See also:

See also the output of proutes –help.

You can use the proutes command in a terminal window to print a summary of routes related to your
application. Much like the pshell command (see The Interactive Shell), the proutes command ac-
cepts one argument with the format config_file#section_name. The config_file is the path
to your application’s .ini file, and section_name is the app section name inside the .ini file
which points to your application. By default, the section_name is main and can be omitted.

For example:

220

http://en.wikipedia.org/wiki/IPython
http://bpython-interpreter.org/

20.3. DISPLAYING ALL APPLICATION ROUTES

1 $ $VENV/bin/proutes development.ini
2 Name Pattern View Method
3 ---- ------- ---- ------
4 debugtoolbar /_debug_toolbar/*subpath <wsgiapp> *
5 __static/ /static/*subpath dummy_starter:static/ *
6 __static2/ /static2/*subpath /var/www/static/ *
7 __pdt_images/ /pdt_images/*subpath pyramid_debugtoolbar:static/img/ *
8 a / <unknown> *
9 no_view_attached / <unknown> *

10 route_and_view_attached / app1.standard_views.route_and_view_attached *
11 method_conflicts /conflicts app1.standard_conflicts <route mismatch>
12 multiview /multiview app1.standard_views.multiview GET,PATCH
13 not_post /not_post app1.standard_views.multview !POST,*

proutes generates a table with four columns: Name, Pattern, View, and Method. The items listed in the
Name column are route names, the items listed in the Pattern column are route patterns, the items listed
in the View column are representations of the view callable that will be invoked when a request matches
the associated route pattern, and the items listed in the Method column are the request methods that are
associated with the route name. The View column may show <unknown> if no associated view callable
could be found. The Method column, for the route name, may show either <route mismatch> if the
view callable does not accept any of the route’s request methods, or * if the view callable will accept any
of the route’s request methods. If no routes are configured within your application, nothing will be printed
to the console when proutes is executed.

It is convenient when using the proutes command often to configure which columns and the order you
would like to view them. To facilitate this, proutes will look for a special [proutes] section in your
.ini file and use those as defaults.

For example you may remove the request method and place the view first:

1 [proutes]
2 format = view
3 name
4 pattern

You can also separate the formats with commas or spaces:

1 [proutes]
2 format = view name pattern
3

4 [proutes]
5 format = view, name, pattern

221

20. COMMAND-LINE PYRAMID

If you want to temporarily configure the columns and order, there is the argument --format, which
is a comma separated list of columns you want to include. The current available formats are name,
pattern, view, and method.

20.4 Displaying “Tweens”

See also:

See also the output of ptweens –help.

A tween is a bit of code that sits between the main Pyramid application request handler and the WSGI
application which calls it. A user can get a representation of both the implicit tween ordering (the ordering
specified by calls to pyramid.config.Configurator.add_tween()) and the explicit tween
ordering (specified by the pyramid.tweens configuration setting) using the ptweens command.
Tween factories will show up represented by their standard Python dotted name in the ptweens output.

For example, here’s the ptweens command run against a system configured without any explicit tweens:

1 $ $VENV/bin/ptweens development.ini
2 "pyramid.tweens" config value NOT set (implicitly ordered tweens used)
3

4 Implicit Tween Chain
5

6 Position Name Alias
7 -------- ---- -----
8 - - INGRESS
9 0 pyramid_debugtoolbar.toolbar.toolbar_tween_factory pdbt

10 1 pyramid.tweens.excview_tween_factory excview
11 - - MAIN

Here’s the ptweens command run against a system configured with explicit tweens defined in its
development.ini file:

1 $ ptweens development.ini
2 "pyramid.tweens" config value set (explicitly ordered tweens used)
3

4 Explicit Tween Chain (used)
5

6 Position Name
7 -------- ----
8 - INGRESS

222

20.5. INVOKING A REQUEST

9 0 starter.tween_factory2
10 1 starter.tween_factory1
11 2 pyramid.tweens.excview_tween_factory
12 - MAIN
13

14 Implicit Tween Chain (not used)
15

16 Position Name
17 -------- ----
18 - INGRESS
19 0 pyramid_debugtoolbar.toolbar.toolbar_tween_factory
20 1 pyramid.tweens.excview_tween_factory
21 - MAIN

Here’s the application configuration section of the development.ini used by the above ptweens
command which reports that the explicit tween chain is used:

1 [app:main]
2 use = egg:starter
3 reload_templates = true
4 debug_authorization = false
5 debug_notfound = false
6 debug_routematch = false
7 debug_templates = true
8 default_locale_name = en
9 pyramid.include = pyramid_debugtoolbar

10 pyramid.tweens = starter.tween_factory2
11 starter.tween_factory1
12 pyramid.tweens.excview_tween_factory

See Registering Tweens for more information about tweens.

20.5 Invoking a Request

See also:

See also the output of prequest –help.

You can use the prequest command-line utility to send a request to your application and see the re-
sponse body without starting a server.

There are two required arguments to prequest:

223

20. COMMAND-LINE PYRAMID

• The config file/section: follows the format config_file#section_name, where
config_file is the path to your application’s .ini file and section_name is the app
section name inside the .ini file. The section_name is optional; it defaults to main. For
example: development.ini.

• The path: this should be the non-URL-quoted path element of the URL to the resource you’d like
to be rendered on the server. For example, /.

For example:

$ $VENV/bin/prequest development.ini /

This will print the body of the response to the console on which it was invoked.

Several options are supported by prequest. These should precede any config file name or URL.

prequest has a -d (i.e., --display-headers) option which prints the status and headers returned
by the server before the output:

$ $VENV/bin/prequest -d development.ini /

This will print the status, headers, and the body of the response to the console.

You can add request header values by using the --header option:

$ $VENV/bin/prequest --header=Host:example.com development.ini /

Headers are added to the WSGI environment by converting them to their CGI/WSGI equivalents (e.g.,
Host=example.com will insert the HTTP_HOST header variable as the value example.com).
Multiple --header options can be supplied. The special header value content-type sets the
CONTENT_TYPE in the WSGI environment.

By default, prequest sends a GET request. You can change this by using the -m (aka --method)
option. GET, HEAD, POST, and DELETE are currently supported. When you use POST, the standard
input of the prequest process is used as the POST body:

$ $VENV/bin/prequest -mPOST development.ini / < somefile

224

20.6. USING CUSTOM ARGUMENTS TO PYTHON WHEN RUNNING P* SCRIPTS

20.6 Using Custom Arguments to Python when Running p*
Scripts

New in version 1.5.

Each of Pyramid’s console scripts (pserve, pviews, etc.) can be run directly using python -m,
allowing custom arguments to be sent to the Python interpreter at runtime. For example:

python -3 -m pyramid.scripts.pserve development.ini

20.7 Showing All Installed Distributions and Their Versions

New in version 1.5.

See also:

See also the output of pdistreport –help.

You can use the pdistreport command to show the Pyramid version in use, the Python version in
use, and all installed versions of Python distributions in your Python environment:

$ $VENV/bin/pdistreport
Pyramid version: 1.5dev
Platform Linux-3.2.0-51-generic-x86_64-with-debian-wheezy-sid
Packages:

authapp 0.0
/home/chrism/projects/foo/src/authapp

beautifulsoup4 4.1.3
/home/chrism/projects/foo/lib/python2.7/site-packages/beautifulsoup4-4.1.3-py2.7.egg

... more output ...

pdistreport takes no options. Its output is useful to paste into a pastebin when you are having
problems and need someone with more familiarity with Python packaging and distribution than you have
to look at your environment.

225

20. COMMAND-LINE PYRAMID

20.8 Writing a Script

All web applications are, at their hearts, systems which accept a request and return a response. When
a request is accepted by a Pyramid application, the system receives state from the request which is later
relied on by your application code. For example, one view callable may assume it’s working against a
request that has a request.matchdict of a particular composition, while another assumes a different
composition of the matchdict.

In the meantime, it’s convenient to be able to write a Python script that can work “in a Pyramid environ-
ment”, for instance to update database tables used by your Pyramid application. But a “real” Pyramid
environment doesn’t have a completely static state independent of a request; your application (and Pyra-
mid itself) is almost always reliant on being able to obtain information from a request. When you run
a Python script that simply imports code from your application and tries to run it, there just is no re-
quest data, because there isn’t any real web request. Therefore some parts of your application and some
Pyramid APIs will not work.

For this reason, Pyramid makes it possible to run a script in an environment much like the environment
produced when a particular request reaches your Pyramid application. This is achieved by using the
pyramid.paster.bootstrap() command in the body of your script.

New in version 1.1: pyramid.paster.bootstrap()

In the simplest case, pyramid.paster.bootstrap() can be used with a single argument, which
accepts the PasteDeploy .ini file representing your Pyramid application’s configuration as a single
argument:

from pyramid.paster import bootstrap
env = bootstrap('/path/to/my/development.ini')
print(env['request'].route_url('home'))

pyramid.paster.bootstrap() returns a dictionary containing framework-related information.
This dictionary will always contain a request object as its request key.

The following keys are available in the env dictionary returned by
pyramid.paster.bootstrap():

request

A pyramid.request.Request object implying the current request state for your script.

app

226

20.8. WRITING A SCRIPT

The WSGI application object generated by bootstrapping.

root

The resource root of your Pyramid application. This is an object generated by the root factory
configured in your application.

registry

The application registry of your Pyramid application.

closer

A parameterless callable that can be used to pop an internal Pyramid thread-
local stack (used by pyramid.threadlocal.get_current_registry() and
pyramid.threadlocal.get_current_request()) when your scripting job is fin-
ished.

Let’s assume that the /path/to/my/development.ini file used in the example above looks like
so:

[pipeline:main]
pipeline = translogger

another

[filter:translogger]
filter_app_factory = egg:Paste#translogger
setup_console_handler = False
logger_name = wsgi

[app:another]
use = egg:MyProject

The configuration loaded by the above bootstrap example will use the configura-
tion implied by the [pipeline:main] section of your configuration file by default.
Specifying /path/to/my/development.ini is logically equivalent to specifying
/path/to/my/development.ini#main. In this case, we’ll be using a configuration that
includes an app object which is wrapped in the Paste “translogger” middleware (which logs requests to
the console).

You can also specify a particular section of the PasteDeploy .ini file to load instead of main:

227

20. COMMAND-LINE PYRAMID

from pyramid.paster import bootstrap
env = bootstrap('/path/to/my/development.ini#another')
print(env['request'].route_url('home'))

The above example specifies the another app, pipeline, or composite section of your
PasteDeploy configuration file. The app object present in the env dictionary returned by
pyramid.paster.bootstrap() will be a Pyramid router.

20.8.1 Changing the Request

By default, Pyramid will generate a request object in the env dictionary for the URL
http://localhost:80/. This means that any URLs generated by Pyramid during the execution
of your script will be anchored here. This is generally not what you want.

So how do we make Pyramid generate the correct URLs?

Assuming that you have a route configured in your application like so:

config.add_route('verify', '/verify/{code}')

You need to inform the Pyramid environment that the WSGI application is handling requests from a
certain base. For example, we want to simulate mounting our application at https://example.com/prefix,
to ensure that the generated URLs are correct for our deployment. This can be done by either mutat-
ing the resulting request object, or more simply by constructing the desired request and passing it into
bootstrap():

from pyramid.paster import bootstrap
from pyramid.request import Request

request = Request.blank('/', base_url='https://example.com/prefix')
env = bootstrap('/path/to/my/development.ini#another', request=request)
print(env['request'].application_url)
will print 'https://example.com/prefix'

Now you can readily use Pyramid’s APIs for generating URLs:

env['request'].route_url('verify', code='1337')
will return 'https://example.com/prefix/verify/1337'

228

20.9. MAKING YOUR SCRIPT INTO A CONSOLE SCRIPT

20.8.2 Cleanup

When your scripting logic finishes, it’s good manners to call the closer callback:

from pyramid.paster import bootstrap
env = bootstrap('/path/to/my/development.ini')

.. do stuff ...

env['closer']()

20.8.3 Setting Up Logging

By default, pyramid.paster.bootstrap() does not configure logging parameters present in the
configuration file. If you’d like to configure logging based on [logger] and related sections in the
configuration file, use the following command:

import pyramid.paster
pyramid.paster.setup_logging('/path/to/my/development.ini')

See Logging for more information on logging within Pyramid.

20.9 Making Your Script into a Console Script

A “console script” is setuptools terminology for a script that gets installed into the bin directory of a
Python virtualenv (or “base” Python environment) when a distribution which houses that script is in-
stalled. Because it’s installed into the bin directory of a virtualenv when the distribution is installed, it’s
a convenient way to package and distribute functionality that you can call from the command-line. It’s
often more convenient to create a console script than it is to create a .py script and instruct people to call
it with the “right” Python interpreter. A console script generates a file that lives in bin, and when it’s
invoked it will always use the “right” Python environment, which means it will always be invoked in an
environment where all the libraries it needs (such as Pyramid) are available.

In general, you can make your script into a console script by doing the following:

• Use an existing distribution (such as one you’ve already created via pcreate) or create a new
distribution that possesses at least one package or module. It should, within any module within the
distribution, house a callable (usually a function) that takes no arguments and which runs any of the
code you wish to run.

229

20. COMMAND-LINE PYRAMID

• Add a [console_scripts] section to the entry_points argument of the distribution which
creates a mapping between a script name and a dotted name representing the callable you added to
your distribution.

• Run setup.py develop, setup.py install, or easy_install to get your distribution
reinstalled. When you reinstall your distribution, a file representing the script that you named in
the last step will be in the bin directory of the virtualenv in which you installed the distribution. It
will be executable. Invoking it from a terminal will execute your callable.

As an example, let’s create some code that can be invoked by a console script that prints the deployment
settings of a Pyramid application. To do so, we’ll pretend you have a distribution with a package in it
named myproject. Within this package, we’ll pretend you’ve added a scripts.py module which
contains the following code:

1 # myproject.scripts module
2

3 import optparse
4 import sys
5 import textwrap
6

7 from pyramid.paster import bootstrap
8

9 def settings_show():
10 description = """\
11 Print the deployment settings for a Pyramid application. Example:
12 'show_settings deployment.ini'
13 """
14 usage = "usage: %prog config_uri"
15 parser = optparse.OptionParser(
16 usage=usage,
17 description=textwrap.dedent(description)
18)
19 parser.add_option(
20 '-o', '--omit',
21 dest='omit',
22 metavar='PREFIX',
23 type='string',
24 action='append',
25 help=("Omit settings which start with PREFIX (you can use this "
26 "option multiple times)")
27)
28

29 options, args = parser.parse_args(sys.argv[1:])
30 if not len(args) >= 1:
31 print('You must provide at least one argument')
32 return 2

230

20.9. MAKING YOUR SCRIPT INTO A CONSOLE SCRIPT

33 config_uri = args[0]
34 omit = options.omit
35 if omit is None:
36 omit = []
37 env = bootstrap(config_uri)
38 settings, closer = env['registry'].settings, env['closer']
39 try:
40 for k, v in settings.items():
41 if any([k.startswith(x) for x in omit]):
42 continue
43 print('%-40s %-20s' % (k, v))
44 finally:
45 closer()

This script uses the Python optparse module to allow us to make sense out of extra arguments passed
to the script. It uses the pyramid.paster.bootstrap() function to get information about the
application defined by a config file, and prints the deployment settings defined in that config file.

After adding this script to the package, you’ll need to tell your distribution’s setup.py about its exis-
tence. Within your distribution’s top-level directory, your setup.py file will look something like this:

1 import os
2

3 from setuptools import setup, find_packages
4

5 here = os.path.abspath(os.path.dirname(__file__))
6 with open(os.path.join(here, 'README.txt')) as f:
7 README = f.read()
8 with open(os.path.join(here, 'CHANGES.txt')) as f:
9 CHANGES = f.read()

10

11 requires = ['pyramid', 'pyramid_debugtoolbar']
12

13 setup(name='MyProject',
14 version='0.0',
15 description='My project',
16 long_description=README + '\n\n' + CHANGES,
17 classifiers=[
18 "Programming Language :: Python",
19 "Framework :: Pylons",
20 "Topic :: Internet :: WWW/HTTP",
21 "Topic :: Internet :: WWW/HTTP :: WSGI :: Application",
22],
23 author='',
24 author_email='',

231

20. COMMAND-LINE PYRAMID

25 url='',
26 keywords='web pyramid pylons',
27 packages=find_packages(),
28 include_package_data=True,
29 zip_safe=False,
30 install_requires=requires,
31 tests_require=requires,
32 test_suite="myproject",
33 entry_points = """\
34 [paste.app_factory]
35 main = myproject:main
36 """,
37)

We’re going to change the setup.py file to add a [console_scripts] section within
the entry_points string. Within this section, you should specify a scriptname =
dotted.path.to:yourfunction line. For example:

[console_scripts]
show_settings = myproject.scripts:settings_show

The show_settings name will be the name of the script that is installed into bin. The colon (:)
between myproject.scripts and settings_show above indicates that myproject.scripts
is a Python module, and settings_show is the function in that module which contains the code you’d
like to run as the result of someone invoking the show_settings script from their command line.

The result will be something like:

1 import os
2

3 from setuptools import setup, find_packages
4

5 here = os.path.abspath(os.path.dirname(__file__))
6 with open(os.path.join(here, 'README.txt')) as f:
7 README = f.read()
8 with open(os.path.join(here, 'CHANGES.txt')) as f:
9 CHANGES = f.read()

10

11 requires = ['pyramid', 'pyramid_debugtoolbar']
12

13 setup(name='MyProject',
14 version='0.0',
15 description='My project',
16 long_description=README + '\n\n' + CHANGES,

232

20.9. MAKING YOUR SCRIPT INTO A CONSOLE SCRIPT

17 classifiers=[
18 "Programming Language :: Python",
19 "Framework :: Pylons",
20 "Topic :: Internet :: WWW/HTTP",
21 "Topic :: Internet :: WWW/HTTP :: WSGI :: Application",
22],
23 author='',
24 author_email='',
25 url='',
26 keywords='web pyramid pylons',
27 packages=find_packages(),
28 include_package_data=True,
29 zip_safe=False,
30 install_requires=requires,
31 tests_require=requires,
32 test_suite="myproject",
33 entry_points = """\
34 [paste.app_factory]
35 main = myproject:main
36 [console_scripts]
37 show_settings = myproject.scripts:settings_show
38 """,
39)

Once you’ve done this, invoking $$VENV/bin/python setup.py develop will install a file
named show_settings into the $somevirtualenv/bin directory with a small bit of Python code
that points to your entry point. It will be executable. Running it without any arguments will print an error
and exit. Running it with a single argument that is the path of a config file will print the settings. Running
it with an --omit=foo argument will omit the settings that have keys that start with foo. Running it
with two “omit” options (e.g., --omit=foo --omit=bar) will omit all settings that have keys that
start with either foo or bar:

$ $VENV/bin/show_settings development.ini --omit=pyramid --omit=debugtoolbar
debug_routematch False
debug_templates True
reload_templates True
mako.directories []
debug_notfound False
default_locale_name en
reload_resources False
debug_authorization False
reload_assets False
prevent_http_cache False

233

20. COMMAND-LINE PYRAMID

Pyramid’s pserve, pcreate, pshell, prequest, ptweens, and other p* scripts are implemented
as console scripts. When you invoke one of those, you are using a console script.

234

CHAPTER 21

Internationalization and Localization

Internationalization (i18n) is the act of creating software with a user interface that can potentially be
displayed in more than one language or cultural context. Localization (l10n) is the process of displaying
the user interface of an internationalized application in a particular language or cultural context.

Pyramid offers internationalization and localization subsystems that can be used to translate the text of
buttons, error messages, and other software- and template-defined values into the native language of a
user of your application.

21.1 Creating a Translation String

While you write your software, you can insert specialized markup into your Python code that makes it
possible for the system to translate text values into the languages used by your application’s users. This
markup creates a translation string. A translation string is an object that behaves mostly like a normal
Unicode object, except that it also carries around extra information related to its job as part of the Pyramid
translation machinery.

21.1.1 Using the TranslationString Class

The most primitive way to create a translation string is to use the
pyramid.i18n.TranslationString callable:

235

21. INTERNATIONALIZATION AND LOCALIZATION

1 from pyramid.i18n import TranslationString
2 ts = TranslationString('Add')

This creates a Unicode-like object that is a TranslationString.

For people more familiar with Zope i18n, a TranslationString is a lot like a
zope.i18nmessageid.Message object. It is not a subclass, however. For people more fa-
miliar with Pylons or Django i18n, using a TranslationString is a lot like using “lazy” versions of
related gettext APIs.

The first argument to TranslationString is the msgid; it is required. It represents the key into
the translation mappings provided by a particular localization. The msgid argument must be a Unicode
object or an ASCII string. The msgid may optionally contain replacement markers. For instance:

1 from pyramid.i18n import TranslationString
2 ts = TranslationString('Add ${number}')

Within the string above, ${number} is a replacement marker. It will be replaced by whatever is in
the mapping for a translation string. The mapping may be supplied at the same time as the replacement
marker itself:

1 from pyramid.i18n import TranslationString
2 ts = TranslationString('Add ${number}', mapping={'number':1})

Any number of replacement markers can be present in the msgid value, any number of times. Only
markers which can be replaced by the values in the mapping will be replaced at translation time. The
others will not be interpolated and will be output literally.

A translation string should also usually carry a domain. The domain represents a translation category to
disambiguate it from other translations of the same msgid, in case they conflict.

1 from pyramid.i18n import TranslationString
2 ts = TranslationString('Add ${number}', mapping={'number':1},
3 domain='form')

The above translation string named a domain of form. A translator function will often use the domain
to locate the right translator file on the filesystem which contains translations for a given domain. In this
case, if it were trying to translate our msgid to German, it might try to find a translation from a gettext file
within a translation directory like this one:

236

21.1. CREATING A TRANSLATION STRING

locale/de/LC_MESSAGES/form.mo

In other words, it would want to take translations from the form.mo translation file in the German
language.

Finally, the TranslationString constructor accepts a default argument. If a default argument is
supplied, it replaces usages of the msgid as the default value for the translation string. When default
is None, the msgid value passed to a TranslationString is used as an implicit message identifier. Message
identifiers are matched with translations in translation files, so it is often useful to create translation strings
with “opaque” message identifiers unrelated to their default text:

1 from pyramid.i18n import TranslationString
2 ts = TranslationString('add-number', default='Add ${number}',
3 domain='form', mapping={'number':1})

When default text is used, Default text objects may contain replacement values.

21.1.2 Using the TranslationStringFactory Class

Another way to generate a translation string is to use the TranslationStringFactory object. This
object is a translation string factory. Basically a translation string factory presets the domain value of
any translation string generated by using it. For example:

1 from pyramid.i18n import TranslationStringFactory
2 _ = TranslationStringFactory('pyramid')
3 ts = _('add-number', default='Add ${number}', mapping={'number':1})

We assigned the translation string factory to the name _. This is a convention which will be
supported by translation file generation tools.

After assigning _ to the result of a TranslationStringFactory(), the subsequent result of calling
_ will be a TranslationString instance. Even though a domain value was not passed to _ (as
would have been necessary if the TranslationString constructor were used instead of a translation
string factory), the domain attribute of the resulting translation string will be pyramid. As a result, the
previous code example is completely equivalent (except for spelling) to:

237

21. INTERNATIONALIZATION AND LOCALIZATION

1 from pyramid.i18n import TranslationString as _
2 ts = _('add-number', default='Add ${number}', mapping={'number':1},
3 domain='pyramid')

You can set up your own translation string factory much like the one provided above by using the
TranslationStringFactory class. For example, if you’d like to create a translation string fac-
tory which presets the domain value of generated translation strings to form, you’d do something like
this:

1 from pyramid.i18n import TranslationStringFactory
2 _ = TranslationStringFactory('form')
3 ts = _('add-number', default='Add ${number}', mapping={'number':1})

Creating a unique domain for your application via a translation string factory is best practice. Using your
own unique translation domain allows another person to reuse your application without needing to merge
your translation files with their own. Instead they can just include your package’s translation directory
via the pyramid.config.Configurator.add_translation_dirs() method.

For people familiar with Zope internationalization, a TranslationStringFactory is a lot like a
zope.i18nmessageid.MessageFactory object. It is not a subclass, however.

21.2 Working with gettext Translation Files

The basis of Pyramid translation services is GNU gettext. Once your application source code files and
templates are marked up with translation markers, you can work on translations by creating various kinds
of gettext files.

The steps a developer must take to work with gettext message catalog files within a Pyramid
application are very similar to the steps a Pylons developer must take to do the same. See the Pylons
Internationalization and Localization documentation for more information.

GNU gettext uses three types of files in the translation framework, .pot files, .po files, and .mo files.

.pot (Portable Object Template) files

238

http://docs.pylonsproject.org/projects/pylons-webframework/en/latest/i18n.html#i18n
http://docs.pylonsproject.org/projects/pylons-webframework/en/latest/i18n.html#i18n

21.2. WORKING WITH GETTEXT TRANSLATION FILES

A .pot file is created by a program which searches through your project’s source code and
which picks out every message identifier passed to one of the _() functions (e.g., translation
string constructions). The list of all message identifiers is placed into a .pot file, which
serves as a template for creating .po files.

.po (Portable Object) files

The list of messages in a .pot file are translated by a human to a particular language; the
result is saved as a .po file.

.mo (Machine Object) files

A .po file is turned into a machine-readable binary file, which is the .mo file. Compiling
the translations to machine code makes the localized program start faster.

The tools for working with gettext translation files related to a Pyramid application are Lingua and Gettext.
Lingua can scrape i18n references out of Python and Chameleon files and create the .pot file. Gettext
includes msgmerge tool to update a .po file from an updated .pot file and msgfmt to compile .po
files to .mo files.

21.2.1 Installing Lingua and Gettext

In order for the commands related to working with gettext translation files to work properly, you will
need to have Lingua and Gettext installed into the same environment in which Pyramid is installed.

Installation on UNIX

Gettext is often already installed on UNIX systems. You can check if it is installed by testing if the
msgfmt command is available. If it is not available you can install it through the packaging system from
your OS; the package name is almost always gettext. For example on a Debian or Ubuntu system run
this command:

$ sudo apt-get install gettext

Installing Lingua is done with the Python packaging tools. If the virtualenv into which you’ve installed
your Pyramid application lives in /my/virtualenv, you can install Lingua like so:

239

21. INTERNATIONALIZATION AND LOCALIZATION

$ cd /my/virtualenv
$ $VENV/bin/easy_install lingua

Installation on Windows

There are several ways to install Gettext on Windows: it is included in the Cygwin collection, or you can
use the installer from the GnuWin32, or compile it yourself. Make sure the installation path is added to
your $PATH.

Installing Lingua is done with the Python packaging tools. If the virtualenv into which you’ve installed
your Pyramid application lives in C:\my\virtualenv, you can install Lingua like so:

C> %VENV%\Scripts\easy_install lingua

21.2.2 Extracting Messages from Code and Templates

Once Lingua is installed, you may extract a message catalog template from the code and Chameleon
templates which reside in your Pyramid application. You run a pot-create command to extract the
messages:

$ cd /place/where/myapplication/setup.py/lives
$ mkdir -p myapplication/locale
$ $VENV/bin/pot-create -o myapplication/locale/myapplication.pot src

The message catalog .pot template will end up in myapplication/locale/myapplication.pot.

21.2.3 Initializing a Message Catalog File

Once you’ve extracted messages into a .pot file (see Extracting Messages from Code and Templates), to
begin localizing the messages present in the .pot file, you need to generate at least one .po file. A .po
file represents translations of a particular set of messages to a particular locale. Initialize a .po file for a
specific locale from a pre-generated .pot template by using the msginit command from Gettext:

240

http://www.cygwin.com/
http://gnuwin32.sourceforge.net/packages/gettext.htm

21.2. WORKING WITH GETTEXT TRANSLATION FILES

$ cd /place/where/myapplication/setup.py/lives
$ cd myapplication/locale
$ mkdir -p es/LC_MESSAGES
$ msginit -l es -o es/LC_MESSAGES/myapplication.po

This will create a new message catalog .po file in myapplication/locale/es/LC_MESSAGES/myapplication.po.

Once the file is there, it can be worked on by a human translator. One tool which may help with this is
Poedit.

Note that Pyramid itself ignores the existence of all .po files. For a running application to have transla-
tions available, a .mo file must exist. See Compiling a Message Catalog File.

21.2.4 Updating a Catalog File

If more translation strings are added to your application, or translation strings change, you will need to
update existing .po files based on changes to the .pot file, so that the new and changed messages can
also be translated or re-translated.

First, regenerate the .pot file as per Extracting Messages from Code and Templates. Then use the
msgmerge command from Gettext.

$ cd /place/where/myapplication/setup.py/lives
$ cd myapplication/locale
$ msgmerge --update es/LC_MESSAGES/myapplication.po myapplication.pot

21.2.5 Compiling a Message Catalog File

Finally, to prepare an application for performing actual runtime translations, compile .po files to .mo
files using the msgfmt command from Gettext:

$ cd /place/where/myapplication/setup.py/lives
$ msgfmt -o myapplication/locale/es/LC_MESSAGES/myapplication.mo \

myapplication/locale/es/LC_MESSAGES/myapplication.po

This will create a .mo file for each .po file in your application. As long as the translation directory in
which the .mo file ends up in is configured into your application (see Adding a Translation Directory),
these translations will be available to Pyramid.

241

http://www.poedit.net/

21. INTERNATIONALIZATION AND LOCALIZATION

21.3 Using a Localizer

A localizer is an object that allows you to perform translation or pluralization “by hand” in an application.
You may use the pyramid.request.Request.localizer attribute to obtain a localizer. The
localizer object will be configured to produce translations implied by the active locale negotiator, or a
default localizer object if no explicit locale negotiator is registered.

1 def aview(request):
2 localizer = request.localizer

If you need to create a localizer for a locale, use the pyramid.i18n.make_localizer()
function.

21.3.1 Performing a Translation

A localizer has a translate method which accepts either a translation string or a Unicode string and
which returns a Unicode object representing the translation. Generating a translation in a view component
of an application might look like so:

1 from pyramid.i18n import TranslationString
2

3 ts = TranslationString('Add ${number}', mapping={'number':1},
4 domain='pyramid')
5

6 def aview(request):
7 localizer = request.localizer
8 translated = localizer.translate(ts) # translation string
9 # ... use translated ...

The request.localizer attribute will be a pyramid.i18n.Localizer object
bound to the locale name represented by the request. The translation returned from its
pyramid.i18n.Localizer.translate() method will depend on the domain attribute
of the provided translation string as well as the locale of the localizer.

If you’re using Chameleon templates, you don’t need to pre-translate translation strings this
way. See Chameleon Template Support for Translation Strings.

242

21.3. USING A LOCALIZER

21.3.2 Performing a Pluralization

A localizer has a pluralize method with the following signature:

1 def pluralize(singular, plural, n, domain=None, mapping=None):
2 ...

The simplest case is the singular and plural arguments being passed as Unicode literals. This
returns the appropriate literal according to the locale pluralization rules for the number n, and interpolates
mapping.

1 def aview(request):
2 localizer = request.localizer
3 translated = localizer.pluralize('Item', 'Items', 1, 'mydomain')
4 # ... use translated ...

However, for support of other languages, the singular argument should be a Unicode value represent-
ing a message identifier. In this case the plural value is ignored. domain should be a translation
domain, and mapping should be a dictionary that is used for replacement value interpolation of the
translated string.

The value of n will be used to find the appropriate plural form for the current language, and pluralize
will return a Unicode translation for the message id singular. The message file must have defined
singular as a translation with plural forms.

The argument provided as singular may be a translation string object, but the domain and mapping
information attached is ignored.

1 def aview(request):
2 localizer = request.localizer
3 num = 1
4 translated = localizer.pluralize('item_plural', '${number} items',
5 num, 'mydomain', mapping={'number':num})

The corresponding message catalog must have language plural definitions and plural alternatives set.

1 "Plural-Forms: nplurals=3; plural=n==0 ? 0 : n==1 ? 1 : 2;"
2

3 msgid "item_plural"
4 msgid_plural ""
5 msgstr[0] "No items"
6 msgstr[1] "${number} item"
7 msgstr[2] "${number} items"

More information on complex plurals can be found in the gettext documentation.

243

https://www.gnu.org/savannah-checkouts/gnu/gettext/manual/html_node/Plural-forms.html

21. INTERNATIONALIZATION AND LOCALIZATION

21.4 Obtaining the Locale Name for a Request

You can obtain the locale name related to a request by using the
pyramid.request.Request.locale_name() attribute of the request.

1 def aview(request):
2 locale_name = request.locale_name

The locale name of a request is dynamically computed; it will be the locale name negotiated by the
currently active locale negotiator, or the default locale name if the locale negotiator returns None. You
can change the default locale name by changing the pyramid.default_locale_name setting. See
Default Locale Name.

Once locale_name() is first run, the locale name is stored on the request object. Subsequent calls to
locale_name() will return the stored locale name without invoking the locale negotiator. To avoid
this caching, you can use the pyramid.i18n.negotiate_locale_name() function:

1 from pyramid.i18n import negotiate_locale_name
2

3 def aview(request):
4 locale_name = negotiate_locale_name(request)

You can also obtain the locale name related to a request using the locale_name attribute of a localizer.

1 def aview(request):
2 localizer = request.localizer
3 locale_name = localizer.locale_name

Obtaining the locale name as an attribute of a localizer is equivalent to obtaining a locale name by asking
for the locale_name() attribute.

21.5 Performing Date Formatting and Currency Formatting

Pyramid does not itself perform date and currency formatting for different locales. However, Babel can
help you do this via the babel.core.Locale class. The Babel documentation for this class provides
minimal information about how to perform date and currency related locale operations. See Installing
Lingua and Gettext for information about how to install Babel.

The babel.core.Locale class requires a locale name as an argument to its constructor. You can use
Pyramid APIs to obtain the locale name for a request to pass to the babel.core.Locale constructor.
See Obtaining the Locale Name for a Request. For example:

244

http://babel.pocoo.org/en/latest/api/core.html#basic-interface

21.6. CHAMELEON TEMPLATE SUPPORT FOR TRANSLATION STRINGS

1 from babel.core import Locale
2

3 def aview(request):
4 locale_name = request.locale_name
5 locale = Locale(locale_name)

21.6 Chameleon Template Support for Translation Strings

When a translation string is used as the subject of textual rendering by a Chameleon template renderer,
it will automatically be translated to the requesting user’s language if a suitable translation exists. This is
true of both the ZPT and text variants of the Chameleon template renderers.

For example, in a Chameleon ZPT template, the translation string represented by
“some_translation_string” in each example below will go through translation before being rendered:

1

1

1 ${some_translation_string}

1 <a tal:attributes="href some_translation_string">Click here

The features represented by attributes of the i18n namespace of Chameleon will also consult the Pyramid
translations. See http://chameleon.readthedocs.org/en/latest/reference.html#id50.

Unlike when Chameleon is used outside of Pyramid, when it is used within Pyramid, it does not
support use of the zope.i18n translation framework. Applications which use Pyramid should use
the features documented in this chapter rather than zope.i18n.

Third party Pyramid template renderers might not provide this support out of the box and may need special
code to do an equivalent. For those, you can always use the more manual translation facility described in
Performing a Translation.

245

http://chameleon.readthedocs.org/en/latest/reference.html#id50

21. INTERNATIONALIZATION AND LOCALIZATION

21.7 Mako Pyramid i18n Support

There exists a recipe within the Pyramid Community Cookbook named Mako Internationalization which
explains how to add idiomatic i18n support to Mako templates.

21.8 Jinja2 Pyramid i18n Support

The add-on pyramid_jinja2 provides a scaffold with an example of how to use internationalization with
Jinja2 in Pyramid. See the documentation sections Internalization (i18n) and Paster Template I18N.

21.9 Localization-Related Deployment Settings

A Pyramid application will have a pyramid.default_locale_name setting. This value represents
the default locale name used when the locale negotiator returns None. Pass it to the Configurator
constructor at startup time:

1 from pyramid.config import Configurator
2 config = Configurator(settings={'pyramid.default_locale_name':'de'})

You may alternately supply a pyramid.default_locale_name via an application’s .ini file:

1 [app:main]
2 use = egg:MyProject
3 pyramid.reload_templates = true
4 pyramid.debug_authorization = false
5 pyramid.debug_notfound = false
6 pyramid.default_locale_name = de

If this value is not supplied via the Configurator constructor or via a config file, it will default to en.

If this setting is supplied within the Pyramid application .ini file, it will be available as a settings key:

1 from pyramid.threadlocal import get_current_registry
2 settings = get_current_registry().settings
3 default_locale_name = settings['pyramid.default_locale_name']

246

http://docs.pylonsproject.org/projects/pyramid-cookbook/en/latest/templates/mako_i18n.html#mako-i18n
https://github.com/Pylons/pyramid_jinja2
http://docs.pylonsproject.org/projects/pyramid-jinja2/en/latest/#internalization-i18n
http://docs.pylonsproject.org/projects/pyramid-jinja2/en/latest/#paster-template-i18n

21.10. “DETECTING” AVAILABLE LANGUAGES

21.10 “Detecting” Available Languages

Other systems provide an API that returns the set of “available languages” as indicated by the union of all
languages in all translation directories on disk at the time of the call to the API.

It is by design that Pyramid doesn’t supply such an API. Instead the application itself is responsible for
knowing the “available languages”. The rationale is this: any particular application deployment must
always know which languages it should be translatable to anyway, regardless of which translation files
are on disk.

Here’s why: it’s not a given that because translations exist in a particular language within the registered
set of translation directories that this particular deployment wants to allow translation to that language.
For example, some translations may exist but they may be incomplete or incorrect. Or there may be
translations to a language but not for all translation domains.

Any nontrivial application deployment will always need to be able to selectively choose to allow only
some languages even if that set of languages is smaller than all those detected within registered trans-
lation directories. The easiest way to allow for this is to make the application entirely responsible for
knowing which languages are allowed to be translated to instead of relying on the framework to divine
this information from translation directory file info.

You can set up a system to allow a deployer to select available languages based on convention by using
the pyramid.settings mechanism.

Allow a deployer to modify your application’s .ini file:

1 [app:main]
2 use = egg:MyProject
3 # ...
4 available_languages = fr de en ru

Then as a part of the code of a custom locale negotiator:

1 from pyramid.threadlocal import get_current_registry
2 settings = get_current_registry().settings
3 languages = settings['available_languages'].split()

This is only a suggestion. You can create your own “available languages” configuration scheme as neces-
sary.

247

21. INTERNATIONALIZATION AND LOCALIZATION

21.11 Activating Translation

By default, a Pyramid application performs no translation. To turn translation on you must:

• add at least one translation directory to your application.

• ensure that your application sets the locale name correctly.

21.11.1 Adding a Translation Directory

gettext is the underlying machinery behind the Pyramid translation machinery. A translation directory is
a directory organized to be useful to gettext. A translation directory usually includes a listing of language
directories, each of which itself includes an LC_MESSAGES directory. Each LC_MESSAGES directory
should contain one or more .mo files. Each .mo file represents a message catalog, which is used to
provide translations to your application.

Adding a translation directory registers all of its constituent message catalog files within your Pyramid
application to be available to use for translation services. This includes all of the .mo files found within
all LC_MESSAGES directories within each locale directory in the translation directory.

You can add a translation directory imperatively by using the
pyramid.config.Configurator.add_translation_dirs() during application startup.
For example:

1 from pyramid.config import Configurator
2 config.add_translation_dirs('my.application:locale/',
3 'another.application:locale/')

A message catalog in a translation directory added via add_translation_dirs() will be merged
into translations from a message catalog added earlier if both translation directories contain translations
for the same locale and translation domain.

248

21.12. LOCALE NEGOTIATORS

21.11.2 Setting the Locale

When the default locale negotiator (see The Default Locale Negotiator) is in use, you can inform Pyramid
of the current locale name by doing any of these things before any translations need to be performed:

• Set the _LOCALE_ attribute of the request to a valid locale name (usually directly within view
code), e.g., request._LOCALE_ = ’de’.

• Ensure that a valid locale name value is in the request.params dictionary under the
key named _LOCALE_. This is usually the result of passing a _LOCALE_ value in the
query string or in the body of a form post associated with a request. For example, visiting
http://my.application?_LOCALE_=de.

• Ensure that a valid locale name value is in the request.cookies dictionary under the key
named _LOCALE_. This is usually the result of setting a _LOCALE_ cookie in a prior response,
e.g., response.set_cookie(’_LOCALE_’, ’de’).

If this locale negotiation scheme is inappropriate for a particular application, you can configure
a custom locale negotiator function into that application as required. See Using a Custom Locale
Negotiator.

21.12 Locale Negotiators

A locale negotiator informs the operation of a localizer by telling it what locale name is re-
lated to a particular request. A locale negotiator is a bit of code which accepts a request and
which returns a locale name. It is consulted when pyramid.i18n.Localizer.translate()
or pyramid.i18n.Localizer.pluralize() is invoked. It is also consulted when
locale_name() is accessed or when negotiate_locale_name() is invoked.

21.12.1 The Default Locale Negotiator

Most applications can make use of the default locale negotiator, which requires no additional coding or
configuration.

The default locale negotiator implementation named default_locale_negotiator uses the fol-
lowing set of steps to determine the locale name.

249

21. INTERNATIONALIZATION AND LOCALIZATION

• First the negotiator looks for the _LOCALE_ attribute of the request object (possibly set directly by
view code or by a listener for an event).

• Then it looks for the request.params[’_LOCALE_’] value.

• Then it looks for the request.cookies[’_LOCALE_’] value.

• If no locale can be found via the request, it falls back to using the default locale name (see
Localization-Related Deployment Settings).

• Finally if the default locale name is not explicitly set, it uses the locale name en.

21.12.2 Using a Custom Locale Negotiator

Locale negotiation is sometimes policy-laden and complex. If the (simple) default locale negotiation
scheme described in Activating Translation is inappropriate for your application, you may create a special
locale negotiator. Subsequently you may override the default locale negotiator by adding your newly
created locale negotiator to your application’s configuration.

A locale negotiator is simply a callable which accepts a request and returns a single locale name or None
if no locale can be determined.

Here’s an implementation of a simple locale negotiator:

1 def my_locale_negotiator(request):
2 locale_name = request.params.get('my_locale')
3 return locale_name

If a locale negotiator returns None, it signifies to Pyramid that the default application locale name should
be used.

You may add your newly created locale negotiator to your application’s configuration by passing
an object which can act as the negotiator (or a dotted Python name referring to the object) as the
locale_negotiator argument of the Configurator instance during application startup. For ex-
ample:

1 from pyramid.config import Configurator
2 config = Configurator(locale_negotiator=my_locale_negotiator)

Alternatively, use the pyramid.config.Configurator.set_locale_negotiator()
method.

For example:

250

21.12. LOCALE NEGOTIATORS

1 from pyramid.config import Configurator
2 config = Configurator()
3 config.set_locale_negotiator(my_locale_negotiator)

251

21. INTERNATIONALIZATION AND LOCALIZATION

252

CHAPTER 22

Virtual Hosting

“Virtual hosting” is, loosely, the act of serving a Pyramid application or a portion of a Pyramid application
under a URL space that it does not “naturally” inhabit.

Pyramid provides facilities for serving an application under a URL “prefix”, as well as serving a portion
of a traversal based application under a root URL.

22.1 Hosting an Application Under a URL Prefix

Pyramid supports a common form of virtual hosting whereby you can host a Pyramid application as a
“subset” of some other site (e.g., under http://example.com/mypyramidapplication/ as
opposed to under http://example.com/).

If you use a “pure Python” environment, this functionality can be provided by Paste’s urlmap “composite”
WSGI application. Alternatively, you can use mod_wsgi to serve your application, which handles this
virtual hosting translation for you “under the hood”.

If you use the urlmap composite application “in front” of a Pyramid application or if you use mod_wsgi
to serve up a Pyramid application, nothing special needs to be done within the application for URLs to
be generated that contain a prefix. paste.urlmap and mod_wsgi manipulate the WSGI environment
in such a way that the PATH_INFO and SCRIPT_NAME variables are correct for some given prefix.

Here’s an example of a PasteDeploy configuration snippet that includes a urlmap composite.

253

http://pythonpaste.org/modules/urlmap.html

22. VIRTUAL HOSTING

1 [app:mypyramidapp]
2 use = egg:mypyramidapp
3

4 [composite:main]
5 use = egg:Paste#urlmap
6 /pyramidapp = mypyramidapp

This “roots” the Pyramid application at the prefix /pyramidapp and serves up the composite as the
“main” application in the file.

If you’re using an Apache server to proxy to a Paste urlmap composite, you may have to use
the ProxyPreserveHost directive to pass the original HTTP_HOST header along to the application, so
URLs get generated properly. As of this writing the urlmap composite does not seem to respect
the HTTP_X_FORWARDED_HOST parameter, which will contain the original host header even if
HTTP_HOST is incorrect.

If you use mod_wsgi, you do not need to use a composite application in your .ini file. The
WSGIScriptAlias configuration setting in a mod_wsgi configuration does the work for you:

1 WSGIScriptAlias /pyramidapp /Users/chrism/projects/modwsgi/env/pyramid.wsgi

In the above configuration, we root a Pyramid application at /pyramidapp within the Apache configu-
ration.

22.2 Virtual Root Support

Pyramid also supports “virtual roots”, which can be used in traversal-based (but not URL dispatch-based)
applications.

Virtual root support is useful when you’d like to host some resource in a Pyramid resource tree as an appli-
cation under a URL pathname that does not include the resource path itself. For example, you might want
to serve the object at the traversal path /cms as an application reachable via http://example.com/
(as opposed to http://example.com/cms).

To specify a virtual root, cause an environment variable to be inserted into the WSGI environ named
HTTP_X_VHM_ROOT with a value that is the absolute pathname to the resource object in the re-
source tree that should behave as the “root” resource. As a result, the traversal machinery will re-
spect this value during traversal (prepending it to the PATH_INFO before traversal starts), and the

254

http://httpd.apache.org/docs/2.2/mod/mod_proxy.html#proxypreservehost

22.3. FURTHER DOCUMENTATION AND EXAMPLES

pyramid.request.Request.resource_url() API will generate the “correct” virtually-rooted
URLs.

An example of an Apache mod_proxy configuration that will host the /cms subobject as
http://www.example.com/ using this facility is below:

1 NameVirtualHost *:80
2

3 <VirtualHost *:80>
4 ServerName www.example.com
5 RewriteEngine On
6 RewriteRule ^/(.*) http://127.0.0.1:6543/$1 [L,P]
7 ProxyPreserveHost on
8 RequestHeader add X-Vhm-Root /cms
9 </VirtualHost>

Use of the RequestHeader directive requires that the Apache mod_headers module be
available in the Apache environment you’re using.

For a Pyramid application running under mod_wsgi, the same can be achieved using SetEnv:

1 <Location />
2 SetEnv HTTP_X_VHM_ROOT /cms
3 </Location>

Setting a virtual root has no effect when using an application based on URL dispatch.

22.3 Further Documentation and Examples

The API documentation in pyramid.traversal documents a pyramid.traversal.virtual_root()
API. When called, it returns the virtual root object (or the physical root object if no virtual root has been
specified).

Running a Pyramid Application under mod_wsgi has detailed information about using mod_wsgi to serve
Pyramid applications.

255

http://httpd.apache.org/docs/2.2/mod/mod_headers.html

22. VIRTUAL HOSTING

256

CHAPTER 23

Unit, Integration, and Functional Testing

Unit testing is, not surprisingly, the act of testing a “unit” in your application. In this context, a “unit” is
often a function or a method of a class instance. The unit is also referred to as a “unit under test”.

The goal of a single unit test is to test only some permutation of the “unit under test”. If you write a unit
test that aims to verify the result of a particular codepath through a Python function, you need only be
concerned about testing the code that lives in the function body itself. If the function accepts a parameter
that represents a complex application “domain object” (such as a resource, a database connection, or an
SMTP server), the argument provided to this function during a unit test need not be and likely should
not be a “real” implementation object. For example, although a particular function implementation may
accept an argument that represents an SMTP server object, and the function may call a method of this
object when the system is operating normally that would result in an email being sent, a unit test of this
codepath of the function does not need to test that an email is actually sent. It just needs to make sure
that the function calls the method of the object provided as an argument that would send an email if the
argument happened to be the “real” implementation of an SMTP server object.

An integration test, on the other hand, is a different form of testing in which the interaction between two
or more “units” is explicitly tested. Integration tests verify that the components of your application work
together. You might make sure that an email was actually sent in an integration test.

A functional test is a form of integration test in which the application is run “literally”. You would have
to make sure that an email was actually sent in a functional test, because it tests your code end to end.

It is often considered best practice to write each type of tests for any given codebase. Unit testing often
provides the opportunity to obtain better “coverage”: it’s usually possible to supply a unit under test
with arguments and/or an environment which causes all of its potential codepaths to be executed. This is
usually not as easy to do with a set of integration or functional tests, but integration and functional testing

257

23. UNIT, INTEGRATION, AND FUNCTIONAL TESTING

provides a measure of assurance that your “units” work together, as they will be expected to when your
application is run in production.

The suggested mechanism for unit and integration testing of a Pyramid application is the Python
unittest module. Although this module is named unittest, it is actually capable of driving both
unit and integration tests. A good unittest tutorial is available within Dive Into Python by Mark
Pilgrim.

Pyramid provides a number of facilities that make unit, integration, and functional tests easier to write.
The facilities become particularly useful when your code calls into Pyramid-related framework functions.

23.1 Test Set Up and Tear Down

Pyramid uses a “global” (actually thread local) data structure to hold two items:
the current request and the current application registry. These data structures
are available via the pyramid.threadlocal.get_current_request() and
pyramid.threadlocal.get_current_registry() functions, respectively. See Thread
Locals for information about these functions and the data structures they return.

If your code uses these get_current_* functions or calls Pyramid code which uses
get_current_* functions, you will need to call pyramid.testing.setUp() in your test setup
and you will need to call pyramid.testing.tearDown() in your test teardown. setUp() pushes
a registry onto the thread local stack, which makes the get_current_* functions work. It returns a
Configurator object which can be used to perform extra configuration required by the code under test.
tearDown() pops the thread local stack.

Normally when a Configurator is used directly with the main block of a Pyramid application, it
defers performing any “real work” until its .commit method is called (often implicitly by the
pyramid.config.Configurator.make_wsgi_app() method). The Configurator returned by
setUp() is an autocommitting Configurator, however, which performs all actions implied by meth-
ods called on it immediately. This is more convenient for unit testing purposes than needing to call
pyramid.config.Configurator.commit() in each test after adding extra configuration state-
ments.

The use of the setUp() and tearDown() functions allows you to supply each unit test method in a
test case with an environment that has an isolated registry and an isolated request for the duration of a
single test. Here’s an example of using this feature:

258

http://docs.python.org/3/library/unittest.html#module-unittest
http://docs.python.org/3/library/unittest.html#module-unittest
http://docs.python.org/3/library/unittest.html#module-unittest
http://www.diveintopython.net/unit_testing/index.html

23.1. TEST SET UP AND TEAR DOWN

1 import unittest
2 from pyramid import testing
3

4 class MyTest(unittest.TestCase):
5 def setUp(self):
6 self.config = testing.setUp()
7

8 def tearDown(self):
9 testing.tearDown()

The above will make sure that get_current_registry() called within a test case method of
MyTest will return the application registry associated with the config Configurator instance. Each
test case method attached to MyTest will use an isolated registry.

The setUp() and tearDown() functions accept various arguments that influence the environment
of the test. See the pyramid.testing API for information about the extra arguments supported by these
functions.

If you also want to make get_current_request() return something other than None during the
course of a single test, you can pass a request object into the pyramid.testing.setUp() within
the setUp method of your test:

1 import unittest
2 from pyramid import testing
3

4 class MyTest(unittest.TestCase):
5 def setUp(self):
6 request = testing.DummyRequest()
7 self.config = testing.setUp(request=request)
8

9 def tearDown(self):
10 testing.tearDown()

If you pass a request object into pyramid.testing.setUp() within your test case’s
setUp, any test method attached to the MyTest test case that directly or indirectly calls
get_current_request() will receive the request object. Otherwise, during testing,
get_current_request() will return None. We use a “dummy” request implementation supplied
by pyramid.testing.DummyRequest because it’s easier to construct than a “real” Pyramid request
object.

259

23. UNIT, INTEGRATION, AND FUNCTIONAL TESTING

23.1.1 Test setup using a context manager

An alternative style of setting up a test configuration is to use the with statement and
pyramid.testing.testConfig() to create a context manager. The context manager will call
pyramid.testing.setUp() before the code under test and pyramid.testing.tearDown()
afterwards.

This style is useful for small self-contained tests. For example:

1 import unittest
2

3 class MyTest(unittest.TestCase):
4

5 def test_my_function(self):
6 from pyramid import testing
7 with testing.testConfig() as config:
8 config.add_route('bar', '/bar/{id}')
9 my_function_which_needs_route_bar()

23.1.2 What?

Thread local data structures are always a bit confusing, especially when they’re used by frameworks.
Sorry. So here’s a rule of thumb: if you don’t know whether you’re calling code that uses the
get_current_registry() or get_current_request() functions, or you don’t care about
any of this, but you still want to write test code, just always call pyramid.testing.setUp() in
your test’s setUp method and pyramid.testing.tearDown() in your tests’ tearDown method.
This won’t really hurt anything if the application you’re testing does not call any get_current* func-
tion.

23.2 Using the Configurator and pyramid.testingAPIs in
Unit Tests

The Configurator API and the pyramid.testing module provide a number of functions which
can be used during unit testing. These functions make configuration declaration calls to the current
application registry, but typically register a “stub” or “dummy” feature in place of the “real” feature that
the code would call if it was being run normally.

For example, let’s imagine you want to unit test a Pyramid view function.

260

23.2. USING THE CONFIGURATOR AND PYRAMID.TESTING APIS IN UNIT TESTS

1 from pyramid.httpexceptions import HTTPForbidden
2

3 def view_fn(request):
4 if request.has_permission('edit'):
5 raise HTTPForbidden
6 return {'greeting':'hello'}

This code implies that you have defined a renderer imperatively in a relevant
pyramid.config.Configurator instance, otherwise it would fail when run normally.

Without doing anything special during a unit test, the call to has_permission() in this view func-
tion will always return a True value. When a Pyramid application starts normally, it will populate an
application registry using configuration declaration calls made against a Configurator. But if this appli-
cation registry is not created and populated (e.g., by initializing the configurator with an authorization
policy), like when you invoke application code via a unit test, Pyramid API functions will tend to either
fail or return default results. So how do you test the branch of the code in this view function that raises
HTTPForbidden?

The testing API provided by Pyramid allows you to simulate various application registry registrations for
use under a unit testing framework without needing to invoke the actual application configuration implied
by its main function. For example, if you wanted to test the above view_fn (assuming it lived in the
package named my.package), you could write a unittest.TestCase that used the testing API.

1 import unittest
2 from pyramid import testing
3

4 class MyTest(unittest.TestCase):
5 def setUp(self):
6 self.config = testing.setUp()
7

8 def tearDown(self):
9 testing.tearDown()

10

11 def test_view_fn_forbidden(self):
12 from pyramid.httpexceptions import HTTPForbidden
13 from my.package import view_fn
14 self.config.testing_securitypolicy(userid='hank',
15 permissive=False)
16 request = testing.DummyRequest()
17 request.context = testing.DummyResource()
18 self.assertRaises(HTTPForbidden, view_fn, request)
19

261

http://docs.python.org/3/library/unittest.html#unittest.TestCase

23. UNIT, INTEGRATION, AND FUNCTIONAL TESTING

20 def test_view_fn_allowed(self):
21 from my.package import view_fn
22 self.config.testing_securitypolicy(userid='hank',
23 permissive=True)
24 request = testing.DummyRequest()
25 request.context = testing.DummyResource()
26 response = view_fn(request)
27 self.assertEqual(response, {'greeting':'hello'})

In the above example, we create a MyTest test case that inherits from unittest.TestCase. If it’s
in our Pyramid application, it will be found when setup.py test is run. It has two test methods.

The first test method, test_view_fn_forbidden tests the view_fnwhen the authentication policy
forbids the current user the edit permission. Its third line registers a “dummy” “non-permissive” autho-
rization policy using the testing_securitypolicy() method, which is a special helper method
for unit testing.

We then create a pyramid.testing.DummyRequest object which simulates a WebOb request ob-
ject API. A pyramid.testing.DummyRequest is a request object that requires less setup than a
“real” Pyramid request. We call the function being tested with the manufactured request. When the
function is called, pyramid.request.Request.has_permission() will call the “dummy” au-
thentication policy we’ve registered through testing_securitypolicy(), which denies access.
We check that the view function raises a HTTPForbidden error.

The second test method, named test_view_fn_allowed, tests the alternate case, where the authen-
tication policy allows access. Notice that we pass different values to testing_securitypolicy()
to obtain this result. We assert at the end of this that the view function returns a value.

Note that the test calls the pyramid.testing.setUp() function in its setUp method and the
pyramid.testing.tearDown() function in its tearDown method. We assign the result of
pyramid.testing.setUp() as config on the unittest class. This is a Configurator object and all
methods of the configurator can be called as necessary within tests. If you use any of the Configurator
APIs during testing, be sure to use this pattern in your test case’s setUp and tearDown; these methods
make sure you’re using a “fresh” application registry per test run.

See the pyramid.testing chapter for the entire Pyramid-specific testing API. This chapter describes APIs
for registering a security policy, registering resources at paths, registering event listeners, registering views
and view permissions, and classes representing “dummy” implementations of a request and a resource.

See also:

See also the various methods of the Configurator documented in pyramid.config that begin with the
testing_ prefix.

262

http://docs.python.org/3/library/unittest.html#unittest.TestCase

23.3. CREATING INTEGRATION TESTS

23.3 Creating Integration Tests

In Pyramid, a unit test typically relies on “mock” or “dummy” implementations to give the code under
test enough context to run.

“Integration testing” implies another sort of testing. In the context of a Pyramid integration test, the test
logic exercises the functionality of the code under test and its integration with the rest of the Pyramid
framework.

Creating an integration test for a Pyramid application usually means invoking the application’s
includeme function via pyramid.config.Configurator.include() within the test’s setup
code. This causes the entire Pyramid environment to be set up, simulating what happens when your appli-
cation is run “for real”. This is a heavy-hammer way of making sure that your tests have enough context
to run properly, and tests your code’s integration with the rest of Pyramid.

See also:

See also Including Configuration from External Sources

Writing unit tests that use the Configurator API to set up the right “mock” registrations is often
preferred to creating integration tests. Unit tests will run faster (because they do less for each test) and
are usually easier to reason about.

23.4 Creating Functional Tests

Functional tests test your literal application.

In Pyramid, functional tests are typically written using the WebTest package, which provides APIs for
invoking HTTP(S) requests to your application.

Regardless of which testing package you use, ensure to add a tests_require dependency on that
package to your application’s setup.py file. Using the project MyProject generated by the starter
scaffold as described in Creating a Pyramid Project, we would insert the following code immediately
following the requires block in the file MyProject/setup.py.

263

23. UNIT, INTEGRATION, AND FUNCTIONAL TESTING

11 requires = [
12 'pyramid',
13 'pyramid_chameleon',
14 'pyramid_debugtoolbar',
15 'waitress',
16]
17

18 test_requires = [
19 'webtest',
20]

Remember to change the dependency.

39 install_requires=requires,
40 tests_require=test_requires,
41 test_suite="myproject",

As always, whenever you change your dependencies, make sure to run the following command.

$VENV/bin/python setup.py develop

In your MyPackage project, your package is named myproject which contains a views module,
which in turn contains a view function my_view that returns an HTML body when the root URL is
invoked:

1 from pyramid.view import view_config
2

3

4 @view_config(route_name='home', renderer='templates/mytemplate.pt')
5 def my_view(request):
6 return {'project': 'MyProject'}

The following example functional test demonstrates invoking the above view:

1 class FunctionalTests(unittest.TestCase):
2 def setUp(self):
3 from myproject import main
4 app = main({})
5 from webtest import TestApp
6 self.testapp = TestApp(app)
7

264

23.4. CREATING FUNCTIONAL TESTS

8 def test_root(self):
9 res = self.testapp.get('/', status=200)

10 self.assertTrue('Pyramid' in res.body)

When this test is run, each test method creates a “real” WSGI application using the main function in your
myproject.__init__ module, using WebTest to wrap that WSGI application. It assigns the result
to self.testapp. In the test named test_root, the TestApp‘s GET method is used to invoke the
root URL. Finally, an assertion is made that the returned HTML contains the text Pyramid.

See the WebTest documentation for further information about the methods available to a
webtest.app.TestApp instance.

265

http://webtest.pythonpaste.org/en/latest/api.html#webtest.app.TestApp

23. UNIT, INTEGRATION, AND FUNCTIONAL TESTING

266

CHAPTER 24

Resources

A resource is an object that represents a “place” in a tree related to your application. Every Pyramid
application has at least one resource object: the root resource. Even if you don’t define a root resource
manually, a default one is created for you. The root resource is the root of a resource tree. A resource tree
is a set of nested dictionary-like objects which you can use to represent your website’s structure.

In an application which uses traversal to map URLs to code, the resource tree structure is used heavily to
map each URL to a view callable. When traversal is used, Pyramid will walk through the resource tree
by traversing through its nested dictionary structure in order to find a context resource. Once a context
resource is found, the context resource and data in the request will be used to find a view callable.

In an application which uses URL dispatch, the resource tree is only used indirectly, and is often “invis-
ible” to the developer. In URL dispatch applications, the resource “tree” is often composed of only the
root resource by itself. This root resource sometimes has security declarations attached to it, but is not
required to have any. In general, the resource tree is much less important in applications that use URL
dispatch than applications that use traversal.

In “Zope-like” Pyramid applications, resource objects also often store data persistently, and offer methods
related to mutating that persistent data. In these kinds of applications, resources not only represent the
site structure of your website, but they become the domain model of the application.

Also:

• The context and containment predicate arguments to add_view() (or a
view_config() decorator) reference a resource class or resource interface.

• A root factory returns a resource.

• A resource is exposed to view code as the context of a view.

• Various helpful Pyramid API methods expect a resource as an argument (e.g., resource_url()
and others).

267

24. RESOURCES

24.1 Defining a Resource Tree

When traversal is used (as opposed to a purely URL dispatch based application), Pyramid expects to be
able to traverse a tree composed of resources (the resource tree). Traversal begins at a root resource,
and descends into the tree recursively, trying each resource’s __getitem__ method to resolve a path
segment to another resource object. Pyramid imposes the following policy on resource instances in the
tree:

• A container resource (a resource which contains other resources) must supply a __getitem__
method which is willing to resolve a Unicode name to a sub-resource. If a sub-resource by a
particular name does not exist in a container resource, the __getitem__ method of the con-
tainer resource must raise a KeyError. If a sub-resource by that name does exist, the container’s
__getitem__ should return the sub-resource.

• Leaf resources, which do not contain other resources, must not implement a __getitem__, or if
they do, their __getitem__ method must always raise a KeyError.

See Traversal for more information about how traversal works against resource instances.

Here’s a sample resource tree, represented by a variable named root:

1 class Resource(dict):
2 pass
3

4 root = Resource({'a':Resource({'b':Resource({'c':Resource()})})})

The resource tree we’ve created above is represented by a dictionary-like root object which has a single
child named ’a’. ’a’ has a single child named ’b’, and ’b’ has a single child named ’c’, which has
no children. It is therefore possible to access the ’c’ leaf resource like so:

1 root['a']['b']['c']

If you returned the above root object from a root factory, the path /a/b/c would find the ’c’ object
in the resource tree as the result of traversal.

In this example, each of the resources in the tree is of the same class. This is not a requirement. Resource
elements in the tree can be of any type. We used a single class to represent all resources in the tree for the
sake of simplicity, but in a “real” app, the resources in the tree can be arbitrary.

Although the example tree above can service a traversal, the resource instances in the above example
are not aware of location, so their utility in a “real” application is limited. To make best use of built-in
Pyramid API facilities, your resources should be “location-aware”. The next section details how to make
resources location-aware.

268

http://docs.python.org/3/library/exceptions.html#KeyError
http://docs.python.org/3/library/exceptions.html#KeyError

24.2. LOCATION-AWARE RESOURCES

24.2 Location-Aware Resources

In order for certain Pyramid location, security, URL-generation, and traversal APIs to work properly
against the resources in a resource tree, all resources in the tree must be location-aware. This means they
must have two attributes: __parent__ and __name__.

The __parent__ attribute of a location-aware resource should be a reference to the resource’s parent
resource instance in the tree. The __name__ attribute should be the name with which a resource’s parent
refers to the resource via __getitem__.

The __parent__ of the root resource should be None and its __name__ should be the empty string.
For instance:

1 class MyRootResource(object):
2 __name__ = ''
3 __parent__ = None

A resource returned from the root resource’s __getitem__ method should have a __parent__ at-
tribute that is a reference to the root resource, and its __name__ attribute should match the name by
which it is reachable via the root resource’s __getitem__. A container resource within the root re-
source should have a __getitem__ that returns resources with a __parent__ attribute that points at
the container, and these sub-objects should have a __name__ attribute that matches the name by which
they are retrieved from the container via __getitem__. This pattern continues recursively “up” the tree
from the root.

The __parent__ attributes of each resource form a linked list that points “downwards” toward the root.
This is analogous to the .. entry in filesystem directories. If you follow the __parent__ values from
any resource in the resource tree, you will eventually come to the root resource, just like if you keep
executing the cd .. filesystem command, eventually you will reach the filesystem root directory.

If your root resource has a __name__ argument that is not None or the empty string, URLs
returned by the resource_url() function, and paths generated by the resource_path() and
resource_path_tuple() APIs, will be generated improperly. The value of __name__ will
be prepended to every path and URL generated (as opposed to a single leading slash or empty tuple
element).

269

24. RESOURCES

For your convenience

If you’d rather not manage the __name__ and __parent__ attributes of your resources “by
hand”, an add-on package named pyramid_traversalwrapper can help.
In order to use this helper feature, you must first install the pyramid_traversalwrapper
package (available via PyPI), then register its ModelGraphTraverser as the traversal policy,
rather than the default Pyramid traverser. The package contains instructions for doing so.
Once Pyramid is configured with this feature, you will no longer need to manage the __parent__
and __name__ attributes on resource objects “by hand”. Instead, as necessary during traversal,
Pyramid will wrap each resource (even the root resource) in a LocationProxy, which will dy-
namically assign a __name__ and a __parent__ to the traversed resource, based on the last tra-
versed resource and the name supplied to __getitem__. The root resource will have a __name__
attribute of None and a __parent__ attribute of None.

Applications which use tree-walking Pyramid APIs require location-aware resources.
These APIs include (but are not limited to) resource_url(), find_resource(),
find_root(), find_interface(), resource_path(), resource_path_tuple(),
traverse(), virtual_root(), and (usually) has_permission() and
principals_allowed_by_permission().

In general, since so much Pyramid infrastructure depends on location-aware resources, it’s a good idea to
make each resource in your tree location-aware.

24.3 Generating the URL of a Resource

If your resources are location-aware, you can use the pyramid.request.Request.resource_url()
API to generate a URL for the resource. This URL will use the resource’s position in the parent tree to
create a resource path, and it will prefix the path with the current application URL to form a fully-qualified
URL with the scheme, host, port, and path. You can also pass extra arguments to resource_url() to
influence the generated URL.

The simplest call to resource_url() looks like this:

1 url = request.resource_url(resource)

The request in the above example is an instance of a Pyramid request object.

If the resource referred to as resource in the above example was the root resource, and the
host that was used to contact the server was example.com, the URL generated would be

270

24.3. GENERATING THE URL OF A RESOURCE

http://example.com/. However, if the resource was a child of the root resource named a, the
generated URL would be http://example.com/a/.

A slash is appended to all resource URLs when resource_url() is used to generate them in this
simple manner, because resources are “places” in the hierarchy, and URLs are meant to be clicked on to
be visited. Relative URLs that you include on HTML pages rendered as the result of the default view of
a resource are more apt to be relative to these resources than relative to their parent.

You can also pass extra elements to resource_url():

1 url = request.resource_url(resource, 'foo', 'bar')

If the resource referred to as resource in the above example was the root resource, and
the host that was used to contact the server was example.com, the URL generated would
be http://example.com/foo/bar. Any number of extra elements can be passed to
resource_url() as extra positional arguments. When extra elements are passed, they are appended
to the resource’s URL. A slash is not appended to the final segment when elements are passed.

You can also pass a query string:

1 url = request.resource_url(resource, query={'a':'1'})

If the resource referred to as resource in the above example was the root resource, and the
host that was used to contact the server was example.com, the URL generated would be
http://example.com/?a=1.

When a virtual root is active, the URL generated by resource_url() for a resource may be “shorter”
than its physical tree path. See Virtual Root Support for more information about virtually rooting a
resource.

For more information about generating resource URLs, see the documentation for
pyramid.request.Request.resource_url().

24.3.1 Overriding Resource URL Generation

If a resource object implements a __resource_url__ method, this method will be called when
resource_url() is called to generate a URL for the resource, overriding the default URL returned
for the resource by resource_url().

The __resource_url__ hook is passed two arguments: request and info. request is the
request object passed to resource_url(). info is a dictionary with the following keys:

271

24. RESOURCES

physical_path A string representing the “physical path” computed for the resource, as defined by
pyramid.traversal.resource_path(resource). It will begin and end with a slash.

virtual_path A string representing the “virtual path” computed for the resource, as defined by Vir-
tual Root Support. This will be identical to the physical path if virtual rooting is not enabled. It will
begin and end with a slash.

app_url A string representing the application URL generated during request.resource_url. It
will not end with a slash. It represents a potentially customized URL prefix, containing potentially
custom scheme, host and port information passed by the user to request.resource_url. It
should be preferred over use of request.application_url.

The __resource_url__ method of a resource should return a string representing a URL. If it cannot
override the default, it should return None. If it returns None, the default URL will be returned.

Here’s an example __resource_url__ method.

1 class Resource(object):
2 def __resource_url__(self, request, info):
3 return info['app_url'] + info['virtual_path']

The above example actually just generates and returns the default URL, which would have been what
was generated by the default resource_url machinery, but your code can perform arbitrary logic as
necessary. For example, your code may wish to override the hostname or port number of the generated
URL.

Note that the URL generated by __resource_url__ should be fully qualified, should end in a
slash, and should not contain any query string or anchor elements (only path elements) to work with
resource_url().

24.4 Generating the Path To a Resource

pyramid.traversal.resource_path() returns a string object representing the absolute phys-
ical path of the resource object based on its position in the resource tree. Each segment of the path is
separated with a slash character.

1 from pyramid.traversal import resource_path
2 url = resource_path(resource)

272

24.5. FINDING A RESOURCE BY PATH

If resource in the example above was accessible in the tree as root[’a’][’b’], the above example
would generate the string /a/b.

Any positional arguments passed in to resource_path() will be appended as path segments to the
end of the resource path.

1 from pyramid.traversal import resource_path
2 url = resource_path(resource, 'foo', 'bar')

If resource in the example above was accessible in the tree as root[’a’][’b’], the above example
would generate the string /a/b/foo/bar.

The resource passed in must be location-aware.

The presence or absence of a virtual root has no impact on the behavior of resource_path().

24.5 Finding a Resource by Path

If you have a string path to a resource, you can grab the resource from that place in the application’s
resource tree using pyramid.traversal.find_resource().

You can resolve an absolute path by passing a string prefixed with a / as the path argument:

1 from pyramid.traversal import find_resource
2 url = find_resource(anyresource, '/path')

Or you can resolve a path relative to the resource that you pass in to
pyramid.traversal.find_resource() by passing a string that isn’t prefixed by /:

1 from pyramid.traversal import find_resource
2 url = find_resource(anyresource, 'path')

Often the paths you pass to find_resource() are generated by the resource_path()API. These
APIs are “mirrors” of each other.

If the path cannot be resolved when calling find_resource() (if the respective resource in the tree
does not exist), a KeyError will be raised.

See the pyramid.traversal.find_resource() documentation for more information about re-
solving a path to a resource.

273

http://docs.python.org/3/library/exceptions.html#KeyError

24. RESOURCES

24.6 Obtaining the Lineage of a Resource

pyramid.location.lineage() returns a generator representing the lineage of the location-aware
resource object.

The lineage() function returns the resource that is passed into it, then each parent of the resource in
order. For example, if the resource tree is composed like so:

1 class Thing(object): pass
2

3 thing1 = Thing()
4 thing2 = Thing()
5 thing2.__parent__ = thing1

Calling lineage(thing2) will return a generator. When we turn it into a list, we will get:

1 list(lineage(thing2))
2 [<Thing object at thing2>, <Thing object at thing1>]

The generator returned by lineage() first returns unconditionally the resource that was passed into
it. Then, if the resource supplied a __parent__ attribute, it returns the resource represented by
resource.__parent__. If that resource has a __parent__ attribute, it will return that resource’s
parent, and so on, until the resource being inspected either has no __parent__ attribute or has a
__parent__ attribute of None.

See the documentation for pyramid.location.lineage() for more information.

24.7 Determining if a Resource is in the Lineage of Another
Resource

Use the pyramid.location.inside() function to determine if one resource is in the lineage of
another resource.

For example, if the resource tree is:

1 class Thing(object): pass
2

3 a = Thing()
4 b = Thing()
5 b.__parent__ = a

274

24.8. FINDING THE ROOT RESOURCE

Calling inside(b, a) will return True, because b has a lineage that includes a. However, calling
inside(a, b) will return False because a does not have a lineage that includes b.

The argument list for inside() is (resource1, resource2). resource1 is “inside”
resource2 if resource2 is a lineage ancestor of resource1. It is a lineage ancestor if its par-
ent (or one of its parent’s parents, etc.) is an ancestor.

See pyramid.location.inside() for more information.

24.8 Finding the Root Resource

Use the pyramid.traversal.find_root() API to find the root resource. The root resource is
the resource at the root of the resource tree. The API accepts a single argument: resource. This is a
resource that is location-aware. It can be any resource in the tree for which you want to find the root.

For example, if the resource tree is:

1 class Thing(object): pass
2

3 a = Thing()
4 b = Thing()
5 b.__parent__ = a

Calling find_root(b) will return a.

The root resource is also available as request.root within view callable code.

The presence or absence of a virtual root has no impact on the behavior of find_root(). The root
object returned is always the physical root object.

24.9 Resources Which Implement Interfaces

Resources can optionally be made to implement an interface. An interface is used to tag a
resource object with a “type” that later can be referred to within view configuration and by
pyramid.traversal.find_interface().

Specifying an interface instead of a class as the context or containment predicate arguments within
view configuration statements makes it possible to use a single view callable for more than one class of
resource objects. If your application is simple enough that you see no reason to want to do this, you can
skip reading this section of the chapter.

For example, here’s some code which describes a blog entry which also declares that the blog entry
implements an interface.

275

24. RESOURCES

1 import datetime
2 from zope.interface import implementer
3 from zope.interface import Interface
4

5 class IBlogEntry(Interface):
6 pass
7

8 @implementer(IBlogEntry)
9 class BlogEntry(object):

10 def __init__(self, title, body, author):
11 self.title = title
12 self.body = body
13 self.author = author
14 self.created = datetime.datetime.now()

This resource consists of two things: the class which defines the resource constructor as the class
BlogEntry, and an interface attached to the class via an implementer class decorator using the
IBlogEntry interface as its sole argument.

The interface object used must be an instance of a class that inherits from
zope.interface.Interface.

A resource class may implement zero or more interfaces. You specify that a resource implements an
interface by using the zope.interface.implementer() function as a class decorator. The above
BlogEntry resource implements the IBlogEntry interface.

You can also specify that a particular resource instance provides an interface as opposed to its class.
When you declare that a class implements an interface, all instances of that class will also provide that
interface. However, you can also just say that a single object provides the interface. To do so, use the
zope.interface.directlyProvides() function:

1 import datetime
2 from zope.interface import directlyProvides
3 from zope.interface import Interface
4

5 class IBlogEntry(Interface):
6 pass
7

8 class BlogEntry(object):
9 def __init__(self, title, body, author):

10 self.title = title
11 self.body = body
12 self.author = author
13 self.created = datetime.datetime.now()

276

24.10. FINDING A RESOURCE WITH A CLASS OR INTERFACE IN LINEAGE

14

15 entry = BlogEntry('title', 'body', 'author')
16 directlyProvides(entry, IBlogEntry)

zope.interface.directlyProvides() will replace any existing interface that was previously
provided by an instance. If a resource object already has instance-level interface declarations that you
don’t want to replace, use the zope.interface.alsoProvides() function:

1 import datetime
2 from zope.interface import alsoProvides
3 from zope.interface import directlyProvides
4 from zope.interface import Interface
5

6 class IBlogEntry1(Interface):
7 pass
8

9 class IBlogEntry2(Interface):
10 pass
11

12 class BlogEntry(object):
13 def __init__(self, title, body, author):
14 self.title = title
15 self.body = body
16 self.author = author
17 self.created = datetime.datetime.now()
18

19 entry = BlogEntry('title', 'body', 'author')
20 directlyProvides(entry, IBlogEntry1)
21 alsoProvides(entry, IBlogEntry2)

zope.interface.alsoProvides() will augment the set of interfaces directly provided by an
instance instead of overwriting them like zope.interface.directlyProvides() does.

For more information about how resource interfaces can be used by view configuration, see Using Re-
source Interfaces in View Configuration.

24.10 Finding a Resource with a Class or Interface in Lineage

Use the find_interface() API to locate a parent that is of a particular Python class, or which
implements some interface.

For example, if your resource tree is composed as follows:

277

24. RESOURCES

1 class Thing1(object): pass
2 class Thing2(object): pass
3

4 a = Thing1()
5 b = Thing2()
6 b.__parent__ = a

Calling find_interface(a, Thing1) will return the a resource because a is of class Thing1
(the resource passed as the first argument is considered first, and is returned if the class or interface
specification matches).

Calling find_interface(b, Thing1) will return the a resource because a is of class Thing1
and a is the first resource in b‘s lineage of this class.

Calling find_interface(b, Thing2) will return the b resource.

The second argument to find_interface may also be a interface instead of a class. If it is an in-
terface, each resource in the lineage is checked to see if the resource implements the specificed interface
(instead of seeing if the resource is of a class).

See also:

See also Resources Which Implement Interfaces.

24.11 Pyramid API Functions That Act Against Resources

A resource object is used as the context provided to a view. See Traversal and URL Dispatch for more
information about how a resource object becomes the context.

The APIs provided by pyramid.traversal are used against resource objects. These functions can be used
to find the “path” of a resource, the root resource in a resource tree, or to generate a URL for a resource.

The APIs provided by pyramid.location are used against resources. These can be used to walk down a
resource tree, or conveniently locate one resource “inside” another.

Some APIs on the pyramid.request.Request accept a resource object as a parameter. For
example, the has_permission() API accepts a resource object as one of its arguments; the
ACL is obtained from this resource or one of its ancestors. Other security related APIs on the
pyramid.request.Request class also accept context as an argument, and a context is always a
resource.

278

CHAPTER 25

Hello Traversal World

Traversal is an alternative to URL dispatch which allows Pyramid applications to map URLs to code.

If code speaks louder than words, maybe this will help. Here is a single-file Pyramid application that uses
traversal:

1 from wsgiref.simple_server import make_server
2 from pyramid.config import Configurator
3 from pyramid.response import Response
4

5 class Resource(dict):
6 pass
7

8 def get_root(request):
9 return Resource({'a': Resource({'b': Resource({'c': Resource()})})})

10

11 def hello_world_of_resources(context, request):
12 output = "Here's a resource and its children: %s" % context
13 return Response(output)
14

15 if __name__ == '__main__':
16 config = Configurator(root_factory=get_root)
17 config.add_view(hello_world_of_resources, context=Resource)
18 app = config.make_wsgi_app()
19 server = make_server('0.0.0.0', 8080, app)
20 server.serve_forever()
21

22

279

25. HELLO TRAVERSAL WORLD

You may notice that this application is intentionally very similar to the “hello world” application from
Creating Your First Pyramid Application.

On lines 5-6, we create a trivial resource class that’s just a dictionary subclass.

On lines 8-9, we hard-code a resource tree in our root factory function.

On lines 11-13, we define a single view callable that can display a single instance of our Resource
class, passed as the context argument.

The rest of the file sets up and serves our Pyramid WSGI app. Line 18 is where our view gets configured
for use whenever the traversal ends with an instance of our Resource class.

Interestingly, there are no URLs explicitly configured in this application. Instead, the URL space is
defined entirely by the keys in the resource tree.

25.1 Example requests

If this example is running on http://localhost:8080, and the user browses to http://localhost:8080/a/b,
Pyramid will call get_root(request) to get the root resource, then traverse the tree from there by
key; starting from the root, it will find the child with key "a", then its child with key "b"; then use that
as the context argument for calling hello_world_of_resources.

Or, if the user browses to http://localhost:8080/, Pyramid will stop at the root—the outermost Resource
instance, in this case—and use that as the context argument to the same view.

Or, if the user browses to a key that doesn’t exist in this resource tree, like http://localhost:8080/xyz or
http://localhost:8080/a/b/c/d, the traversal will end by raising a KeyError, and Pyramid will turn that into
a 404 HTTP response.

A more complicated application could have many types of resources, with different view callables defined
for each type, and even multiple views for each type.

See also:

Full technical details may be found in Traversal.

For more about why you might use traversal, see Much Ado About Traversal.

280

http://localhost:8080
http://localhost:8080/a/b
http://localhost:8080/
http://localhost:8080/xyz
http://localhost:8080/a/b/c/d

CHAPTER 26

Much Ado About Traversal

(Or, why you should care about it.)

This chapter was adapted, with permission, from a blog post by Rob Miller, originally published
at http://blog.nonsequitarian.org/2010/much-ado-about-traversal/.

Traversal is an alternative to URL dispatch which allows Pyramid applications to map URLs to code.

Ex-Zope users who are already familiar with traversal and view lookup conceptually may want
to skip directly to the Traversal chapter, which discusses technical details. This chapter is mostly
aimed at people who have previous Pylons experience or experience in another framework which does
not provide traversal, and need an introduction to the “why” of traversal.

Some folks who have been using Pylons and its Routes-based URL matching for a long time are being
exposed for the first time, via Pyramid, to new ideas such as “traversal” and “view lookup” as a way to
route incoming HTTP requests to callable code. Some of the same folks believe that traversal is hard to
understand. Others question its usefulness; URL matching has worked for them so far, so why should
they even consider dealing with another approach, one which doesn’t fit their brain and which doesn’t
provide any immediately obvious value?

You can be assured that if you don’t want to understand traversal, you don’t have to. You can happily
build Pyramid applications with only URL dispatch. However, there are some straightforward, real-world
use cases that are much more easily served by a traversal-based approach than by a pattern-matching
mechanism. Even if you haven’t yet hit one of these use cases yourself, understanding these new ideas
is worth the effort for any web developer so you know when you might want to use them. Traversal is
actually a straightforward metaphor easily comprehended by anyone who’s ever used a run-of-the-mill
file system with folders and files.

281

http://blog.nonsequitarian.org/
http://blog.nonsequitarian.org/2010/much-ado-about-traversal/

26. MUCH ADO ABOUT TRAVERSAL

26.1 URL Dispatch

Let’s step back and consider the problem we’re trying to solve. An HTTP request for a particular path
has been routed to our web application. The requested path will possibly invoke a specific view callable
function defined somewhere in our app. We’re trying to determine which callable function, if any, should
be invoked for a given requested URL.

Many systems, including Pyramid, offer a simple solution. They offer the concept of “URL matching”.
URL matching approaches this problem by parsing the URL path and comparing the results to a set of
registered “patterns”, defined by a set of regular expressions or some other URL path templating syntax.
Each pattern is mapped to a callable function somewhere; if the request path matches a specific pattern, the
associated function is called. If the request path matches more than one pattern, some conflict resolution
scheme is used, usually a simple order precedence so that the first match will take priority over any
subsequent matches. If a request path doesn’t match any of the defined patterns, a “404 Not Found”
response is returned.

In Pyramid, we offer an implementation of URL matching which we call URL dispatch. Using Pyra-
mid syntax, we might have a match pattern such as /{userid}/photos/{photoid}, mapped
to a photo_view() function defined somewhere in our code. Then a request for a path such as
/joeschmoe/photos/photo1 would be a match, and the photo_view() function would be in-
voked to handle the request. Similarly, /{userid}/blog/{year}/{month}/{postid} might
map to a blog_post_view() function, so /joeschmoe/blog/2010/12/urlmatchingwould
trigger the function, which presumably would know how to find and render the urlmatching blog post.

26.2 Historical Refresher

Now that we’ve refreshed our understanding of URL dispatch, we’ll dig in to the idea of traversal. Before
we do, though, let’s take a trip down memory lane. If you’ve been doing web work for a while, you
may remember a time when we didn’t have fancy web frameworks like Pylons and Pyramid. Instead, we
had general purpose HTTP servers that primarily served files off of a file system. The “root” of a given
site mapped to a particular folder somewhere on the file system. Each segment of the request URL path
represented a subdirectory. The final path segment would be either a directory or a file, and once the
server found the right file it would package it up in an HTTP response and send it back to the client. So
serving up a request for /joeschmoe/photos/photo1 literally meant that there was a joeschmoe
folder somewhere, which contained a photos folder, which in turn contained a photo1 file. If at any
point along the way we find that there is not a folder or file matching the requested path, we return a 404
response.

As the web grew more dynamic, however, a little bit of extra complexity was added. Technologies such
as CGI and HTTP server modules were developed. Files were still looked up on the file system, but if the

282

26.3. TRAVERSAL (A.K.A., RESOURCE LOCATION)

file ended with (for example) .cgi or .php, or if it lived in a special folder, instead of simply sending
the file to the client the server would read the file, execute it using an interpreter of some sort, and then
send the output from this process to the client as the final result. The server configuration specified which
files would trigger some dynamic code, with the default case being to just serve the static file.

26.3 Traversal (a.k.a., Resource Location)

Believe it or not, if you understand how serving files from a file system works, you understand traversal.
And if you understand that a server might do something different based on what type of file a given request
specifies, then you understand view lookup.

The major difference between file system lookup and traversal is that a file system lookup steps through
nested directories and files in a file system tree, while traversal steps through nested dictionary-type
objects in a resource tree. Let’s take a detailed look at one of our example paths, so we can see what I
mean.

The path /joeschmoe/photos/photo1, has four segments: /, joeschmoe, photos and
photo1. With file system lookup we might have a root folder (/) containing a nested folder
(joeschmoe), which contains another nested folder (photos), which finally contains a JPG file
(photo1). With traversal, we instead have a dictionary-like root object. Asking for the joeschmoe key
gives us another dictionary-like object. Asking in turn for the photos key gives us yet another mapping
object, which finally (hopefully) contains the resource that we’re looking for within its values, referenced
by the photo1 key.

In pure Python terms, then, the traversal or “resource location” portion of satisfying the
/joeschmoe/photos/photo1 request will look something like this pseudocode:

get_root()['joeschmoe']['photos']['photo1']

get_root() is some function that returns a root traversal resource. If all of the specified keys exist,
then the returned object will be the resource that is being requested, analogous to the JPG file that was
retrieved in the file system example. If a KeyError is generated anywhere along the way, Pyramid will
return 404. (This isn’t precisely true, as you’ll see when we learn about view lookup below, but the basic
idea holds.)

283

http://docs.python.org/3/library/exceptions.html#KeyError

26. MUCH ADO ABOUT TRAVERSAL

26.4 What Is a “Resource”?

“Files on a file system I understand”, you might say. “But what are these nested dictionary things? Where
do these objects, these ‘resources’, live? What are they?”

Since Pyramid is not a highly opinionated framework, it makes no restriction on how a resource is im-
plemented; a developer can implement them as they wish. One common pattern used is to persist all of
the resources, including the root, in a database as a graph. The root object is a dictionary-like object.
Dictionary-like objects in Python supply a __getitem__ method which is called when key lookup
is done. Under the hood, when adict is a dictionary-like object, Python translates adict[’a’] to
adict.__getitem__(’a’). Try doing this in a Python interpreter prompt if you don’t believe us:

>>> adict = {}
>>> adict['a'] = 1
>>> adict['a']
1
>>> adict.__getitem__('a')
1

The dictionary-like root object stores the ids of all of its subresources as keys, and provides a
__getitem__ implementation that fetches them. So get_root() fetches the unique root object,
while get_root()[’joeschmoe’] returns a different object, also stored in the database, which in
turn has its own subresources and __getitem__ implementation, and so on. These resources might be
persisted in a relational database, one of the many “NoSQL” solutions that are becoming popular these
days, or anywhere else; it doesn’t matter. As long as the returned objects provide the dictionary-like API
(i.e., as long as they have an appropriately implemented __getitem__ method), then traversal will
work.

In fact, you don’t need a “database” at all. You could use plain dictionaries, with your site’s URL struc-
ture hard-coded directly in the Python source. Or you could trivially implement a set of objects with
__getitem__ methods that search for files in specific directories, and thus precisely recreate the tra-
ditional mechanism of having the URL path mapped directly to a folder structure on the file system.
Traversal is in fact a superset of file system lookup.

See the chapter entitled Resources for a more technical overview of resources.

284

26.5. VIEW LOOKUP

26.5 View Lookup

At this point we’re nearly there. We’ve covered traversal, which is the process by which a specific resource
is retrieved according to a specific URL path. But what is “view lookup”?

The need for view lookup is simple: there is more than one possible action that you might want to take
after finding a resource. With our photo example, for instance, you might want to view the photo in a
page, but you might also want to provide a way for the user to edit the photo and any associated metadata.
We’ll call the former the view view, and the latter will be the edit view. (Original, I know.) Pyramid
has a centralized view application registry where named views can be associated with specific resource
types. So in our example, we’ll assume that we’ve registered view and edit views for photo objects,
and that we’ve specified the view view as the default, so that /joeschmoe/photos/photo1/view
and /joeschmoe/photos/photo1 are equivalent. The edit view would sensibly be provided by a
request for /joeschmoe/photos/photo1/edit.

Hopefully it’s clear that the first portion of the edit view’s URL path is going to re-
solve to the same resource as the non-edit version, specifically the resource returned by
get_root()[’joeschmoe’][’photos’][’photo1’]. But traversal ends there; the photo1
resource doesn’t have an edit key. In fact, it might not even be a dictionary-like object, in which case
photo1[’edit’] would be meaningless. When the Pyramid resource location has been resolved to a
leaf resource, but the entire request path has not yet been expended, the very next path segment is treated
as a view name. The registry is then checked to see if a view of the given name has been specified for
a resource of the given type. If so, the view callable is invoked, with the resource passed in as the re-
lated context object (also available as request.context). If a view callable could not be found,
Pyramid will return a “404 Not Found” response.

You might conceptualize a request for /joeschmoe/photos/photo1/edit as ultimately converted
into the following piece of Pythonic pseudocode:

context = get_root()['joeschmoe']['photos']['photo1']
view_callable = get_view(context, 'edit')
request.context = context
view_callable(request)

The get_root and get_view functions don’t really exist. Internally, Pyramid does something more
complicated. But the example above is a reasonable approximation of the view lookup algorithm in
pseudocode.

285

26. MUCH ADO ABOUT TRAVERSAL

26.6 Use Cases

Why should we care about traversal? URL matching is easier to explain, and it’s good enough, right?

In some cases, yes, but certainly not in all cases. So far we’ve had very structured URLs, where our paths
have had a specific, small number of pieces, like this:

/{userid}/{typename}/{objectid}[/{view_name}]

In all of the examples thus far, we’ve hard coded the typename value, assuming that we’d know at de-
velopment time what names were going to be used (“photos”, “blog”, etc.). But what if we don’t know
what these names will be? Or, worse yet, what if we don’t know anything about the structure of the URLs
inside a user’s folder? We could be writing a CMS where we want the end user to be able to arbitrarily
add content and other folders inside his folder. He might decide to nest folders dozens of layers deep.
How will you construct matching patterns that could account for every possible combination of paths that
might develop?

It might be possible, but it certainly won’t be easy. The matching patterns are going to become complex
quickly as you try to handle all of the edge cases.

With traversal, however, it’s straightforward. Twenty layers of nesting would be no problem. Pyramid
will happily call __getitem__ as many times as it needs to, until it runs out of path segments or until
a resource raises a KeyError. Each resource only needs to know how to fetch its immediate children,
and the traversal algorithm takes care of the rest. Also, since the structure of the resource tree can live
in the database and not in the code, it’s simple to let users modify the tree at runtime to set up their own
personalized “directory” structures.

Another use case in which traversal shines is when there is a need to support a context-dependent secu-
rity policy. One example might be a document management infrastructure for a large corporation, where
members of different departments have varying access levels to the various other departments’ files. Rea-
sonably, even specific files might need to be made available to specific individuals. Traversal does well
here if your resources actually represent the data objects related to your documents, because the idea of
a resource authorization is baked right into the code resolution and calling process. Resource objects can
store ACLs, which can be inherited and/or overridden by the subresources.

If each resource can thus generate a context-based ACL, then whenever view code is attempting to perform
a sensitive action, it can check against that ACL to see whether the current user should be allowed to
perform the action. In this way you achieve so called “instance based” or “row level” security which
is considerably harder to model using a traditional tabular approach. Pyramid actively supports such a
scheme, and in fact if you register your views with guarded permissions and use an authorization policy,
Pyramid can check against a resource’s ACL when deciding whether or not the view itself is available to
the current user.

286

http://docs.python.org/3/library/exceptions.html#KeyError

26.6. USE CASES

In summary, there are entire classes of problems that are more easily served by traversal and view lookup
than by URL dispatch. If your problems don’t require it, great, stick with URL dispatch. But if you’re
using Pyramid and you ever find that you do need to support one of these use cases, you’ll be glad you
have traversal in your toolkit.

It is even possible to mix and match traversal with URL dispatch in the same Pyramid applica-
tion. See the Combining Traversal and URL Dispatch chapter for details.

287

26. MUCH ADO ABOUT TRAVERSAL

288

CHAPTER 27

Traversal

This chapter explains the technical details of how traversal works in Pyramid.

For a quick example, see Hello Traversal World.

For more about why you might use traversal, see Much Ado About Traversal.

A traversal uses the URL (Universal Resource Locator) to find a resource located in a resource tree,
which is a set of nested dictionary-like objects. Traversal is done by using each segment of the path
portion of the URL to navigate through the resource tree. You might think of this as looking up files and
directories in a file system. Traversal walks down the path until it finds a published resource, analogous
to a file system “directory” or “file”. The resource found as the result of a traversal becomes the context
of the request. Then, the view lookup subsystem is used to find some view code willing to “publish” this
resource by generating a response.

Using Traversal to map a URL to code is optional. If you’re creating your first Pyramid
application, it probably makes more sense to use URL dispatch to map URLs to code instead of
traversal, as new Pyramid developers tend to find URL dispatch slightly easier to understand. If you
use URL dispatch, you needn’t read this chapter.

289

27. TRAVERSAL

27.1 Traversal Details

Traversal is dependent on information in a request object. Every request object contains URL
path information in the PATH_INFO portion of the WSGI environment. The PATH_INFO string
is the portion of a request’s URL following the hostname and port number, but before any
query string elements or fragment element. For example the PATH_INFO portion of the URL
http://example.com:8080/a/b/c?foo=1 is /a/b/c.

Traversal treats the PATH_INFO segment of a URL as a sequence of path segments. For example, the
PATH_INFO string /a/b/c is converted to the sequence [’a’, ’b’, ’c’].

This path sequence is then used to descend through the resource tree, looking up a resource for each path
segment. Each lookup uses the __getitem__ method of a resource in the tree.

For example, if the path info sequence is [’a’, ’b’, ’c’]:

• Traversal starts by acquiring the root resource of the application by calling the root factory. The
root factory can be configured to return whatever object is appropriate as the traversal root of your
application.

• Next, the first element (’a’) is popped from the path segment sequence and is used as a key to
lookup the corresponding resource in the root. This invokes the root resource’s __getitem__
method using that value (’a’) as an argument.

• If the root resource “contains” a resource with key ’a’, its __getitem__ method will return it.
The context temporarily becomes the “A” resource.

• The next segment (’b’) is popped from the path sequence, and the “A” resource’s __getitem__
is called with that value (’b’) as an argument; we’ll presume it succeeds.

• The “A” resource’s __getitem__ returns another resource, which we’ll call “B”. The context
temporarily becomes the “B” resource.

Traversal continues until the path segment sequence is exhausted or a path element cannot be resolved to
a resource. In either case, the context resource is the last object that the traversal successfully resolved.
If any resource found during traversal lacks a __getitem__ method, or if its __getitem__ method
raises a KeyError, traversal ends immediately, and that resource becomes the context.

The results of a traversal also include a view name. If traversal ends before the path segment sequence is
exhausted, the view name is the next remaining path segment element. If the traversal expends all of the
path segments, then the view name is the empty string (’’).

The combination of the context resource and the view name found via traversal is used later in the same
request by the view lookup subsystem to find a view callable. How Pyramid performs view lookup is
explained within the View Configuration chapter.

290

http://docs.python.org/3/library/exceptions.html#KeyError

27.2. THE RESOURCE TREE

27.2 The Resource Tree

The resource tree is a set of nested dictionary-like resource objects that begins with a root resource. In
order to use traversal to resolve URLs to code, your application must supply a resource tree to Pyramid.

In order to supply a root resource for an application the Pyramid Router is configured with a call-
back known as a root factory. The root factory is supplied by the application at startup time as the
root_factory argument to the Configurator.

The root factory is a Python callable that accepts a request object, and returns the root object of the
resource tree. A function or class is typically used as an application’s root factory. Here’s an example of
a simple root factory class:

1 class Root(dict):
2 def __init__(self, request):
3 pass

Here’s an example of using this root factory within startup configuration, by passing it to an instance of a
Configurator named config:

1 config = Configurator(root_factory=Root)

The root_factory argument to the Configurator constructor registers this root factory to be
called to generate a root resource whenever a request enters the application. The root factory registered
this way is also known as the global root factory. A root factory can alternatively be passed to the
Configurator as a dotted Python name which can refer to a root factory defined in a different module.

If no root factory is passed to the Pyramid Configurator constructor, or if the root_factory value
specified is None, a default root factory is used. The default root factory always returns a resource that
has no child resources; it is effectively empty.

Usually a root factory for a traversal-based application will be more complicated than the above Root
class. In particular it may be associated with a database connection or another persistence mechanism.
The above Root class is analogous to the default root factory present in Pyramid. The default root factory
is very simple and not very useful.

If the items contained within the resource tree are “persistent” (they have state that lasts longer
than the execution of a single process), they become analogous to the concept of domain model objects
used by many other frameworks.

291

27. TRAVERSAL

The resource tree consists of container resources and leaf resources. There is only one difference between
a container resource and a leaf resource: container resources possess a __getitem__ method (making
it “dictionary-like”) while leaf resources do not. The __getitem__ method was chosen as the signify-
ing difference between the two types of resources because the presence of this method is how Python itself
typically determines whether an object is “containerish” or not (dictionary objects are “containerish”).

Each container resource is presumed to be willing to return a child resource or raise a KeyError based
on a name passed to its __getitem__.

Leaf-level instances must not have a __getitem__. If instances that you’d like to be leaves already
happen to have a __getitem__ through some historical inequity, you should subclass these resource
types and cause their __getitem__ methods to simply raise a KeyError. Or just disuse them and
think up another strategy.

Usually the traversal root is a container resource, and as such it contains other resources. However, it
doesn’t need to be a container. Your resource tree can be as shallow or as deep as you require.

In general, the resource tree is traversed beginning at its root resource using a sequence of path elements
described by the PATH_INFO of the current request. If there are path segments, the root resource’s
__getitem__ is called with the next path segment, and it is expected to return another resource. The
resulting resource’s __getitem__ is called with the very next path segment, and it is expected to return
another resource. This happens ad infinitum until all path segments are exhausted.

27.3 The Traversal Algorithm

This section will attempt to explain the Pyramid traversal algorithm. We’ll provide a description of the
algorithm, a diagram of how the algorithm works, and some example traversal scenarios that might help
you understand how the algorithm operates against a specific resource tree.

We’ll also talk a bit about view lookup. The View Configuration chapter discusses view lookup in detail,
and it is the canonical source for information about views. Technically, view lookup is a Pyramid subsys-
tem that is separated from traversal entirely. However, we’ll describe the fundamental behavior of view
lookup in the examples in the next few sections to give you an idea of how traversal and view lookup
cooperate, because they are almost always used together.

292

27.3. THE TRAVERSAL ALGORITHM

27.3.1 A Description of the Traversal Algorithm

When a user requests a page from your traversal-powered application, the system uses this algorithm to
find a context resource and a view name.

1. The request for the page is presented to the Pyramid router in terms of a standard WSGI request,
which is represented by a WSGI environment and a WSGI start_response callable.

2. The router creates a request object based on the WSGI environment.

3. The root factory is called with the request. It returns a root resource.

4. The router uses the WSGI environment’s PATH_INFO information to determine the path segments
to traverse. The leading slash is stripped off PATH_INFO, and the remaining path segments are
split on the slash character to form a traversal sequence.

The traversal algorithm by default attempts to first URL-unquote and then Unicode-decode each
path segment derived from PATH_INFO from its natural byte string (str type) representation.
URL unquoting is performed using the Python standard library urllib.unquote function.
Conversion from a URL-decoded string into Unicode is attempted using the UTF-8 encoding. If
any URL-unquoted path segment in PATH_INFO is not decodeable using the UTF-8 decoding,
a TypeError is raised. A segment will be fully URL-unquoted and UTF8-decoded before it is
passed in to the __getitem__ of any resource during traversal.

Thus a request with a PATH_INFO variable of /a/b/c maps to the traversal sequence [u’a’,
u’b’, u’c’].

5. Traversal begins at the root resource returned by the root factory. For the traversal sequence
[u’a’, u’b’, u’c’], the root resource’s __getitem__ is called with the name ’a’.
Traversal continues through the sequence. In our example, if the root resource’s __getitem__
called with the name a returns a resource (a.k.a. resource “A”), that resource’s __getitem__ is
called with the name ’b’. If resource “A” returns a resource “B” when asked for ’b’, resource
B’s __getitem__ is then asked for the name ’c’, and may return resource “C”.

6. Traversal ends when either (a) the entire path is exhausted, (b) when any resource raises a
KeyError from its __getitem__, (c) when any non-final path element traversal does not have
a __getitem__ method (resulting in an AttributeError), or (d) when any path element is
prefixed with the set of characters @@ (indicating that the characters following the @@ token should
be treated as a view name).

7. When traversal ends for any of the reasons in the previous step, the last resource found during
traversal is deemed to be the context. If the path has been exhausted when traversal ends, the view
name is deemed to be the empty string (’’). However, if the path was not exhausted before traversal
terminated, the first remaining path segment is treated as the view name.

293

http://docs.python.org/3/library/exceptions.html#TypeError
http://docs.python.org/3/library/exceptions.html#KeyError
http://docs.python.org/3/library/exceptions.html#AttributeError

27. TRAVERSAL

8. Any subsequent path elements after the view name is found are deemed the subpath. The subpath is
always a sequence of path segments that come from PATH_INFO that are “left over” after traversal
has completed.

Once the context resource, the view name, and associated attributes such as the subpath are located, the
job of traversal is finished. It passes back the information it obtained to its caller, the Pyramid Router,
which subsequently invokes view lookup with the context and view name information.

The traversal algorithm exposes two special cases:

• You will often end up with a view name that is the empty string as the result of a particular traversal.
This indicates that the view lookup machinery should lookup the default view. The default view
is a view that is registered with no name or a view which is registered with a name that equals the
empty string.

• If any path segment element begins with the special characters @@ (think of them as goggles), the
value of that segment minus the goggle characters is considered the view name immediately and
traversal stops there. This allows you to address views that may have the same names as resource
names in the tree unambiguously.

Finally, traversal is responsible for locating a virtual root. A virtual root is used during “virtual hosting”.
See the Virtual Hosting chapter for information. We won’t speak more about it in this chapter.

294

27.3. THE TRAVERSAL ALGORITHM

295

27. TRAVERSAL

27.3.2 Traversal Algorithm Examples

No one can be expected to understand the traversal algorithm by analogy and description alone, so let’s
examine some traversal scenarios that use concrete URLs and resource tree compositions.

Let’s pretend the user asks for http://example.com/foo/bar/baz/biz/buz.txt. The re-
quest’s PATH_INFO in that case is /foo/bar/baz/biz/buz.txt. Let’s further pretend that when
this request comes in, we’re traversing the following resource tree:

/--
|
|-- foo

|
----bar

Here’s what happens:

• traversal traverses the root, and attempts to find “foo”, which it finds.

• traversal traverses “foo”, and attempts to find “bar”, which it finds.

• traversal traverses “bar”, and attempts to find “baz”, which it does not find (the “bar” resource
raises a KeyError when asked for “baz”).

The fact that it does not find “baz” at this point does not signify an error condition. It signifies the
following:

• The context is the “bar” resource (the context is the last resource found during traversal).

• The view name is baz.

• The subpath is (’biz’, ’buz.txt’).

At this point, traversal has ended, and view lookup begins.

Because it’s the “context” resource, the view lookup machinery examines “bar” to find out what “type” it
is. Let’s say it finds that the context is a Bar type (because “bar” happens to be an instance of the class
Bar). Using the view name (baz) and the type, view lookup asks the application registry this question:

• Please find me a view callable registered using a view configuration with the name “baz” that can
be used for the class Bar.

Let’s say that view lookup finds no matching view type. In this circumstance, the Pyramid router returns
the result of the Not Found View and the request ends.

However, for this tree:

296

http://docs.python.org/3/library/exceptions.html#KeyError

27.3. THE TRAVERSAL ALGORITHM

/--
|
|-- foo

|
----bar

|
----baz

|
biz

The user asks for http://example.com/foo/bar/baz/biz/buz.txt

• traversal traverses “foo”, and attempts to find “bar”, which it finds.

• traversal traverses “bar”, and attempts to find “baz”, which it finds.

• traversal traverses “baz”, and attempts to find “biz”, which it finds.

• traversal traverses “biz”, and attempts to find “buz.txt”, which it does not find.

The fact that it does not find a resource related to “buz.txt” at this point does not signify an error condition.
It signifies the following:

• The context is the “biz” resource (the context is the last resource found during traversal).

• The view name is “buz.txt”.

• The subpath is an empty sequence (()).

At this point, traversal has ended, and view lookup begins.

Because it’s the “context” resource, the view lookup machinery examines the “biz” resource to find out
what “type” it is. Let’s say it finds that the resource is a Biz type (because “biz” is an instance of the
Python class Biz). Using the view name (buz.txt) and the type, view lookup asks the application
registry this question:

• Please find me a view callable registered with a view configuration with the name buz.txt that
can be used for class Biz.

Let’s say that question is answered by the application registry. In such a situation, the application registry
returns a view callable. The view callable is then called with the current WebOb request as the sole
argument, request. It is expected to return a response.

297

27. TRAVERSAL

The Example View Callables Accept Only a Request; How Do I Access the Context Resource?

Most of the examples in this documentation assume that a view callable is typically passed only
a request object. Sometimes your view callables need access to the context resource, especially
when you use traversal. You might use a supported alternative view callable argument list in
your view callables such as the (context, request) calling convention described in Alter-
nate View Callable Argument/Calling Conventions. But you don’t need to if you don’t want to. In
view callables that accept only a request, the context resource found by traversal is available as the
context attribute of the request object, e.g., request.context. The view name is available
as the view_name attribute of the request object, e.g., request.view_name. Other Pyramid-
specific request attributes are also available as described in Special Attributes Added to the Request
by Pyramid.

27.3.3 Using Resource Interfaces in View Configuration

Instead of registering your views with a context that names a Python resource class, you can optionally
register a view callable with a context which is an interface. An interface can be attached arbitrarily
to any resource object. View lookup treats context interfaces specially, and therefore the identity of a
resource can be divorced from that of the class which implements it. As a result, associating a view
with an interface can provide more flexibility for sharing a single view between two or more different
implementations of a resource type. For example, if two resource objects of different Python class types
share the same interface, you can use the same view configuration to specify both of them as a context.

In order to make use of interfaces in your application during view dispatch, you must create an interface
and mark up your resource classes or instances with interface declarations that refer to this interface.

To attach an interface to a resource class, you define the interface and use the
zope.interface.implementer() class decorator to associate the interface with the class.

1 from zope.interface import Interface
2 from zope.interface import implementer
3

4 class IHello(Interface):
5 """ A marker interface """
6

7 @implementer(IHello)
8 class Hello(object):
9 pass

298

27.3. THE TRAVERSAL ALGORITHM

To attach an interface to a resource instance, you define the interface and use the
zope.interface.alsoProvides() function to associate the interface with the instance.
This function mutates the instance in such a way that the interface is attached to it.

1 from zope.interface import Interface
2 from zope.interface import alsoProvides
3

4 class IHello(Interface):
5 """ A marker interface """
6

7 class Hello(object):
8 pass
9

10 def make_hello():
11 hello = Hello()
12 alsoProvides(hello, IHello)
13 return hello

Regardless of how you associate an interface—with either a resource instance or a resource class—the
resulting code to associate that interface with a view callable is the same. Assuming the above code that
defines an IHello interface lives in the root of your application, and its module is named “resources.py”,
the interface declaration below will associate the mypackage.views.hello_world view with re-
sources that implement, or provide, this interface.

1 # config is an instance of pyramid.config.Configurator
2

3 config.add_view('mypackage.views.hello_world', name='hello.html',
4 context='mypackage.resources.IHello')

Any time a resource that is determined to be the context provides this interface, and a view named
hello.html is looked up against it as per the URL, the mypackage.views.hello_world view
callable will be invoked.

Note, in cases where a view is registered against a resource class, and a view is also registered against an
interface that the resource class implements, an ambiguity arises. Views registered for the resource class
take precedence over any views registered for any interface the resource class implements. Thus, if one
view configuration names a context of both the class type of a resource, and another view configuration
names a context of interface implemented by the resource’s class, and both view configurations are
otherwise identical, the view registered for the context’s class will “win”.

For more information about defining resources with interfaces for use within view configuration, see
Resources Which Implement Interfaces.

299

27. TRAVERSAL

27.4 References

A tutorial showing how traversal can be used within a Pyramid application exists in ZODB + Traversal
Wiki Tutorial.

See the View Configuration chapter for detailed information about view lookup.

The pyramid.traversal module contains API functions that deal with traversal, such as traversal
invocation from within application code.

The pyramid.request.Request.resource_url() method generates a URL when given a re-
source retrieved from a resource tree.

300

CHAPTER 28

Security

Pyramid provides an optional, declarative, security system. Security in Pyramid is separated into au-
thentication and authorization. The two systems communicate via principal identifiers. Authentication
is merely the mechanism by which credentials provided in the request are resolved to one or more prin-
cipal identifiers. These identifiers represent the users and groups that are in effect during the request.
Authorization then determines access based on the principal identifiers, the requested permission, and a
context.

The Pyramid authorization system can prevent a view from being invoked based on an authorization
policy. Before a view is invoked, the authorization system can use the credentials in the request along
with the context resource to determine if access will be allowed. Here’s how it works at a high level:

• A user may or may not have previously visited the application and supplied au-
thentication credentials, including a userid. If so, the application may have called
pyramid.security.remember() to remember these.

• A request is generated when a user visits the application.

• Based on the request, a context resource is located through resource location. A context is located
differently depending on whether the application uses traversal or URL dispatch, but a context is
ultimately found in either case. See the URL Dispatch chapter for more information.

• A view callable is located by view lookup using the context as well as other attributes of the request.

• If an authentication policy is in effect, it is passed the request. It will return some number of
principal identifiers. To do this, the policy would need to determine the authenticated userid present
in the request.

301

28. SECURITY

• If an authorization policy is in effect and the view configuration associated with the view callable
that was found has a permission associated with it, the authorization policy is passed the context,
some number of principal identifiers returned by the authentication policy, and the permission
associated with the view; it will allow or deny access.

• If the authorization policy allows access, the view callable is invoked.

• If the authorization policy denies access, the view callable is not invoked. Instead the forbidden
view is invoked.

Authorization is enabled by modifying your application to include an authentication policy and autho-
rization policy. Pyramid comes with a variety of implementations of these policies. To provide maximal
flexibility, Pyramid also allows you to create custom authentication policies and authorization policies.

28.1 Enabling an Authorization Policy

Pyramid does not enable any authorization policy by default. All views are accessible by completely
anonymous users. In order to begin protecting views from execution based on security settings, you need
to enable an authorization policy.

28.1.1 Enabling an Authorization Policy Imperatively

Use the set_authorization_policy() method of the Configurator to enable an authoriza-
tion policy.

You must also enable an authentication policy in order to enable the authorization policy. This is because
authorization, in general, depends upon authentication. Use the set_authentication_policy()
method during application setup to specify the authentication policy.

For example:

1 from pyramid.config import Configurator
2 from pyramid.authentication import AuthTktAuthenticationPolicy
3 from pyramid.authorization import ACLAuthorizationPolicy
4 authn_policy = AuthTktAuthenticationPolicy('seekrit', hashalg='sha512')
5 authz_policy = ACLAuthorizationPolicy()
6 config = Configurator()
7 config.set_authentication_policy(authn_policy)
8 config.set_authorization_policy(authz_policy)

302

28.2. PROTECTING VIEWS WITH PERMISSIONS

The authentication_policy and authorization_policy arguments may also be
passed to their respective methods mentioned above as dotted Python name values, each representing
the dotted name path to a suitable implementation global defined at Python module scope.

The above configuration enables a policy which compares the value of an “auth ticket” cookie passed in
the request’s environment which contains a reference to a single principal against the principals present
in any ACL found in the resource tree when attempting to call some view.

While it is possible to mix and match different authentication and authorization policies, it is an error to
configure a Pyramid application with an authentication policy but without the authorization policy or vice
versa. If you do this, you’ll receive an error at application startup time.

See also:

See also the pyramid.authorization and pyramid.authenticationmodules for alternative
implementations of authorization and authentication policies.

28.2 Protecting Views with Permissions

To protect a view callable from invocation based on a user’s security settings when a particular type of
resource becomes the context, you must pass a permission to view configuration. Permissions are usually
just strings, and they have no required composition: you can name permissions whatever you like.

For example, the following view declaration protects the view named add_entry.html
when the context resource is of type Blog with the add permission using the
pyramid.config.Configurator.add_view() API:

1 # config is an instance of pyramid.config.Configurator
2

3 config.add_view('mypackage.views.blog_entry_add_view',
4 name='add_entry.html',
5 context='mypackage.resources.Blog',
6 permission='add')

The equivalent view registration including the add permission name may be performed via the
@view_config decorator:

303

28. SECURITY

1 from pyramid.view import view_config
2 from resources import Blog
3

4 @view_config(context=Blog, name='add_entry.html', permission='add')
5 def blog_entry_add_view(request):
6 """ Add blog entry code goes here """
7 pass

As a result of any of these various view configuration statements, if an authorization policy is in
place when the view callable is found during normal application operations, the requesting user will
need to possess the add permission against the context resource in order to be able to invoke the
blog_entry_add_view view. If they do not, the Forbidden view will be invoked.

28.2.1 Setting a Default Permission

If a permission is not supplied to a view configuration, the registered view will always be executable by
entirely anonymous users: any authorization policy in effect is ignored.

In support of making it easier to configure applications which are “secure by default”, Pyramid allows
you to configure a default permission. If supplied, the default permission is used as the permission string
to all view registrations which don’t otherwise name a permission argument.

The pyramid.config.Configurator.set_default_permission() method supports con-
figuring a default permission for an application.

When a default permission is registered:

• If a view configuration names an explicit permission, the default permission is ignored for that
view registration, and the view-configuration-named permission is used.

• If a view configuration names the permission pyramid.security.NO_PERMISSION_REQUIRED,
the default permission is ignored, and the view is registered without a permission (making it avail-
able to all callers regardless of their credentials).

When you register a default permission, all views (even exception view views) are protected
by a permission. For all views which are truly meant to be anonymously accessible, you will need to
associate the view’s configuration with the pyramid.security.NO_PERMISSION_REQUIRED
permission.

304

28.3. ASSIGNING ACLS TO YOUR RESOURCE OBJECTS

28.3 Assigning ACLs to Your Resource Objects

When the default Pyramid authorization policy determines whether a user possesses a particular permis-
sion with respect to a resource, it examines the ACL associated with the resource. An ACL is associated
with a resource by adding an __acl__ attribute to the resource object. This attribute can be defined on
the resource instance if you need instance-level security, or it can be defined on the resource class if you
just need type-level security.

For example, an ACL might be attached to the resource for a blog via its class:

1 from pyramid.security import Allow
2 from pyramid.security import Everyone
3

4 class Blog(object):
5 __acl__ = [
6 (Allow, Everyone, 'view'),
7 (Allow, 'group:editors', 'add'),
8 (Allow, 'group:editors', 'edit'),
9]

Or, if your resources are persistent, an ACL might be specified via the __acl__ attribute of an instance
of a resource:

1 from pyramid.security import Allow
2 from pyramid.security import Everyone
3

4 class Blog(object):
5 pass
6

7 blog = Blog()
8

9 blog.__acl__ = [
10 (Allow, Everyone, 'view'),
11 (Allow, 'group:editors', 'add'),
12 (Allow, 'group:editors', 'edit'),
13]

Whether an ACL is attached to a resource’s class or an instance of the resource itself, the effect is the
same. It is useful to decorate individual resource instances with an ACL (as opposed to just decorating
their class) in applications such as content management systems where fine-grained access is required on
an object-by-object basis.

Dynamic ACLs are also possible by turning the ACL into a callable on the resource. This may allow the
ACL to dynamically generate rules based on properties of the instance.

305

28. SECURITY

1 from pyramid.security import Allow
2 from pyramid.security import Everyone
3

4 class Blog(object):
5 def __acl__(self):
6 return [
7 (Allow, Everyone, 'view'),
8 (Allow, self.owner, 'edit'),
9 (Allow, 'group:editors', 'edit'),

10]
11

12 def __init__(self, owner):
13 self.owner = owner

28.4 Elements of an ACL

Here’s an example ACL:

1 from pyramid.security import Allow
2 from pyramid.security import Everyone
3

4 __acl__ = [
5 (Allow, Everyone, 'view'),
6 (Allow, 'group:editors', 'add'),
7 (Allow, 'group:editors', 'edit'),
8]

The example ACL indicates that the pyramid.security.Everyone principal—a special system-
defined principal indicating, literally, everyone—is allowed to view the blog, and the group:editors
principal is allowed to add to and edit the blog.

Each element of an ACL is an ACE, or access control entry. For example, in the above code block, there
are three ACEs: (Allow, Everyone, ’view’), (Allow, ’group:editors’, ’add’),
and (Allow, ’group:editors’, ’edit’).

The first element of any ACE is either pyramid.security.Allow , or
pyramid.security.Deny , representing the action to take when the ACE matches. The sec-
ond element is a principal. The third argument is a permission or sequence of permission names.

A principal is usually a user id, however it also may be a group id if your authentication system provides
group information and the effective authentication policy policy is written to respect group information.
See Extending Default Authentication Policies.

306

28.4. ELEMENTS OF AN ACL

Each ACE in an ACL is processed by an authorization policy in the order dictated by the ACL. So if you
have an ACL like this:

1 from pyramid.security import Allow
2 from pyramid.security import Deny
3 from pyramid.security import Everyone
4

5 __acl__ = [
6 (Allow, Everyone, 'view'),
7 (Deny, Everyone, 'view'),
8]

The default authorization policy will allow everyone the view permission, even though later in the ACL
you have an ACE that denies everyone the view permission. On the other hand, if you have an ACL like
this:

1 from pyramid.security import Everyone
2 from pyramid.security import Allow
3 from pyramid.security import Deny
4

5 __acl__ = [
6 (Deny, Everyone, 'view'),
7 (Allow, Everyone, 'view'),
8]

The authorization policy will deny everyone the view permission, even though later in the ACL, there is
an ACE that allows everyone.

The third argument in an ACE can also be a sequence of permission names instead of a single permission
name. So instead of creating multiple ACEs representing a number of different permission grants to a
single group:editors group, we can collapse this into a single ACE, as below.

1 from pyramid.security import Allow
2 from pyramid.security import Everyone
3

4 __acl__ = [
5 (Allow, Everyone, 'view'),
6 (Allow, 'group:editors', ('add', 'edit')),
7]

307

28. SECURITY

28.5 Special Principal Names

Special principal names exist in the pyramid.security module. They can be imported for use in
your own code to populate ACLs, e.g., pyramid.security.Everyone.

pyramid.security.Everyone

Literally, everyone, no matter what. This object is actually a string under the hood
(system.Everyone). Every user is the principal named “Everyone” during every request,
even if a security policy is not in use.

pyramid.security.Authenticated

Any user with credentials as determined by the current security policy. You might think
of it as any user that is “logged in”. This object is actually a string under the hood
(system.Authenticated).

28.6 Special Permissions

Special permission names exist in the pyramid.security module. These can be imported for use in
ACLs. pyramid.security.ALL_PERMISSIONS

An object representing, literally, all permissions. Useful in an ACL like so: (Allow,
’fred’, ALL_PERMISSIONS). The ALL_PERMISSIONS object is actually a stand-in
object that has a __contains__ method that always returns True, which, for all known
authorization policies, has the effect of indicating that a given principal has any permission
asked for by the system.

28.7 Special ACEs

A convenience ACE is defined representing a deny to everyone of all permissions in
pyramid.security.DENY_ALL. This ACE is often used as the last ACE of an ACL to explicitly
cause inheriting authorization policies to “stop looking up the traversal tree” (effectively breaking any in-
heritance). For example, an ACL which allows only fred the view permission for a particular resource,
despite what inherited ACLs may say when the default authorization policy is in effect, might look like
so:

308

28.8. ACL INHERITANCE AND LOCATION-AWARENESS

1 from pyramid.security import Allow
2 from pyramid.security import DENY_ALL
3

4 __acl__ = [(Allow, 'fred', 'view'), DENY_ALL]

Under the hood, the pyramid.security.DENY_ALL ACE equals the following:

1 from pyramid.security import ALL_PERMISSIONS
2 __acl__ = [(Deny, Everyone, ALL_PERMISSIONS)]

28.8 ACL Inheritance and Location-Awareness

While the default authorization policy is in place, if a resource object does not have an ACL when it is
the context, its parent is consulted for an ACL. If that object does not have an ACL, its parent is consulted
for an ACL, ad infinitum, until we’ve reached the root and there are no more parents left.

In order to allow the security machinery to perform ACL inheritance, resource objects must provide
location-awareness. Providing location-awareness means two things: the root object in the resource tree
must have a __name__ attribute and a __parent__ attribute.

1 class Blog(object):
2 __name__ = ''
3 __parent__ = None

An object with a __parent__ attribute and a __name__ attribute is said to be location-aware.
Location-aware objects define a __parent__ attribute which points at their parent object. The root
object’s __parent__ is None.

See also:

See also pyramid.location for documentations of functions which use location-awareness.

See also:

See also Location-Aware Resources.

309

28. SECURITY

28.9 Changing the Forbidden View

When Pyramid denies a view invocation due to an authorization denial, the special forbidden view
is invoked. Out of the box, this forbidden view is very plain. See Changing the Forbidden View within
Using Hooks for instructions on how to create a custom forbidden view and arrange for it to be called
when view authorization is denied.

28.10 Debugging View Authorization Failures

If your application in your judgment is allowing or denying view access inappropriately, start your appli-
cation under a shell using the PYRAMID_DEBUG_AUTHORIZATION environment variable set to 1. For
example:

$ PYRAMID_DEBUG_AUTHORIZATION=1 $VENV/bin/pserve myproject.ini

When any authorization takes place during a top-level view rendering, a message will be logged to the
console (to stderr) about what ACE in which ACL permitted or denied the authorization based on authen-
tication information.

This behavior can also be turned on in the application .ini file by setting the
pyramid.debug_authorization key to true within the application’s configuration section, e.g.:

1 [app:main]
2 use = egg:MyProject
3 pyramid.debug_authorization = true

With this debug flag turned on, the response sent to the browser will also contain security debugging
information in its body.

28.11 Debugging Imperative Authorization Failures

The pyramid.request.Request.has_permission() API is used to check security
within view functions imperatively. It returns instances of objects that are effectively
booleans. But these objects are not raw True or False objects, and have infor-
mation attached to them about why the permission was allowed or denied. The ob-
ject will be one of pyramid.security.ACLAllowed, pyramid.security.ACLDenied,
pyramid.security.Allowed, or pyramid.security.Denied, as documented in pyra-
mid.security. At the very minimum, these objects will have a msg attribute, which is a string indicating
why the permission was denied or allowed. Introspecting this information in the debugger or via print
statements when a call to has_permission() fails is often useful.

310

28.12. EXTENDING DEFAULT AUTHENTICATION POLICIES

28.12 Extending Default Authentication Policies

Pyramid ships with some built in authentication policies for use in your applications. See
pyramid.authentication for the available policies. They differ on their mechanisms for tracking
authentication credentials between requests, however they all interface with your application in mostly
the same way.

Above you learned about Assigning ACLs to Your Resource Objects. Each
principal used in the ACL is matched against the list returned from
pyramid.interfaces.IAuthenticationPolicy.effective_principals().
Similarly, pyramid.request.Request.authenticated_userid() maps to
pyramid.interfaces.IAuthenticationPolicy.authenticated_userid().

You may control these values by subclassing the default authentication policies. For example, below we
subclass the pyramid.authentication.AuthTktAuthenticationPolicy and define extra
functionality to query our database before confirming that the userid is valid in order to avoid blindly
trusting the value in the cookie (what if the cookie is still valid, but the user has deleted their account?).
We then use that userid to augment the effective_principals with information about groups and
other state for that user.

1 from pyramid.authentication import AuthTktAuthenticationPolicy
2

3 class MyAuthenticationPolicy(AuthTktAuthenticationPolicy):
4 def authenticated_userid(self, request):
5 userid = self.unauthenticated_userid(request)
6 if userid:
7 if request.verify_userid_is_still_valid(userid):
8 return userid
9

10 def effective_principals(self, request):
11 principals = [Everyone]
12 userid = self.authenticated_userid(request)
13 if userid:
14 principals += [Authenticated, str(userid)]
15 return principals

In most instances authenticated_userid and effective_principals are application-
specific, whereas unauthenticated_userid, remember, and forget are generic and focused
on transport and serialization of data between consecutive requests.

311

28. SECURITY

28.13 Creating Your Own Authentication Policy

Pyramid ships with a number of useful out-of-the-box security policies (see
pyramid.authentication). However, creating your own authentication policy is often nec-
essary when you want to control the “horizontal and vertical” of how your users authenticate. Doing so
is a matter of creating an instance of something that implements the following interface:

1 class IAuthenticationPolicy(object):
2 """ An object representing a Pyramid authentication policy. """
3

4 def authenticated_userid(self, request):
5 """ Return the authenticated :term:`userid` or ``None`` if
6 no authenticated userid can be found. This method of the
7 policy should ensure that a record exists in whatever
8 persistent store is used related to the user (the user
9 should not have been deleted); if a record associated with

10 the current id does not exist in a persistent store, it
11 should return ``None``.
12

13 """
14

15 def unauthenticated_userid(self, request):
16 """ Return the *unauthenticated* userid. This method
17 performs the same duty as ``authenticated_userid`` but is
18 permitted to return the userid based only on data present
19 in the request; it needn't (and shouldn't) check any
20 persistent store to ensure that the user record related to
21 the request userid exists.
22

23 This method is intended primarily a helper to assist the
24 ``authenticated_userid`` method in pulling credentials out
25 of the request data, abstracting away the specific headers,
26 query strings, etc that are used to authenticate the request.
27

28 """
29

30 def effective_principals(self, request):
31 """ Return a sequence representing the effective principals
32 typically including the :term:`userid` and any groups belonged
33 to by the current user, always including 'system' groups such
34 as ``pyramid.security.Everyone`` and
35 ``pyramid.security.Authenticated``.
36

37 """
38

312

28.14. CREATING YOUR OWN AUTHORIZATION POLICY

39 def remember(self, request, userid, **kw):
40 """ Return a set of headers suitable for 'remembering' the
41 :term:`userid` named ``userid`` when set in a response. An
42 individual authentication policy and its consumers can
43 decide on the composition and meaning of **kw.
44

45 """
46

47 def forget(self, request):
48 """ Return a set of headers suitable for 'forgetting' the
49 current user on subsequent requests.
50

51 """

After you do so, you can pass an instance of such a class into the set_authentication_policy
method at configuration time to use it.

28.14 Creating Your Own Authorization Policy

An authorization policy is a policy that allows or denies access after a
user has been authenticated. Most Pyramid applications will use the default
pyramid.authorization.ACLAuthorizationPolicy .

However, in some cases, it’s useful to be able to use a different authorization policy than the default
ACLAuthorizationPolicy . For example, it might be desirable to construct an alternate authoriza-
tion policy which allows the application to use an authorization mechanism that does not involve ACL
objects.

Pyramid ships with only a single default authorization policy, so you’ll need to create your own if you’d
like to use a different one. Creating and using your own authorization policy is a matter of creating an
instance of an object that implements the following interface:

1 class IAuthorizationPolicy(object):
2 """ An object representing a Pyramid authorization policy. """
3 def permits(self, context, principals, permission):
4 """ Return ``True`` if any of the ``principals`` is allowed the
5 ``permission`` in the current ``context``, else return ``False``
6 """
7

8 def principals_allowed_by_permission(self, context, permission):
9 """ Return a set of principal identifiers allowed by the

313

28. SECURITY

10 ``permission`` in ``context``. This behavior is optional; if you
11 choose to not implement it you should define this method as
12 something which raises a ``NotImplementedError``. This method
13 will only be called when the
14 ``pyramid.security.principals_allowed_by_permission`` API is
15 used."""

After you do so, you can pass an instance of such a class into the set_authorization_policy
method at configuration time to use it.

28.15 Admonishment Against Secret-Sharing

A “secret” is required by various components of Pyramid. For example, the authentication policy below
uses a secret value seekrit:

authn_policy = AuthTktAuthenticationPolicy('seekrit', hashalg='sha512')

A session factory also requires a secret:

my_session_factory = SignedCookieSessionFactory('itsaseekreet')

It is tempting to use the same secret for multiple Pyramid subsystems. For example, you might be tempted
to use the value seekrit as the secret for both the authentication policy and the session factory defined
above. This is a bad idea, because in both cases, these secrets are used to sign the payload of the data.

If you use the same secret for two different parts of your application for signing purposes, it may allow
an attacker to get his chosen plaintext signed, which would allow the attacker to control the content of
the payload. Re-using a secret across two different subsystems might drop the security of signing to zero.
Keys should not be re-used across different contexts where an attacker has the possibility of providing a
chosen plaintext.

314

CHAPTER 29

Combining Traversal and URL Dispatch

When you write most Pyramid applications, you’ll be using one or the other of two available resource
location subsystems: traversal or URL dispatch. However, to solve a limited set of problems, it’s useful
to use both traversal and URL dispatch together within the same application. Pyramid makes this possible
via hybrid applications.

Reasoning about the behavior of a “hybrid” URL dispatch + traversal application can be chal-
lenging. To successfully reason about using URL dispatch and traversal together, you need to under-
stand URL pattern matching, root factories, and the traversal algorithm, and the potential interactions
between them. Therefore, we don’t recommend creating an application that relies on hybrid behavior
unless you must.

29.1 A Review of Non-Hybrid Applications

When used according to the tutorials in its documentation, Pyramid is a “dual-mode” framework: the
tutorials explain how to create an application in terms of using either URL dispatch or traversal. This
chapter details how you might combine these two dispatch mechanisms, but we’ll review how they work
in isolation before trying to combine them.

29.1.1 URL Dispatch Only

An application that uses URL dispatch exclusively to map URLs to code will often have statements like
this within its application startup configuration:

315

29. COMBINING TRAVERSAL AND URL DISPATCH

1 # config is an instance of pyramid.config.Configurator
2

3 config.add_route('foobar', '{foo}/{bar}')
4 config.add_route('bazbuz', '{baz}/{buz}')
5

6 config.add_view('myproject.views.foobar', route_name='foobar')
7 config.add_view('myproject.views.bazbuz', route_name='bazbuz')

Each route corresponds to one or more view callables. Each view callable is associated with a route by
passing a route_name parameter that matches its name during a call to add_view(). When a route
is matched during a request, view lookup is used to match the request to its associated view callable. The
presence of calls to add_route() signify that an application is using URL dispatch.

29.1.2 Traversal Only

An application that uses only traversal will have view configuration declarations that look like this:

1 # config is an instance of pyramid.config.Configurator
2

3 config.add_view('mypackage.views.foobar', name='foobar')
4 config.add_view('mypackage.views.bazbuz', name='bazbuz')

When the above configuration is applied to an application, the mypackage.views.foobar
view callable above will be called when the URL /foobar is visited. Likewise, the view
mypackage.views.bazbuz will be called when the URL /bazbuz is visited.

Typically, an application that uses traversal exclusively won’t perform any calls to
pyramid.config.Configurator.add_route() in its startup code.

29.2 Hybrid Applications

Either traversal or URL dispatch alone can be used to create a Pyramid application. However, it is also
possible to combine the concepts of traversal and URL dispatch when building an application, the result
of which is a hybrid application. In a hybrid application, traversal is performed after a particular route
has matched.

A hybrid application is a lot more like a “pure” traversal-based application than it is like a “pure” URL-
dispatch based application. But unlike in a “pure” traversal-based application, in a hybrid application

316

29.2. HYBRID APPLICATIONS

traversal is performed during a request after a route has already matched. This means that the URL
pattern that represents the pattern argument of a route must match the PATH_INFO of a request,
and after the route pattern has matched, most of the “normal” rules of traversal with respect to resource
location and view lookup apply.

There are only four real differences between a purely traversal-based application and a hybrid application:

• In a purely traversal-based application, no routes are defined. In a hybrid application, at least one
route will be defined.

• In a purely traversal-based application, the root object used is global, implied by the root factory
provided at startup time. In a hybrid application, the root object at which traversal begins may be
varied on a per-route basis.

• In a purely traversal-based application, the PATH_INFO of the underlying WSGI environment is
used wholesale as a traversal path. In a hybrid application, the traversal path is not the entire
PATH_INFO string, but a portion of the URL determined by a matching pattern in the matched
route configuration’s pattern.

• In a purely traversal-based application, view configurations which do not mention a route_name
argument are considered during view lookup. In a hybrid application, when a route is matched, only
view configurations which mention that route’s name as a route_name are considered during
view lookup.

More generally, a hybrid application is a traversal-based application except:

• the traversal root is chosen based on the route configuration of the route that matched, instead of
from the root_factory supplied during application startup configuration.

• the traversal path is chosen based on the route configuration of the route that matched, rather than
from the PATH_INFO of a request.

• the set of views that may be chosen during view lookup when a route matches are limited to those
which specifically name a route_name in their configuration that is the same as the matched
route’s name.

To create a hybrid mode application, use a route configuration that implies a particular root factory and
which also includes a pattern argument that contains a special dynamic part: either *traverse or
*subpath.

317

29. COMBINING TRAVERSAL AND URL DISPATCH

29.2.1 The Root Object for a Route Match

A hybrid application implies that traversal is performed during a request after a route has matched. Traver-
sal, by definition, must always begin at a root object. Therefore it’s important to know which root object
will be traversed after a route has matched.

Figuring out which root object results from a particular route match is straightforward. When a route is
matched:

• If the route’s configuration has a factory argument which points to a root factory callable, that
callable will be called to generate a root object.

• If the route’s configuration does not have a factory argument, the global root factory will
be called to generate a root object. The global root factory is the callable implied by the
root_factory argument passed to the Configurator at application startup time.

• If a root_factory argument is not provided to the Configurator at startup time, a default
root factory is used. The default root factory is used to generate a root object.

Root factories related to a route were explained previously within Route Factories. Both the
global root factory and default root factory were explained previously within The Resource Tree.

29.2.2 Using *traverse in a Route Pattern

A hybrid application most often implies the inclusion of a route configuration that contains the special
token *traverse at the end of a route’s pattern:

1 config.add_route('home', '{foo}/{bar}/*traverse')

A *traverse token at the end of the pattern in a route’s configuration implies a “remainder” capture
value. When it is used, it will match the remainder of the path segments of the URL. This remainder
becomes the path used to perform traversal.

The *remainder route pattern syntax is explained in more detail within Route Pattern Syntax.

A hybrid mode application relies more heavily on traversal to do resource location and view lookup than
most examples indicate within URL Dispatch.

318

29.2. HYBRID APPLICATIONS

Because the pattern of the above route ends with *traverse, when this route configuration is matched
during a request, Pyramid will attempt to use traversal against the root object implied by the root factory
that is implied by the route’s configuration. Since no root_factory argument is explicitly specified
for this route, this will either be the global root factory for the application, or the default root factory.
Once traversal has found a context resource, view lookup will be invoked in almost exactly the same way
it would have been invoked in a “pure” traversal-based application.

Let’s assume there is no global root factory configured in this application. The default root factory cannot
be traversed; it has no useful __getitem__ method. So we’ll need to associate this route configuration
with a custom root factory in order to create a useful hybrid application. To that end, let’s imagine that
we’ve created a root factory that looks like so in a module named routes.py:

1 class Resource(object):
2 def __init__(self, subobjects):
3 self.subobjects = subobjects
4

5 def __getitem__(self, name):
6 return self.subobjects[name]
7

8 root = Resource(
9 {'a': Resource({'b': Resource({'c': Resource({})})})}

10)
11

12 def root_factory(request):
13 return root

Above we’ve defined a (bogus) resource tree that can be traversed, and a root_factory function that
can be used as part of a particular route configuration statement:

1 config.add_route('home', '{foo}/{bar}/*traverse',
2 factory='mypackage.routes.root_factory')

The factory above points at the function we’ve defined. It will return an instance of the Resource
class as a root object whenever this route is matched. Instances of the Resource class can be used for
tree traversal because they have a __getitem__ method that does something nominally useful. Since
traversal uses __getitem__ to walk the resources of a resource tree, using traversal against the root
resource implied by our route statement is a reasonable thing to do.

We could have also used our root_factory function as the root_factory argument of
the Configurator constructor, instead of associating it with a particular route inside the route’s
configuration. Every hybrid route configuration that is matched, but which does not name a factory
attribute, will use the global root_factory function to generate a root object.

319

29. COMBINING TRAVERSAL AND URL DISPATCH

When the route configuration named home above is matched during a request, the matchdict gener-
ated will be based on its pattern: {foo}/{bar}/*traverse. The “capture value” implied by the
*traverse element in the pattern will be used to traverse the resource tree in order to find a context
resource, starting from the root object returned from the root factory. In the above example, the root
object found will be the instance named root in routes.py.

If the URL that matched a route with the pattern {foo}/{bar}/*traverse is
http://example.com/one/two/a/b/c, the traversal path used against the root object will
be a/b/c. As a result, Pyramid will attempt to traverse through the edges ’a’, ’b’, and ’c’,
beginning at the root object.

In our above example, this particular set of traversal steps will mean that the context resource of the view
would be the Resource object we’ve named ’c’ in our bogus resource tree, and the view name resulting
from traversal will be the empty string. If you need a refresher about why this outcome is presumed, see
The Traversal Algorithm.

At this point, a suitable view callable will be found and invoked using view lookup as described in View
Configuration, but with a caveat: in order for view lookup to work, we need to define a view configuration
that will match when view lookup is invoked after a route matches:

1 config.add_route('home', '{foo}/{bar}/*traverse',
2 factory='mypackage.routes.root_factory')
3 config.add_view('mypackage.views.myview', route_name='home')

Note that the above call to add_view() includes a route_name argument. View configurations that
include a route_name argument are meant to associate a particular view declaration with a route, using
the route’s name, in order to indicate that the view should only be invoked when the route matches.

Calls to add_view() may pass a route_name attribute, which refers to the value of an existing
route’s name argument. In the above example, the route name is home, referring to the name of the route
defined above it.

The above mypackage.views.myview view callable will be invoked when the following conditions
are met:

• The route named “home” is matched.

• The view name resulting from traversal is the empty string.

• The context resource is any object.

It is also possible to declare alternative views that may be invoked when a hybrid route is matched:

320

29.2. HYBRID APPLICATIONS

1 config.add_route('home', '{foo}/{bar}/*traverse',
2 factory='mypackage.routes.root_factory')
3 config.add_view('mypackage.views.myview', route_name='home')
4 config.add_view('mypackage.views.another_view', route_name='home',
5 name='another')

The add_view call for mypackage.views.another_view above names a different view and,
more importantly, a different view name. The above mypackage.views.another_view view will
be invoked when the following conditions are met:

• The route named “home” is matched.

• The view name resulting from traversal is another.

• The context resource is any object.

For instance, if the URL http://example.com/one/two/a/another is provided to an applica-
tion that uses the previously mentioned resource tree, the mypackage.views.another_view view
callable will be called instead of the mypackage.views.myview view callable because the view
name will be another instead of the empty string.

More complicated matching can be composed. All arguments to route configuration statements and view
configuration statements are supported in hybrid applications (such as predicate arguments).

29.2.3 Using the traverse Argument in a Route Definition

Rather than using the *traverse remainder marker in a pattern, you can use the traverse argument
to the add_route() method.

When you use the *traverse remainder marker, the traversal path is limited to being the remainder
segments of a request URL when a route matches. However, when you use the traverse argument or
attribute, you have more control over how to compose a traversal path.

Here’s a use of the traverse pattern in a call to add_route():

1 config.add_route('abc', '/articles/{article}/edit',
2 traverse='/{article}')

321

29. COMBINING TRAVERSAL AND URL DISPATCH

The syntax of the traverse argument is the same as it is for pattern.

If, as above, the pattern provided is /articles/{article}/edit, and the traverse argu-
ment provided is /{article}, when a request comes in that causes the route to match in such a way
that the article match value is 1 (when the request URI is /articles/1/edit), the traversal path
will be generated as /1. This means that the root object’s __getitem__ will be called with the name 1
during the traversal phase. If the 1 object exists, it will become the context of the request. The Traversal
chapter has more information about traversal.

If the traversal path contains segment marker names which are not present in the pattern argument, a
runtime error will occur. The traverse pattern should not contain segment markers that do not exist in
the path.

Note that the traverse argument is ignored when attached to a route that has a *traverse remainder
marker in its pattern.

Traversal will begin at the root object implied by this route (either the global root, or the object returned
by the factory associated with this route).

Making Global Views Match

By default, only view configurations that mention a route_name will be found during view lookup
when a route that has a *traverse in its pattern matches. You can allow views without a route_name
attribute to match a route by adding the use_global_views flag to the route definition. For example,
the myproject.views.bazbuz view below will be found if the route named abc below is matched
and the PATH_INFO is /abc/bazbuz, even though the view configuration statement does not have the
route_name="abc" attribute.

1 config.add_route('abc', '/abc/*traverse', use_global_views=True)
2 config.add_view('myproject.views.bazbuz', name='bazbuz')

29.2.4 Using *subpath in a Route Pattern

There are certain extremely rare cases when you’d like to influence the traversal subpath when a route
matches without actually performing traversal. For instance, the pyramid.wsgi.wsgiapp2() dec-
orator and the pyramid.static.static_view helper attempt to compute PATH_INFO from the
request’s subpath when its use_subpath argument is True, so it’s useful to be able to influence this
value.

When *subpath exists in a pattern, no path is actually traversed, but the traversal algorithm will return
a subpath list implied by the capture value of *subpath. You’ll see this pattern most commonly in route
declarations that look like this:

322

29.3. GENERATING HYBRID URLS

1 from pyramid.static import static_view
2

3 www = static_view('mypackage:static', use_subpath=True)
4

5 config.add_route('static', '/static/*subpath')
6 config.add_view(www, route_name='static')

mypackage.views.www is an instance of pyramid.static.static_view . This effectively
tells the static helper to traverse everything in the subpath as a filename.

29.3 Generating Hybrid URLs

New in version 1.5.

The pyramid.request.Request.resource_url() method and the
pyramid.request.Request.resource_path() method both accept optional keyword
arguments that make it easier to generate route-prefixed URLs that contain paths to traversal resources:
route_name, route_kw, and route_remainder_name.

Any route that has a pattern that contains a *remainder pattern (any stararg remain-
der pattern, such as *traverse, *subpath, or *fred) can be used as the target name
for request.resource_url(..., route_name=) and request.resource_path(...,
route_name=).

For example, let’s imagine you have a route defined in your Pyramid application like so:

config.add_route('mysection', '/mysection*traverse')

If you’d like to generate the URL http://example.com/mysection/a/, you can use the follow-
ing incantation, assuming that the variable a below points to a resource that is a child of the root with a
__name__ of a:

request.resource_url(a, route_name='mysection')

You can generate only the path portion /mysection/a/ assuming the same:

request.resource_path(a, route_name='mysection')

323

29. COMBINING TRAVERSAL AND URL DISPATCH

The path is virtual host aware, so if the X-Vhm-Root environment variable is present in
the request, and it’s set to /a, the above call to request.resource_url would generate
http://example.com/mysection/, and the above call to request.resource_path would
generate /mysection/. See Virtual Root Support for more information.

If the route you’re trying to use needs simple dynamic part values to be filled in to succesfully generate
the URL, you can pass these as the route_kw argument to resource_url and resource_path.
For example, assuming that the route definition is like so:

config.add_route('mysection', '/{id}/mysection*traverse')

You can pass route_kw in to fill in {id} above:

request.resource_url(a, route_name='mysection', route_kw={'id':'1'})

If you pass route_kw but do not pass route_name, route_kw will be ignored.

By default this feature works by calling route_url under the hood, and passing the value of the re-
source path to that function as traverse. If your route has a different *stararg remainder name (such
as *subpath), you can tell resource_url or resource_path to use that instead of traverse
by passing route_remainder_name. For example, if you have the following route:

config.add_route('mysection', '/mysection*subpath')

You can fill in the *subpath value using resource_url by doing:

request.resource_path(a, route_name='mysection',
route_remainder_name='subpath')

If you pass route_remainder_name but do not pass route_name, route_remainder_name
will be ignored.

If you try to use resource_path or resource_url when the route_name argument points at a
route that does not have a remainder stararg, an error will not be raised, but the generated URL will not
contain any remainder information either.

All other values that are normally passable to resource_path and resource_url (such as query,
anchor, host, port, and positional elements) work as you might expect in this configuration.

Note that this feature is incompatible with the __resource_url__ feature (see Overriding Resource
URL Generation) implemented on resource objects. Any __resource_url__ supplied by your re-
source will be ignored when you pass route_name.

324

CHAPTER 30

Invoking a Subrequest

New in version 1.4.

Pyramid allows you to invoke a subrequest at any point during the processing of a request. Invoking a
subrequest allows you to obtain a response object from a view callable within your Pyramid application
while you’re executing a different view callable within the same application.

Here’s an example application which uses a subrequest:

1 from wsgiref.simple_server import make_server
2 from pyramid.config import Configurator
3 from pyramid.request import Request
4

5 def view_one(request):
6 subreq = Request.blank('/view_two')
7 response = request.invoke_subrequest(subreq)
8 return response
9

10 def view_two(request):
11 request.response.body = 'This came from view_two'
12 return request.response
13

14 if __name__ == '__main__':
15 config = Configurator()
16 config.add_route('one', '/view_one')
17 config.add_route('two', '/view_two')
18 config.add_view(view_one, route_name='one')
19 config.add_view(view_two, route_name='two')
20 app = config.make_wsgi_app()
21 server = make_server('0.0.0.0', 8080, app)
22 server.serve_forever()

325

30. INVOKING A SUBREQUEST

When /view_one is visted in a browser, the text printed in the browser
pane will be This came from view_two. The view_one view used the
pyramid.request.Request.invoke_subrequest() API to obtain a response from an-
other view (view_two) within the same application when it executed. It did so by constructing a new
request that had a URL that it knew would match the view_two view registration, and passed that new
request along to pyramid.request.Request.invoke_subrequest(). The view_two view
callable was invoked, and it returned a response. The view_one view callable then simply returned the
response it obtained from the view_two view callable.

Note that it doesn’t matter if the view callable invoked via a subrequest actually re-
turns a literal Response object. Any view callable that uses a renderer or which re-
turns an object that can be interpreted by a response adapter when found and invoked via
pyramid.request.Request.invoke_subrequest() will return a Response object:

1 from wsgiref.simple_server import make_server
2 from pyramid.config import Configurator
3 from pyramid.request import Request
4

5 def view_one(request):
6 subreq = Request.blank('/view_two')
7 response = request.invoke_subrequest(subreq)
8 return response
9

10 def view_two(request):
11 return 'This came from view_two'
12

13 if __name__ == '__main__':
14 config = Configurator()
15 config.add_route('one', '/view_one')
16 config.add_route('two', '/view_two')
17 config.add_view(view_one, route_name='one')
18 config.add_view(view_two, route_name='two', renderer='string')
19 app = config.make_wsgi_app()
20 server = make_server('0.0.0.0', 8080, app)
21 server.serve_forever()

Even though the view_two view callable returned a string, it was invoked in such a way that the string
renderer associated with the view registration that was found turned it into a “real” response object for
consumption by view_one.

Being able to unconditionally obtain a response object by invoking a view callable indirectly is the main
advantage to using pyramid.request.Request.invoke_subrequest() instead of simply im-
porting a view callable and executing it directly. Note that there’s not much advantage to invoking a view

326

30.1. SUBREQUESTS WITH TWEENS

using a subrequest if you can invoke a view callable directly. Subrequests are slower and are less conve-
nient if you actually do want just the literal information returned by a function that happens to be a view
callable.

Note that, by default, if a view callable invoked by a subrequest raises an exception, the exception will be
raised to the caller of invoke_subrequest() even if you have a exception view configured:

1 from wsgiref.simple_server import make_server
2 from pyramid.config import Configurator
3 from pyramid.request import Request
4

5 def view_one(request):
6 subreq = Request.blank('/view_two')
7 response = request.invoke_subrequest(subreq)
8 return response
9

10 def view_two(request):
11 raise ValueError('foo')
12

13 def excview(request):
14 request.response.body = b'An exception was raised'
15 request.response.status_int = 500
16 return request.response
17

18 if __name__ == '__main__':
19 config = Configurator()
20 config.add_route('one', '/view_one')
21 config.add_route('two', '/view_two')
22 config.add_view(view_one, route_name='one')
23 config.add_view(view_two, route_name='two', renderer='string')
24 config.add_view(excview, context=Exception)
25 app = config.make_wsgi_app()
26 server = make_server('0.0.0.0', 8080, app)
27 server.serve_forever()

When we run the above code and visit /view_one in a browser, the excview exception view will not
be executed. Instead, the call to invoke_subrequest() will cause a ValueError exception to be
raised and a response will never be generated. We can change this behavior; how to do so is described
below in our discussion of the use_tweens argument.

30.1 Subrequests with Tweens

The pyramid.request.Request.invoke_subrequest() API accepts two arguments: a re-
quired positional argument request, and an optional keyword argument use_tweens which defaults
to False.

327

http://docs.python.org/3/library/exceptions.html#ValueError

30. INVOKING A SUBREQUEST

The request object passed to the API must be an object that implements the Pyramid request interface
(such as a pyramid.request.Request instance). If use_tweens is True, the request will be
sent to the tween in the tween stack closest to the request ingress. If use_tweens is False, the request
will be sent to the main router handler, and no tweens will be invoked.

In the example above, the call to invoke_subrequest() will always raise an exception. This is
because it’s using the default value for use_tweens, which is False. Alternatively, you can pass
use_tweens=True to ensure that it will convert an exception to a Response if an exception view is
configured, instead of raising the exception. This is because exception views are called by the exception
view tween as described in Custom Exception Views when any view raises an exception.

We can cause the subrequest to be run through the tween stack by passing use_tweens=True to the
call to invoke_subrequest(), like this:

1 from wsgiref.simple_server import make_server
2 from pyramid.config import Configurator
3 from pyramid.request import Request
4

5 def view_one(request):
6 subreq = Request.blank('/view_two')
7 response = request.invoke_subrequest(subreq, use_tweens=True)
8 return response
9

10 def view_two(request):
11 raise ValueError('foo')
12

13 def excview(request):
14 request.response.body = b'An exception was raised'
15 request.response.status_int = 500
16 return request.response
17

18 if __name__ == '__main__':
19 config = Configurator()
20 config.add_route('one', '/view_one')
21 config.add_route('two', '/view_two')
22 config.add_view(view_one, route_name='one')
23 config.add_view(view_two, route_name='two', renderer='string')
24 config.add_view(excview, context=Exception)
25 app = config.make_wsgi_app()
26 server = make_server('0.0.0.0', 8080, app)
27 server.serve_forever()

In the above case, the call to request.invoke_subrequest(subreq)will not raise an exception.
Instead, it will retrieve a “500” response from the attempted invocation of view_two, because the tween
which invokes an exception view to generate a response is run, and therefore excview is executed.

328

30.1. SUBREQUESTS WITH TWEENS

This is one of the major differences between specifying the use_tweens=True and
use_tweens=False arguments to invoke_subrequest(). use_tweens=True may
also imply invoking a transaction commit or abort for the logic executed in the subrequest if you’ve got
pyramid_tm in the tween list, injecting debug HTML if you’ve got pyramid_debugtoolbar in
the tween list, and other tween-related side effects as defined by your particular tween list.

The invoke_subrequest() function also unconditionally does the following:

• It manages the threadlocal stack so that get_current_request() and
get_current_registry() work during a request (they will return the subrequest in-
stead of the original request).

• It adds a registry attribute and an invoke_subrequest attribute (a callable) to the request
object to which it is handed.

• It sets request extensions (such as those added via add_request_method() or
set_request_property()) on the subrequest object passed as request.

• It causes a NewRequest event to be sent at the beginning of request processing.

• It causes a ContextFound event to be sent when a context resource is found.

• It ensures that the user implied by the request passed in has the necessary authorization to invoke
the view callable before calling it.

• It calls any response callback functions defined within the subrequest’s lifetime if a response is
obtained from the Pyramid application.

• It causes a NewResponse event to be sent if a response is obtained.

• It calls any finished callback functions defined within the subrequest’s lifetime.

The invocation of a subrequest has more or less exactly the same effect as the invocation of a
request received by the Pyramid router from a web client when use_tweens=True. When
use_tweens=False, the tweens are skipped but all the other steps take place.

It’s a poor idea to use the original request object as an argument to invoke_subrequest().
You should construct a new request instead as demonstrated in the above example, using
pyramid.request.Request.blank(). Once you’ve constructed a request object, you’ll need
to massage it to match the view callable that you’d like to be executed during the subrequest. This can
be done by adjusting the subrequest’s URL, its headers, its request method, and other attributes. The
documentation for pyramid.request.Request exposes the methods you should call and attributes
you should set on the request that you create, then massage it into something that will actually match the
view you’d like to call via a subrequest.

We’ve demonstrated use of a subrequest from within a view callable, but you can use the
invoke_subrequest() API from within a tween or an event handler as well. Even though you can
do it, it’s usually a poor idea to invoke invoke_subrequest() from within a tween, because tweens
already, by definition, have access to a function that will cause a subrequest (they are passed a handle
function). It’s fine to invoke invoke_subrequest() from within an event handler, however.

329

30. INVOKING A SUBREQUEST

330

CHAPTER 31

Using Hooks

“Hooks” can be used to influence the behavior of the Pyramid framework in various ways.

31.1 Changing the Not Found View

When Pyramid can’t map a URL to view code, it invokes a Not Found View, which is a view callable. The
default Not Found View can be overridden through application configuration.

If your application uses imperative configuration, you can replace the Not Found View by using the
pyramid.config.Configurator.add_notfound_view() method:

1 def notfound(request):
2 return Response('Not Found, dude', status='404 Not Found')
3

4 def main(globals, **settings):
5 config = Configurator()
6 config.add_notfound_view(notfound)

The Not Found View callable is a view callable like any other.

If your application instead uses pyramid.view.view_config decorators and a scan, you can re-
place the Not Found View by using the pyramid.view.notfound_view_config decorator:

331

31. USING HOOKS

1 from pyramid.view import notfound_view_config
2

3 @notfound_view_config()
4 def notfound(request):
5 return Response('Not Found, dude', status='404 Not Found')
6

7 def main(globals, **settings):
8 config = Configurator()
9 config.scan()

This does exactly what the imperative example above showed.

Your application can define multiple Not Found Views if necessary.
Both pyramid.config.Configurator.add_notfound_view() and
pyramid.view.notfound_view_config take most of the same arguments as
pyramid.config.Configurator.add_view and pyramid.view.view_config, re-
spectively. This means that Not Found Views can carry predicates limiting their applicability. For
example:

1 from pyramid.view import notfound_view_config
2

3 @notfound_view_config(request_method='GET')
4 def notfound_get(request):
5 return Response('Not Found during GET, dude', status='404 Not Found')
6

7 @notfound_view_config(request_method='POST')
8 def notfound_post(request):
9 return Response('Not Found during POST, dude', status='404 Not Found')

10

11 def main(globals, **settings):
12 config = Configurator()
13 config.scan()

The notfound_get view will be called when a view could not be found and the request method was
GET. The notfound_post view will be called when a view could not be found and the request method
was POST.

Like any other view, the Not Found View must accept at least a request parameter, or both context
and request. The request is the current request representing the denied action. The context (if
used in the call signature) will be the instance of the HTTPNotFound exception that caused the view to
be called.

Both pyramid.config.Configurator.add_notfound_view() and
pyramid.view.notfound_view_config can be used to automatically redirect requests to
slash-appended routes. See Redirecting to Slash-Appended Routes for examples.

332

31.2. CHANGING THE FORBIDDEN VIEW

Here’s some sample code that implements a minimal Not Found View callable:

1 from pyramid.httpexceptions import HTTPNotFound
2

3 def notfound(request):
4 return HTTPNotFound()

When a Not Found View callable is invoked, it is passed a request. The exception at-
tribute of the request will be an instance of the HTTPNotFound exception that caused the Not Found
View to be called. The value of request.exception.message will be a value explaining why
the Not Found exception was raised. This message has different values depending on whether the
pyramid.debug_notfound environment setting is true or false.

Both pyramid.config.Configurator.add_notfound_view() and
pyramid.view.notfound_view_config are new as of Pyramid 1.3. Older Pyramid
documentation instructed users to use add_view instead, with a context of HTTPNotFound.
This still works; the convenience method and decorator are just wrappers around this functionality.

When a Not Found View callable accepts an argument list as described in Alternate View Callable
Argument/Calling Conventions, the context passed as the first argument to the view callable will
be the HTTPNotFound exception instance. If available, the resource context will still be available as
request.context.

31.2 Changing the Forbidden View

When Pyramid can’t authorize execution of a view based on the authorization policy in use, it invokes
a forbidden view. The default forbidden response has a 403 status code and is very plain, but the view
which generates it can be overridden as necessary.

The forbidden view callable is a view callable like any other. The view con-
figuration which causes it to be a “forbidden” view consists of using the
pyramid.config.Configurator.add_forbidden_view() API or the
pyramid.view.forbidden_view_config decorator.

For example, you can add a forbidden view by using the
pyramid.config.Configurator.add_forbidden_view() method to register a forbid-
den view:

333

31. USING HOOKS

1 def forbidden(request):
2 return Response('forbidden')
3

4 def main(globals, **settings):
5 config = Configurator()
6 config.add_forbidden_view(forbidden_view)

If instead you prefer to use decorators and a scan, you can use the
pyramid.view.forbidden_view_config decorator to mark a view callable as a forbid-
den view:

1 from pyramid.view import forbidden_view_config
2

3 @forbidden_view_config()
4 def forbidden(request):
5 return Response('forbidden')
6

7 def main(globals, **settings):
8 config = Configurator()
9 config.scan()

Like any other view, the forbidden view must accept at least a request parameter, or both context
and request. If a forbidden view callable accepts both context and request, the HTTP Exception
is passed as context. The context as found by the router when the view was denied (which you normally
would expect) is available as request.context. The request is the current request representing
the denied action.

Here’s some sample code that implements a minimal forbidden view:

1 from pyramid.view import view_config
2 from pyramid.response import Response
3

4 def forbidden_view(request):
5 return Response('forbidden')

When a forbidden view callable is invoked, it is passed a request. The exception attribute
of the request will be an instance of the HTTPForbidden exception that caused the forbidden view
to be called. The value of request.exception.message will be a value explaining why the
forbidden exception was raised, and request.exception.result will be extended informa-
tion about the forbidden exception. These messages have different values depending on whether the
pyramid.debug_authorization environment setting is true or false.

334

31.3. CHANGING THE REQUEST FACTORY

31.3 Changing the Request Factory

Whenever Pyramid handles a request from a WSGI server, it creates a request object based on the WSGI
environment it has been passed. By default, an instance of the pyramid.request.Request class is
created to represent the request object.

The class (a.k.a., “factory”) that Pyramid uses to create a request object instance can be changed by
passing a request_factory argument to the constructor of the configurator. This argument can be
either a callable or a dotted Python name representing a callable.

1 from pyramid.request import Request
2

3 class MyRequest(Request):
4 pass
5

6 config = Configurator(request_factory=MyRequest)

If you’re doing imperative configuration, and you’d rather do it after
you’ve already constructed a configurator, it can also be registered via the
pyramid.config.Configurator.set_request_factory() method:

1 from pyramid.config import Configurator
2 from pyramid.request import Request
3

4 class MyRequest(Request):
5 pass
6

7 config = Configurator()
8 config.set_request_factory(MyRequest)

31.4 Adding Methods or Properties to a Request Object

New in version 1.4.

Since each Pyramid application can only have one request factory, changing the request factory is not that
extensible, especially if you want to build composable features (e.g., Pyramid add-ons and plugins).

A lazy property can be registered to the request object via the
pyramid.config.Configurator.add_request_method() API. This allows you to

335

31. USING HOOKS

specify a callable that will be available on the request object, but will not actually execute the function
until accessed.

This will silently override methods and properties from request factory that have the same name.

1 from pyramid.config import Configurator
2

3 def total(request, *args):
4 return sum(args)
5

6 def prop(request):
7 print("getting the property")
8 return "the property"
9

10 config = Configurator()
11 config.add_request_method(total)
12 config.add_request_method(prop, reify=True)

In the above example, total is added as a method. However, prop is added as a property and its
result is cached per-request by setting reify=True. This way, we eliminate the overhead of running
the function multiple times.

>>> request.total(1, 2, 3)
6
>>> request.prop
getting the property
the property
>>> request.prop
the property

To not cache the result of request.prop, set property=True instead of reify=True.

Here is an example of passing a class to Configurator.add_request_method:

1 from pyramid.config import Configurator
2 from pyramid.decorator import reify
3

4 class ExtraStuff(object):
5

6 def __init__(self, request):
7 self.request = request
8

336

31.5. USING THE BEFORE RENDER EVENT

9 def total(self, *args):
10 return sum(args)
11

12 # use @property if you don't want to cache the result
13 @reify
14 def prop(self):
15 print("getting the property")
16 return "the property"
17

18 config = Configurator()
19 config.add_request_method(ExtraStuff, 'extra', reify=True)

We attach and cache an object named extra to the request object.

>>> request.extra.total(1, 2, 3)
6
>>> request.extra.prop
getting the property
the property
>>> request.extra.prop
the property

31.5 Using the Before Render Event

Subscribers to the pyramid.events.BeforeRender event may introspect and modify the set of
renderer globals before they are passed to a renderer. This event object iself has a dictionary-like interface
that can be used for this purpose. For example:

1 from pyramid.events import subscriber
2 from pyramid.events import BeforeRender
3

4 @subscriber(BeforeRender)
5 def add_global(event):
6 event['mykey'] = 'foo'

An object of this type is sent as an event just before a renderer is invoked.

If a subscriber attempts to add a key that already exists in the renderer globals dictionary, a KeyError
is raised. This limitation is enforced because event subscribers do not possess any relative ordering.

337

http://docs.python.org/3/library/exceptions.html#KeyError

31. USING HOOKS

The set of keys added to the renderer globals dictionary by all pyramid.events.BeforeRender
subscribers and renderer globals factories must be unique.

The dictionary returned from the view is accessible through the rendering_val attribute of a
BeforeRender event.

Suppose you return {’mykey’: ’somevalue’, ’mykey2’: ’somevalue2’} from your
view callable, like so:

1 from pyramid.view import view_config
2

3 @view_config(renderer='some_renderer')
4 def myview(request):
5 return {'mykey': 'somevalue', 'mykey2': 'somevalue2'}

rendering_val can be used to access these values from the BeforeRender object:

1 from pyramid.events import subscriber
2 from pyramid.events import BeforeRender
3

4 @subscriber(BeforeRender)
5 def read_return(event):
6 # {'mykey': 'somevalue'} is returned from the view
7 print(event.rendering_val['mykey'])

See the API documentation for the BeforeRender event interface at
pyramid.interfaces.IBeforeRender.

31.6 Using Response Callbacks

Unlike many other web frameworks, Pyramid does not eagerly create a global response object. Adding a
response callback allows an application to register an action to be performed against whatever response
object is returned by a view, usually in order to mutate the response.

The pyramid.request.Request.add_response_callback() method is used to register a
response callback.

A response callback is a callable which accepts two positional parameters: request and response.
For example:

338

31.7. USING FINISHED CALLBACKS

1 def cache_callback(request, response):
2 """Set the cache_control max_age for the response"""
3 if request.exception is not None:
4 response.cache_control.max_age = 360
5 request.add_response_callback(cache_callback)

No response callback is called if an unhandled exception happens in application code, or if the response
object returned by a view callable is invalid. Response callbacks are, however, invoked when a exception
view is rendered successfully. In such a case, the request.exception attribute of the request when
it enters a response callback will be an exception object instead of its default value of None.

Response callbacks are called in the order they’re added (first-to-most-recently-added). All response
callbacks are called before the NewResponse event is sent. Errors raised by response callbacks are not
handled specially. They will be propagated to the caller of the Pyramid router application.

A response callback has a lifetime of a single request. If you want a response callback to happen as
the result of every request, you must re-register the callback into every new request (perhaps within a
subscriber of a NewRequest event).

31.7 Using Finished Callbacks

A finished callback is a function that will be called unconditionally by the Pyramid router at the very
end of request processing. A finished callback can be used to perform an action at the end of a request
unconditionally.

The pyramid.request.Request.add_finished_callback() method is used to register a
finished callback.

A finished callback is a callable which accepts a single positional parameter: request. For example:

1 import logging
2

3 log = logging.getLogger(__name__)
4

5 def log_callback(request):
6 """Log information at the end of request"""
7 log.debug('Request is finished.')
8 request.add_finished_callback(log_callback)

339

31. USING HOOKS

Finished callbacks are called in the order they’re added (first-to-most-recently-added). Finished callbacks
(unlike a response callback) are always called, even if an exception happens in application code that
prevents a response from being generated.

The set of finished callbacks associated with a request are called very late in the processing of that request;
they are essentially the very last thing called by the router before a request “ends”. They are called
after response processing has already occurred in a top-level finally: block within the router request
processing code. As a result, mutations performed to the request provided to a finished callback will
have no meaningful effect, because response processing will have already occurred, and the request’s
scope will expire almost immediately after all finished callbacks have been processed.

Errors raised by finished callbacks are not handled specially. They will be propagated to the caller of the
Pyramid router application.

A finished callback has a lifetime of a single request. If you want a finished callback to happen as the result
of every request, you must re-register the callback into every new request (perhaps within a subscriber of
a NewRequest event).

31.8 Changing the Traverser

The default traversal algorithm that Pyramid uses is explained in The Traversal Algorithm. Though it is
rarely necessary, this default algorithm can be swapped out selectively for a different traversal pattern via
configuration.

1 from pyramid.config import Configurator
2 from myapp.traversal import Traverser
3 config = Configurator()
4 config.add_traverser(Traverser)

In the example above, myapp.traversal.Traverser is assumed to be a class that implements the
following interface:

1 class Traverser(object):
2 def __init__(self, root):
3 """ Accept the root object returned from the root factory """
4

5 def __call__(self, request):
6 """ Return a dictionary with (at least) the keys ``root``,
7 ``context``, ``view_name``, ``subpath``, ``traversed``,
8 ``virtual_root``, and ``virtual_root_path``. These values are
9 typically the result of a resource tree traversal. ``root``

340

31.9. CHANGING HOW PYRAMID.REQUEST.REQUEST.RESOURCE_URL() GENERATES A
URL

10 is the physical root object, ``context`` will be a resource
11 object, ``view_name`` will be the view name used (a Unicode
12 name), ``subpath`` will be a sequence of Unicode names that
13 followed the view name but were not traversed, ``traversed``
14 will be a sequence of Unicode names that were traversed
15 (including the virtual root path, if any) ``virtual_root``
16 will be a resource object representing the virtual root (or the
17 physical root if traversal was not performed), and
18 ``virtual_root_path`` will be a sequence representing the
19 virtual root path (a sequence of Unicode names) or None if
20 traversal was not performed.
21

22 Extra keys for special purpose functionality can be added as
23 necessary.
24

25 All values returned in the dictionary will be made available
26 as attributes of the ``request`` object.
27 """

More than one traversal algorithm can be active at the same time. For instance, if your root factory returns
more than one type of object conditionally, you could claim that an alternative traverser adapter is “for”
only one particular class or interface. When the root factory returned an object that implemented that
class or interface, a custom traverser would be used. Otherwise the default traverser would be used. For
example:

1 from myapp.traversal import Traverser
2 from myapp.resources import MyRoot
3 from pyramid.config import Configurator
4 config = Configurator()
5 config.add_traverser(Traverser, MyRoot)

If the above stanza was added to a Pyramid __init__.py file’s main function, Pyramid would use
the myapp.traversal.Traverser only when the application root factory returned an instance of
the myapp.resources.MyRoot object. Otherwise it would use the default Pyramid traverser to do
traversal.

31.9 Changing How pyramid.request.Request.resource_url()
Generates a URL

When you add a traverser as described in Changing the Traverser, it’s often convenient to continue to
use the pyramid.request.Request.resource_url() API. However, since the way traversal

341

31. USING HOOKS

is done will have been modified, the URLs it generates by default may be incorrect when used against
resources derived from your custom traverser.

If you’ve added a traverser, you can change how resource_url() gen-
erates a URL for a specific type of resource by adding a call to
pyramid.config.Configurator.add_resource_url_adapter().

For example:

1 from myapp.traversal import ResourceURLAdapter
2 from myapp.resources import MyRoot
3

4 config.add_resource_url_adapter(ResourceURLAdapter, MyRoot)

In the above example, the myapp.traversal.ResourceURLAdapter class will be used to pro-
vide services to resource_url() any time the resource passed to resource_url is of the class
myapp.resources.MyRoot. The resource_iface argument MyRoot represents the type of
interface that must be possessed by the resource for this resource url factory to be found. If the
resource_iface argument is omitted, this resource URL adapter will be used for all resources.

The API that must be implemented by a class that provides IResourceURL is as follows:

1 class MyResourceURL(object):
2 """ An adapter which provides the virtual and physical paths of a
3 resource
4 """
5 def __init__(self, resource, request):
6 """ Accept the resource and request and set self.physical_path and
7 self.virtual_path """
8 self.virtual_path = some_function_of(resource, request)
9 self.physical_path = some_other_function_of(resource, request)

The default context URL generator is available for perusal as the class
pyramid.traversal.ResourceURL in the traversal module of the Pylons GitHub Pyramid
repository.

See pyramid.config.Configurator.add_resource_url_adapter() for more informa-
tion.

342

https://github.com/Pylons/pyramid/blob/master/pyramid/traversal.py

31.10. CHANGING HOW PYRAMID TREATS VIEW RESPONSES

31.10 Changing How Pyramid Treats View Responses

New in version 1.1.

It is possible to control how Pyramid treats the result of calling a view callable on a per-type basis by
using a hook involving pyramid.config.Configurator.add_response_adapter() or the
response_adapter decorator.

Pyramid, in various places, adapts the result of calling a view callable to the IResponse interface
to ensure that the object returned by the view callable is a “true” response object. The vast ma-
jority of time, the result of this adaptation is the result object itself, as view callables written by
“civilians” who read the narrative documentation contained in this manual will always return some-
thing that implements the IResponse interface. Most typically, this will be an instance of the
pyramid.response.Response class or a subclass. If a civilian returns a non-Response object
from a view callable that isn’t configured to use a renderer, they will typically expect the router to raise
an error. However, you can hook Pyramid in such a way that users can return arbitrary values from a view
callable by providing an adapter which converts the arbitrary return value into something that implements
IResponse.

For example, if you’d like to allow view callables to return bare string objects (without requiring a ren-
derer to convert a string to a response object), you can register an adapter which converts the string to a
Response:

1 from pyramid.response import Response
2

3 def string_response_adapter(s):
4 response = Response(s)
5 return response
6

7 # config is an instance of pyramid.config.Configurator
8

9 config.add_response_adapter(string_response_adapter, str)

Likewise, if you want to be able to return a simplified kind of response object from view callables, you
can use the IResponse hook to register an adapter to the more complex IResponse interface:

1 from pyramid.response import Response
2

3 class SimpleResponse(object):
4 def __init__(self, body):
5 self.body = body
6

343

31. USING HOOKS

7 def simple_response_adapter(simple_response):
8 response = Response(simple_response.body)
9 return response

10

11 # config is an instance of pyramid.config.Configurator
12

13 config.add_response_adapter(simple_response_adapter, SimpleResponse)

If you want to implement your own Response object instead of using the
pyramid.response.Response object in any capacity at all, you’ll have to make sure that
the object implements every attribute and method outlined in pyramid.interfaces.IResponse
and you’ll have to ensure that it uses zope.interface.implementer(IResponse) as a class
decorator.

1 from pyramid.interfaces import IResponse
2 from zope.interface import implementer
3

4 @implementer(IResponse)
5 class MyResponse(object):
6 # ... an implementation of every method and attribute
7 # documented in IResponse should follow ...

When an alternate response object implementation is returned by a view callable, if that object asserts
that it implements IResponse (via zope.interface.implementer(IResponse)) , an adapter
needn’t be registered for the object; Pyramid will use it directly.

An IResponse adapter for webob.Response (as opposed to pyramid.response.Response) is
registered by Pyramid by default at startup time, as by their nature, instances of this class (and instances of
subclasses of the class) will natively provide IResponse. The adapter registered for webob.Response
simply returns the response object.

Instead of using pyramid.config.Configurator.add_response_adapter(), you can use
the pyramid.response.response_adapter decorator:

1 from pyramid.response import Response
2 from pyramid.response import response_adapter
3

4 @response_adapter(str)
5 def string_response_adapter(s):
6 response = Response(s)
7 return response

The above example, when scanned, has the same effect as:

344

31.11. USING A VIEW MAPPER

config.add_response_adapter(string_response_adapter, str)

The response_adapter decorator will have no effect until activated by a scan.

31.11 Using a View Mapper

The default calling conventions for view callables are documented in the Views chapter. You can change
the way users define view callables by employing a view mapper.

A view mapper is an object that accepts a set of keyword arguments and which returns a callable. The
returned callable is called with the view callable object. The returned callable should itself return another
callable which can be called with the “internal calling protocol” (context, request).

You can use a view mapper in a number of ways:

• by setting a __view_mapper__ attribute (which is the view mapper object) on the view callable
itself

• by passing the mapper object to pyramid.config.Configurator.add_view() (or its
declarative and decorator equivalents) as the mapper argument

• by registering a default view mapper

Here’s an example of a view mapper that emulates (somewhat) a Pylons “controller”. The mapper is
initialized with some keyword arguments. Its __call__ method accepts the view object (which will be
a class). It uses the attr keyword argument it is passed to determine which attribute should be used as an
action method. The wrapper method it returns accepts (context, request) and returns the result of
calling the action method with keyword arguments implied by the matchdict after popping the action
out of it. This somewhat emulates the Pylons style of calling action methods with routing parameters
pulled out of the route matching dict as keyword arguments.

1 # framework
2

3 class PylonsControllerViewMapper(object):
4 def __init__(self, **kw):
5 self.kw = kw
6

7 def __call__(self, view):
8 attr = self.kw['attr']
9 def wrapper(context, request):

345

31. USING HOOKS

10 matchdict = request.matchdict.copy()
11 matchdict.pop('action', None)
12 inst = view(request)
13 meth = getattr(inst, attr)
14 return meth(**matchdict)
15 return wrapper
16

17 class BaseController(object):
18 __view_mapper__ = PylonsControllerViewMapper

A user might make use of these framework components like so:

1 # user application
2

3 from pyramid.response import Response
4 from pyramid.config import Configurator
5 import pyramid_handlers
6 from wsgiref.simple_server import make_server
7

8 class MyController(BaseController):
9 def index(self, id):

10 return Response(id)
11

12 if __name__ == '__main__':
13 config = Configurator()
14 config.include(pyramid_handlers)
15 config.add_handler('one', '/{id}', MyController, action='index')
16 config.add_handler('two', '/{action}/{id}', MyController)
17 server.make_server('0.0.0.0', 8080, config.make_wsgi_app())
18 server.serve_forever()

The pyramid.config.Configurator.set_view_mapper() method can be used to set a de-
fault view mapper (overriding the superdefault view mapper used by Pyramid itself).

A single view registration can use a view mapper by passing the mapper as the mapper argument to
add_view().

31.12 Registering Configuration Decorators

Decorators such as view_config don’t change the behavior of the functions or classes they’re deco-
rating. Instead when a scan is performed, a modified version of the function or class is registered with
Pyramid.

346

31.12. REGISTERING CONFIGURATION DECORATORS

You may wish to have your own decorators that offer such behaviour. This is possible by using the
Venusian package in the same way that it is used by Pyramid.

By way of example, let’s suppose you want to write a decorator that registers the function it wraps with
a Zope Component Architecture “utility” within the application registry provided by Pyramid. The ap-
plication registry and the utility inside the registry is likely only to be available once your application’s
configuration is at least partially completed. A normal decorator would fail as it would be executed before
the configuration had even begun.

However, using Venusian, the decorator could be written as follows:

1 import venusian
2 from mypackage.interfaces import IMyUtility
3

4 class registerFunction(object):
5

6 def __init__(self, path):
7 self.path = path
8

9 def register(self, scanner, name, wrapped):
10 registry = scanner.config.registry
11 registry.getUtility(IMyUtility).register(
12 self.path, wrapped)
13

14 def __call__(self, wrapped):
15 venusian.attach(wrapped, self.register)
16 return wrapped

This decorator could then be used to register functions throughout your code:

1 @registerFunction('/some/path')
2 def my_function():
3 do_stuff()

However, the utility would only be looked up when a scan was performed, enabling you to set up the
utility in advance:

1 from zope.interface import implementer
2

3 from wsgiref.simple_server import make_server
4 from pyramid.config import Configurator
5 from mypackage.interfaces import IMyUtility
6

7 @implementer(IMyUtility)

347

31. USING HOOKS

8 class UtilityImplementation:
9

10 def __init__(self):
11 self.registrations = {}
12

13 def register(self, path, callable_):
14 self.registrations[path] = callable_
15

16 if __name__ == '__main__':
17 config = Configurator()
18 config.registry.registerUtility(UtilityImplementation())
19 config.scan()
20 app = config.make_wsgi_app()
21 server = make_server('0.0.0.0', 8080, app)
22 server.serve_forever()

For full details, please read the Venusian documentation.

31.13 Registering Tweens

New in version 1.2: Tweens

A tween (a contraction of the word “between”) is a bit of code that sits between the Pyramid router’s
main request handling function and the upstream WSGI component that uses Pyramid as its “app”. This
is a feature that may be used by Pyramid framework extensions to provide, for example, Pyramid-specific
view timing support bookkeeping code that examines exceptions before they are returned to the upstream
WSGI application. Tweens behave a bit like WSGI middleware, but they have the benefit of running in a
context in which they have access to the Pyramid request, response, and application registry, as well as
the Pyramid rendering machinery.

31.13.1 Creating a Tween

To create a tween, you must write a “tween factory”. A tween factory must be a globally importable
callable which accepts two arguments: handler and registry. handler will be either the main
Pyramid request handling function or another tween. registrywill be the Pyramid application registry
represented by this Configurator. A tween factory must return the tween (a callable object) when it is
called.

A tween is called with a single argument, request, which is the request created by Pyramid’s router
when it receives a WSGI request. A tween should return a response, usually the one generated by the
downstream Pyramid application.

You can write the tween factory as a simple closure-returning function:

348

http://docs.repoze.org/venusian

31.13. REGISTERING TWEENS

1 def simple_tween_factory(handler, registry):
2 # one-time configuration code goes here
3

4 def simple_tween(request):
5 # code to be executed for each request before
6 # the actual application code goes here
7

8 response = handler(request)
9

10 # code to be executed for each request after
11 # the actual application code goes here
12

13 return response
14

15 return simple_tween

Alternatively, the tween factory can be a class with the __call__ magic method:

1 class simple_tween_factory(object):
2 def __init__(self, handler, registry):
3 self.handler = handler
4 self.registry = registry
5

6 # one-time configuration code goes here
7

8 def __call__(self, request):
9 # code to be executed for each request before

10 # the actual application code goes here
11

12 response = self.handler(request)
13

14 # code to be executed for each request after
15 # the actual application code goes here
16

17 return response

You should avoid mutating any state on the tween instance. The tween is invoked once per request and
any shared mutable state needs to be carefully handled to avoid any race conditions.

The closure style performs slightly better and enables you to conditionally omit the tween from the request
processing pipeline (see the following timing tween example), whereas the class style makes it easier to
have shared mutable state and allows subclassing.

Here’s a complete example of a tween that logs the time spent processing each request:

349

31. USING HOOKS

1 # in a module named myapp.tweens
2

3 import time
4 from pyramid.settings import asbool
5 import logging
6

7 log = logging.getLogger(__name__)
8

9 def timing_tween_factory(handler, registry):
10 if asbool(registry.settings.get('do_timing')):
11 # if timing support is enabled, return a wrapper
12 def timing_tween(request):
13 start = time.time()
14 try:
15 response = handler(request)
16 finally:
17 end = time.time()
18 log.debug('The request took %s seconds' %
19 (end - start))
20 return response
21 return timing_tween
22 # if timing support is not enabled, return the original
23 # handler
24 return handler

In the above example, the tween factory defines a timing_tween tween and returns it if
asbool(registry.settings.get(’do_timing’)) is true. It otherwise simply returns the
handler which it was given. The registry.settings attribute is a handle to the deployment settings
provided by the user (usually in an .ini file). In this case, if the user has defined a do_timing setting
and that setting is True, the user has said they want to do timing, so the tween factory returns the timing
tween; it otherwise just returns the handler it has been provided, preventing any timing.

The example timing tween simply records the start time, calls the downstream handler, logs the number
of seconds consumed by the downstream handler, and returns the response.

31.13.2 Registering an Implicit Tween Factory

Once you’ve created a tween factory, you can register it into the implicit tween chain using the
pyramid.config.Configurator.add_tween() method using its dotted Python name.

Here’s an example of registering a tween factory as an “implicit” tween in a Pyramid application:

350

31.13. REGISTERING TWEENS

1 from pyramid.config import Configurator
2 config = Configurator()
3 config.add_tween('myapp.tweens.timing_tween_factory')

Note that you must use a dotted Python name as the first argument to
pyramid.config.Configurator.add_tween(); this must point at a tween factory. You
cannot pass the tween factory object itself to the method: it must be dotted Python name that points to
a globally importable object. In the above example, we assume that a timing_tween_factory
tween factory was defined in a module named myapp.tweens, so the tween factory is importable as
myapp.tweens.timing_tween_factory.

When you use pyramid.config.Configurator.add_tween(), you’re instructing the system
to use your tween factory at startup time unless the user has provided an explicit tween list in their
configuration. This is what’s meant by an “implicit” tween. A user can always elect to supply an explicit
tween list, reordering or disincluding implicitly added tweens. See Explicit Tween Ordering for more
information about explicit tween ordering.

If more than one call to pyramid.config.Configurator.add_tween() is made within a sin-
gle application configuration, the tweens will be chained together at application startup time. The first
tween factory added via add_tween will be called with the Pyramid exception view tween factory as
its handler argument, then the tween factory added directly after that one will be called with the result
of the first tween factory as its handler argument, and so on, ad infinitum until all tween factories have
been called. The Pyramid router will use the outermost tween produced by this chain (the tween generated
by the very last tween factory added) as its request handler function. For example:

1 from pyramid.config import Configurator
2

3 config = Configurator()
4 config.add_tween('myapp.tween_factory1')
5 config.add_tween('myapp.tween_factory2')

The above example will generate an implicit tween chain that looks like this:

INGRESS (implicit)
myapp.tween_factory2
myapp.tween_factory1
pyramid.tweens.excview_tween_factory (implicit)
MAIN (implicit)

351

31. USING HOOKS

31.13.3 Suggesting Implicit Tween Ordering

By default, as described above, the ordering of the chain is controlled entirely by the relative ordering of
calls to pyramid.config.Configurator.add_tween(). However, the caller of add_tween
can provide an optional hint that can influence the implicit tween chain ordering by supplying under or
over (or both) arguments to add_tween(). These hints are only used when an explicit tween ordering
is not used. See Explicit Tween Ordering for a description of how to set an explicit tween ordering.

Allowable values for under or over (or both) are:

• None (the default),

• a dotted Python name to a tween factory: a string representing the predicted dotted name of a tween
factory added in a call to add_tween in the same configuration session,

• one of the constants pyramid.tweens.MAIN , pyramid.tweens.INGRESS, or
pyramid.tweens.EXCVIEW , or

• an iterable of any combination of the above. This allows the user to specify fallbacks if the desired
tween is not included, as well as compatibility with multiple other tweens.

Effectively, over means “closer to the request ingress than” and under means “closer to the main Pyra-
mid application than”. You can think of an onion with outer layers over the inner layers, the application
being under all the layers at the center.

For example, the following call to add_tween() will attempt to place the tween factory represented by
myapp.tween_factory directly “above” (in ptweens order) the main Pyramid request handler.

1 import pyramid.tweens
2

3 config.add_tween('myapp.tween_factory', over=pyramid.tweens.MAIN)

The above example will generate an implicit tween chain that looks like this:

INGRESS (implicit)
pyramid.tweens.excview_tween_factory (implicit)
myapp.tween_factory
MAIN (implicit)

Likewise, calling the following call to add_tween() will attempt to place this tween factory “above”
the main handler but “below” a separately added tween factory:

352

31.13. REGISTERING TWEENS

1 import pyramid.tweens
2

3 config.add_tween('myapp.tween_factory1',
4 over=pyramid.tweens.MAIN)
5 config.add_tween('myapp.tween_factory2',
6 over=pyramid.tweens.MAIN,
7 under='myapp.tween_factory1')

The above example will generate an implicit tween chain that looks like this:

INGRESS (implicit)
pyramid.tweens.excview_tween_factory (implicit)
myapp.tween_factory1
myapp.tween_factory2
MAIN (implicit)

Specifying neither over nor under is equivalent to specifying under=INGRESS.

If all options for under (or over) cannot be found in the current configuration, it is an er-
ror. If some options are specified purely for compatibilty with other tweens, just add a fallback
of MAIN or INGRESS. For example, under=(’someothertween’, ’someothertween2’,
INGRESS). This constraint will require the tween to be located under the someothertween tween,
the someothertween2 tween, and INGRESS. If any of these is not in the current configuration, this
constraint will only organize itself based on the tweens that are present.

31.13.4 Explicit Tween Ordering

Implicit tween ordering is obviously only best-effort. Pyramid will attempt to provide an implicit order of
tweens as best it can using hints provided by calls to add_tween(). But because it’s only best-effort, if
very precise tween ordering is required, the only surefire way to get it is to use an explicit tween order. The
deploying user can override the implicit tween inclusion and ordering implied by calls to add_tween()
entirely by using the pyramid.tweens settings value. When used, this settings value must be a list of
Python dotted names which will override the ordering (and inclusion) of tween factories in the implicit
tween chain. For example:

1 [app:main]
2 use = egg:MyApp
3 pyramid.reload_templates = true
4 pyramid.debug_authorization = false
5 pyramid.debug_notfound = false

353

31. USING HOOKS

6 pyramid.debug_routematch = false
7 pyramid.debug_templates = true
8 pyramid.tweens = myapp.my_cool_tween_factory
9 pyramid.tweens.excview_tween_factory

In the above configuration, calls made during configuration to
pyramid.config.Configurator.add_tween() are ignored, and the user is telling the
system to use the tween factories he has listed in the pyramid.tweens configuration setting
(each is a dotted Python name which points to a tween factory) instead of any tween factories
added via pyramid.config.Configurator.add_tween(). The first tween factory in the
pyramid.tweens list will be used as the producer of the effective Pyramid request handling function;
it will wrap the tween factory declared directly “below” it, ad infinitum. The “main” Pyramid request
handler is implicit, and always “at the bottom”.

Pyramid’s own exception view handling logic is implemented as a tween factory func-
tion: pyramid.tweens.excview_tween_factory(). If Pyramid exception view han-
dling is desired, and tween factories are specified via the pyramid.tweens configuration set-
ting, the pyramid.tweens.excview_tween_factory() function must be added to the
pyramid.tweens configuration setting list explicitly. If it is not present, Pyramid will not per-
form exception view handling.

31.13.5 Tween Conflicts and Ordering Cycles

Pyramid will prevent the same tween factory from being added to the tween chain more than
once using configuration conflict detection. If you wish to add the same tween factory more than
once in a configuration, you should either: (a) use a tween factory that is a separate globally im-
portable instance object from the factory that it conflicts with; (b) use a function or class as a
tween factory with the same logic as the other tween factory it conflicts with, but with a different
__name__ attribute; or (c) call pyramid.config.Configurator.commit() between calls to
pyramid.config.Configurator.add_tween().

If a cycle is detected in implicit tween ordering when over and under are used in any call to
add_tween, an exception will be raised at startup time.

31.13.6 Displaying Tween Ordering

The ptweens command-line utility can be used to report the current implict and explicit tween chains
used by an application. See Displaying “Tweens”.

354

31.14. ADDING A THIRD PARTY VIEW, ROUTE, OR SUBSCRIBER PREDICATE

31.14 Adding a Third Party View, Route, or Subscriber Predi-
cate

New in version 1.4.

31.14.1 View and Route Predicates

View and route predicates used during configuration allow you to narrow the set of circumstances under
which a view or route will match. For example, the request_method view predicate can be used to
ensure a view callable is only invoked when the request’s method is POST:

@view_config(request_method='POST')
def someview(request):

...

Likewise, a similar predicate can be used as a route predicate:

config.add_route('name', '/foo', request_method='POST')

Many other built-in predicates exists (request_param, and others). You
can add third-party predicates to the list of available predicates by us-
ing one of pyramid.config.Configurator.add_view_predicate() or
pyramid.config.Configurator.add_route_predicate(). The former adds a view
predicate, the latter a route predicate.

When using one of those APIs, you pass a name and a factory to add a predicate during Pyramid’s
configuration stage. For example:

config.add_view_predicate('content_type', ContentTypePredicate)

The above example adds a new predicate named content_type to the list of available predicates for
views. This will allow the following view configuration statement to work:

1 @view_config(content_type='File')
2 def aview(request): ...

355

31. USING HOOKS

The first argument to pyramid.config.Configurator.add_view_predicate(), the name,
is a string representing the name that is expected to be passed to view_config (or its imperative
analogue add_view).

The second argument is a view or route predicate factory, or a dotted Python name which refers to a
view or route predicate factory. A view or route predicate factory is most often a class with a constructor
(__init__), a text method, a phash method, and a __call__ method. For example:

1 class ContentTypePredicate(object):
2 def __init__(self, val, config):
3 self.val = val
4

5 def text(self):
6 return 'content_type = %s' % (self.val,)
7

8 phash = text
9

10 def __call__(self, context, request):
11 return getattr(context, 'content_type', None) == self.val

The constructor of a predicate factory takes two arguments: val and config. The val argument will
be the argument passed to view_config (or add_view). In the example above, it will be the string
File. The second argument, config, will be the Configurator instance at the time of configuration.

The text method must return a string. It should be useful to describe the behavior of the predicate in
error messages.

The phash method must return a string or a sequence of strings. It’s most often the same as text, as
long as text uniquely describes the predicate’s name and the value passed to the constructor. If text
is more general, or doesn’t describe things that way, phash should return a string with the name and
the value serialized. The result of phash is not seen in output anywhere, it just informs the uniqueness
constraints for view configuration.

The __call__ method of a predicate factory must accept a resource (context) and a request, and
must return True or False. It is the “meat” of the predicate.

You can use the same predicate factory as both a view predicate and as a route predicate, but you’ll need
to call add_view_predicate and add_route_predicate separately with the same factory.

356

31.14. ADDING A THIRD PARTY VIEW, ROUTE, OR SUBSCRIBER PREDICATE

31.14.2 Subscriber Predicates

Subscriber predicates work almost exactly like view and route predicates. They narrow the set of circum-
stances in which a subscriber will be called. There are several minor differences between a subscriber
predicate and a view or route predicate:

• There are no default subscriber predicates. You must register one to use one.

• The __call__ method of a subscriber predicate accepts a single event object instead of a
context and a request.

• Not every subscriber predicate can be used with every event type. Some subscriber predicates will
assume a certain event type.

Here’s an example of a subscriber predicate that can be used in conjunction with a subscriber that sub-
scribes to the pyramid.events.NewRequest event type.

1 class RequestPathStartsWith(object):
2 def __init__(self, val, config):
3 self.val = val
4

5 def text(self):
6 return 'path_startswith = %s' % (self.val,)
7

8 phash = text
9

10 def __call__(self, event):
11 return event.request.path.startswith(self.val)

Once you’ve created a subscriber predicate, it may registered via
pyramid.config.Configurator.add_subscriber_predicate(). For example:

config.add_subscriber_predicate(
'request_path_startswith', RequestPathStartsWith)

Once a subscriber predicate is registered, you can use it in a call
to pyramid.config.Configurator.add_subscriber() or to
pyramid.events.subscriber. Here’s an example of using the previously registered
request_path_startswith predicate in a call to add_subscriber():

357

31. USING HOOKS

1 # define a subscriber in your code
2

3 def yosubscriber(event):
4 event.request.yo = 'YO!'
5

6 # and at configuration time
7

8 config.add_subscriber(yosubscriber, NewRequest,
9 request_path_startswith='/add_yo')

Here’s the same subscriber/predicate/event-type combination used via subscriber.

1 from pyramid.events import subscriber
2

3 @subscriber(NewRequest, request_path_startswith='/add_yo')
4 def yosubscriber(event):
5 event.request.yo = 'YO!'

In either of the above configurations, the yosubscriber callable will only be called if the request path
starts with /add_yo. Otherwise the event subscriber will not be called.

Note that the request_path_startswith subscriber you defined can be used with events that have
a request attribute, but not ones that do not. So, for example, the predicate can be used with subscribers
registered for pyramid.events.NewRequest and pyramid.events.ContextFound events,
but it cannot be used with subscribers registered for pyramid.events.ApplicationCreated
because the latter type of event has no request attribute. The point being, unlike route and view
predicates, not every type of subscriber predicate will necessarily be applicable for use in every subscriber
registration. It is not the responsibility of the predicate author to make every predicate make sense for
every event type; it is the responsibility of the predicate consumer to use predicates that make sense for a
particular event type registration.

358

CHAPTER 32

Pyramid Configuration Introspection

New in version 1.3.

When Pyramid starts up, each call to a configuration directive causes one or more introspectable objects
to be registered with an introspector. The introspector can be queried by application code to obtain
information about the configuration of the running application. This feature is useful for debug toolbars,
command-line scripts which show some aspect of configuration, and for runtime reporting of startup-time
configuration settings.

32.1 Using the Introspector

Here’s an example of using Pyramid’s introspector from within a view callable:

1 from pyramid.view import view_config
2 from pyramid.response import Response
3

4 @view_config(route_name='bar')
5 def show_current_route_pattern(request):
6 introspector = request.registry.introspector
7 route_name = request.matched_route.name
8 route_intr = introspector.get('routes', route_name)
9 return Response(str(route_intr['pattern']))

359

32. PYRAMID CONFIGURATION INTROSPECTION

This view will return a response that contains the “pattern” argument provided to the
add_route method of the route which matched when the view was called. It uses the
pyramid.interfaces.IIntrospector.get() method to return an introspectable in the cat-
egory routes with a discriminator equal to the matched route name. It then uses the returned intro-
spectable to obtain a “pattern” value.

The introspectable returned by the query methods of the introspector has methods and attributes described
by pyramid.interfaces.IIntrospectable. In particular, the get(), get_category(),
categories(), categorized(), and related()methods of an introspector can be used to query
for introspectables.

32.2 Introspectable Objects

Introspectable objects are returned from query methods of an introspector. Each introspectable object im-
plements the attributes and methods documented at pyramid.interfaces.IIntrospectable.

The important attributes shared by all introspectables are the following:

title

A human-readable text title describing the introspectable

category_name

A text category name describing the introspection category to which this introspectable be-
longs. It is often a plural if there are expected to be more than one introspectable registered
within the category.

discriminator

A hashable object representing the unique value of this introspectable within its category.

discriminator_hash

The integer hash of the discriminator (useful in HTML links).

type_name

The text name of a subtype within this introspectable’s category. If there is only one type
name in this introspectable’s category, this value will often be a singular version of the cate-
gory name but it can be an arbitrary value.

360

32.3. PYRAMID INTROSPECTION CATEGORIES

action_info

An object describing the directive call site which caused this introspectable to be registered.
It contains attributes described in pyramid.interfaces.IActionInfo.

Besides having the attributes described above, an introspectable is a dictionary-like object. An intro-
spectable can be queried for data values via its __getitem__, get, keys, values, or items meth-
ods. For example:

1 route_intr = introspector.get('routes', 'edit_user')
2 pattern = route_intr['pattern']

32.3 Pyramid Introspection Categories

The list of concrete introspection categories provided by built-in Pyramid configuration directives follows.
Add-on packages may supply other introspectables in categories not described here.

subscribers

Each introspectable in the subscribers category represents a call to
pyramid.config.Configurator.add_subscriber() (or the decorator equiva-
lent). Each will have the following data.

subscriber

The subscriber callable object (the resolution of the subscriber argument
passed to add_subscriber).

interfaces

A sequence of interfaces (or classes) that are subscribed to (the resolution of the
ifaces argument passed to add_subscriber).

derived_subscriber

A wrapper around the subscriber used internally by the system so it can call it
with more than one argument if your original subscriber accepts only one.

predicates

361

32. PYRAMID CONFIGURATION INTROSPECTION

The predicate objects created as the result of passing predicate arguments to
add_subscriber.

derived_predicates

Wrappers around the predicate objects created as the result of passing predicate ar-
guments to add_subscriber (to be used when predicates take only one value
but must be passed more than one).

response adapters

Each introspectable in the response adapters category represents a call to
pyramid.config.Configurator.add_response_adapter() (or a decorator
equivalent). Each will have the following data.

adapter

The adapter object (the resolved adapter argument to
add_response_adapter).

type

The resolved type_or_iface argument passed to
add_response_adapter.

root factories

Each introspectable in the root factories category represents a call
to pyramid.config.Configurator.set_root_factory() (or the
Configurator constructor equivalent) or a factory argument passed to
pyramid.config.Configurator.add_route(). Each will have the follow-
ing data.

factory

The factory object (the resolved factory argument to set_root_factory).

route_name

The name of the route which will use this factory. If this is the default root fac-
tory (if it’s registered during a call to set_root_factory), this value will be
None.

session factory

362

32.3. PYRAMID INTROSPECTION CATEGORIES

Only one introspectable will exist in the session factory category. It represents a call
to pyramid.config.Configurator.set_session_factory() (or the Config-
urator constructor equivalent). It will have the following data.

factory

The factory object (the resolved factory argument to
set_session_factory).

request factory

Only one introspectable will exist in the request factory category. It represents a call
to pyramid.config.Configurator.set_request_factory() (or the Config-
urator constructor equivalent). It will have the following data.

factory

The factory object (the resolved factory argument to
set_request_factory).

locale negotiator

Only one introspectable will exist in the locale negotiator category. It represents
a call to pyramid.config.Configurator.set_locale_negotiator() (or the
Configurator constructor equivalent). It will have the following data.

negotiator

The factory object (the resolved negotiator argument to
set_locale_negotiator).

renderer factories

Each introspectable in the renderer factories category represents a call to
pyramid.config.Configurator.add_renderer() (or the Configurator con-
structor equivalent). Each will have the following data.

name

The name of the renderer (the value of the name argument to add_renderer).

factory

The factory object (the resolved factory argument to add_renderer).

363

32. PYRAMID CONFIGURATION INTROSPECTION

routes

Each introspectable in the routes category represents a call to
pyramid.config.Configurator.add_route(). Each will have the follow-
ing data.

name

The name argument passed to add_route.

pattern

The pattern argument passed to add_route.

factory

The (resolved) factory argument passed to add_route.

xhr

The xhr argument passed to add_route.

request_method

The request_method argument passed to add_route.

request_methods

A sequence of request method names implied by the request_method argu-
ment passed to add_route or the value None if a request_method argu-
ment was not supplied.

path_info

The path_info argument passed to add_route.

request_param

The request_param argument passed to add_route.

header

The header argument passed to add_route.

364

32.3. PYRAMID INTROSPECTION CATEGORIES

accept

The accept argument passed to add_route.

traverse

The traverse argument passed to add_route.

custom_predicates

The custom_predicates argument passed to add_route.

pregenerator

The pregenerator argument passed to add_route.

static

The static argument passed to add_route.

use_global_views

The use_global_views argument passed to add_route.

object

The pyramid.interfaces.IRoute object that is used to perform matching
and generation for this route.

authentication policy

There will be one and only one introspectable in the
authentication policy category. It represents a call to the
pyramid.config.Configurator.set_authentication_policy() method
(or its Configurator constructor equivalent). It will have the following data.

policy

The policy object (the resolved policy argument to
set_authentication_policy).

authorization policy

365

32. PYRAMID CONFIGURATION INTROSPECTION

There will be one and only one introspectable in the
authorization policy category. It represents a call to the
pyramid.config.Configurator.set_authorization_policy() method
(or its Configurator constructor equivalent). It will have the following data.

policy

The policy object (the resolved policy argument to
set_authorization_policy).

default permission

There will be one and only one introspectable in the
default permission category. It represents a call to the
pyramid.config.Configurator.set_default_permission() method
(or its Configurator constructor equivalent). It will have the following data.

value

The permission name passed to set_default_permission.

views

Each introspectable in the views category represents a call to
pyramid.config.Configurator.add_view(). Each will have the following
data.

name

The name argument passed to add_view.

context

The (resolved) context argument passed to add_view.

containment

The (resolved) containment argument passed to add_view.

request_param

The request_param argument passed to add_view.

request_methods

366

32.3. PYRAMID INTROSPECTION CATEGORIES

A sequence of request method names implied by the request_method argu-
ment passed to add_view or the value None if a request_method argument
was not supplied.

route_name

The route_name argument passed to add_view.

attr

The attr argument passed to add_view.

xhr

The xhr argument passed to add_view.

accept

The accept argument passed to add_view.

header

The header argument passed to add_view.

path_info

The path_info argument passed to add_view.

match_param

The match_param argument passed to add_view.

csrf_token

The csrf_token argument passed to add_view.

callable

The (resolved) view argument passed to add_view. Represents the “raw” view
callable.

derived_callable

367

32. PYRAMID CONFIGURATION INTROSPECTION

The view callable derived from the view argument passed to add_view. Rep-
resents the view callable which Pyramid itself calls (wrapped in security and other
wrappers).

mapper

The (resolved) mapper argument passed to add_view.

decorator

The (resolved) decorator argument passed to add_view.

permissions

Each introspectable in the permissions category represents
a call to pyramid.config.Configurator.add_view()
that has an explicit permission argument or a call to
pyramid.config.Configurator.set_default_permission(). Each
will have the following data.

value

The permission name passed to add_view or set_default_permission.

templates

Each introspectable in the templates category represents a call to
pyramid.config.Configurator.add_view() that has a renderer argu-
ment which points to a template. Each will have the following data.

name

The renderer’s name (a string).

type

The renderer’s type (a string).

renderer

The pyramid.interfaces.IRendererInfo object which represents this
template’s renderer.

view mappers

368

32.3. PYRAMID INTROSPECTION CATEGORIES

Each introspectable in the view mappers category represents a call to
pyramid.config.Configurator.add_view() that has an explicit mapper
argument or a call to pyramid.config.Configurator.set_view_mapper().
Each will have the following data.

mapper

The (resolved) mapper argument passed to add_view or
set_view_mapper.

asset overrides

Each introspectable in the asset overrides category represents a call to
pyramid.config.Configurator.override_asset(). Each will have the
following data.

to_override

The to_override argument (an asset spec) passed to override_asset.

override_with

The override_with argument (an asset spec) passed to override_asset.

translation directories

Each introspectable in the translation directories category
represents an individual element in a specs argument passed to
pyramid.config.Configurator.add_translation_dirs(). Each will
have the following data.

directory

The absolute path of the translation directory.

spec

The asset specification passed to add_translation_dirs.

tweens

Each introspectable in the tweens category represents a call to
pyramid.config.Configurator.add_tween(). Each will have the follow-
ing data.

name

369

32. PYRAMID CONFIGURATION INTROSPECTION

The dotted name to the tween factory as a string (passed as the tween_factory
argument to add_tween).

factory

The (resolved) tween factory object.

type

implicit or explicit as a string.

under

The under argument passed to add_tween (a string).

over

The over argument passed to add_tween (a string).

static views

Each introspectable in the static views category represents a call to
pyramid.config.Configurator.add_static_view(). Each will have the
following data.

name

The name argument provided to add_static_view.

spec

A normalized version of the spec argument provided to add_static_view.

traversers

Each introspectable in the traversers category represents a call to
pyramid.config.Configurator.add_traverser(). Each will have the
following data.

iface

The (resolved) interface or class object that represents the return value of a root
factory for which this traverser will be used.

370

32.4. INTROSPECTION IN THE TOOLBAR

adapter

The (resolved) traverser class.

resource url adapters

Each introspectable in the resource url adapters category represents a call to
pyramid.config.Configurator.add_resource_url_adapter(). Each will
have the following data.

adapter

The (resolved) resource URL adapter class.

resource_iface

The (resolved) interface or class object that represents the resource interface for
which this URL adapter is registered.

request_iface

The (resolved) interface or class object that represents the request interface for
which this URL adapter is registered.

32.4 Introspection in the Toolbar

The Pyramid debug toolbar (part of the pyramid_debugtoolbar package) provides a canned view
of all registered introspectables and their relationships. It is currently under the “Global” tab in the main
navigation, and it looks something like this:

371

32. PYRAMID CONFIGURATION INTROSPECTION

32.5 Disabling Introspection

You can disable Pyramid introspection by passing the flag introspection=False to the Configura-
tor constructor in your application setup:

from pyramid.config import Configurator
config = Configurator(..., introspection=False)

When introspection is False, all introspectables generated by configuration directives are thrown
away.

372

CHAPTER 33

Extending an Existing Pyramid Application

If a Pyramid developer has obeyed certain constraints while building an application, a third party should
be able to change the application’s behavior without needing to modify its source code. The behavior of
a Pyramid application that obeys certain constraints can be overridden or extended without modification.

We’ll define some jargon here for the benefit of identifying the parties involved in such an effort.

Developer The original application developer.

Integrator Another developer who wishes to reuse the application written by the original application
developer in an unanticipated context. They may also wish to modify the original application
without changing the original application’s source code.

33.1 The Difference Between “Extensible” and “Pluggable”
Applications

Other web frameworks, such as Django, advertise that they allow developers to create “pluggable appli-
cations”. They claim that if you create an application in a certain way, it will be integratable in a sensible,
structured way into another arbitrarily-written application or project created by a third-party developer.

Pyramid, as a platform, does not claim to provide such a feature. The platform provides no guarantee that
you can create an application and package it up such that an arbitrary integrator can use it as a subcom-
ponent in a larger Pyramid application or project. Pyramid does not mandate the constraints necessary
for such a pattern to work satisfactorily. Because Pyramid is not very “opinionated”, developers are able
to use wildly different patterns and technologies to build an application. A given Pyramid application

373

33. EXTENDING AN EXISTING PYRAMID APPLICATION

may happen to be reusable by a particular third party integrator because the integrator and the original
developer may share similar base technology choices (such as the use of a particular relational database
or ORM). But the same application may not be reusable by a different developer, because they have made
different technology choices which are incompatible with the original developer’s.

As a result, the concept of a “pluggable application” is left to layers built above Pyramid, such as a “CMS”
layer or “application server” layer. Such layers are apt to provide the necessary “opinions” (such as
mandating a storage layer, a templating system, and a structured, well-documented pattern of registering
that certain URLs map to certain bits of code) which makes the concept of a “pluggable application”
possible. “Pluggable applications”, thus, should not plug into Pyramid itself but should instead plug into
a system written atop Pyramid.

Although it does not provide for “pluggable applications”, Pyramid does provide a rich set of mechanisms
which allows for the extension of a single existing application. Such features can be used by frameworks
built using Pyramid as a base. All Pyramid applications may not be pluggable, but all Pyramid applica-
tions are extensible.

33.2 Rules for Building an Extensible Application

There is only one rule you need to obey if you want to build a maximally extensible Pyramid application:
as a developer, you should factor any overridable imperative configuration you’ve created into functions
which can be used via pyramid.config.Configurator.include(), rather than inlined as calls
to methods of a Configurator within the main function in your application’s __init__.py. For exam-
ple, rather than:

1 from pyramid.config import Configurator
2

3 if __name__ == '__main__':
4 config = Configurator()
5 config.add_view('myapp.views.view1', name='view1')
6 config.add_view('myapp.views.view2', name='view2')

You should move the calls to add_view outside of the (non-reusable) if __name__ ==
’__main__’ block, and into a reusable function:

1 from pyramid.config import Configurator
2

3 if __name__ == '__main__':
4 config = Configurator()
5 config.include(add_views)
6

374

33.3. EXTENDING AN EXISTING APPLICATION

7 def add_views(config):
8 config.add_view('myapp.views.view1', name='view1')
9 config.add_view('myapp.views.view2', name='view2')

Doing this allows an integrator to maximally reuse the configuration statements that relate to your appli-
cation by allowing them to selectively include or exclude the configuration functions you’ve created from
an “override package”.

Alternatively you can use ZCML for the purpose of making configuration extensible and overridable.
ZCML declarations that belong to an application can be overridden and extended by integrators as nec-
essary in a similar fashion. If you use only ZCML to configure your application, it will automatically be
maximally extensible without any manual effort. See pyramid_zcml for information about using ZCML.

33.2.1 Fundamental Plugpoints

The fundamental “plug points” of an application developed using Pyramid are routes, views, and as-
sets. Routes are declarations made using the pyramid.config.Configurator.add_route()
method. Views are declarations made using the pyramid.config.Configurator.add_view()
method. Assets are files that are accessed by Pyramid using the pkg_resources API such as static files and
templates via a asset specification. Other directives and configurator methods also deal in routes, views,
and assets. For example, the add_handler directive of the pyramid_handlers package adds a
single route and some number of views.

33.3 Extending an Existing Application

The steps for extending an existing application depend largely on whether the application does or does
not use configuration decorators or imperative code.

33.3.1 If the Application Has Configuration Decorations

You’ve inherited a Pyramid application which you’d like to extend or override that uses
pyramid.view.view_config decorators or other configuration decoration decorators.

If you just want to extend the application, you can run a scan against the application’s package, then add
additional configuration that registers more views or routes.

375

33. EXTENDING AN EXISTING PYRAMID APPLICATION

1 if __name__ == '__main__':
2 config.scan('someotherpackage')
3 config.add_view('mypackage.views.myview', name='myview')

If you want to override configuration in the application, you may need to run
pyramid.config.Configurator.commit() after performing the scan of the original package,
then add additional configuration that registers more views or routes which perform overrides.

1 if __name__ == '__main__':
2 config.scan('someotherpackage')
3 config.commit()
4 config.add_view('mypackage.views.myview', name='myview')

Once this is done, you should be able to extend or override the application like any other (see Extending
the Application).

You can alternatively just prevent a scan from happening by omitting any call to the
pyramid.config.Configurator.scan() method. This will cause the decorators attached to
objects in the target application to do nothing. At this point, you will need to convert all the configura-
tion done in decorators into equivalent imperative configuration or ZCML, and add that configuration or
ZCML to a separate Python package as described in Extending the Application.

33.3.2 Extending the Application

To extend or override the behavior of an existing application, you will need to create a new package
which includes the configuration of the old package, and you’ll perhaps need to create implementations
of the types of things you’d like to override (such as views), to which they are referred within the original
package.

The general pattern for extending an existing application looks something like this:

• Create a new Python package. The easiest way to do this is to create a new Pyramid application
using the scaffold mechanism. See Creating the Project for more information.

• In the new package, create Python files containing views and other overridden elements, such as
templates and static assets as necessary.

• Install the new package into the same Python environment as the original application
(e.g., $VENV/bin/python setup.py develop or $VENV/bin/python setup.py
install).

376

33.3. EXTENDING AN EXISTING APPLICATION

• Change the main function in the new package’s __init__.py to include the original Pyramid
application’s configuration functions via pyramid.config.Configurator.include()
statements or a scan.

• Wire the new views and assets created in the new package up using imperative registrations within
the main function of the __init__.py file of the new application. This wiring should happen
after including the configuration functions of the old application. These registrations will extend or
override any registrations performed by the original application. See Overriding Views, Overriding
Routes, and Overriding Assets.

33.3.3 Overriding Views

The view configuration declarations that you make which override application behavior will usually have
the same view predicate attributes as the original that you wish to override. These <view> declarations
will point at “new” view code in the override package that you’ve created. The new view code itself will
usually be copy-and-paste copies of view callables from the original application with slight tweaks.

For example, if the original application has the following configure_views configuration method:

1 def configure_views(config):
2 config.add_view('theoriginalapp.views.theview', name='theview')

You can override the first view configuration statement made by configure_viewswithin the override
package, after loading the original configuration function:

1 from pyramid.config import Configurator
2 from originalapp import configure_views
3

4 if __name == '__main__':
5 config = Configurator()
6 config.include(configure_views)
7 config.add_view('theoverrideapp.views.theview', name='theview')

In this case, the theoriginalapp.views.theview view will never be executed. Instead, a new
view, theoverrideapp.views.theview will be executed when request circumstances dictate.

A similar pattern can be used to extend the application with add_view declarations. Just register a new
view against some other set of predicates to make sure the URLs it implies are available on some other
page rendering.

377

33. EXTENDING AN EXISTING PYRAMID APPLICATION

33.3.4 Overriding Routes

Route setup is currently typically performed in a sequence of ordered calls to add_route(). Be-
cause these calls are ordered relative to each other, and because this ordering is typically important, you
should retain their relative ordering when performing an override. Typically this means copying all the
add_route statements into the override package’s file and changing them as necessary. Then exclude
any add_route statements from the original application.

33.3.5 Overriding Assets

Assets are files on the filesystem that are accessible within a Python package. An entire chap-
ter is devoted to assets: Static Assets. Within this chapter is a section named Overriding As-
sets. This section of that chapter describes in detail how to override package assets with other as-
sets by using the pyramid.config.Configurator.override_asset() method. Add such
override_asset calls to your override package’s __init__.py to perform overrides.

378

CHAPTER 34

Advanced Configuration

To support application extensibility, the Pyramid Configurator by default detects configuration conflicts
and allows you to include configuration imperatively from other packages or modules. It also by default
performs configuration in two separate phases. This allows you to ignore relative configuration statement
ordering in some circumstances.

34.1 Conflict Detection

Here’s a familiar example of one of the simplest Pyramid applications, configured imperatively:

1 from wsgiref.simple_server import make_server
2 from pyramid.config import Configurator
3 from pyramid.response import Response
4

5 def hello_world(request):
6 return Response('Hello world!')
7

8 if __name__ == '__main__':
9 config = Configurator()

10 config.add_view(hello_world)
11 app = config.make_wsgi_app()
12 server = make_server('0.0.0.0', 8080, app)
13 server.serve_forever()

When you start this application, all will be OK. However, what happens if we try to add another view to
the configuration with the same set of predicate arguments as one we’ve already added?

379

34. ADVANCED CONFIGURATION

1 from wsgiref.simple_server import make_server
2 from pyramid.config import Configurator
3 from pyramid.response import Response
4

5 def hello_world(request):
6 return Response('Hello world!')
7

8 def goodbye_world(request):
9 return Response('Goodbye world!')

10

11 if __name__ == '__main__':
12 config = Configurator()
13

14 config.add_view(hello_world, name='hello')
15

16 # conflicting view configuration
17 config.add_view(goodbye_world, name='hello')
18

19 app = config.make_wsgi_app()
20 server = make_server('0.0.0.0', 8080, app)
21 server.serve_forever()

The application now has two conflicting view configuration statements. When we try to start it again, it
won’t start. Instead we’ll receive a traceback that ends something like this:

1 Traceback (most recent call last):
2 File "app.py", line 12, in <module>
3 app = config.make_wsgi_app()
4 File "pyramid/config.py", line 839, in make_wsgi_app
5 self.commit()
6 File "pyramid/pyramid/config.py", line 473, in commit
7 self._ctx.execute_actions()
8 ... more code ...
9 pyramid.exceptions.ConfigurationConflictError:

10 Conflicting configuration actions
11 For: ('view', None, '', None, <InterfaceClass pyramid.interfaces.IView>,
12 None, None, None, None, None, False, None, None, None)
13 Line 14 of file app.py in <module>: 'config.add_view(hello_world)'
14 Line 17 of file app.py in <module>: 'config.add_view(goodbye_world)'

This traceback is trying to tell us:

• We’ve got conflicting information for a set of view configuration statements (The For: line).

380

34.1. CONFLICT DETECTION

• There are two statements which conflict, shown beneath the For: line:
config.add_view(hello_world. ’hello’) on line 14 of app.py, and
config.add_view(goodbye_world, ’hello’) on line 17 of app.py.

These two configuration statements are in conflict because we’ve tried to tell the system that the set
of predicate values for both view configurations are exactly the same. Both the hello_world and
goodbye_world views are configured to respond under the same set of circumstances. This circum-
stance, the view name represented by the name= predicate, is hello.

This presents an ambiguity that Pyramid cannot resolve. Rather than allowing the circumstance to go
unreported, by default Pyramid raises a ConfigurationConflictError error and prevents the
application from running.

Conflict detection happens for any kind of configuration: imperative configuration or configuration that
results from the execution of a scan.

34.1.1 Manually Resolving Conflicts

There are a number of ways to manually resolve conflicts: by changing registrations to not conflict, by
strategically using pyramid.config.Configurator.commit(), or by using an “autocommit-
ting” configurator.

The Right Thing

The most correct way to resolve conflicts is to “do the needful”: change your configuration code
to not have conflicting configuration statements. The details of how this is done depends en-
tirely on the configuration statements made by your application. Use the detail provided in the
ConfigurationConflictError to track down the offending conflicts and modify your configu-
ration code accordingly.

If you’re getting a conflict while trying to extend an existing application, and that application has a func-
tion which performs configuration like this one:

1 def add_routes(config):
2 config.add_route(...)

Don’t call this function directly with config as an argument. Instead, use
pyramid.config.Configurator.include():

381

34. ADVANCED CONFIGURATION

1 config.include(add_routes)

Using include() instead of calling the function directly provides a modicum of automated conflict res-
olution, with the configuration statements you define in the calling code overriding those of the included
function.

See also:

See also Automatic Conflict Resolution and Including Configuration from External Sources.

Using config.commit()

You can manually commit a configuration by using the commit() method between configuration calls.
For example, we prevent conflicts from occurring in the application we examined previously as the result
of adding a commit. Here’s the application that generates conflicts:

1 from wsgiref.simple_server import make_server
2 from pyramid.config import Configurator
3 from pyramid.response import Response
4

5 def hello_world(request):
6 return Response('Hello world!')
7

8 def goodbye_world(request):
9 return Response('Goodbye world!')

10

11 if __name__ == '__main__':
12 config = Configurator()
13

14 config.add_view(hello_world, name='hello')
15

16 # conflicting view configuration
17 config.add_view(goodbye_world, name='hello')
18

19 app = config.make_wsgi_app()
20 server = make_server('0.0.0.0', 8080, app)
21 server.serve_forever()

We can prevent the two add_view calls from conflicting by issuing a call to commit() between them:

382

34.1. CONFLICT DETECTION

1 from wsgiref.simple_server import make_server
2 from pyramid.config import Configurator
3 from pyramid.response import Response
4

5 def hello_world(request):
6 return Response('Hello world!')
7

8 def goodbye_world(request):
9 return Response('Goodbye world!')

10

11 if __name__ == '__main__':
12 config = Configurator()
13

14 config.add_view(hello_world, name='hello')
15

16 config.commit() # commit any pending configuration actions
17

18 # no-longer-conflicting view configuration
19 config.add_view(goodbye_world, name='hello')
20

21 app = config.make_wsgi_app()
22 server = make_server('0.0.0.0', 8080, app)
23 server.serve_forever()

In the above example we’ve issued a call to commit() between the two add_view calls. commit()
will execute any pending configuration statements.

Calling commit() is safe at any time. It executes all pending configuration actions and leaves the
configuration action list “clean”.

Note that commit() has no effect when you’re using an autocommitting configurator (see Using an
Autocommitting Configurator).

Using an Autocommitting Configurator

You can also use a heavy hammer to circumvent conflict detection by using a configurator constructor
parameter: autocommit=True. For example:

1 from pyramid.config import Configurator
2

3 if __name__ == '__main__':
4 config = Configurator(autocommit=True)

383

34. ADVANCED CONFIGURATION

When the autocommit parameter passed to the Configurator is True, conflict detection (and Two-
Phase Configuration) is disabled. Configuration statements will be executed immediately, and succeeding
statements will override preceding ones.

commit() has no effect when autocommit is True.

If you use a Configurator in code that performs unit testing, it’s usually a good idea to use an auto-
committing Configurator, because you are usually unconcerned about conflict detection or two-phase
configuration in test code.

34.1.2 Automatic Conflict Resolution

If your code uses the include() method to include external configuration, some conflicts are automat-
ically resolved. Configuration statements that are made as the result of an “include” will be overridden
by configuration statements that happen within the caller of the “include” method.

Automatic conflict resolution supports this goal. If a user wants to reuse a Pyramid application, and they
want to customize the configuration of this application without hacking its code “from outside”, they can
“include” a configuration function from the package and override only some of its configuration state-
ments within the code that does the include. No conflicts will be generated by configuration statements
within the code that does the including, even if configuration statements in the included code would
conflict if it was moved “up” to the calling code.

34.1.3 Methods Which Provide Conflict Detection

These are the methods of the configurator which provide conflict detection:

add_view(), add_route(), add_renderer(), add_request_method(),
set_request_factory(), set_session_factory(), set_request_property(),
set_root_factory(), set_view_mapper(), set_authentication_policy(),
set_authorization_policy(), set_locale_negotiator(),
set_default_permission(), add_traverser(), add_resource_url_adapter(), and
add_response_adapter().

add_static_view() also indirectly provides conflict detection, because it’s implemented in terms of
the conflict-aware add_route and add_view methods.

384

34.2. INCLUDING CONFIGURATION FROM EXTERNAL SOURCES

34.2 Including Configuration from External Sources

Some application programmers will factor their configuration code in such a way that it is easy to reuse
and override configuration statements. For example, such a developer might factor out a function used to
add routes to their application:

1 def add_routes(config):
2 config.add_route(...)

Rather than calling this function directly with config as an argument, instead use
pyramid.config.Configurator.include():

1 config.include(add_routes)

Using include rather than calling the function directly will allow Automatic Conflict Resolution to
work.

include() can also accept a module as an argument:

1 import myapp
2

3 config.include(myapp)

For this to work properly, the myapp module must contain a callable with the special name includeme,
which should perform configuration (like the add_routes callable we showed above as an example).

include() can also accept a dotted Python name to a function or a module.

See The <include> Tag for a declarative alternative to the include() method.

34.3 Two-Phase Configuration

When a non-autocommitting Configurator is used to do configuration (the default), configuration execu-
tion happens in two phases. In the first phase, “eager” configuration actions (actions that must happen
before all others, such as registering a renderer) are executed, and discriminators are computed for each

385

http://docs.pylonsproject.org/projects/pyramid-zcml/en/latest/narr.html#the-include-tag

34. ADVANCED CONFIGURATION

of the actions that depend on the result of the eager actions. In the second phase, the discriminators of all
actions are compared to do conflict detection.

Due to this, for configuration methods that have no internal ordering constraints, execution order of
configuration method calls is not important. For example, the relative ordering of add_view() and
add_renderer() is unimportant when a non-autocommitting configurator is used. This code snippet:

1 config.add_view('some.view', renderer='path_to_custom/renderer.rn')
2 config.add_renderer('.rn', SomeCustomRendererFactory)

Has the same result as:

1 config.add_renderer('.rn', SomeCustomRendererFactory)
2 config.add_view('some.view', renderer='path_to_custom/renderer.rn')

Even though the view statement depends on the registration of a custom renderer, due to two-phase con-
figuration, the order in which the configuration statements are issued is not important. add_view will
be able to find the .rn renderer even if add_renderer is called after add_view.

The same is untrue when you use an autocommitting configurator (see Using an Autocommitting Config-
urator). When an autocommitting configurator is used, two-phase configuration is disabled, and configu-
ration statements must be ordered in dependency order.

Some configuration methods, such as add_route() have internal ordering constraints: the routes they
imply require relative ordering. Such ordering constraints are not absolved by two-phase configuration.
Routes are still added in configuration execution order.

34.4 More Information

For more information, see the article A Whirlwind Tour of Advanced Configuration Tactics in the Pyramid
Community Cookbook.

386

http://docs.pylonsproject.org/projects/pyramid-cookbook/en/latest/configuration/whirlwind_tour.html#whirlwind-adv-conf

CHAPTER 35

Extending Pyramid Configuration

Pyramid allows you to extend its Configurator with custom directives. Custom directives can use other
directives, they can add a custom action, they can participate in conflict resolution, and they can provide
some number of introspectable objects.

35.1 Adding Methods to the Configurator via add_directive

Framework extension writers can add arbitrary methods to a Configurator by using the
pyramid.config.Configurator.add_directive() method of the configurator. Using
add_directive() makes it possible to extend a Pyramid configurator in arbitrary ways, and allows it
to perform application-specific tasks more succinctly.

The add_directive() method accepts two positional arguments: a method name and a callable
object. The callable object is usually a function that takes the configurator instance as its first argument
and accepts other arbitrary positional and keyword arguments. For example:

1 from pyramid.events import NewRequest
2 from pyramid.config import Configurator
3

4 def add_newrequest_subscriber(config, subscriber):
5 config.add_subscriber(subscriber, NewRequest)
6

7 if __name__ == '__main__':
8 config = Configurator()
9 config.add_directive('add_newrequest_subscriber',

10 add_newrequest_subscriber)

387

35. EXTENDING PYRAMID CONFIGURATION

Once add_directive() is called, a user can then call the added directive by its given name as if it
were a built-in method of the Configurator:

1 def mysubscriber(event):
2 print(event.request)
3

4 config.add_newrequest_subscriber(mysubscriber)

A call to add_directive() is often “hidden” within an includeme function within a “frameworky”
package meant to be included as per Including Configuration from External Sources via include().
For example, if you put this code in a package named pyramid_subscriberhelpers:

1 def includeme(config):
2 config.add_directive('add_newrequest_subscriber',
3 add_newrequest_subscriber)

The user of the add-on package pyramid_subscriberhelpers would then be able to install it and
subsequently do:

1 def mysubscriber(event):
2 print(event.request)
3

4 from pyramid.config import Configurator
5 config = Configurator()
6 config.include('pyramid_subscriberhelpers')
7 config.add_newrequest_subscriber(mysubscriber)

35.2 Using config.action in a Directive

If a custom directive can’t do its work exclusively in terms of existing configurator meth-
ods (such as pyramid.config.Configurator.add_subscriber() as above), the direc-
tive may need to make use of the pyramid.config.Configurator.action() method.
This method adds an entry to the list of “actions” that Pyramid will attempt to process when
pyramid.config.Configurator.commit() is called. An action is simply a dictionary that
includes a discriminator, possibly a callback function, and possibly other metadata used by Pyramid’s
action system.

Here’s an example directive which uses the “action” method:

388

35.2. USING CONFIG.ACTION IN A DIRECTIVE

1 def add_jammyjam(config, jammyjam):
2 def register():
3 config.registry.jammyjam = jammyjam
4 config.action('jammyjam', register)
5

6 if __name__ == '__main__':
7 config = Configurator()
8 config.add_directive('add_jammyjam', add_jammyjam)

Fancy, but what does it do? The action method accepts a number of arguments. In the above directive
named add_jammyjam, we call action() with two arguments: the string jammyjam is passed as
the first argument named discriminator, and the closure function named register is passed as
the second argument named callable.

When the action() method is called, it appends an action to the list of pending configuration ac-
tions. All pending actions with the same discriminator value are potentially in conflict with one an-
other (see Conflict Detection). When the commit() method of the Configurator is called (either ex-
plicitly or as the result of calling make_wsgi_app()), conflicting actions are potentially automat-
ically resolved as per Automatic Conflict Resolution. If a conflict cannot be automatically resolved,
a pyramid.exceptions.ConfigurationConflictError is raised and application startup is
prevented.

In our above example, therefore, if a consumer of our add_jammyjam directive did this:

config.add_jammyjam('first')
config.add_jammyjam('second')

When the action list was committed resulting from the set of calls above, our user’s application would not
start, because the discriminators of the actions generated by the two calls are in direct conflict. Automatic
conflict resolution cannot resolve the conflict (because no config.include is involved), and the user
provided no intermediate pyramid.config.Configurator.commit() call between the calls to
add_jammyjam to ensure that the successive calls did not conflict with each other.

This demonstrates the purpose of the discriminator argument to the action method: it’s used to indicate
a uniqueness constraint for an action. Two actions with the same discriminator will conflict unless the
conflict is automatically or manually resolved. A discriminator can be any hashable object, but it is
generally a string or a tuple. You use a discriminator to declaratively ensure that the user doesn’t provide
ambiguous configuration statements.

But let’s imagine that a consumer of add_jammyjam used it in such a way that no configuration conflicts
are generated.

389

35. EXTENDING PYRAMID CONFIGURATION

config.add_jammyjam('first')

What happens now? When the add_jammyjam method is called, an action is appended to the pending
actions list. When the pending configuration actions are processed during commit(), and no conflicts
occur, the callable provided as the second argument to the action() method within add_jammyjam
is called with no arguments. The callable in add_jammyjam is the register closure function. It sim-
ply sets the value config.registry.jammyjam to whatever the user passed in as the jammyjam
argument to the add_jammyjam function. Therefore, the result of the user’s call to our directive will
set the jammyjam attribute of the registry to the string first. A callable is used by a directive to defer
the result of a user’s call to the directive until conflict detection has had a chance to do its job.

Other arguments exist to the action() method, including args, kw, order, and
introspectables.

args and kw exist as values, which if passed will be used as arguments to the callable function when
it is called back. For example, our directive might use them like so:

1 def add_jammyjam(config, jammyjam):
2 def register(*arg, **kw):
3 config.registry.jammyjam_args = arg
4 config.registry.jammyjam_kw = kw
5 config.registry.jammyjam = jammyjam
6 config.action('jammyjam', register, args=('one',), kw={'two':'two'})

In the above example, when this directive is used to generate an action, and that ac-
tion is committed, config.registry.jammyjam_args will be set to (’one’,) and
config.registry.jammyjam_kw will be set to {’two’:’two’}. args and kw are honestly
not very useful when your callable is a closure function, because you already usually have access to
every local in the directive without needing them to be passed back. They can be useful, however, if you
don’t use a closure as a callable.

order is a crude order control mechanism. order defaults to the integer 0; it can be set
to any other integer. All actions that share an order will be called before other actions that
share a higher order. This makes it possible to write a directive with callable logic that relies
on the execution of the callable of another directive being done first. For example, Pyramid’s
pyramid.config.Configurator.add_view() directive registers an action with a higher order
than the pyramid.config.Configurator.add_route() method. Due to this, the add_view
method’s callable can assume that, if a route_name was passed to it, that a route by this name was al-
ready registered by add_route, and if such a route has not already been registered, it’s a configuration
error (a view that names a nonexistent route via its route_name parameter will never be called).

introspectables is a sequence of introspectable objects. You can pass a sequence of introspectables
to the action() method, which allows you to augment Pyramid’s configuration introspection system.

390

35.3. ADDING CONFIGURATION INTROSPECTION

35.3 Adding Configuration Introspection

New in version 1.3.

Pyramid provides a configuration introspection system that can be used by debugging tools to provide
visibility into the configuration of a running application.

All built-in Pyramid directives (such as pyramid.config.Configurator.add_view() and
pyramid.config.Configurator.add_route()) register a set of introspectables when called.
For example, when you register a view via add_view, the directive registers at least one introspectable:
an introspectable about the view registration itself, providing human-consumable values for the arguments
passed into it. You can later use the introspection query system to determine whether a particular view
uses a renderer, or whether a particular view is limited to a particular request method, or against which
routes a particular view is registered. The Pyramid “debug toolbar” makes use of the introspection system
in various ways to display information to Pyramid developers.

Introspection values are set when a sequence of introspectable objects is passed to the action()
method. Here’s an example of a directive which uses introspectables:

1 def add_jammyjam(config, value):
2 def register():
3 config.registry.jammyjam = value
4 intr = config.introspectable(category_name='jammyjams',
5 discriminator='jammyjam',
6 title='a jammyjam',
7 type_name=None)
8 intr['value'] = value
9 config.action('jammyjam', register, introspectables=(intr,))

10

11 if __name__ == '__main__':
12 config = Configurator()
13 config.add_directive('add_jammyjam', add_jammyjam)

If you notice, the above directive uses the introspectable attribute of a Configurator
(pyramid.config.Configurator.introspectable) to create an introspectable object. The
introspectable object’s constructor requires at least four arguments: the category_name, the
discriminator, the title, and the type_name.

The category_name is a string representing the logical category for this introspectable. Usually the
category_name is a pluralization of the type of object being added via the action.

The discriminator is a value unique within the category (unlike the action discriminator, which
must be unique within the entire set of actions). It is typically a string or tuple representing the values

391

35. EXTENDING PYRAMID CONFIGURATION

unique to this introspectable within the category. It is used to generate links and as part of a relationship-
forming target for other introspectables.

The title is a human-consumable string that can be used by introspection system frontends to show a
friendly summary of this introspectable.

The type_name is a value that can be used to subtype this introspectable within its category for sorting
and presentation purposes. It can be any value.

An introspectable is also dictionary-like. It can contain any set of key/value pairs, typically related to
the arguments passed to its related directive. While the category_name, discriminator, title,
and type_name are metadata about the introspectable, the values provided as key/value pairs are the
actual data provided by the introspectable. In the above example, we set the value key to the value of
the value argument passed to the directive.

Our directive above mutates the introspectable, and passes it in to the action method as the first element
of a tuple as the value of the introspectable keyword argument. This associates this introspectable
with the action. Introspection tools will then display this introspectable in their index.

35.3.1 Introspectable Relationships

Two introspectables may have relationships between each other.

1 def add_jammyjam(config, value, template):
2 def register():
3 config.registry.jammyjam = (value, template)
4 intr = config.introspectable(category_name='jammyjams',
5 discriminator='jammyjam',
6 title='a jammyjam',
7 type_name=None)
8 intr['value'] = value
9 tmpl_intr = config.introspectable(category_name='jammyjam templates',

10 discriminator=template,
11 title=template,
12 type_name=None)
13 tmpl_intr['value'] = template
14 intr.relate('jammyjam templates', template)
15 config.action('jammyjam', register, introspectables=(intr, tmpl_intr))
16

17 if __name__ == '__main__':
18 config = Configurator()
19 config.add_directive('add_jammyjam', add_jammyjam)

392

35.3. ADDING CONFIGURATION INTROSPECTION

In the above example, the add_jammyjam directive registers two introspectables: the first is related to
the value passed to the directive, and the second is related to the template passed to the directive. If
you believe a concept within a directive is important enough to have its own introspectable, you can cause
the same directive to register more than one introspectable, registering one introspectable for the “main
idea” and another for a related concept.

The call to intr.relate above (pyramid.interfaces.IIntrospectable.relate()) is
passed two arguments: a category name and a directive. The example above effectively indicates that
the directive wishes to form a relationship between the intr introspectable and the tmpl_intr intro-
spectable; the arguments passed to relate are the category name and discriminator of the tmpl_intr
introspectable.

Relationships need not be made between two introspectables created by the same directive. Instead a
relationship can be formed between an introspectable created in one directive and another introspectable
created in another by calling relate on either side with the other directive’s category name and discrim-
inator. An error will be raised at configuration commit time if you attempt to relate an introspectable with
another nonexistent introspectable, however.

Introspectable relationships will show up in frontend system renderings of introspection values. For
example, if a view registration names a route name, the introspectable related to the view callable will
show a reference to the route to which it relates and vice versa.

393

35. EXTENDING PYRAMID CONFIGURATION

394

CHAPTER 36

Creating Pyramid Scaffolds

You can extend Pyramid by creating a scaffold template. A scaffold template is useful if you’d like
to distribute a customizable configuration of Pyramid to other users. Once you’ve created a scaffold,
and someone has installed the distribution that houses the scaffold, they can use the pcreate script
to create a custom version of your scaffold’s template. Pyramid itself uses scaffolds to allow people to
bootstrap new projects. For example, pcreate -s alchemy MyStuff causes Pyramid to render
the alchemy scaffold template to the MyStuff directory.

36.1 Basics

A scaffold template is just a bunch of source files and directories on disk. A small definition class points
at this directory. It is in turn pointed at by a setuptools “entry point” which registers the scaffold so it can
be found by the pcreate command.

To create a scaffold template, create a Python distribution to house the scaffold which includes a
setup.py that relies on the setuptools package. See Packaging and Distributing Projects for
more information about how to do this. For example, we’ll pretend the distribution you create is named
CoolExtension, and it has a package directory within it named coolextension.

Once you’ve created the distribution, put a “scaffolds” directory within your distribution’s package direc-
tory, and create a file within that directory named __init__.py with something like the following:

395

https://packaging.python.org/en/latest/distributing/

36. CREATING PYRAMID SCAFFOLDS

1 # CoolExtension/coolextension/scaffolds/__init__.py
2

3 from pyramid.scaffolds import PyramidTemplate
4

5 class CoolExtensionTemplate(PyramidTemplate):
6 _template_dir = 'coolextension_scaffold'
7 summary = 'My cool extension'

Once this is done, within the scaffolds directory, create a template directory. Our example used a
template directory named coolextension_scaffold.

As you create files and directories within the template directory, note that:

• Files which have a name which are suffixed with the value _tmpl will be rendered, and replacing
any instance of the literal string {{var}}with the string value of the variable named var provided
to the scaffold.

• Files and directories with filenames that contain the string +var+ will have that string replaced
with the value of the var variable provided to the scaffold.

• Files that start with a dot (e.g., .env) are ignored and will not be copied over to the destination
directory. If you want to include a file with a leading dot, then you must replace the dot with +dot+
(e.g., +dot+env).

Otherwise, files and directories which live in the template directory will be copied directly without modi-
fication to the pcreate output location.

The variables provided by the default PyramidTemplate include project (the project name pro-
vided by the user as an argument to pcreate), package (a lowercasing and normalizing of the project
name provided by the user), random_string (a long random string), and package_logger (the
name of the package’s logger).

See Pyramid’s “scaffolds” package (https://github.com/Pylons/pyramid/tree/master/pyramid/scaffolds)
for concrete examples of scaffold directories (zodb, alchemy, and starter, for example).

After you’ve created the template directory, add the following to the entry_points value of your
distribution’s setup.py:

[pyramid.scaffold]
coolextension=coolextension.scaffolds:CoolExtensionTemplate

For example:

396

https://github.com/Pylons/pyramid/tree/master/pyramid/scaffolds

36.2. SUPPORTING OLDER PYRAMID VERSIONS

def setup(
...,
entry_points = """\

[pyramid.scaffold]
coolextension=coolextension.scaffolds:CoolExtensionTemplate

"""
)

Run your distribution’s setup.py develop or setup.py install command. After that, you
should be able to see your scaffolding template listed when you run pcreate -l. It will be named
coolextension because that’s the name we gave it in the entry point setup. Running pcreate -s
coolextension MyStuff will then render your scaffold to an output directory named MyStuff.

See the module documentation for pyramid.scaffolds for information about the API of the
pyramid.scaffolds.Template class and related classes. You can override methods of this class
to get special behavior.

36.2 Supporting Older Pyramid Versions

Because different versions of Pyramid handled scaffolding differently, if you want to have extension
scaffolds that can work across Pyramid 1.0.X, 1.1.X, 1.2.X and 1.3.X, you’ll need to use something like
this bit of horror while defining your scaffold template:

1 try: # pyramid 1.0.X
2 # "pyramid.paster.paste_script..." doesn't exist past 1.0.X
3 from pyramid.paster import paste_script_template_renderer
4 from pyramid.paster import PyramidTemplate
5 except ImportError:
6 try: # pyramid 1.1.X, 1.2.X
7 # trying to import "paste_script_template_renderer" fails on 1.3.X
8 from pyramid.scaffolds import paste_script_template_renderer
9 from pyramid.scaffolds import PyramidTemplate

10 except ImportError: # pyramid >=1.3a2
11 paste_script_template_renderer = None
12 from pyramid.scaffolds import PyramidTemplate
13

14 class CoolExtensionTemplate(PyramidTemplate):
15 _template_dir = 'coolextension_scaffold'
16 summary = 'My cool extension'
17 template_renderer = staticmethod(paste_script_template_renderer)

397

36. CREATING PYRAMID SCAFFOLDS

And then in the setup.py of the package that contains your scaffold, define the template as a target of
both paste.paster_create_template (for paster create) and pyramid.scaffold (for
pcreate).

[paste.paster_create_template]
coolextension=coolextension.scaffolds:CoolExtensionTemplate
[pyramid.scaffold]
coolextension=coolextension.scaffolds:CoolExtensionTemplate

Doing this hideousness will allow your scaffold to work as a paster create target (under 1.0, 1.1, or
1.2) or as a pcreate target (under 1.3). If an invoker tries to run paster create against a scaffold
defined this way under 1.3, an error is raised instructing them to use pcreate instead.

If you want to support Pyramid 1.3 only, it’s much cleaner, and the API is stable:

1 from pyramid.scaffolds import PyramidTemplate
2

3 class CoolExtensionTemplate(PyramidTemplate):
4 _template_dir = 'coolextension_scaffold'
5 summary = 'My cool_extension'

You only need to specify a paste.paster_create_template entry point target in your
setup.py if you want your scaffold to be consumable by users of Pyramid 1.0, 1.1, or 1.2. To sup-
port only 1.3, specifying only the pyramid.scaffold entry point is good enough. If you want to
support both paster create and pcreate (meaning you want to support Pyramid 1.2 and some
older version), you’ll need to define both.

36.3 Examples

Existing third-party distributions which house scaffolding are available via PyPI. The pyramid_jqm,
pyramid_zcml, and pyramid_jinja2 packages house scaffolds. You can install and examine these
packages to see how they work in the quest to develop your own scaffolding.

398

CHAPTER 37

Upgrading Pyramid

When a new version of Pyramid is released, it will sometimes deprecate a feature or remove a feature that
was deprecated in an older release. When features are removed from Pyramid, applications that depend
on those features will begin to break. This chapter explains how to ensure your Pyramid applications keep
working when you upgrade the Pyramid version you’re using.

About Release Numbering

Conventionally, application version numbering in Python is described as major.minor.micro.
If your Pyramid version is “1.2.3”, it means you’re running a version of Pyramid with the major
version “1”, the minor version “2” and the micro version “3”. A “major” release is one that incre-
ments the first-dot number; 2.X.X might follow 1.X.X. A “minor” release is one that increments the
second-dot number; 1.3.X might follow 1.2.X. A “micro” release is one that increments the third-
dot number; 1.2.3 might follow 1.2.2. In general, micro releases are “bugfix-only”, and contain no
new features, minor releases contain new features but are largely backwards compatible with older
versions, and a major release indicates a large set of backwards incompatibilities.

The Pyramid core team is conservative when it comes to removing features. We don’t remove features
unnecessarily, but we’re human and we make mistakes which cause some features to be evolutionary dead
ends. Though we are willing to support dead-end features for some amount of time, some eventually have
to be removed when the cost of supporting them outweighs the benefit of keeping them around, because
each feature in Pyramid represents a certain documentation and maintenance burden.

399

37. UPGRADING PYRAMID

37.1 Deprecation and removal policy

When a feature is scheduled for removal from Pyramid or any of its official add-ons, the core development
team takes these steps:

• Using the feature will begin to generate a DeprecationWarning, indicating the version in which the
feature became deprecated.

• A note is added to the documentation indicating that the feature is deprecated.

• A note is added to the changelog about the deprecation.

When a deprecated feature is eventually removed:

• The feature is removed.

• A note is added to the changelog about the removal.

Features are never removed in micro releases. They are only removed in minor and major releases.
Deprecated features are kept around for at least three minor releases from the time the feature became
deprecated. Therefore, if a feature is added in Pyramid 1.0, but it’s deprecated in Pyramid 1.1, it will be
kept around through all 1.1.X releases, all 1.2.X releases and all 1.3.X releases. It will finally be removed
in the first 1.4.X release.

Sometimes features are “docs-deprecated” instead of formally deprecated. This means that the feature
will be kept around indefinitely, but it will be removed from the documentation or a note will be added to
the documentation telling folks to use some other newer feature. This happens when the cost of keeping an
old feature around is very minimal and the support and documentation burden is very low. For example,
we might rename a function that is an API without changing the arguments it accepts. In this case, we’ll
often rename the function, and change the docs to point at the new function name, but leave around a
backwards compatibility alias to the old function name so older code doesn’t break.

“Docs deprecated” features tend to work “forever”, meaning that they won’t be removed, and they’ll never
generate a deprecation warning. However, such changes are noted in the changelog, so it’s possible to
know that you should change older spellings to newer ones to ensure that people reading your code can
find the APIs you’re using in the Pyramid docs.

400

37.2. CONSULTING THE CHANGE HISTORY

37.1.1 Python support policy

At the time of a Pyramid version release, each supports all versions of Python through the end of their
lifespans. The end-of-life for a given version of Python is when security updates are no longer released.

• Python 3.2 Lifespan ends February 2016.

• Python 3.3 Lifespan ends September 2017.

• Python 3.4 Lifespan TBD.

• Python 3.5 Lifespan TBD.

• Python 3.6 Lifespan December 2021.

To determine the Python support for a specific release of Pyramid, view its tox.ini file at the root of
the repository’s version.

37.2 Consulting the change history

Your first line of defense against application failures caused by upgrading to a newer Pyramid release is
always to read the changelog to find the deprecations and removals for each release between the release
you’re currently running and the one to which you wish to upgrade. The change history notes every depre-
cation within a Deprecation section and every removal within a Backwards Incompatibilies
section for each release.

The change history often contains instructions for changing your code to avoid deprecation warnings and
how to change docs-deprecated spellings to newer ones. You can follow along with each deprecation
explanation in the change history, simply doing a grep or other code search to your application, using the
change log examples to remediate each potential problem.

37.3 Testing your application under a new Pyramid release

Once you’ve upgraded your application to a new Pyramid release and you’ve remediated as much as
possible by using the change history notes, you’ll want to run your application’s tests (see Run the tests)
in such a way that you can see DeprecationWarnings printed to the console when the tests run.

401

https://www.python.org/dev/peps/pep-0392/#lifespan
https://www.python.org/dev/peps/pep-0392/#lifespan
https://www.python.org/dev/peps/pep-0429/
https://www.python.org/dev/peps/pep-0478/
https://www.python.org/dev/peps/pep-0494/#id4

37. UPGRADING PYRAMID

$ python -Wd setup.py test -q

The -Wd argument tells Python to print deprecation warnings to the console. Note that the -Wd flag is
only required for Python 2.7 and better: Python versions 2.6 and older print deprecation warnings to the
console by default. See the Python -W flag documentation for more information.

As your tests run, deprecation warnings will be printed to the console explaining the deprecation and
providing instructions about how to prevent the deprecation warning from being issued. For example:

$ python -Wd setup.py test -q
.. elided ...
running build_ext
/home/chrism/projects/pyramid/env27/myproj/myproj/views.py:3:
DeprecationWarning: static: The "pyramid.view.static" class is deprecated
as of Pyramid 1.1; use the "pyramid.static.static_view" class instead with
the "use_subpath" argument set to True.
from pyramid.view import static

.
--
Ran 1 test in 0.014s

OK

In the above case, it’s line #3 in the myproj.views module (from pyramid.view import
static) that is causing the problem:

1 from pyramid.view import view_config
2

3 from pyramid.view import static
4 myview = static('static', 'static')

The deprecation warning tells me how to fix it, so I can change the code to do things the newer way:

1 from pyramid.view import view_config
2

3 from pyramid.static import static_view
4 myview = static_view('static', 'static', use_subpath=True)

When I run the tests again, the deprecation warning is no longer printed to my console:

402

http://docs.python.org/using/cmdline.html#cmdoption-W

37.4. MY APPLICATION DOESN’T HAVE ANY TESTS OR HAS FEW TESTS

$ python -Wd setup.py test -q
.. elided ...
running build_ext
.
--
Ran 1 test in 0.014s

OK

37.4 My application doesn’t have any tests or has few tests

If your application has no tests, or has only moderate test coverage, running tests won’t tell you very
much, because the Pyramid codepaths that generate deprecation warnings won’t be executed.

In this circumstance, you can start your application interactively under a server run with the
PYTHONWARNINGS environment variable set to default. On UNIX, you can do that via:

$ PYTHONWARNINGS=default $VENV/bin/pserve development.ini

On Windows, you need to issue two commands:

C:\> set PYTHONWARNINGS=default
C:\> Scripts/pserve.exe development.ini

At this point, it’s ensured that deprecation warnings will be printed to the console whenever a codepath is
hit that generates one. You can then click around in your application interactively to try to generate them,
and remediate as explained in Testing your application under a new Pyramid release.

See the PYTHONWARNINGS environment variable documentation or the Python -W flag documentation
for more information.

37.5 Upgrading to the very latest Pyramid release

When you upgrade your application to the most recent Pyramid release, it’s advisable to upgrade step-
wise through each most recent minor release, beginning with the one that you know your application
currently runs under, and ending on the most recent release. For example, if your application is running
in production on Pyramid 1.2.1, and the most recent Pyramid 1.3 release is Pyramid 1.3.3, and the most
recent Pyramid release is 1.4.4, it’s advisable to do this:

403

http://docs.python.org/using/cmdline.html#envvar-PYTHONWARNINGS
http://docs.python.org/using/cmdline.html#cmdoption-W

37. UPGRADING PYRAMID

• Upgrade your environment to the most recent 1.2 release. For example, the most recent 1.2 release
might be 1.2.3, so upgrade to it. Then run your application’s tests under 1.2.3 as described in Testing
your application under a new Pyramid release. Note any deprecation warnings and remediate.

• Upgrade to the most recent 1.3 release, 1.3.3. Run your application’s tests, note any deprecation
warnings, and remediate.

• Upgrade to 1.4.4. Run your application’s tests, note any deprecation warnings, and remediate.

If you skip testing your application under each minor release (for example if you upgrade directly from
1.2.1 to 1.4.4), you might miss a deprecation warning and waste more time trying to figure out an error
caused by a feature removal than it would take to upgrade stepwise through each minor release.

404

CHAPTER 38

Thread Locals

A thread local variable is a variable that appears to be a “global” variable to an application which uses
it. However, unlike a true global variable, one thread or process serving the application may receive a
different value than another thread or process when that variable is “thread local”.

When a request is processed, Pyramid makes two thread local variables available to the application: a
“registry” and a “request”.

38.1 Why and How Pyramid Uses Thread Local Variables

How are thread locals beneficial to Pyramid and application developers who use Pyramid? Well, usually
they’re decidedly not. Using a global or a thread local variable in any application usually makes it a lot
harder to understand for a casual reader. Use of a thread local or a global is usually just a way to avoid
passing some value around between functions, which is itself usually a very bad idea, at least if code
readability counts as an important concern.

For historical reasons, however, thread local variables are indeed consulted by various Pyra-
mid API functions. For example, the implementation of the pyramid.security func-
tion named authenticated_userid() (deprecated as of 1.5) retrieves the thread local
application registry as a matter of course to find an authentication policy. It uses the
pyramid.threadlocal.get_current_registry() function to retrieve the application reg-
istry, from which it looks up the authentication policy; it then uses the authentication policy to retrieve the
authenticated user id. This is how Pyramid allows arbitrary authentication policies to be “plugged in”.

When they need to do so, Pyramid internals use two API functions to retrieve the request and application
registry: get_current_request() and get_current_registry(). The former returns the

405

38. THREAD LOCALS

“current” request; the latter returns the “current” registry. Both get_current_* functions retrieve an
object from a thread-local data structure. These API functions are documented in pyramid.threadlocal.

These values are thread locals rather than true globals because one Python process may be handling
multiple simultaneous requests or even multiple Pyramid applications. If they were true globals, Pyramid
could not handle multiple simultaneous requests or allow more than one Pyramid application instance to
exist in a single Python process.

Because one Pyramid application is permitted to call another Pyramid application from its own view
code (perhaps as a WSGI app with help from the pyramid.wsgi.wsgiapp2() decorator), these
variables are managed in a stack during normal system operations. The stack instance itself is a
threading.local.

During normal operations, the thread locals stack is managed by a Router object. At the beginning of
a request, the Router pushes the application’s registry and the request on to the stack. At the end of a
request, the stack is popped. The topmost request and registry on the stack are considered “current”.
Therefore, when the system is operating normally, the very definition of “current” is defined entirely by
the behavior of a pyramid Router.

However, during unit testing, no Router code is ever invoked, and the definition of “current” is
defined by the boundary between calls to the pyramid.config.Configurator.begin()
and pyramid.config.Configurator.end() methods (or between calls to the
pyramid.testing.setUp() and pyramid.testing.tearDown() functions). These
functions push and pop the threadlocal stack when the system is under test. See Test Set Up and Tear
Down for the definitions of these functions.

Scripts which use Pyramid machinery but never actually start a WSGI server or receive requests via
HTTP, such as scripts which use the pyramid.scripting API, will never cause any Router code to
be executed. However, the pyramid.scripting APIs also push some values on to the thread locals
stack as a matter of course. Such scripts should expect the get_current_request() function to
always return None, and should expect the get_current_registry() function to return exactly
the same application registry for every request.

38.2 Why You Shouldn’t Abuse Thread Locals

You probably should almost never use the get_current_request() or
get_current_registry() functions, except perhaps in tests. In particular, it’s almost al-
ways a mistake to use get_current_request or get_current_registry in application
code because its usage makes it possible to write code that can be neither easily tested nor scripted.
Inappropriate usage is defined as follows:

406

http://docs.python.org/3/library/threading.html#threading.local

38.2. WHY YOU SHOULDN’T ABUSE THREAD LOCALS

• get_current_request should never be called within the body of a view callable, or within
code called by a view callable. View callables already have access to the request (it’s passed in to
each as request).

• get_current_request should never be called in resource code. If a resource needs access to
the request, it should be passed the request by a view callable.

• get_current_request function should never be called because it’s “easier” or “more elegant”
to think about calling it than to pass a request through a series of function calls when creating some
API design. Your application should instead, almost certainly, pass around data derived from the
request rather than relying on being able to call this function to obtain the request in places that
actually have no business knowing about it. Parameters are meant to be passed around as function
arguments; this is why they exist. Don’t try to “save typing” or create “nicer APIs” by using this
function in the place where a request is required; this will only lead to sadness later.

• Neither get_current_request nor get_current_registry should ever be called
within application-specific forks of third-party library code. The library you’ve forked almost cer-
tainly has nothing to do with Pyramid, and making it dependent on Pyramid (rather than making
your pyramid application depend upon it) means you’re forming a dependency in the wrong direc-
tion.

Use of the get_current_request() function in application code is still useful in very limited cir-
cumstances. As a rule of thumb, usage of get_current_request is useful within code which
is meant to eventually be removed. For instance, you may find yourself wanting to deprecate some
API that expects to be passed a request object in favor of one that does not expect to be passed a re-
quest object. But you need to keep implementations of the old API working for some period of time
while you deprecate the older API. So you write a “facade” implementation of the new API which
calls into the code which implements the older API. Since the new API does not require the request,
your facade implementation doesn’t have local access to the request when it needs to pass it into the
older API implementation. After some period of time, the older implementation code is disused and the
hack that uses get_current_request is removed. This would be an appropriate place to use the
get_current_request.

Use of the get_current_registry() function should be limited to testing scenarios. The registry
made current by use of the pyramid.config.Configurator.begin() method during a test (or
via pyramid.testing.setUp()) when you do not pass one in is available to you via this API.

407

38. THREAD LOCALS

408

CHAPTER 39

Using the Zope Component Architecture in Pyramid

Under the hood, Pyramid uses a Zope Component Architecture component registry as its application
registry. The Zope Component Architecture is referred to colloquially as the “ZCA.”

The zope.component API used to access data in a traditional Zope application can be opaque. For
example, here is a typical “unnamed utility” lookup using the zope.component.getUtility()
global API as it might appear in a traditional Zope application:

1 from pyramid.interfaces import ISettings
2 from zope.component import getUtility
3 settings = getUtility(ISettings)

After this code runs, settings will be a Python dictionary. But it’s unlikely that any “civilian” will be
able to figure this out just by reading the code casually. When the zope.component.getUtility
API is used by a developer, the conceptual load on a casual reader of code is high.

While the ZCA is an excellent tool with which to build a framework such as Pyramid, it is not always
the best tool with which to build an application due to the opacity of the zope.component APIs.
Accordingly, Pyramid tends to hide the presence of the ZCA from application developers. You needn’t
understand the ZCA to create a Pyramid application; its use is effectively only a framework implementa-
tion detail.

However, developers who are already used to writing Zope applications often still wish to use the ZCA
while building a Pyramid application. Pyramid makes this possible.

409

http://docs.zope.org/zope.component/api/utility.html#zope.component.getUtility

39. USING THE ZOPE COMPONENT ARCHITECTURE IN PYRAMID

39.1 Using the ZCA global API in a Pyramid application

Zope uses a single ZCA registry—the “global” ZCA registry—for all Zope applications that run in the
same Python process, effectively making it impossible to run more than one Zope application in a single
process.

However, for ease of deployment, it’s often useful to be able to run more than a single application per
process. For example, use of a PasteDeploy “composite” allows you to run separate individual WSGI
applications in the same process, each answering requests for some URL prefix. This makes it possible to
run, for example, a TurboGears application at /turbogears and a Pyramid application at /pyramid,
both served up using the same WSGI server within a single Python process.

Most production Zope applications are relatively large, making it impractical due to memory constraints
to run more than one Zope application per Python process. However, a Pyramid application may be very
small and consume very little memory, so it’s a reasonable goal to be able to run more than one Pyramid
application per process.

In order to make it possible to run more than one Pyramid application in a single process, Pyramid defaults
to using a separate ZCA registry per application.

While this services a reasonable goal, it causes some issues when trying to use patterns which you might
use to build a typical Zope application to build a Pyramid application. Without special help, ZCA “global”
APIs such as zope.component.getUtility() and zope.component.getSiteManager()
will use the ZCA “global” registry. Therefore, these APIs will appear to fail when used in a Pyramid
application, because they’ll be consulting the ZCA global registry rather than the component registry
associated with your Pyramid application.

There are three ways to fix this: by disusing the ZCA global API entirely, by using
pyramid.config.Configurator.hook_zca() or by passing the ZCA global registry to the
Configurator constructor at startup time. We’ll describe all three methods in this section.

39.1.1 Disusing the global ZCA API

ZCA “global” API functions such as zope.component.getSiteManager,
zope.component.getUtility, zope.component.getAdapter(), and
zope.component.getMultiAdapter() aren’t strictly necessary. Every component registry
has a method API that offers the same functionality; it can be used instead. For example, presuming
the registry value below is a Zope Component Architecture component registry, the following bit of
code is equivalent to zope.component.getUtility(IFoo):

410

http://docs.zope.org/zope.component/api/utility.html#zope.component.getUtility
http://docs.zope.org/zope.component/api/sitemanager.html#zope.component.getSiteManager
http://docs.zope.org/zope.component/api/adapter.html#zope.component.getAdapter
http://docs.zope.org/zope.component/api/adapter.html#zope.component.getMultiAdapter

39.1. USING THE ZCA GLOBAL API IN A PYRAMID APPLICATION

registry.getUtility(IFoo)

The full method API is documented in the zope.component package, but it largely mirrors the
“global” API almost exactly.

If you are willing to disuse the “global” ZCA APIs and use the method interface of a registry instead, you
need only know how to obtain the Pyramid component registry.

There are two ways of doing so:

• use the pyramid.threadlocal.get_current_registry() function within Pyramid
view or resource code. This will always return the “current” Pyramid application registry.

• use the attribute of the request object named registry in your Pyramid view code, e.g.,
request.registry. This is the ZCA component registry related to the running Pyramid appli-
cation.

See Thread Locals for more information about pyramid.threadlocal.get_current_registry().

39.1.2 Enabling the ZCA global API by using hook_zca

Consider the following bit of idiomatic Pyramid startup code:

1 from pyramid.config import Configurator
2

3 def app(global_settings, **settings):
4 config = Configurator(settings=settings)
5 config.include('some.other.package')
6 return config.make_wsgi_app()

When the app function above is run, a Configurator is constructed. When the configurator is created, it
creates a new application registry (a ZCA component registry). A new registry is constructed whenever
the registry argument is omitted, when a Configurator constructor is called, or when a registry
argument with a value of None is passed to a Configurator constructor.

During a request, the application registry created by the Configurator is “made current”. This means calls
to get_current_registry() in the thread handling the request will return the component registry
associated with the application.

411

39. USING THE ZOPE COMPONENT ARCHITECTURE IN PYRAMID

As a result, application developers can use get_current_registry to get the registry and thus get
access to utilities and such, as per Disusing the global ZCA API. But they still cannot use the global ZCA
API. Without special treatment, the ZCA global APIs will always return the global ZCA registry (the one
in zope.component.globalregistry.base).

To “fix” this and make the ZCA global APIs use the “current” Pyramid registry, you need to call
hook_zca() within your setup code. For example:

1 from pyramid.config import Configurator
2

3 def app(global_settings, **settings):
4 config = Configurator(settings=settings)
5 config.hook_zca()
6 config.include('some.other.application')
7 return config.make_wsgi_app()

We’ve added a line to our original startup code, line number 5, which calls config.hook_zca(). The
effect of this line under the hood is that an analogue of the following code is executed:

1 from zope.component import getSiteManager
2 from pyramid.threadlocal import get_current_registry
3 getSiteManager.sethook(get_current_registry)

This causes the ZCA global API to start using the Pyramid application registry in threads which are
running a Pyramid request.

Calling hook_zca is usually sufficient to “fix” the problem of being able to use the global ZCA API
within a Pyramid application. However, it also means that a Zope application that is running in the
same process may start using the Pyramid global registry instead of the Zope global registry, effectively
inverting the original problem. In such a case, follow the steps in the next section, Enabling the ZCA
global API by using the ZCA global registry.

39.1.3 Enabling the ZCA global API by using the ZCA global registry

You can tell your Pyramid application to use the ZCA global registry at startup time instead of constructing
a new one:

412

39.1. USING THE ZCA GLOBAL API IN A PYRAMID APPLICATION

1 from zope.component import getGlobalSiteManager
2 from pyramid.config import Configurator
3

4 def app(global_settings, **settings):
5 globalreg = getGlobalSiteManager()
6 config = Configurator(registry=globalreg)
7 config.setup_registry(settings=settings)
8 config.include('some.other.application')
9 return config.make_wsgi_app()

Lines 5, 6, and 7 above are the interesting ones. Line 5 retrieves the global ZCA component registry.
Line 6 creates a Configurator, passing the global ZCA registry into its constructor as the registry
argument. Line 7 “sets up” the global registry with Pyramid-specific registrations; this is code that is
normally executed when a registry is constructed rather than created, but we must call it “by hand” when
we pass an explicit registry.

At this point, Pyramid will use the ZCA global registry rather than creating a new application-specific
registry. Since by default the ZCA global API will use this registry, things will work as you might expect
in a Zope app when you use the global ZCA API.

413

39. USING THE ZOPE COMPONENT ARCHITECTURE IN PYRAMID

414

Part II

Tutorials

CHAPTER 40

SQLAlchemy + URL Dispatch Wiki Tutorial

This tutorial introduces a SQLAlchemy and url dispatch-based Pyramid application to a developer familiar
with Python. When the tutorial is finished, the developer will have created a basic Wiki application with
authentication.

For cut and paste purposes, the source code for all stages of this tutorial can be browsed on GitHub at
docs/tutorials/wiki2/src, which corresponds to the same location if you have Pyramid sources.

40.1 Background

This version of the Pyramid wiki tutorial presents a Pyramid application that uses technologies which will
be familiar to someone with SQL database experience. It uses SQLAlchemy as a persistence mechanism
and url dispatch to map URLs to code. It can also be followed by people without any prior Python web
framework experience.

To code along with this tutorial, the developer will need a UNIX machine with development tools (Mac
OS X with XCode, any Linux or BSD variant, etc) or a Windows system of any kind.

This tutorial runs on both Python 2 and 3 without modification.

Have fun!

417

https://github.com/Pylons/pyramid/tree/master/docs/tutorials/wiki2/src

40. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

40.2 Design

Following is a quick overview of the design of our wiki application, to help us understand the changes
that we will be making as we work through the tutorial.

40.2.1 Overall

We choose to use reStructuredText markup in the wiki text. Translation from reStructuredText to HTML
is provided by the widely used docutils Python module. We will add this module in the dependency
list on the project setup.py file.

40.2.2 Models

We’ll be using a SQLite database to hold our wiki data, and we’ll be using SQLAlchemy to access the data
in this database.

Within the database, we define a single table named pages, whose elements will store the wiki pages.
There are two columns: name and data.

URLs like /PageName will try to find an element in the table that has a corresponding name.

To add a page to the wiki, a new row is created and the text is stored in data.

A page named FrontPage containing the text This is the front page, will be created when the storage is
initialized, and will be used as the wiki home page.

40.2.3 Views

There will be three views to handle the normal operations of adding, editing, and viewing wiki pages, plus
one view for the wiki front page. Two templates will be used, one for viewing, and one for both adding
and editing wiki pages.

The default templating systems in Pyramid are Chameleon and Mako. Chameleon is a variant of ZPT ,
which is an XML-based templating language. Mako is a non-XML-based templating language. Because
we had to pick one, we chose Chameleon for this tutorial.

418

40.2. DESIGN

40.2.4 Security

We’ll eventually be adding security to our application. The components we’ll use to do this are below.

• USERS, a dictionary mapping userids to their corresponding passwords.

• GROUPS, a dictionary mapping userids to a list of groups to which they belong.

• groupfinder, an authorization callback that looks up USERS and GROUPS. It will be provided
in a new security.py file.

• An ACL is attached to the root resource. Each row below details an ACE:

Action Principal Permission
Allow Everyone View
Allow group:editors Edit

• Permission declarations are added to the views to assert the security policies as each request is
handled.

Two additional views and one template will handle the login and logout tasks.

40.2.5 Summary

The URL, actions, template and permission associated to each view are listed in the following table:

419

40. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

URL Action View Template Permission
/ Redirect to /Front-

Page
view_wiki

/PageName Display existing
page 2

view_page 1 view.pt view

/PageName/edit_page Display edit form
with existing con-
tent.
If the form was sub-
mitted, redirect to
/PageName

edit_page edit.pt edit

/add_page/PageName Create the page
PageName in stor-
age, display the
edit form without
content.
If the form was sub-
mitted, redirect to
/PageName

add_page edit.pt edit

/login Display login form,
Forbidden 3

If the form was
submitted, authenti-
cate.

• If authen-
tication
succeeds,
redirect to
the page that
we came
from.

• If authenti-
cation fails,
display login
form with
“login failed”
message.

login login.pt

/logout Redirect to /Front-
Page

logout

2Pyramid will return a default 404 Not Found page if the page PageName does not exist yet.
1This is the default view for a Page context when there is no view name.
3pyramid.exceptions.Forbidden is reached when a user tries to invoke a view that is not authorized by the authoriza-

tion policy.

420

40.3. INSTALLATION

40.3 Installation

40.3.1 Before you begin

This tutorial assumes that you have already followed the steps in Installing Pyramid, except do not create
a virtualenv or install Pyramid. Thereby you will satisfy the following requirements.

• Python interpreter is installed on your operating system

• setuptools or distribute is installed

• virtualenv is installed

Create directory to contain the project

We need a workspace for our project files.

On UNIX

$ mkdir ~/pyramidtut

On Windows

c:\> mkdir pyramidtut

Create and use a virtual Python environment

Next let’s create a virtualenv workspace for our project. We will use the VENV environment variable
instead of the absolute path of the virtual environment.

On UNIX

421

40. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

$ export VENV=~/pyramidtut
$ virtualenv $VENV
New python executable in /home/foo/env/bin/python
Installing setuptools.............done.

On Windows

c:\> set VENV=c:\pyramidtut

Versions of Python use different paths, so you will need to adjust the path to the command for your Python
version.

Python 2.7:

c:\> c:\Python27\Scripts\virtualenv %VENV%

Python 3.2:

c:\> c:\Python32\Scripts\virtualenv %VENV%

Install Pyramid into the virtual Python environment

On UNIX

$ $VENV/bin/easy_install pyramid

On Windows

c:\> %VENV%\Scripts\easy_install pyramid

422

40.3. INSTALLATION

Install SQLite3 and its development packages

If you used a package manager to install your Python or if you compiled your Python from source, then
you must install SQLite3 and its development packages. If you downloaded your Python as an installer
from python.org, then you already have it installed and can proceed to the next section Making a project..

If you need to install the SQLite3 packages, then, for example, using the Debian system and apt-get, the
command would be the following:

$ sudo apt-get install libsqlite3-dev

Change directory to your virtual Python environment

Change directory to the pyramidtut directory.

On UNIX

$ cd pyramidtut

On Windows

c:\> cd pyramidtut

40.3.2 Making a project

Your next step is to create a project. For this tutorial we will use the scaffold named alchemy which
generates an application that uses SQLAlchemy and URL dispatch.

Pyramid supplies a variety of scaffolds to generate sample projects. We will use pcreate—a script that
comes with Pyramid to quickly and easily generate scaffolds, usually with a single command—to create
the scaffold for our project.

By passing alchemy into the pcreate command, the script creates the files needed to use SQLAlchemy. By
passing in our application name tutorial, the script inserts that application name into all the required files.
For example, pcreate creates the initialize_tutorial_db in the pyramidtut/bin directory.

The below instructions assume your current working directory is “pyramidtut”.

423

40. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

On UNIX

$ $VENV/bin/pcreate -s alchemy tutorial

On Windows

c:\pyramidtut> %VENV%\Scripts\pcreate -s alchemy tutorial

If you are using Windows, the alchemy scaffold may not deal gracefully with installation into
a location that contains spaces in the path. If you experience startup problems, try putting both the
virtualenv and the project into directories that do not contain spaces in their paths.

40.3.3 Installing the project in development mode

In order to do development on the project easily, you must “register” the project as a development egg in
your workspace using the setup.py develop command. In order to do so, cd to the tutorial directory
you created in Making a project, and run the setup.py develop command using the virtualenv
Python interpreter.

On UNIX

$ cd tutorial
$ $VENV/bin/python setup.py develop

On Windows

c:\pyramidtut> cd tutorial
c:\pyramidtut\tutorial> %VENV%\Scripts\python setup.py develop

The console will show setup.py checking for packages and installing missing packages. Success executing
this command will show a line like the following:

424

40.3. INSTALLATION

Finished processing dependencies for tutorial==0.0

40.3.4 Run the tests

After you’ve installed the project in development mode, you may run the tests for the project.

On UNIX

$ $VENV/bin/python setup.py test -q

On Windows

c:\pyramidtut\tutorial> %VENV%\Scripts\python setup.py test -q

For a successful test run, you should see output that ends like this:

.
--
Ran 1 test in 0.094s

OK

40.3.5 Expose test coverage information

You can run the nosetests command to see test coverage information. This runs the tests in the same
way that setup.py test does but provides additional “coverage” information, exposing which lines
of your project are “covered” (or not covered) by the tests.

To get this functionality working, we’ll need to install the nose and coverage packages into our
virtualenv:

On UNIX

425

40. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

$ $VENV/bin/easy_install nose coverage

On Windows

c:\pyramidtut\tutorial> %VENV%\Scripts\easy_install nose coverage

Once nose and coverage are installed, we can actually run the coverage tests.

On UNIX

$ $VENV/bin/nosetests --cover-package=tutorial --cover-erase --with-coverage

On Windows

c:\pyramidtut\tutorial> %VENV%\Scripts\nosetests --cover-package=tutorial \
--cover-erase --with-coverage

If successful, you will see output something like this:

.
Name Stmts Miss Cover Missing

tutorial.py 13 9 31% 13-21
tutorial/models.py 12 0 100%
tutorial/scripts.py 0 0 100%
tutorial/views.py 11 0 100%

TOTAL 36 9 75%
--
Ran 2 tests in 0.643s

OK

Looks like our package doesn’t quite have 100% test coverage.

426

40.3. INSTALLATION

40.3.6 Initializing the database

We need to use the initialize_tutorial_db console script to initialize our database.

Type the following command, making sure you are still in the tutorial directory (the directory with a
development.ini in it):

On UNIX

$ $VENV/bin/initialize_tutorial_db development.ini

On Windows

c:\pyramidtut\tutorial> %VENV%\Scripts\initialize_tutorial_db development.ini

The output to your console should be something like this:

2015-05-23 16:49:49,609 INFO [sqlalchemy.engine.base.Engine:1192][MainThread] SELECT CAST('test plain returns' AS VARCHAR(60)) AS anon_1
2015-05-23 16:49:49,609 INFO [sqlalchemy.engine.base.Engine:1193][MainThread] ()
2015-05-23 16:49:49,610 INFO [sqlalchemy.engine.base.Engine:1192][MainThread] SELECT CAST('test unicode returns' AS VARCHAR(60)) AS anon_1
2015-05-23 16:49:49,610 INFO [sqlalchemy.engine.base.Engine:1193][MainThread] ()
2015-05-23 16:49:49,610 INFO [sqlalchemy.engine.base.Engine:1097][MainThread] PRAGMA table_info("models")
2015-05-23 16:49:49,610 INFO [sqlalchemy.engine.base.Engine:1100][MainThread] ()
2015-05-23 16:49:49,612 INFO [sqlalchemy.engine.base.Engine:1097][MainThread]
CREATE TABLE models (

id INTEGER NOT NULL,
name TEXT,
value INTEGER,
PRIMARY KEY (id)

)

2015-05-23 16:49:49,612 INFO [sqlalchemy.engine.base.Engine:1100][MainThread] ()
2015-05-23 16:49:49,613 INFO [sqlalchemy.engine.base.Engine:686][MainThread] COMMIT
2015-05-23 16:49:49,613 INFO [sqlalchemy.engine.base.Engine:1097][MainThread] CREATE UNIQUE INDEX my_index ON models (name)
2015-05-23 16:49:49,613 INFO [sqlalchemy.engine.base.Engine:1100][MainThread] ()
2015-05-23 16:49:49,614 INFO [sqlalchemy.engine.base.Engine:686][MainThread] COMMIT
2015-05-23 16:49:49,616 INFO [sqlalchemy.engine.base.Engine:646][MainThread] BEGIN (implicit)
2015-05-23 16:49:49,617 INFO [sqlalchemy.engine.base.Engine:1097][MainThread] INSERT INTO models (name, value) VALUES (?, ?)
2015-05-23 16:49:49,617 INFO [sqlalchemy.engine.base.Engine:1100][MainThread] ('one', 1)
2015-05-23 16:49:49,618 INFO [sqlalchemy.engine.base.Engine:686][MainThread] COMMIT

427

40. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

Success! You should now have a tutorial.sqlite file in your current working directory. This will
be a SQLite database with a single table defined in it (models).

40.3.7 Start the application

Start the application.

On UNIX

$ $VENV/bin/pserve development.ini --reload

On Windows

c:\pyramidtut\tutorial> %VENV%\Scripts\pserve development.ini --reload

Your OS firewall, if any, may pop up a dialog asking for authorization to allow python to accept
incoming network connections.

If successful, you will see something like this on your console:

Starting subprocess with file monitor
Starting server in PID 8966.
Starting HTTP server on http://0.0.0.0:6543

This means the server is ready to accept requests.

40.3.8 Visit the application in a browser

In a browser, visit http://localhost:6543/. You will see the generated application’s default page.

One thing you’ll notice is the “debug toolbar” icon on right hand side of the page. You can read more about
the purpose of the icon at The Debug Toolbar. It allows you to get information about your application
while you develop.

428

http://localhost:6543

40.4. BASIC LAYOUT

40.3.9 Decisions the alchemy scaffold has made for you

Creating a project using the alchemy scaffold makes the following assumptions:

• you are willing to use SQLAlchemy as a database access tool

• you are willing to use URL dispatch to map URLs to code

• you want to use ZopeTransactionExtension and pyramid_tm to scope sessions to re-
quests

Pyramid supports any persistent storage mechanism (e.g., object database or filesystem files). It
also supports an additional mechanism to map URLs to code (traversal). However, for the purposes
of this tutorial, we’ll only be using URL dispatch and SQLAlchemy.

40.4 Basic Layout

The starter files generated by the alchemy scaffold are very basic, but they provide a good orientation
for the high-level patterns common to most URL dispatch-based Pyramid projects.

40.4.1 Application configuration with __init__.py

A directory on disk can be turned into a Python package by containing an __init__.py file. Even if
empty, this marks a directory as a Python package. We use __init__.py both as a marker, indicating
the directory in which it’s contained is a package, and to contain application configuration code.

Open tutorial/tutorial/__init__.py. It should already contain the following:

1 from pyramid.config import Configurator
2 from sqlalchemy import engine_from_config
3

4 from .models import (
5 DBSession,
6 Base,
7)
8

9

429

40. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

10 def main(global_config, **settings):
11 """ This function returns a Pyramid WSGI application.
12 """
13 engine = engine_from_config(settings, 'sqlalchemy.')
14 DBSession.configure(bind=engine)
15 Base.metadata.bind = engine
16 config = Configurator(settings=settings)
17 config.include('pyramid_chameleon')
18 config.add_static_view('static', 'static', cache_max_age=3600)
19 config.add_route('home', '/')
20 config.scan()
21 return config.make_wsgi_app()

Let’s go over this piece-by-piece. First, we need some imports to support later code:

1 from pyramid.config import Configurator
2 from sqlalchemy import engine_from_config
3

4 from .models import (
5 DBSession,
6 Base,
7)
8

9

__init__.py defines a function named main. Here is the entirety of the main function we’ve defined
in our __init__.py:

1 def main(global_config, **settings):
2 """ This function returns a Pyramid WSGI application.
3 """
4 engine = engine_from_config(settings, 'sqlalchemy.')
5 DBSession.configure(bind=engine)
6 Base.metadata.bind = engine
7 config = Configurator(settings=settings)
8 config.include('pyramid_chameleon')
9 config.add_static_view('static', 'static', cache_max_age=3600)

10 config.add_route('home', '/')
11 config.scan()
12 return config.make_wsgi_app()

When you invoke the pserve development.ini command, the main function above is executed.
It accepts some settings and returns a WSGI application. (See Startup for more about pserve.)

430

40.4. BASIC LAYOUT

The main function first creates a SQLAlchemy database engine using
sqlalchemy.engine_from_config() from the sqlalchemy. prefixed settings in the
development.ini file’s [app:main] section. This will be a URI (something like sqlite://):

engine = engine_from_config(settings, 'sqlalchemy.')

main then initializes our SQLAlchemy session object, passing it the engine:

DBSession.configure(bind=engine)

main subsequently initializes our SQLAlchemy declarative Base object, assigning the engine we created
to the bind attribute of it’s metadata object. This allows table definitions done imperatively (instead
of declaratively, via a class statement) to work. We won’t use any such tables in our application, but if
you add one later, long after you’ve forgotten about this tutorial, you won’t be left scratching your head
when it doesn’t work.

Base.metadata.bind = engine

The next step of main is to construct a Configurator object:

config = Configurator(settings=settings)

settings is passed to the Configurator as a keyword argument with the dictionary values passed as the
**settings argument. This will be a dictionary of settings parsed from the .ini file, which contains
deployment-related values such as pyramid.reload_templates, db_string, etc.

Next, include Chameleon templating bindings so that we can use renderers with the .pt extension within
our project.

config.include('pyramid_chameleon')

main now calls pyramid.config.Configurator.add_static_view() with two arguments:
static (the name), and static (the path):

config.add_static_view('static', 'static', cache_max_age=3600)

431

http://docs.sqlalchemy.org/en/latest/core/engines.html#sqlalchemy.engine_from_config

40. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

This registers a static resource view which will match any URL that starts with the prefix
/static (by virtue of the first argument to add_static_view). This will serve up static
resources for us from within the static directory of our tutorial package, in this case,
via http://localhost:6543/static/ and below (by virtue of the second argument to
add_static_view). With this declaration, we’re saying that any URL that starts with /static
should go to the static view; any remainder of its path (e.g. the /foo in /static/foo) will be used to
compose a path to a static file resource, such as a CSS file.

Using the configurator main also registers a route configuration via the
pyramid.config.Configurator.add_route() method that will be used when the URL
is /:

config.add_route('home', '/')

Since this route has a pattern equaling / it is the route that will be matched when the URL / is visited,
e.g. http://localhost:6543/.

main next calls the scanmethod of the configurator (pyramid.config.Configurator.scan()),
which will recursively scan our tutorial package, looking for @view_config (and other special)
decorators. When it finds a @view_config decorator, a view configuration will be registered, which
will allow one of our application URLs to be mapped to some code.

config.scan()

Finally, main is finished configuring things, so it uses the
pyramid.config.Configurator.make_wsgi_app() method to return a WSGI applica-
tion:

return config.make_wsgi_app()

40.4.2 View declarations via views.py

The main function of a web framework is mapping each URL pattern to code (a view callable) that
is executed when the requested URL matches the corresponding route. Our application uses the
pyramid.view.view_config() decorator to perform this mapping.

Open tutorial/tutorial/views.py. It should already contain the following:

432

40.4. BASIC LAYOUT

1 from pyramid.response import Response
2 from pyramid.view import view_config
3

4 from sqlalchemy.exc import DBAPIError
5

6 from .models import (
7 DBSession,
8 MyModel,
9)

10

11

12 @view_config(route_name='home', renderer='templates/mytemplate.pt')
13 def my_view(request):
14 try:
15 one = DBSession.query(MyModel).filter(MyModel.name == 'one').first()
16 except DBAPIError:
17 return Response(conn_err_msg, content_type='text/plain', status_int=500)
18 return {'one': one, 'project': 'tutorial'}
19

20 conn_err_msg = """\
21 Pyramid is having a problem using your SQL database. The problem
22 might be caused by one of the following things:
23

24 1. You may need to run the "initialize_tutorial_db" script
25 to initialize your database tables. Check your virtual
26 environment's "bin" directory for this script and try to run it.
27

28 2. Your database server may not be running. Check that the
29 database server referred to by the "sqlalchemy.url" setting in
30 your "development.ini" file is running.
31

32 After you fix the problem, please restart the Pyramid application to
33 try it again.
34 """
35

The important part here is that the @view_config decorator associates the function it decorates
(my_view) with a view configuration, consisting of:

• a route_name (home)

• a renderer, which is a template from the templates subdirectory of the package.

When the pattern associated with the home view is matched during a request, my_view() will be
executed. my_view() returns a dictionary; the renderer will use the templates/mytemplate.pt
template to create a response based on the values in the dictionary.

433

40. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

Note that my_view() accepts a single argument named request. This is the standard call signature
for a Pyramid view callable.

Remember in our __init__.pywhen we executed the pyramid.config.Configurator.scan()
method config.scan()? The purpose of calling the scan method was to find and process this
@view_config decorator in order to create a view configuration within our application. Without being
processed by scan, the decorator effectively does nothing. @view_config is inert without being
detected via a scan.

The sample my_view() created by the scaffold uses a try: and except: clause to detect if there
is a problem accessing the project database and provide an alternate error response. That response will
include the text shown at the end of the file, which will be displayed in the browser to inform the user
about possible actions to take to solve the problem.

40.4.3 Content Models with models.py

In a SQLAlchemy-based application, a model object is an object composed by querying the SQL database.
The models.py file is where the alchemy scaffold put the classes that implement our models.

Open tutorial/tutorial/models.py. It should already contain the following:

1 from sqlalchemy import (
2 Column,
3 Integer,
4 Text,
5 Index,
6)
7

8 from sqlalchemy.ext.declarative import declarative_base
9

10 from sqlalchemy.orm import (
11 scoped_session,
12 sessionmaker,
13)
14

15 from zope.sqlalchemy import ZopeTransactionExtension
16

17 DBSession = scoped_session(sessionmaker(extension=ZopeTransactionExtension()))
18 Base = declarative_base()
19

20

21 class MyModel(Base):
22 __tablename__ = 'models'

434

40.4. BASIC LAYOUT

23 id = Column(Integer, primary_key=True)
24 name = Column(Text, unique=True)
25 value = Column(Integer)
26

27 Index('my_index', MyModel.name, unique=True, mysql_length=255)

Let’s examine this in detail. First, we need some imports to support later code:

1 from sqlalchemy import (
2 Column,
3 Integer,
4 Text,
5 Index,
6)
7

8 from sqlalchemy.ext.declarative import declarative_base
9

10 from sqlalchemy.orm import (
11 scoped_session,
12 sessionmaker,
13)
14

15 from zope.sqlalchemy import ZopeTransactionExtension
16

Next we set up a SQLAlchemy DBSession object:

DBSession = scoped_session(sessionmaker(extension=ZopeTransactionExtension()))

scoped_session and sessionmaker are standard SQLAlchemy helpers. scoped_session
allows us to access our database connection globally. sessionmaker creates a database session
object. We pass to sessionmaker the extension=ZopeTransactionExtension() ex-
tension option in order to allow the system to automatically manage database transactions. With
ZopeTransactionExtension activated, our application will automatically issue a transaction com-
mit after every request unless an exception is raised, in which case the transaction will be aborted.

We also need to create a declarative Base object to use as a base class for our model:

Base = declarative_base()

Our model classes will inherit from this Base class so they can be associated with our particular database
connection.

To give a simple example of a model class, we define one named MyModel:

435

40. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

1 class MyModel(Base):
2 __tablename__ = 'models'
3 id = Column(Integer, primary_key=True)
4 name = Column(Text, unique=True)
5 value = Column(Integer)

Our example model does not require an __init__ method because SQLAlchemy supplies for us a
default constructor if one is not already present, which accepts keyword arguments of the same name as
that of the mapped attributes.

Example usage of MyModel:

johnny = MyModel(name="John Doe", value=10)

The MyModel class has a __tablename__ attribute. This informs SQLAlchemy which table to use to
store the data representing instances of this class.

The Index import and the Index object creation is not required for this tutorial, and will be removed in the
next step.

That’s about all there is to it regarding models, views, and initialization code in our stock application.

40.5 Defining the Domain Model

The first change we’ll make to our stock pcreate-generated application will be to define a domain
model constructor representing a wiki page. We’ll do this inside our models.py file.

40.5.1 Edit models.py

There is nothing special about the filename models.py. A project may have many models
throughout its codebase in arbitrarily named files. Files implementing models often have model in
their filenames or they may live in a Python subpackage of your application package named models,
but this is only by convention.

Open tutorial/tutorial/models.py file and edit it to look like the following:

436

40.5. DEFINING THE DOMAIN MODEL

1 from sqlalchemy import (
2 Column,
3 Integer,
4 Text,
5)
6

7 from sqlalchemy.ext.declarative import declarative_base
8

9 from sqlalchemy.orm import (
10 scoped_session,
11 sessionmaker,
12)
13

14 from zope.sqlalchemy import ZopeTransactionExtension
15

16 DBSession = scoped_session(sessionmaker(extension=ZopeTransactionExtension()))
17 Base = declarative_base()
18

19

20 class Page(Base):
21 """ The SQLAlchemy declarative model class for a Page object. """
22 __tablename__ = 'pages'
23 id = Column(Integer, primary_key=True)
24 name = Column(Text, unique=True)
25 data = Column(Text)

The highlighted lines are the ones that need to be changed, as well as removing lines that reference
Index.

The first thing we’ve done is remove the stock MyModel class from the generated models.py file. The
MyModel class is only a sample and we’re not going to use it.

Then, we added a Page class. Because this is a SQLAlchemy application, this class inherits from an
instance of sqlalchemy.ext.declarative.declarative_base().

1 class Page(Base):
2 """ The SQLAlchemy declarative model class for a Page object. """
3 __tablename__ = 'pages'
4 id = Column(Integer, primary_key=True)
5 name = Column(Text, unique=True)
6 data = Column(Text)

As you can see, our Page class has a class level attribute __tablename__ which equals the string
’pages’. This means that SQLAlchemy will store our wiki data in a SQL table named pages.

437

http://docs.sqlalchemy.org/en/latest/orm/extensions/declarative/api.html#sqlalchemy.ext.declarative.declarative_base

40. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

Our Page class will also have class-level attributes named id, name and data (all instances of
sqlalchemy.schema.Column). These will map to columns in the pages table. The id attribute
will be the primary key in the table. The name attribute will be a text attribute, each value of which needs
to be unique within the column. The data attribute is a text attribute that will hold the body of each page.

40.5.2 Changing scripts/initializedb.py

We haven’t looked at the details of this file yet, but within the scripts directory of your tutorial
package is a file named initializedb.py. Code in this file is executed whenever we run the
initialize_tutorial_db command, as we did in the installation step of this tutorial.

Since we’ve changed our model, we need to make changes to our initializedb.py script. In partic-
ular, we’ll replace our import of MyModel with one of Page and we’ll change the very end of the script
to create a Page rather than a MyModel and add it to our DBSession.

Open tutorial/tutorial/scripts/initializedb.py and edit it to look like the following:

1 import os
2 import sys
3 import transaction
4

5 from sqlalchemy import engine_from_config
6

7 from pyramid.paster import (
8 get_appsettings,
9 setup_logging,

10)
11

12 from ..models import (
13 DBSession,
14 Page,
15 Base,
16)
17

18

19 def usage(argv):
20 cmd = os.path.basename(argv[0])
21 print('usage: %s <config_uri>\n'
22 '(example: "%s development.ini")' % (cmd, cmd))
23 sys.exit(1)
24

25

26 def main(argv=sys.argv):

438

http://docs.sqlalchemy.org/en/latest/core/metadata.html#sqlalchemy.schema.Column

40.5. DEFINING THE DOMAIN MODEL

27 if len(argv) != 2:
28 usage(argv)
29 config_uri = argv[1]
30 setup_logging(config_uri)
31 settings = get_appsettings(config_uri)
32 engine = engine_from_config(settings, 'sqlalchemy.')
33 DBSession.configure(bind=engine)
34 Base.metadata.create_all(engine)
35 with transaction.manager:
36 model = Page(name='FrontPage', data='This is the front page')
37 DBSession.add(model)

Only the highlighted lines need to be changed, as well as removing the lines referencing
pyramid.scripts.common and options under the main function.

40.5.3 Installing the project and re-initializing the database

Because our model has changed, in order to reinitialize the database, we need to rerun the
initialize_tutorial_db command to pick up the changes you’ve made to both the models.py
file and to the initializedb.py file. See Initializing the database for instructions.

Success will look something like this:

2015-05-24 15:34:14,542 INFO [sqlalchemy.engine.base.Engine:1192][MainThread] SELECT CAST('test plain returns' AS VARCHAR(60)) AS anon_1
2015-05-24 15:34:14,542 INFO [sqlalchemy.engine.base.Engine:1193][MainThread] ()
2015-05-24 15:34:14,543 INFO [sqlalchemy.engine.base.Engine:1192][MainThread] SELECT CAST('test unicode returns' AS VARCHAR(60)) AS anon_1
2015-05-24 15:34:14,543 INFO [sqlalchemy.engine.base.Engine:1193][MainThread] ()
2015-05-24 15:34:14,543 INFO [sqlalchemy.engine.base.Engine:1097][MainThread] PRAGMA table_info("pages")
2015-05-24 15:34:14,544 INFO [sqlalchemy.engine.base.Engine:1100][MainThread] ()
2015-05-24 15:34:14,544 INFO [sqlalchemy.engine.base.Engine:1097][MainThread]
CREATE TABLE pages (

id INTEGER NOT NULL,
name TEXT,
data TEXT,
PRIMARY KEY (id),
UNIQUE (name)

)

2015-05-24 15:34:14,545 INFO [sqlalchemy.engine.base.Engine:1100][MainThread] ()
2015-05-24 15:34:14,546 INFO [sqlalchemy.engine.base.Engine:686][MainThread] COMMIT
2015-05-24 15:34:14,548 INFO [sqlalchemy.engine.base.Engine:646][MainThread] BEGIN (implicit)

439

40. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

2015-05-24 15:34:14,549 INFO [sqlalchemy.engine.base.Engine:1097][MainThread] INSERT INTO pages (name, data) VALUES (?, ?)
2015-05-24 15:34:14,549 INFO [sqlalchemy.engine.base.Engine:1100][MainThread] ('FrontPage', 'This is the front page')
2015-05-24 15:34:14,550 INFO [sqlalchemy.engine.base.Engine:686][MainThread] COMMIT

40.5.4 View the application in a browser

We can’t. At this point, our system is in a “non-runnable” state; we’ll need to change view-related files in
the next chapter to be able to start the application successfully. If you try to start the application (See Start
the application), you’ll wind up with a Python traceback on your console that ends with this exception:

ImportError: cannot import name MyModel

This will also happen if you attempt to run the tests.

40.6 Defining Views

A view callable in a Pyramid application is typically a simple Python function that accepts a single
parameter named request. A view callable is assumed to return a response object.

The request object has a dictionary as an attribute named matchdict. A matchdict maps the place-
holders in the matching URL pattern to the substrings of the path in the request URL. For instance, if a
call to pyramid.config.Configurator.add_route() has the pattern /{one}/{two}, and
a user visits http://example.com/foo/bar, our pattern would be matched against /foo/bar
and the matchdict would look like {’one’:’foo’, ’two’:’bar’}.

40.6.1 Declaring Dependencies in Our setup.py File

The view code in our application will depend on a package which is not a dependency of the original
“tutorial” application. The original “tutorial” application was generated by the pcreate command; it
doesn’t know about our custom application requirements.

We need to add a dependency on the docutils package to our tutorial package’s setup.py file
by assigning this dependency to the requires parameter in the setup() function.

Open tutorial/setup.py and edit it to look like the following:

440

40.6. DEFINING VIEWS

1 import os
2

3 from setuptools import setup, find_packages
4

5 here = os.path.abspath(os.path.dirname(__file__))
6 with open(os.path.join(here, 'README.txt')) as f:
7 README = f.read()
8 with open(os.path.join(here, 'CHANGES.txt')) as f:
9 CHANGES = f.read()

10

11 requires = [
12 'pyramid',
13 'pyramid_chameleon',
14 'pyramid_debugtoolbar',
15 'pyramid_tm',
16 'SQLAlchemy',
17 'transaction',
18 'zope.sqlalchemy',
19 'waitress',
20 'docutils',
21]
22

23 setup(name='tutorial',
24 version='0.0',
25 description='tutorial',
26 long_description=README + '\n\n' + CHANGES,
27 classifiers=[
28 "Programming Language :: Python",
29 "Framework :: Pyramid",
30 "Topic :: Internet :: WWW/HTTP",
31 "Topic :: Internet :: WWW/HTTP :: WSGI :: Application",
32],
33 author='',
34 author_email='',
35 url='',
36 keywords='web wsgi bfg pylons pyramid',
37 packages=find_packages(),
38 include_package_data=True,
39 zip_safe=False,
40 test_suite='tutorial',
41 install_requires=requires,
42 entry_points="""\
43 [paste.app_factory]
44 main = tutorial:main
45 [console_scripts]
46 initialize_tutorial_db = tutorial.scripts.initializedb:main

441

40. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

47 """,
48)

Only the highlighted line needs to be added.

40.6.2 Running setup.py develop

Since a new software dependency was added, you will need to run python setup.py develop
again inside the root of the tutorial package to obtain and register the newly added dependency
distribution.

Make sure your current working directory is the root of the project (the directory in which setup.py
lives) and execute the following command.

On UNIX:

$ cd tutorial
$ $VENV/bin/python setup.py develop

On Windows:

c:\pyramidtut> cd tutorial
c:\pyramidtut\tutorial> %VENV%\Scripts\python setup.py develop

Success executing this command will end with a line to the console something like:

Finished processing dependencies for tutorial==0.0

40.6.3 Adding view functions in views.py

It’s time for a major change. Open tutorial/tutorial/views.py and edit it to look like the
following:

442

40.6. DEFINING VIEWS

1 import cgi
2 import re
3 from docutils.core import publish_parts
4

5 from pyramid.httpexceptions import (
6 HTTPFound,
7 HTTPNotFound,
8)
9

10 from pyramid.view import view_config
11

12 from .models import (
13 DBSession,
14 Page,
15)
16

17 # regular expression used to find WikiWords
18 wikiwords = re.compile(r"\b([A-Z]\w+[A-Z]+\w+)")
19

20 @view_config(route_name='view_wiki')
21 def view_wiki(request):
22 return HTTPFound(location = request.route_url('view_page',
23 pagename='FrontPage'))
24

25 @view_config(route_name='view_page', renderer='templates/view.pt')
26 def view_page(request):
27 pagename = request.matchdict['pagename']
28 page = DBSession.query(Page).filter_by(name=pagename).first()
29 if page is None:
30 return HTTPNotFound('No such page')
31

32 def check(match):
33 word = match.group(1)
34 exists = DBSession.query(Page).filter_by(name=word).all()
35 if exists:
36 view_url = request.route_url('view_page', pagename=word)
37 return '%s' % (view_url, cgi.escape(word))
38 else:
39 add_url = request.route_url('add_page', pagename=word)
40 return '%s' % (add_url, cgi.escape(word))
41

42 content = publish_parts(page.data, writer_name='html')['html_body']
43 content = wikiwords.sub(check, content)
44 edit_url = request.route_url('edit_page', pagename=pagename)
45 return dict(page=page, content=content, edit_url=edit_url)
46

443

40. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

47 @view_config(route_name='add_page', renderer='templates/edit.pt')
48 def add_page(request):
49 pagename = request.matchdict['pagename']
50 if 'form.submitted' in request.params:
51 body = request.params['body']
52 page = Page(name=pagename, data=body)
53 DBSession.add(page)
54 return HTTPFound(location = request.route_url('view_page',
55 pagename=pagename))
56 save_url = request.route_url('add_page', pagename=pagename)
57 page = Page(name='', data='')
58 return dict(page=page, save_url=save_url)
59

60 @view_config(route_name='edit_page', renderer='templates/edit.pt')
61 def edit_page(request):
62 pagename = request.matchdict['pagename']
63 page = DBSession.query(Page).filter_by(name=pagename).one()
64 if 'form.submitted' in request.params:
65 page.data = request.params['body']
66 DBSession.add(page)
67 return HTTPFound(location = request.route_url('view_page',
68 pagename=pagename))
69 return dict(
70 page=page,
71 save_url = request.route_url('edit_page', pagename=pagename),
72)

The highlighted lines need to be added or edited.

We added some imports and created a regular expression to find “WikiWords”.

We got rid of the my_view view function and its decorator that was added when we originally rendered
the alchemy scaffold. It was only an example and isn’t relevant to our application.

Then we added four view callable functions to our views.py module:

• view_wiki() - Displays the wiki itself. It will answer on the root URL.

• view_page() - Displays an individual page.

• add_page() - Allows the user to add a page.

• edit_page() - Allows the user to edit a page.

444

40.6. DEFINING VIEWS

We’ll describe each one briefly in the following sections.

There is nothing special about the filename views.py. A project may have many view callables
throughout its codebase in arbitrarily named files. Files implementing view callables often have view
in their filenames (or may live in a Python subpackage of your application package named views),
but this is only by convention.

The view_wiki view function

Following is the code for the view_wiki view function and its decorator:

20 @view_config(route_name='view_wiki')
21 def view_wiki(request):
22 return HTTPFound(location = request.route_url('view_page',
23 pagename='FrontPage'))
24

view_wiki() is the default view that gets called when a request is made to the root URL of our wiki.
It always redirects to an URL which represents the path to our “FrontPage”.

The view_wiki view callable always redirects to the URL of a Page re-
source named “FrontPage”. To do so, it returns an instance of the
pyramid.httpexceptions.HTTPFound class (instances of which implement the
pyramid.interfaces.IResponse interface, like pyramid.response.Response does).
It uses the pyramid.request.Request.route_url() API to construct an URL to the
FrontPage page (i.e., http://localhost:6543/FrontPage), and uses it as the “location” of
the HTTPFound response, forming an HTTP redirect.

The view_page view function

Here is the code for the view_page view function and its decorator:

25 @view_config(route_name='view_page', renderer='templates/view.pt')
26 def view_page(request):
27 pagename = request.matchdict['pagename']
28 page = DBSession.query(Page).filter_by(name=pagename).first()
29 if page is None:
30 return HTTPNotFound('No such page')

445

40. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

31

32 def check(match):
33 word = match.group(1)
34 exists = DBSession.query(Page).filter_by(name=word).all()
35 if exists:
36 view_url = request.route_url('view_page', pagename=word)
37 return '%s' % (view_url, cgi.escape(word))
38 else:
39 add_url = request.route_url('add_page', pagename=word)
40 return '%s' % (add_url, cgi.escape(word))
41

42 content = publish_parts(page.data, writer_name='html')['html_body']
43 content = wikiwords.sub(check, content)
44 edit_url = request.route_url('edit_page', pagename=pagename)
45 return dict(page=page, content=content, edit_url=edit_url)

view_page() is used to display a single page of our wiki. It renders the reStructuredText body of a
page (stored as the data attribute of a Page model object) as HTML. Then it substitutes an HTML
anchor for each WikiWord reference in the rendered HTML using a compiled regular expression.

The curried function named check is used as the first argument to wikiwords.sub, indicating that
it should be called to provide a value for each WikiWord match found in the content. If the wiki already
contains a page with the matched WikiWord name, check() generates a view link to be used as the
substitution value and returns it. If the wiki does not already contain a page with the matched WikiWord
name, check() generates an “add” link as the substitution value and returns it.

As a result, the content variable is now a fully formed bit of HTML containing various view and add
links for WikiWords based on the content of our current page object.

We then generate an edit URL because it’s easier to do here than in the template, and we return a dictionary
with a number of arguments. The fact that view_page() returns a dictionary (as opposed to a response
object) is a cue to Pyramid that it should try to use a renderer associated with the view configuration
to render a response. In our case, the renderer used will be the templates/view.pt template, as
indicated in the @view_config decorator that is applied to view_page().

The add_page view function

Here is the code for the add_page view function and its decorator:

446

40.6. DEFINING VIEWS

47 @view_config(route_name='add_page', renderer='templates/edit.pt')
48 def add_page(request):
49 pagename = request.matchdict['pagename']
50 if 'form.submitted' in request.params:
51 body = request.params['body']
52 page = Page(name=pagename, data=body)
53 DBSession.add(page)
54 return HTTPFound(location = request.route_url('view_page',
55 pagename=pagename))
56 save_url = request.route_url('add_page', pagename=pagename)
57 page = Page(name='', data='')
58 return dict(page=page, save_url=save_url)

add_page() is invoked when a user clicks on a WikiWord which isn’t yet represented as a page in the
system. The check function within the view_page view generates URLs to this view. add_page()
also acts as a handler for the form that is generated when we want to add a page object. The matchdict
attribute of the request passed to the add_page() view will have the values we need to construct URLs
and find model objects.

The matchdict will have a ’pagename’ key that matches the name of the page we’d like to add.
If our add view is invoked via, e.g., http://localhost:6543/add_page/SomeName, the value
for ’pagename’ in the matchdict will be ’SomeName’.

If the view execution is a result of a form submission (i.e., the expression ’form.submitted’ in
request.params is True), we grab the page body from the form data, create a Page object with this
page body and the name taken from matchdict[’pagename’], and save it into the database using
DBSession.add. We then redirect back to the view_page view for the newly created page.

If the view execution is not a result of a form submission (i.e., the expression ’form.submitted’ in
request.params is False), the view callable renders a template. To do so, it generates a save_url
which the template uses as the form post URL during rendering. We’re lazy here, so we’re going to use
the same template (templates/edit.pt) for the add view as well as the page edit view. To do so we
create a dummy Page object in order to satisfy the edit form’s desire to have some page object exposed as
page. Pyramid will render the template associated with this view to a response.

The edit_page view function

Here is the code for the edit_page view function and its decorator:

447

40. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

60 @view_config(route_name='edit_page', renderer='templates/edit.pt')
61 def edit_page(request):
62 pagename = request.matchdict['pagename']
63 page = DBSession.query(Page).filter_by(name=pagename).one()
64 if 'form.submitted' in request.params:
65 page.data = request.params['body']
66 DBSession.add(page)
67 return HTTPFound(location = request.route_url('view_page',
68 pagename=pagename))
69 return dict(
70 page=page,
71 save_url = request.route_url('edit_page', pagename=pagename),
72)

edit_page() is invoked when a user clicks the “Edit this Page” button on the view form. It renders an
edit form but it also acts as the handler for the form it renders. The matchdict attribute of the request
passed to the edit_page view will have a ’pagename’ key matching the name of the page the user
wants to edit.

If the view execution is a result of a form submission (i.e., the expression ’form.submitted’ in
request.params is True), the view grabs the body element of the request parameters and sets it as
the data attribute of the page object. It then redirects to the view_page view of the wiki page.

If the view execution is not a result of a form submission (i.e., the expression ’form.submitted’
in request.params is False), the view simply renders the edit form, passing the page object and
a save_url which will be used as the action of the generated form.

40.6.4 Adding templates

The view_page, add_page and edit_page views that we’ve added reference a template. Each
template is a Chameleon ZPT template. These templates will live in the templates directory of our
tutorial package. Chameleon templates must have a .pt extension to be recognized as such.

The view.pt template

Create tutorial/tutorial/templates/view.pt and add the following content:

448

40.6. DEFINING VIEWS

1 <!DOCTYPE html>
2 <html lang="${request.locale_name}">
3 <head>
4 <meta charset="utf-8">
5 <meta http-equiv="X-UA-Compatible" content="IE=edge">
6 <meta name="viewport" content="width=device-width, initial-scale=1.0">
7 <meta name="description" content="pyramid web application">
8 <meta name="author" content="Pylons Project">
9 <link rel="shortcut icon" href="${request.static_url('tutorial:static/pyramid-16x16.png')}">

10

11 <title>${page.name} - Pyramid tutorial wiki (based on
12 TurboGears 20-Minute Wiki)</title>
13

14 <!-- Bootstrap core CSS -->
15 <link href="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/css/bootstrap.min.css" rel="stylesheet">
16

17 <!-- Custom styles for this scaffold -->
18 <link href="${request.static_url('tutorial:static/theme.css')}" rel="stylesheet">
19

20 <!-- HTML5 shim and Respond.js IE8 support of HTML5 elements and media queries -->
21 <!--[if lt IE 9]>
22 <script src="//oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js"></script>
23 <script src="//oss.maxcdn.com/libs/respond.js/1.3.0/respond.min.js"></script>
24 <![endif]-->
25 </head>
26 <body>
27

28 <div class="starter-template">
29 <div class="container">
30 <div class="row">
31 <div class="col-md-2">
32
33 </div>
34 <div class="col-md-10">
35 <div class="content">
36 <div tal:replace="structure content">
37 Page text goes here.
38 </div>
39 <p>
40 <a tal:attributes="href edit_url" href="">
41 Edit this page
42
43 </p>
44 <p>
45 Viewing
46 Page Name Goes Here

449

40. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

47 </p>
48 <p>You can return to the
49 FrontPage.
50 </p>
51 </div>
52 </div>
53 </div>
54 <div class="row">
55 <div class="copyright">
56 Copyright © Pylons Project
57 </div>
58 </div>
59 </div>
60 </div>
61

62

63 <!-- Bootstrap core JavaScript
64 == -->
65 <!-- Placed at the end of the document so the pages load faster -->
66 <script src="//oss.maxcdn.com/libs/jquery/1.10.2/jquery.min.js"></script>
67 <script src="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/js/bootstrap.min.js"></script>
68 </body>
69 </html>

This template is used by view_page() for displaying a single wiki page. It includes:

• A div element that is replaced with the content value provided by the view (lines 36-38).
content contains HTML, so the structure keyword is used to prevent escaping it (i.e., chang-
ing “>” to “>”, etc.)

• A link that points at the “edit” URL which invokes the edit_page view for the page being viewed
(lines 40-42).

The edit.pt template

Create tutorial/tutorial/templates/edit.pt and add the following content:

1 <!DOCTYPE html>
2 <html lang="${request.locale_name}">
3 <head>
4 <meta charset="utf-8">
5 <meta http-equiv="X-UA-Compatible" content="IE=edge">
6 <meta name="viewport" content="width=device-width, initial-scale=1.0">

450

40.6. DEFINING VIEWS

7 <meta name="description" content="pyramid web application">
8 <meta name="author" content="Pylons Project">
9 <link rel="shortcut icon" href="${request.static_url('tutorial:static/pyramid-16x16.png')}">

10

11 <title>${page.name} - Pyramid tutorial wiki (based on
12 TurboGears 20-Minute Wiki)</title>
13

14 <!-- Bootstrap core CSS -->
15 <link href="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/css/bootstrap.min.css" rel="stylesheet">
16

17 <!-- Custom styles for this scaffold -->
18 <link href="${request.static_url('tutorial:static/theme.css')}" rel="stylesheet">
19

20 <!-- HTML5 shim and Respond.js IE8 support of HTML5 elements and media queries -->
21 <!--[if lt IE 9]>
22 <script src="//oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js"></script>
23 <script src="//oss.maxcdn.com/libs/respond.js/1.3.0/respond.min.js"></script>
24 <![endif]-->
25 </head>
26 <body>
27

28 <div class="starter-template">
29 <div class="container">
30 <div class="row">
31 <div class="col-md-2">
32
33 </div>
34 <div class="col-md-10">
35 <div class="content">
36 <p>
37 Editing Page Name Goes
38 Here
39 </p>
40 <p>You can return to the
41 FrontPage.
42 </p>
43 <form action="${save_url}" method="post">
44 <div class="form-group">
45 <textarea class="form-control" name="body" tal:content="page.data" rows="10" cols="60"></textarea>
46 </div>
47 <div class="form-group">
48 <button type="submit" name="form.submitted" value="Save" class="btn btn-default">Save</button>
49 </div>
50 </form>
51 </div>
52 </div>

451

40. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

53 </div>
54 <div class="row">
55 <div class="copyright">
56 Copyright © Pylons Project
57 </div>
58 </div>
59 </div>
60 </div>
61

62

63 <!-- Bootstrap core JavaScript
64 == -->
65 <!-- Placed at the end of the document so the pages load faster -->
66 <script src="//oss.maxcdn.com/libs/jquery/1.10.2/jquery.min.js"></script>
67 <script src="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/js/bootstrap.min.js"></script>
68 </body>
69 </html>

This template is used by add_page() and edit_page() for adding and editing a wiki page. It
displays a page containing a form that includes:

• A 10 row by 60 column textarea field named body that is filled with any existing page data
when it is rendered (line 45).

• A submit button that has the name form.submitted (line 48).

The form POSTs back to the save_url argument supplied by the view (line 43). The view will use the
body and form.submitted values.

Our templates use a request object that none of our tutorial views return in their dictionary.
request is one of several names that are available “by default” in a template when a template
renderer is used. See System Values Used During Rendering for information about other names that
are available by default when a template is used as a renderer.

Static Assets

Our templates name static assets, including CSS and images. We don’t need to create these files within
our package’s static directory because they were provided at the time we created the project.

As an example, the CSS file will be accessed via http://localhost:6543/static/theme.css
by virtue of the call to the add_static_view directive we’ve made in the __init__.py
file. Any number and type of static assets can be placed in this directory (or subdirecto-
ries) and are just referred to by URL or by using the convenience method static_url, e.g.,
request.static_url(’<package>:static/foo.css’) within templates.

452

40.6. DEFINING VIEWS

40.6.5 Adding Routes to __init__.py

The __init__.py file contains pyramid.config.Configurator.add_route() calls which
serve to add routes to our application. First, we’ll get rid of the existing route created by the template
using the name ’home’. It’s only an example and isn’t relevant to our application.

We then need to add four calls to add_route. Note that the ordering of these declarations is very
important. route declarations are matched in the order they’re found in the __init__.py file.

1. Add a declaration which maps the pattern / (signifying the root URL) to the route named
view_wiki. It maps to our view_wiki view callable by virtue of the @view_config at-
tached to the view_wiki view function indicating route_name=’view_wiki’.

2. Add a declaration which maps the pattern /{pagename} to the route named view_page.
This is the regular view for a page. It maps to our view_page view callable
by virtue of the @view_config attached to the view_page view function indicating
route_name=’view_page’.

3. Add a declaration which maps the pattern /add_page/{pagename} to the route named
add_page. This is the add view for a new page. It maps to our add_page view
callable by virtue of the @view_config attached to the add_page view function indicating
route_name=’add_page’.

4. Add a declaration which maps the pattern /{pagename}/edit_page to the route named
edit_page. This is the edit view for a page. It maps to our edit_page view callable
by virtue of the @view_config attached to the edit_page view function indicating
route_name=’edit_page’.

As a result of our edits, the __init__.py file should look something like:

1 from pyramid.config import Configurator
2 from sqlalchemy import engine_from_config
3

4 from .models import (
5 DBSession,
6 Base,
7)
8

9

10 def main(global_config, **settings):
11 """ This function returns a Pyramid WSGI application.
12 """
13 engine = engine_from_config(settings, 'sqlalchemy.')
14 DBSession.configure(bind=engine)

453

40. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

15 Base.metadata.bind = engine
16 config = Configurator(settings=settings)
17 config.include('pyramid_chameleon')
18 config.add_static_view('static', 'static', cache_max_age=3600)
19 config.add_route('view_wiki', '/')
20 config.add_route('view_page', '/{pagename}')
21 config.add_route('add_page', '/add_page/{pagename}')
22 config.add_route('edit_page', '/{pagename}/edit_page')
23 config.scan()
24 return config.make_wsgi_app()

The highlighted lines are the ones that need to be added or edited.

40.6.6 Viewing the application in a browser

We can finally examine our application in a browser (See Start the application). Launch a browser and
visit each of the following URLs, checking that the result is as expected:

• http://localhost:6543/ invokes the view_wiki view. This always redirects to the view_page
view of the FrontPage page object.

• http://localhost:6543/FrontPage invokes the view_page view of the front page object.

• http://localhost:6543/FrontPage/edit_page invokes the edit view for the front page object.

• http://localhost:6543/add_page/SomePageName invokes the add view for a page.

• To generate an error, visit http://localhost:6543/foobars/edit_page which will generate a
NoResultFound: No row was found for one() error. You’ll see an interactive
traceback facility provided by pyramid_debugtoolbar.

40.7 Adding authorization

Pyramid provides facilities for authentication and authorization. We’ll make use of both features to
provide security to our application. Our application currently allows anyone with access to the server to
view, edit, and add pages to our wiki. We’ll change that to allow only people who are members of a group
named group:editors to add and edit wiki pages but we’ll continue allowing anyone with access to
the server to view pages.

We will also add a login page and a logout link on all the pages. The login page will be shown when a
user is denied access to any of the views that require permission, instead of a default “403 Forbidden”
page.

We will implement the access control with the following steps:

454

http://localhost:6543/
http://localhost:6543/FrontPage
http://localhost:6543/FrontPage/edit_page
http://localhost:6543/add_page/SomePageName
http://localhost:6543/foobars/edit_page

40.7. ADDING AUTHORIZATION

• Add users and groups (security.py, a new module).

• Add an ACL (models.py and __init__.py).

• Add an authentication policy and an authorization policy (__init__.py).

• Add permission declarations to the edit_page and add_page views (views.py).

Then we will add the login and logout feature:

• Add routes for /login and /logout (__init__.py).

• Add login and logout views (views.py).

• Add a login template (login.pt).

• Make the existing views return a logged_in flag to the renderer (views.py).

• Add a “Logout” link to be shown when logged in and viewing or editing a page (view.pt,
edit.pt).

40.7.1 Access control

Add users and groups

Create a new tutorial/tutorial/security.py module with the following content:

1 USERS = {'editor':'editor',
2 'viewer':'viewer'}
3 GROUPS = {'editor':['group:editors']}
4

5 def groupfinder(userid, request):
6 if userid in USERS:
7 return GROUPS.get(userid, [])

The groupfinder function accepts a userid and a request and returns one of these values:

• If the userid exists in the system, it will return a sequence of group identifiers (or an empty sequence
if the user isn’t a member of any groups).

• If the userid does not exist in the system, it will return None.

For example, groupfinder(’editor’, request) returns [’group:editor’],
groupfinder(’viewer’, request) returns [], and groupfinder(’admin’, request)
returns None. We will use groupfinder() as an authentication policy “callback” that will provide
the principal or principals for a user.

In a production system, user and group data will most often come from a database, but here we use
“dummy” data to represent user and groups sources.

455

40. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

Add an ACL

Open tutorial/tutorial/models.py and add the following import statement at the head:

1 from pyramid.security import (
2 Allow,
3 Everyone,
4)

Add the following class definition at the end:

33 class RootFactory(object):
34 __acl__ = [(Allow, Everyone, 'view'),
35 (Allow, 'group:editors', 'edit')]
36 def __init__(self, request):
37 pass

We import Allow , an action that means that permission is allowed, and Everyone, a special principal
that is associated to all requests. Both are used in the ACE entries that make up the ACL.

The ACL is a list that needs to be named __acl__ and be an attribute of a class. We define an ACL
with two ACE entries: the first entry allows any user the view permission. The second entry allows the
group:editors principal the edit permission.

The RootFactory class that contains the ACL is a root factory. We need to associate it to our Pyramid
application, so the ACL is provided to each view in the context of the request as the context attribute.

Open tutorial/tutorial/__init__.py and add a root_factory parameter to our Configu-
rator constructor, that points to the class we created above:

16 config = Configurator(settings=settings,
17 root_factory='tutorial.models.RootFactory')

Only the highlighted line needs to be added.

We are now providing the ACL to the application. See Assigning ACLs to Your Resource Objects for more
information about what an ACL represents.

Although we don’t use the functionality here, the factory used to create route
contexts may differ per-route as opposed to globally. See the factory argument to
pyramid.config.Configurator.add_route() for more info.

456

40.7. ADDING AUTHORIZATION

Add authentication and authorization policies

Open tutorial/tutorial/__init__.py and add the highlighted import statements:

1 from pyramid.config import Configurator
2 from pyramid.authentication import AuthTktAuthenticationPolicy
3 from pyramid.authorization import ACLAuthorizationPolicy
4

5 from sqlalchemy import engine_from_config
6

7 from tutorial.security import groupfinder

Now add those policies to the configuration:

21 authn_policy = AuthTktAuthenticationPolicy(
22 'sosecret', callback=groupfinder, hashalg='sha512')
23 authz_policy = ACLAuthorizationPolicy()
24 config = Configurator(settings=settings,
25 root_factory='tutorial.models.RootFactory')
26 config.set_authentication_policy(authn_policy)
27 config.set_authorization_policy(authz_policy)

Only the highlighted lines need to be added.

We are enabling an AuthTktAuthenticationPolicy, which is based in an auth ticket that may be
included in the request. We are also enabling an ACLAuthorizationPolicy, which uses an ACL to
determine the allow or deny outcome for a view.

Note that the pyramid.authentication.AuthTktAuthenticationPolicy constructor ac-
cepts two arguments: secret and callback. secret is a string representing an encryption key used
by the “authentication ticket” machinery represented by this policy: it is required. The callback is the
groupfinder() function that we created before.

Add permission declarations

Open tutorial/tutorial/views.py and add a permission=’edit’ parameter to the
@view_config decorators for add_page() and edit_page():

@view_config(route_name='add_page', renderer='templates/edit.pt',
permission='edit')

457

40. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

@view_config(route_name='edit_page', renderer='templates/edit.pt',
permission='edit')

Only the highlighted lines, along with their preceding commas, need to be edited and added.

The result is that only users who possess the edit permission at the time of the request may invoke those
two views.

Add a permission=’view’ parameter to the @view_config decorator for view_wiki() and
view_page() as follows:

@view_config(route_name='view_wiki',
permission='view')

@view_config(route_name='view_page', renderer='templates/view.pt',
permission='view')

Only the highlighted lines, along with their preceding commas, need to be edited and added.

This allows anyone to invoke these two views.

We are done with the changes needed to control access. The changes that follow will add the login and
logout feature.

40.7.2 Login, logout

Add routes for /login and /logout

Go back to tutorial/tutorial/__init__.py and add these two routes as highlighted:

config.add_route('view_wiki', '/')
config.add_route('login', '/login')
config.add_route('logout', '/logout')
config.add_route('view_page', '/{pagename}')

458

40.7. ADDING AUTHORIZATION

The preceding lines must be added before the following view_page route definition:

config.add_route('view_page', '/{pagename}')

This is because view_page‘s route definition uses a catch-all “replacement marker”
/{pagename} (see Route Pattern Syntax) which will catch any route that was not already caught
by any route listed above it in __init__.py. Hence, for login and logout views to have the
opportunity of being matched (or “caught”), they must be above /{pagename}.

Add login and logout views

We’ll add a login view which renders a login form and processes the post from the login form, checking
credentials.

We’ll also add a logout view callable to our application and provide a link to it. This view will clear
the credentials of the logged in user and redirect back to the front page.

Add the following import statements to the head of tutorial/tutorial/views.py:

from pyramid.view import (
view_config,
forbidden_view_config,
)

from pyramid.security import (
remember,
forget,
)

from .security import USERS

All the highlighted lines need to be added or edited.

forbidden_view_config() will be used to customize the default 403 Forbidden page.
remember() and forget() help to create and expire an auth ticket cookie.

Now add the login and logout views at the end of the file:

459

40. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

@view_config(route_name='login', renderer='templates/login.pt')
@forbidden_view_config(renderer='templates/login.pt')
def login(request):

login_url = request.route_url('login')
referrer = request.url
if referrer == login_url:

referrer = '/' # never use the login form itself as came_from
came_from = request.params.get('came_from', referrer)
message = ''
login = ''
password = ''
if 'form.submitted' in request.params:

login = request.params['login']
password = request.params['password']
if USERS.get(login) == password:

headers = remember(request, login)
return HTTPFound(location = came_from,

headers = headers)
message = 'Failed login'

return dict(
message = message,
url = request.application_url + '/login',
came_from = came_from,
login = login,
password = password,
)

@view_config(route_name='logout')
def logout(request):

headers = forget(request)
return HTTPFound(location = request.route_url('view_wiki'),

headers = headers)

login() has two decorators:

• a @view_config decorator which associates it with the login route and makes it visible when
we visit /login,

• a @forbidden_view_config decorator which turns it into a forbidden view. login() will
be invoked when a user tries to execute a view callable for which they lack authorization. For
example, if a user has not logged in and tries to add or edit a Wiki page, they will be shown the
login form before being allowed to continue.

The order of these two view configuration decorators is unimportant.

logout() is decorated with a @view_config decorator which associates it with the logout route.
It will be invoked when we visit /logout.

460

40.7. ADDING AUTHORIZATION

Add the login.pt Template

Create tutorial/tutorial/templates/login.pt with the following content:

<!DOCTYPE html>
<html lang="${request.locale_name}">

<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta name="description" content="pyramid web application">
<meta name="author" content="Pylons Project">
<link rel="shortcut icon" href="${request.static_url('tutorial:static/pyramid-16x16.png')}">

<title>Login - Pyramid tutorial wiki (based on
TurboGears 20-Minute Wiki)</title>

<!-- Bootstrap core CSS -->
<link href="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/css/bootstrap.min.css" rel="stylesheet">

<!-- Custom styles for this scaffold -->
<link href="${request.static_url('tutorial:static/theme.css')}" rel="stylesheet">

<!-- HTML5 shim and Respond.js IE8 support of HTML5 elements and media queries -->
<!--[if lt IE 9]>
<script src="//oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js"></script>
<script src="//oss.maxcdn.com/libs/respond.js/1.3.0/respond.min.js"></script>

<![endif]-->
</head>
<body>

<div class="starter-template">
<div class="container">

<div class="row">
<div class="col-md-2">

</div>
<div class="col-md-10">
<div class="content">
<p>

Login

</p>
<form action="${url}" method="post">

461

40. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

<input type="hidden" name="came_from" value="${came_from}">
<div class="form-group">
<label for="login">Username</label>
<input type="text" name="login" value="${login}">

</div>
<div class="form-group">
<label for="password">Password</label>
<input type="password" name="password" value="${password}">

</div>
<div class="form-group">
<button type="submit" name="form.submitted" value="Log In" class="btn btn-default">Log In</button>

</div>
</form>

</div>
</div>

</div>
<div class="row">

<div class="copyright">
Copyright © Pylons Project

</div>
</div>

</div>
</div>

<!-- Bootstrap core JavaScript
== -->
<!-- Placed at the end of the document so the pages load faster -->
<script src="//oss.maxcdn.com/libs/jquery/1.10.2/jquery.min.js"></script>
<script src="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/js/bootstrap.min.js"></script>

</body>
</html>

The above template is referenced in the login view that we just added in views.py.

Return a logged_in flag to the renderer

Open tutorial/tutorial/views.py again. Add a logged_in parameter to the return value of
view_page(), edit_page(), and add_page() as follows:

return dict(page=page, content=content, edit_url=edit_url,
logged_in=request.authenticated_userid)

462

40.7. ADDING AUTHORIZATION

return dict(page=page, save_url=save_url,
logged_in=request.authenticated_userid)

return dict(
page=page,
save_url=request.route_url('edit_page', pagename=pagename),
logged_in=request.authenticated_userid
)

Only the highlighted lines need to be added or edited.

The pyramid.request.Request.authenticated_userid() will be None if the user is not
authenticated, or a userid if the user is authenticated.

Add a “Logout” link when logged in

Open tutorial/tutorial/templates/edit.pt and tutorial/tutorial/templates/view.pt
and add the following code as indicated by the highlighted lines.

<div class="col-md-10">
<div class="content">
<p tal:condition="logged_in" class="pull-right">
Logout

</p>

The attribute tal:condition="logged_in"will make the element be included when logged_in
is any user id. The link will invoke the logout view. The above element will not be included if
logged_in is None, such as when a user is not authenticated.

40.7.3 Reviewing our changes

Our tutorial/tutorial/__init__.py will look like this when we’re done:

463

40. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

1 from pyramid.config import Configurator
2 from pyramid.authentication import AuthTktAuthenticationPolicy
3 from pyramid.authorization import ACLAuthorizationPolicy
4

5 from sqlalchemy import engine_from_config
6

7 from tutorial.security import groupfinder
8

9 from .models import (
10 DBSession,
11 Base,
12)
13

14

15 def main(global_config, **settings):
16 """ This function returns a Pyramid WSGI application.
17 """
18 engine = engine_from_config(settings, 'sqlalchemy.')
19 DBSession.configure(bind=engine)
20 Base.metadata.bind = engine
21 authn_policy = AuthTktAuthenticationPolicy(
22 'sosecret', callback=groupfinder, hashalg='sha512')
23 authz_policy = ACLAuthorizationPolicy()
24 config = Configurator(settings=settings,
25 root_factory='tutorial.models.RootFactory')
26 config.set_authentication_policy(authn_policy)
27 config.set_authorization_policy(authz_policy)
28 config.include('pyramid_chameleon')
29 config.add_static_view('static', 'static', cache_max_age=3600)
30 config.add_route('view_wiki', '/')
31 config.add_route('login', '/login')
32 config.add_route('logout', '/logout')
33 config.add_route('view_page', '/{pagename}')
34 config.add_route('add_page', '/add_page/{pagename}')
35 config.add_route('edit_page', '/{pagename}/edit_page')
36 config.scan()
37 return config.make_wsgi_app()

Only the highlighted lines need to be added or edited.

Our tutorial/tutorial/models.py will look like this when we’re done:

1 from pyramid.security import (
2 Allow,
3 Everyone,

464

40.7. ADDING AUTHORIZATION

4)
5

6 from sqlalchemy import (
7 Column,
8 Integer,
9 Text,

10)
11

12 from sqlalchemy.ext.declarative import declarative_base
13

14 from sqlalchemy.orm import (
15 scoped_session,
16 sessionmaker,
17)
18

19 from zope.sqlalchemy import ZopeTransactionExtension
20

21 DBSession = scoped_session(sessionmaker(extension=ZopeTransactionExtension()))
22 Base = declarative_base()
23

24

25 class Page(Base):
26 """ The SQLAlchemy declarative model class for a Page object. """
27 __tablename__ = 'pages'
28 id = Column(Integer, primary_key=True)
29 name = Column(Text, unique=True)
30 data = Column(Text)
31

32

33 class RootFactory(object):
34 __acl__ = [(Allow, Everyone, 'view'),
35 (Allow, 'group:editors', 'edit')]
36 def __init__(self, request):
37 pass

Only the highlighted lines need to be added or edited.

Our tutorial/tutorial/views.py will look like this when we’re done:

1 import re
2 from docutils.core import publish_parts
3

4 from pyramid.httpexceptions import (
5 HTTPFound,
6 HTTPNotFound,

465

40. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

7)
8

9 from pyramid.view import (
10 view_config,
11 forbidden_view_config,
12)
13

14 from pyramid.security import (
15 remember,
16 forget,
17)
18

19 from .security import USERS
20

21 from .models import (
22 DBSession,
23 Page,
24)
25

26

27 # regular expression used to find WikiWords
28 wikiwords = re.compile(r"\b([A-Z]\w+[A-Z]+\w+)")
29

30 @view_config(route_name='view_wiki',
31 permission='view')
32 def view_wiki(request):
33 return HTTPFound(location = request.route_url('view_page',
34 pagename='FrontPage'))
35

36 @view_config(route_name='view_page', renderer='templates/view.pt',
37 permission='view')
38 def view_page(request):
39 pagename = request.matchdict['pagename']
40 page = DBSession.query(Page).filter_by(name=pagename).first()
41 if page is None:
42 return HTTPNotFound('No such page')
43

44 def check(match):
45 word = match.group(1)
46 exists = DBSession.query(Page).filter_by(name=word).all()
47 if exists:
48 view_url = request.route_url('view_page', pagename=word)
49 return '%s' % (view_url, word)
50 else:
51 add_url = request.route_url('add_page', pagename=word)
52 return '%s' % (add_url, word)

466

40.7. ADDING AUTHORIZATION

53

54 content = publish_parts(page.data, writer_name='html')['html_body']
55 content = wikiwords.sub(check, content)
56 edit_url = request.route_url('edit_page', pagename=pagename)
57 return dict(page=page, content=content, edit_url=edit_url,
58 logged_in=request.authenticated_userid)
59

60 @view_config(route_name='add_page', renderer='templates/edit.pt',
61 permission='edit')
62 def add_page(request):
63 pagename = request.matchdict['pagename']
64 if 'form.submitted' in request.params:
65 body = request.params['body']
66 page = Page(name=pagename, data=body)
67 DBSession.add(page)
68 return HTTPFound(location = request.route_url('view_page',
69 pagename=pagename))
70 save_url = request.route_url('add_page', pagename=pagename)
71 page = Page(name='', data='')
72 return dict(page=page, save_url=save_url,
73 logged_in=request.authenticated_userid)
74

75 @view_config(route_name='edit_page', renderer='templates/edit.pt',
76 permission='edit')
77 def edit_page(request):
78 pagename = request.matchdict['pagename']
79 page = DBSession.query(Page).filter_by(name=pagename).one()
80 if 'form.submitted' in request.params:
81 page.data = request.params['body']
82 DBSession.add(page)
83 return HTTPFound(location = request.route_url('view_page',
84 pagename=pagename))
85 return dict(
86 page=page,
87 save_url=request.route_url('edit_page', pagename=pagename),
88 logged_in=request.authenticated_userid
89)
90

91 @view_config(route_name='login', renderer='templates/login.pt')
92 @forbidden_view_config(renderer='templates/login.pt')
93 def login(request):
94 login_url = request.route_url('login')
95 referrer = request.url
96 if referrer == login_url:
97 referrer = '/' # never use the login form itself as came_from
98 came_from = request.params.get('came_from', referrer)

467

40. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

99 message = ''
100 login = ''
101 password = ''
102 if 'form.submitted' in request.params:
103 login = request.params['login']
104 password = request.params['password']
105 if USERS.get(login) == password:
106 headers = remember(request, login)
107 return HTTPFound(location = came_from,
108 headers = headers)
109 message = 'Failed login'
110

111 return dict(
112 message = message,
113 url = request.application_url + '/login',
114 came_from = came_from,
115 login = login,
116 password = password,
117)
118

119 @view_config(route_name='logout')
120 def logout(request):
121 headers = forget(request)
122 return HTTPFound(location = request.route_url('view_wiki'),
123 headers = headers)
124

Only the highlighted lines need to be added or edited.

Our tutorial/tutorial/templates/edit.pt template will look like this when we’re done:

1 <!DOCTYPE html>
2 <html lang="${request.locale_name}">
3 <head>
4 <meta charset="utf-8">
5 <meta http-equiv="X-UA-Compatible" content="IE=edge">
6 <meta name="viewport" content="width=device-width, initial-scale=1.0">
7 <meta name="description" content="pyramid web application">
8 <meta name="author" content="Pylons Project">
9 <link rel="shortcut icon" href="${request.static_url('tutorial:static/pyramid-16x16.png')}">

10

11 <title>${page.name} - Pyramid tutorial wiki (based on
12 TurboGears 20-Minute Wiki)</title>
13

14 <!-- Bootstrap core CSS -->

468

40.7. ADDING AUTHORIZATION

15 <link href="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/css/bootstrap.min.css" rel="stylesheet">
16

17 <!-- Custom styles for this scaffold -->
18 <link href="${request.static_url('tutorial:static/theme.css')}" rel="stylesheet">
19

20 <!-- HTML5 shim and Respond.js IE8 support of HTML5 elements and media queries -->
21 <!--[if lt IE 9]>
22 <script src="//oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js"></script>
23 <script src="//oss.maxcdn.com/libs/respond.js/1.3.0/respond.min.js"></script>
24 <![endif]-->
25 </head>
26 <body>
27

28 <div class="starter-template">
29 <div class="container">
30 <div class="row">
31 <div class="col-md-2">
32
33 </div>
34 <div class="col-md-10">
35 <div class="content">
36 <p tal:condition="logged_in" class="pull-right">
37 Logout
38 </p>
39 <p>
40 Editing Page Name Goes
41 Here
42 </p>
43 <p>You can return to the
44 FrontPage.
45 </p>
46 <form action="${save_url}" method="post">
47 <div class="form-group">
48 <textarea class="form-control" name="body" tal:content="page.data" rows="10" cols="60"></textarea>
49 </div>
50 <div class="form-group">
51 <button type="submit" name="form.submitted" value="Save" class="btn btn-default">Save</button>
52 </div>
53 </form>
54 </div>
55 </div>
56 </div>
57 <div class="row">
58 <div class="copyright">
59 Copyright © Pylons Project
60 </div>

469

40. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

61 </div>
62 </div>
63 </div>
64

65

66 <!-- Bootstrap core JavaScript
67 == -->
68 <!-- Placed at the end of the document so the pages load faster -->
69 <script src="//oss.maxcdn.com/libs/jquery/1.10.2/jquery.min.js"></script>
70 <script src="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/js/bootstrap.min.js"></script>
71 </body>
72 </html>

Only the highlighted lines need to be added or edited.

Our tutorial/tutorial/templates/view.pt template will look like this when we’re done:

1 <!DOCTYPE html>
2 <html lang="${request.locale_name}">
3 <head>
4 <meta charset="utf-8">
5 <meta http-equiv="X-UA-Compatible" content="IE=edge">
6 <meta name="viewport" content="width=device-width, initial-scale=1.0">
7 <meta name="description" content="pyramid web application">
8 <meta name="author" content="Pylons Project">
9 <link rel="shortcut icon" href="${request.static_url('tutorial:static/pyramid-16x16.png')}">

10

11 <title>${page.name} - Pyramid tutorial wiki (based on
12 TurboGears 20-Minute Wiki)</title>
13

14 <!-- Bootstrap core CSS -->
15 <link href="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/css/bootstrap.min.css" rel="stylesheet">
16

17 <!-- Custom styles for this scaffold -->
18 <link href="${request.static_url('tutorial:static/theme.css')}" rel="stylesheet">
19

20 <!-- HTML5 shim and Respond.js IE8 support of HTML5 elements and media queries -->
21 <!--[if lt IE 9]>
22 <script src="//oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js"></script>
23 <script src="//oss.maxcdn.com/libs/respond.js/1.3.0/respond.min.js"></script>
24 <![endif]-->
25 </head>
26 <body>
27

28 <div class="starter-template">

470

40.7. ADDING AUTHORIZATION

29 <div class="container">
30 <div class="row">
31 <div class="col-md-2">
32
33 </div>
34 <div class="col-md-10">
35 <div class="content">
36 <p tal:condition="logged_in" class="pull-right">
37 Logout
38 </p>
39 <div tal:replace="structure content">
40 Page text goes here.
41 </div>
42 <p>
43 <a tal:attributes="href edit_url" href="">
44 Edit this page
45
46 </p>
47 <p>
48 Viewing
49 Page Name Goes Here
50 </p>
51 <p>You can return to the
52 FrontPage.
53 </p>
54 </div>
55 </div>
56 </div>
57 <div class="row">
58 <div class="copyright">
59 Copyright © Pylons Project
60 </div>
61 </div>
62 </div>
63 </div>
64

65

66 <!-- Bootstrap core JavaScript
67 == -->
68 <!-- Placed at the end of the document so the pages load faster -->
69 <script src="//oss.maxcdn.com/libs/jquery/1.10.2/jquery.min.js"></script>
70 <script src="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/js/bootstrap.min.js"></script>
71 </body>
72 </html>

Only the highlighted lines need to be added or edited.

471

40. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

40.7.4 Viewing the application in a browser

We can finally examine our application in a browser (See Start the application). Launch a browser and
visit each of the following URLs, checking that the result is as expected:

• http://localhost:6543/ invokes the view_wiki view. This always redirects to the view_page
view of the FrontPage page object. It is executable by any user.

• http://localhost:6543/FrontPage invokes the view_page view of the FrontPage page object.

• http://localhost:6543/FrontPage/edit_page invokes the edit view for the FrontPage object. It is ex-
ecutable by only the editor user. If a different user (or the anonymous user) invokes it, a login
form will be displayed. Supplying the credentials with the username editor, password editor
will display the edit page form.

• http://localhost:6543/add_page/SomePageName invokes the add view for a page. It is executable
by only the editor user. If a different user (or the anonymous user) invokes it, a login form will be
displayed. Supplying the credentials with the username editor, password editor will display
the edit page form.

• After logging in (as a result of hitting an edit or add page and submitting the login form with the
editor credentials), we’ll see a Logout link in the upper right hand corner. When we click it,
we’re logged out, and redirected back to the front page.

40.8 Adding Tests

We will now add tests for the models and the views and a few functional tests in tests.py. Tests ensure
that an application works, and that it continues to work when changes are made in the future.

40.8.1 Test the models

To test the model class Page we’ll add a new PageModelTests class to our tests.py file that was
generated as part of the alchemy scaffold.

40.8.2 Test the views

We’ll modify our tests.py file, adding tests for each view function we added previously. As a re-
sult, we’ll delete the ViewTests class that the alchemy scaffold provided, and add four other test
classes: ViewWikiTests, ViewPageTests, AddPageTests, and EditPageTests. These test
the view_wiki, view_page, add_page, and edit_page views.

472

http://localhost:6543/
http://localhost:6543/FrontPage
http://localhost:6543/FrontPage/edit_page
http://localhost:6543/add_page/SomePageName

40.8. ADDING TESTS

40.8.3 Functional tests

We’ll test the whole application, covering security aspects that are not tested in the unit tests, like logging
in, logging out, checking that the viewer user cannot add or edit pages, but the editor user can, and
so on.

40.8.4 View the results of all our edits to tests.py

Open the tutorial/tests.py module, and edit it such that it appears as follows:

1 import unittest
2 import transaction
3

4 from pyramid import testing
5

6

7 def _initTestingDB():
8 from sqlalchemy import create_engine
9 from tutorial.models import (

10 DBSession,
11 Page,
12 Base
13)
14 engine = create_engine('sqlite://')
15 Base.metadata.create_all(engine)
16 DBSession.configure(bind=engine)
17 with transaction.manager:
18 model = Page(name='FrontPage', data='This is the front page')
19 DBSession.add(model)
20 return DBSession
21

22

23 def _registerRoutes(config):
24 config.add_route('view_page', '{pagename}')
25 config.add_route('edit_page', '{pagename}/edit_page')
26 config.add_route('add_page', 'add_page/{pagename}')
27

28

29 class ViewWikiTests(unittest.TestCase):
30 def setUp(self):
31 self.config = testing.setUp()
32

33 def tearDown(self):
34 testing.tearDown()

473

40. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

35

36 def _callFUT(self, request):
37 from tutorial.views import view_wiki
38 return view_wiki(request)
39

40 def test_it(self):
41 _registerRoutes(self.config)
42 request = testing.DummyRequest()
43 response = self._callFUT(request)
44 self.assertEqual(response.location, 'http://example.com/FrontPage')
45

46

47 class ViewPageTests(unittest.TestCase):
48 def setUp(self):
49 self.session = _initTestingDB()
50 self.config = testing.setUp()
51

52 def tearDown(self):
53 self.session.remove()
54 testing.tearDown()
55

56 def _callFUT(self, request):
57 from tutorial.views import view_page
58 return view_page(request)
59

60 def test_it(self):
61 from tutorial.models import Page
62 request = testing.DummyRequest()
63 request.matchdict['pagename'] = 'IDoExist'
64 page = Page(name='IDoExist', data='Hello CruelWorld IDoExist')
65 self.session.add(page)
66 _registerRoutes(self.config)
67 info = self._callFUT(request)
68 self.assertEqual(info['page'], page)
69 self.assertEqual(
70 info['content'],
71 '<div class="document">\n'
72 '<p>Hello '
73 'CruelWorld '
74 ''
75 'IDoExist'
76 '</p>\n</div>\n')
77 self.assertEqual(info['edit_url'],
78 'http://example.com/IDoExist/edit_page')
79

80

474

40.8. ADDING TESTS

81 class AddPageTests(unittest.TestCase):
82 def setUp(self):
83 self.session = _initTestingDB()
84 self.config = testing.setUp()
85

86 def tearDown(self):
87 self.session.remove()
88 testing.tearDown()
89

90 def _callFUT(self, request):
91 from tutorial.views import add_page
92 return add_page(request)
93

94 def test_it_notsubmitted(self):
95 _registerRoutes(self.config)
96 request = testing.DummyRequest()
97 request.matchdict = {'pagename':'AnotherPage'}
98 info = self._callFUT(request)
99 self.assertEqual(info['page'].data,'')

100 self.assertEqual(info['save_url'],
101 'http://example.com/add_page/AnotherPage')
102

103 def test_it_submitted(self):
104 from tutorial.models import Page
105 _registerRoutes(self.config)
106 request = testing.DummyRequest({'form.submitted':True,
107 'body':'Hello yo!'})
108 request.matchdict = {'pagename':'AnotherPage'}
109 self._callFUT(request)
110 page = self.session.query(Page).filter_by(name='AnotherPage').one()
111 self.assertEqual(page.data, 'Hello yo!')
112

113

114 class EditPageTests(unittest.TestCase):
115 def setUp(self):
116 self.session = _initTestingDB()
117 self.config = testing.setUp()
118

119 def tearDown(self):
120 self.session.remove()
121 testing.tearDown()
122

123 def _callFUT(self, request):
124 from tutorial.views import edit_page
125 return edit_page(request)
126

475

40. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

127 def test_it_notsubmitted(self):
128 from tutorial.models import Page
129 _registerRoutes(self.config)
130 request = testing.DummyRequest()
131 request.matchdict = {'pagename':'abc'}
132 page = Page(name='abc', data='hello')
133 self.session.add(page)
134 info = self._callFUT(request)
135 self.assertEqual(info['page'], page)
136 self.assertEqual(info['save_url'],
137 'http://example.com/abc/edit_page')
138

139 def test_it_submitted(self):
140 from tutorial.models import Page
141 _registerRoutes(self.config)
142 request = testing.DummyRequest({'form.submitted':True,
143 'body':'Hello yo!'})
144 request.matchdict = {'pagename':'abc'}
145 page = Page(name='abc', data='hello')
146 self.session.add(page)
147 response = self._callFUT(request)
148 self.assertEqual(response.location, 'http://example.com/abc')
149 self.assertEqual(page.data, 'Hello yo!')
150

151

152 class FunctionalTests(unittest.TestCase):
153

154 viewer_login = '/login?login=viewer&password=viewer' \
155 '&came_from=FrontPage&form.submitted=Login'
156 viewer_wrong_login = '/login?login=viewer&password=incorrect' \
157 '&came_from=FrontPage&form.submitted=Login'
158 editor_login = '/login?login=editor&password=editor' \
159 '&came_from=FrontPage&form.submitted=Login'
160

161 def setUp(self):
162 from tutorial import main
163 settings = { 'sqlalchemy.url': 'sqlite://'}
164 app = main({}, **settings)
165 from webtest import TestApp
166 self.testapp = TestApp(app)
167 _initTestingDB()
168

169 def tearDown(self):
170 del self.testapp
171 from tutorial.models import DBSession
172 DBSession.remove()

476

40.8. ADDING TESTS

173

174 def test_root(self):
175 res = self.testapp.get('/', status=302)
176 self.assertEqual(res.location, 'http://localhost/FrontPage')
177

178 def test_FrontPage(self):
179 res = self.testapp.get('/FrontPage', status=200)
180 self.assertTrue(b'FrontPage' in res.body)
181

182 def test_unexisting_page(self):
183 self.testapp.get('/SomePage', status=404)
184

185 def test_successful_log_in(self):
186 res = self.testapp.get(self.viewer_login, status=302)
187 self.assertEqual(res.location, 'http://localhost/FrontPage')
188

189 def test_failed_log_in(self):
190 res = self.testapp.get(self.viewer_wrong_login, status=200)
191 self.assertTrue(b'login' in res.body)
192

193 def test_logout_link_present_when_logged_in(self):
194 self.testapp.get(self.viewer_login, status=302)
195 res = self.testapp.get('/FrontPage', status=200)
196 self.assertTrue(b'Logout' in res.body)
197

198 def test_logout_link_not_present_after_logged_out(self):
199 self.testapp.get(self.viewer_login, status=302)
200 self.testapp.get('/FrontPage', status=200)
201 res = self.testapp.get('/logout', status=302)
202 self.assertTrue(b'Logout' not in res.body)
203

204 def test_anonymous_user_cannot_edit(self):
205 res = self.testapp.get('/FrontPage/edit_page', status=200)
206 self.assertTrue(b'Login' in res.body)
207

208 def test_anonymous_user_cannot_add(self):
209 res = self.testapp.get('/add_page/NewPage', status=200)
210 self.assertTrue(b'Login' in res.body)
211

212 def test_viewer_user_cannot_edit(self):
213 self.testapp.get(self.viewer_login, status=302)
214 res = self.testapp.get('/FrontPage/edit_page', status=200)
215 self.assertTrue(b'Login' in res.body)
216

217 def test_viewer_user_cannot_add(self):
218 self.testapp.get(self.viewer_login, status=302)

477

40. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

219 res = self.testapp.get('/add_page/NewPage', status=200)
220 self.assertTrue(b'Login' in res.body)
221

222 def test_editors_member_user_can_edit(self):
223 self.testapp.get(self.editor_login, status=302)
224 res = self.testapp.get('/FrontPage/edit_page', status=200)
225 self.assertTrue(b'Editing' in res.body)
226

227 def test_editors_member_user_can_add(self):
228 self.testapp.get(self.editor_login, status=302)
229 res = self.testapp.get('/add_page/NewPage', status=200)
230 self.assertTrue(b'Editing' in res.body)
231

232 def test_editors_member_user_can_view(self):
233 self.testapp.get(self.editor_login, status=302)
234 res = self.testapp.get('/FrontPage', status=200)
235 self.assertTrue(b'FrontPage' in res.body)

40.8.5 Running the tests

We can run these tests by using setup.py test in the same way we did in Run the tests. However, first
we must edit our setup.py to include a dependency on WebTest, which we’ve used in our tests.py.
Change the requires list in setup.py to include WebTest.

1 requires = [
2 'pyramid',
3 'pyramid_chameleon',
4 'pyramid_debugtoolbar',
5 'pyramid_tm',
6 'SQLAlchemy',
7 'transaction',
8 'zope.sqlalchemy',
9 'waitress',

10 'docutils',
11 'WebTest', # add this
12]

After we’ve added a dependency on WebTest in setup.py, we need to run setup.py develop to
get WebTest installed into our virtualenv. Assuming our shell’s current working directory is the “tutorial”
distribution directory:

On UNIX:

478

40.9. DISTRIBUTING YOUR APPLICATION

$ $VENV/bin/python setup.py develop

On Windows:

c:\pyramidtut\tutorial> %VENV%\Scripts\python setup.py develop

Once that command has completed successfully, we can run the tests themselves:

On UNIX:

$ $VENV/bin/python setup.py test -q

On Windows:

c:\pyramidtut\tutorial> %VENV%\Scripts\python setup.py test -q

The expected result should look like the following:

......................
--
Ran 21 tests in 2.700s

OK

40.9 Distributing Your Application

Once your application works properly, you can create a “tarball” from it by using the setup.py sdist
command. The following commands assume your current working directory is the tutorial package
we’ve created and that the parent directory of the tutorial package is a virtualenv representing a
Pyramid environment.

On UNIX:

$ $VENV/bin/python setup.py sdist

On Windows:

479

40. SQLALCHEMY + URL DISPATCH WIKI TUTORIAL

c:\pyramidtut> %VENV%\Scripts\python setup.py sdist

The output of such a command will be something like:

running sdist
.. more output ..
creating dist
tar -cf dist/tutorial-0.0.tar tutorial-0.0
gzip -f9 dist/tutorial-0.0.tar
removing 'tutorial-0.0' (and everything under it)

Note that this command creates a tarball in the “dist” subdirectory named tutorial-0.0.tar.gz.
You can send this file to your friends to show them your cool new application. They should be able to
install it by pointing the easy_install command directly at it. Or you can upload it to PyPI and share
it with the rest of the world, where it can be downloaded via easy_install remotely like any other
package people download from PyPI.

480

http://pypi.python.org

CHAPTER 41

ZODB + Traversal Wiki Tutorial

This tutorial introduces a ZODB and traversal-based Pyramid application to a developer familiar with
Python. It will be most familiar to developers with previous Zope experience. When the is finished, the
developer will have created a basic Wiki application with authentication.

For cut and paste purposes, the source code for all stages of this tutorial can be browsed on GitHub at
docs/tutorials/wiki/src, which corresponds to the same location if you have Pyramid sources.

41.1 Background

This version of the Pyramid wiki tutorial presents a Pyramid application that uses technologies which will
be familiar to someone with Zope experience. It uses ZODB as a persistence mechanism and traversal
to map URLs to code. It can also be followed by people without any prior Python web framework
experience.

To code along with this tutorial, the developer will need a UNIX machine with development tools (Mac
OS X with XCode, any Linux or BSD variant, etc.) or a Windows system of any kind.

This tutorial has been written for Python 2. It is unlikely to work without modification under
Python 3.

Have fun!

481

https://github.com/Pylons/pyramid/tree/master/docs/tutorials/wiki/src

41. ZODB + TRAVERSAL WIKI TUTORIAL

41.2 Design

Following is a quick overview of the design of our wiki application, to help us understand the changes
that we will be making as we work through the tutorial.

41.2.1 Overall

We choose to use reStructuredText markup in the wiki text. Translation from reStructuredText to HTML
is provided by the widely used docutils Python module. We will add this module in the dependency
list on the project setup.py file.

41.2.2 Models

The root resource named Wiki will be a mapping of wiki page names to page resources. The page
resources will be instances of a Page class and they store the text content.

URLs like /PageName will be traversed using Wiki[PageName] => page, and the context that results
is the page resource of an existing page.

To add a page to the wiki, a new instance of the page resource is created and its name and reference are
added to the Wiki mapping.

A page named FrontPage containing the text This is the front page, will be created when the storage is
initialized, and will be used as the wiki home page.

41.2.3 Views

There will be three views to handle the normal operations of adding, editing, and viewing wiki pages, plus
one view for the wiki front page. Two templates will be used, one for viewing, and one for both adding
and editing wiki pages.

The default templating systems in Pyramid are Chameleon and Mako. Chameleon is a variant of ZPT ,
which is an XML-based templating language. Mako is a non-XML-based templating language. Because
we had to pick one, we chose Chameleon for this tutorial.

482

41.2. DESIGN

41.2.4 Security

We’ll eventually be adding security to our application. The components we’ll use to do this are below.

• USERS, a dictionary mapping userids to their corresponding passwords.

• GROUPS, a dictionary mapping userids to a list of groups to which they belong.

• groupfinder, an authorization callback that looks up USERS and GROUPS. It will be provided
in a new security.py file.

• An ACL is attached to the root resource. Each row below details an ACE:

Action Principal Permission
Allow Everyone View
Allow group:editors Edit

• Permission declarations are added to the views to assert the security policies as each request is
handled.

Two additional views and one template will handle the login and logout tasks.

41.2.5 Summary

The URL, context, actions, template and permission associated to each view are listed in the following
table:

483

41. ZODB + TRAVERSAL WIKI TUTORIAL

URL View Context Action Template Permission
/ view_wiki Wiki Redirect to

/FrontPage
/PageName view_page 1 Page Display existing

page 2
view.pt view

/PageName/edit_pageedit_page Page Display edit
form with
existing content.
If the form
was submit-
ted, redirect to
/PageName

edit.pt edit

/add_page/PageNameadd_page Wiki Create the page
PageName in
storage, display
the edit form
without content.
If the form
was submit-
ted, redirect to
/PageName

edit.pt edit

/login login Wiki, Forbidden
3

Display login
form.
If the form
was submitted,
authenticate.

• If authen-
tication
succeeds,
redirect
to the
page that
we came
from.

• If authen-
tication
fails, dis-
play login
form with
“login
failed”
message.

login.pt

/logout logout Wiki Redirect to
/FrontPage

1This is the default view for a Page context when there is no view name.
484

41.3. INSTALLATION

41.3 Installation

41.3.1 Before you begin

This tutorial assumes that you have already followed the steps in Installing Pyramid, except do not create
a virtualenv or install Pyramid. Thereby you will satisfy the following requirements.

• Python interpreter is installed on your operating system

• setuptools or distribute is installed

• virtualenv is installed

Create directory to contain the project

We need a workspace for our project files.

On UNIX

$ mkdir ~/pyramidtut

On Windows

c:\> mkdir pyramidtut

Create and use a virtual Python environment

Next let’s create a virtualenv workspace for our project. We will use the VENV environment variable
instead of the absolute path of the virtual environment.

On UNIX

2Pyramid will return a default 404 Not Found page if the page PageName does not exist yet.
3pyramid.exceptions.Forbidden is reached when a user tries to invoke a view that is not authorized by the authoriza-

tion policy.

485

41. ZODB + TRAVERSAL WIKI TUTORIAL

$ export VENV=~/pyramidtut
$ virtualenv $VENV
New python executable in /home/foo/env/bin/python
Installing setuptools.............done.

On Windows

c:\> set VENV=c:\pyramidtut

Versions of Python use different paths, so you will need to adjust the path to the command for your Python
version.

Python 2.7:

c:\> c:\Python27\Scripts\virtualenv %VENV%

Python 3.2:

c:\> c:\Python32\Scripts\virtualenv %VENV%

Install Pyramid and tutorial dependencies into the virtual Python environment

On UNIX

$ $VENV/bin/easy_install docutils pyramid_tm pyramid_zodbconn \
pyramid_debugtoolbar nose coverage

On Windows

c:\> %VENV%\Scripts\easy_install docutils pyramid_tm pyramid_zodbconn \
pyramid_debugtoolbar nose coverage

486

41.3. INSTALLATION

Change Directory to Your Virtual Python Environment

Change directory to the pyramidtut directory.

On UNIX

$ cd pyramidtut

On Windows

c:\> cd pyramidtut

41.3.2 Making a project

Your next step is to create a project. For this tutorial, we will use the scaffold named zodb, which
generates an application that uses ZODB and traversal.

Pyramid supplies a variety of scaffolds to generate sample projects. We will use pcreate—a script that
comes with Pyramid to quickly and easily generate scaffolds, usually with a single command—to create
the scaffold for our project.

By passing zodb into the pcreate command, the script creates the files needed to use ZODB. By passing
in our application name tutorial, the script inserts that application name into all the required files.

The below instructions assume your current working directory is “pyramidtut”.

On UNIX

$ $VENV/bin/pcreate -s zodb tutorial

On Windows

487

41. ZODB + TRAVERSAL WIKI TUTORIAL

c:\pyramidtut> %VENV%\Scripts\pcreate -s zodb tutorial

If you are using Windows, the zodb scaffold may not deal gracefully with installation into
a location that contains spaces in the path. If you experience startup problems, try putting both the
virtualenv and the project into directories that do not contain spaces in their paths.

41.3.3 Installing the project in development mode

In order to do development on the project easily, you must “register” the project as a development egg in
your workspace using the setup.py develop command. In order to do so, cd to the tutorial directory
you created in Making a project, and run the setup.py develop command using the virtualenv
Python interpreter.

On UNIX

$ cd tutorial
$ $VENV/bin/python setup.py develop

On Windows

c:\pyramidtut> cd tutorial
c:\pyramidtut\tutorial> %VENV%\Scripts\python setup.py develop

The console will show setup.py checking for packages and installing missing packages. Success executing
this command will show a line like the following:

Finished processing dependencies for tutorial==0.0

41.3.4 Run the tests

After you’ve installed the project in development mode, you may run the tests for the project.

488

41.3. INSTALLATION

On UNIX

$ $VENV/bin/python setup.py test -q

On Windows

c:\pyramidtut\tutorial> %VENV%\Scripts\python setup.py test -q

For a successful test run, you should see output that ends like this:

.
--
Ran 1 test in 0.094s

OK

41.3.5 Expose test coverage information

You can run the nosetests command to see test coverage information. This runs the tests in the same
way that setup.py test does but provides additional “coverage” information, exposing which lines
of your project are “covered” (or not covered) by the tests.

On UNIX

$ $VENV/bin/nosetests --cover-package=tutorial --cover-erase --with-coverage

On Windows

c:\pyramidtut\tutorial> %VENV%\Scripts\nosetests --cover-package=tutorial \
--cover-erase --with-coverage

If successful, you will see output something like this:

489

41. ZODB + TRAVERSAL WIKI TUTORIAL

.
Name Stmts Miss Cover Missing
--
tutorial.py 12 7 42% 7-8, 14-18
tutorial/models.py 10 6 40% 9-14
tutorial/views.py 4 0 100%
--
TOTAL 26 13 50%
--
Ran 1 test in 0.392s

OK

Looks like our package doesn’t quite have 100% test coverage.

41.3.6 Start the application

Start the application.

On UNIX

$ $VENV/bin/pserve development.ini --reload

On Windows

c:\pyramidtut\tutorial> %VENV%\Scripts\pserve development.ini --reload

Your OS firewall, if any, may pop up a dialog asking for authorization to allow python to accept
incoming network connections.

If successful, you will see something like this on your console:

Starting subprocess with file monitor
Starting server in PID 95736.
serving on http://0.0.0.0:6543

This means the server is ready to accept requests.

490

41.4. BASIC LAYOUT

41.3.7 Visit the application in a browser

In a browser, visit http://localhost:6543/. You will see the generated application’s default page.

One thing you’ll notice is the “debug toolbar” icon on right hand side of the page. You can read more about
the purpose of the icon at The Debug Toolbar. It allows you to get information about your application
while you develop.

41.3.8 Decisions the zodb scaffold has made for you

Creating a project using the zodb scaffold makes the following assumptions:

• you are willing to use ZODB as persistent storage

• you are willing to use traversal to map URLs to code

Pyramid supports any persistent storage mechanism (e.g., a SQL database or filesystem files).
It also supports an additional mechanism to map URLs to code (URL dispatch). However, for the
purposes of this tutorial, we’ll only be using traversal and ZODB.

41.4 Basic Layout

The starter files generated by the zodb scaffold are very basic, but they provide a good orientation for
the high-level patterns common to most traversal-based (and ZODB-based) Pyramid projects.

41.4.1 Application configuration with __init__.py

A directory on disk can be turned into a Python package by containing an __init__.py file. Even if
empty, this marks a directory as a Python package. We use __init__.py both as a marker, indicating
the directory in which it’s contained is a package, and to contain application configuration code.

When you run the application using the pserve command using the development.ini gener-
ated configuration file, the application configuration points at a Setuptools entry point described as
egg:tutorial. In our application, because the application’s setup.py file says so, this entry point
happens to be the main function within the file named __init__.py. Let’s take a look at the code and
describe what it does:

491

http://localhost:6543

41. ZODB + TRAVERSAL WIKI TUTORIAL

1 from pyramid.config import Configurator
2 from pyramid_zodbconn import get_connection
3 from .models import appmaker
4

5

6 def root_factory(request):
7 conn = get_connection(request)
8 return appmaker(conn.root())
9

10

11 def main(global_config, **settings):
12 """ This function returns a Pyramid WSGI application.
13 """
14 config = Configurator(root_factory=root_factory, settings=settings)
15 config.include('pyramid_chameleon')
16 config.add_static_view('static', 'static', cache_max_age=3600)
17 config.scan()
18 return config.make_wsgi_app()

1. Lines 1-3. Perform some dependency imports.

2. Lines 6-8. Define a root factory for our Pyramid application.

3. Line 11. __init__.py defines a function named main.

4. Line 14. We construct a Configurator with a root factory and the settings keywords parsed by
PasteDeploy. The root factory is named root_factory.

5. Line 15. Include support for the Chameleon template rendering bindings, allowing us to use the
.pt templates.

6. Line 16. Register a “static view”, which answers requests whose URL paths start with /static,
using the pyramid.config.Configurator.add_static_view() method. This state-
ment registers a view that will serve up static assets, such as CSS and image files, for us, in this
case, at http://localhost:6543/static/ and below. The first argument is the “name”
static, which indicates that the URL path prefix of the view will be /static. The second
argument of this tag is the “path”, which is a relative asset specification, so it finds the resources
it should serve within the static directory inside the tutorial package. Alternatively the
scaffold could have used an absolute asset specification as the path (tutorial:static).

7. Line 17. Perform a scan. A scan will find configuration decoration, such as view configuration
decorators (e.g., @view_config) in the source code of the tutorial package and will take
actions based on these decorators. We don’t pass any arguments to scan(), which implies that
the scan should take place in the current package (in this case, tutorial). The scaffold could
have equivalently said config.scan(’tutorial’), but it chose to omit the package name
argument.

492

41.4. BASIC LAYOUT

8. Line 18. Use the pyramid.config.Configurator.make_wsgi_app() method to return
a WSGI application.

41.4.2 Resources and models with models.py

Pyramid uses the word resource to describe objects arranged hierarchically in a resource tree. This tree
is consulted by traversal to map URLs to code. In this application, the resource tree represents the site
structure, but it also represents the domain model of the application, because each resource is a node
stored persistently in a ZODB database. The models.py file is where the zodb scaffold put the classes
that implement our resource objects, each of which also happens to be a domain model object.

Here is the source for models.py:

1 from persistent.mapping import PersistentMapping
2

3

4 class MyModel(PersistentMapping):
5 __parent__ = __name__ = None
6

7

8 def appmaker(zodb_root):
9 if not 'app_root' in zodb_root:

10 app_root = MyModel()
11 zodb_root['app_root'] = app_root
12 import transaction
13 transaction.commit()
14 return zodb_root['app_root']

1. Lines 4-5. The MyModel resource class is implemented here. Instances of this
class are capable of being persisted in ZODB because the class inherits from the
persistent.mapping.PersistentMapping class. The __parent__ and __name__
are important parts of the traversal protocol. By default, have these as None indicating that this is
the root object.

2. Lines 8-14. appmaker is used to return the application root object. It is called on every request to
the Pyramid application. It also performs bootstrapping by creating an application root (inside the
ZODB root object) if one does not already exist. It is used by the root_factory we’ve defined
in our __init__.py.

Bootstrapping is done by first seeing if the database has the persistent application root. If not, we
make an instance, store it, and commit the transaction. We then return the application root object.

493

41. ZODB + TRAVERSAL WIKI TUTORIAL

41.4.3 Views With views.py

Our scaffold generated a default views.py on our behalf. It contains a single view, which is used to
render the page shown when you visit the URL http://localhost:6543/.

Here is the source for views.py:

1 from pyramid.view import view_config
2 from .models import MyModel
3

4

5 @view_config(context=MyModel, renderer='templates/mytemplate.pt')
6 def my_view(request):
7 return {'project': 'tutorial'}

Let’s try to understand the components in this module:

1. Lines 1-2. Perform some dependency imports.

2. Line 5. Use the pyramid.view.view_config() configuration decoration to perform a view
configuration registration. This view configuration registration will be activated when the applica-
tion is started. It will be activated by virtue of it being found as the result of a scan (when Line 14
of __init__.py is run).

The @view_config decorator accepts a number of keyword arguments. We use two keyword
arguments here: context and renderer.

The context argument signifies that the decorated view callable should only be run when traver-
sal finds the tutorial.models.MyModel resource to be the context of a request. In English,
this means that when the URL / is visited, because MyModel is the root model, this view callable
will be invoked.

The renderer argument names an asset specification of templates/mytemplate.pt. This
asset specification points at a Chameleon template which lives in the mytemplate.pt file
within the templates directory of the tutorial package. And indeed if you look in the
templates directory of this package, you’ll see a mytemplate.pt template file, which ren-
ders the default home page of the generated project. This asset specification is relative (to the
view.py’s current package). Alternatively we could have used the absolute asset specification
tutorial:templates/mytemplate.pt, but chose to use the relative version.

Since this call to @view_config doesn’t pass a name argument, the my_view function which
it decorates represents the “default” view callable used when the context is of the type MyModel.

494

41.4. BASIC LAYOUT

3. Lines 6-7. We define a view callable named my_view, which we decorated in the step above. This
view callable is a function we write generated by the zodb scaffold that is given a request and
which returns a dictionary. The mytemplate.pt renderer named by the asset specification in
the step above will convert this dictionary to a response on our behalf.

The function returns the dictionary {’project’:’tutorial’}. This dictionary is used by the
template named by the mytemplate.pt asset specification to fill in certain values on the page.

41.4.4 Configuration in development.ini

The development.ini (in the tutorial project directory, as opposed to the tutorial package directory)
looks like this:

###
app configuration
http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/environment.html
###

[app:main]
use = egg:tutorial

pyramid.reload_templates = true
pyramid.debug_authorization = false
pyramid.debug_notfound = false
pyramid.debug_routematch = false
pyramid.default_locale_name = en
pyramid.includes =

pyramid_debugtoolbar
pyramid_zodbconn
pyramid_tm

tm.attempts = 3
zodbconn.uri = file://%(here)s/Data.fs?connection_cache_size=20000

By default, the toolbar only appears for clients from IP addresses
'127.0.0.1' and '::1'.
debugtoolbar.hosts = 127.0.0.1 ::1

###
wsgi server configuration
###

[server:main]
use = egg:waitress#main

495

41. ZODB + TRAVERSAL WIKI TUTORIAL

host = 0.0.0.0
port = 6543

###
logging configuration
http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/logging.html
###

[loggers]
keys = root, tutorial

[handlers]
keys = console

[formatters]
keys = generic

[logger_root]
level = INFO
handlers = console

[logger_tutorial]
level = DEBUG
handlers =
qualname = tutorial

[handler_console]
class = StreamHandler
args = (sys.stderr,)
level = NOTSET
formatter = generic

[formatter_generic]
format = %(asctime)s %(levelname)-5.5s [%(name)s][%(threadName)s] %(message)s

Note the existence of a [app:main] section which specifies our WSGI application. Our ZODB
database settings are specified as the zodbconn.uri setting within this section. This value, and
the other values within this section, are passed as **settings to the main function we defined in
__init__.py when the server is started via pserve.

41.5 Defining the Domain Model

The first change we’ll make to our stock pcreate-generated application will be to define two resource
constructors, one representing a wiki page, and another representing the wiki as a mapping of wiki page

496

41.5. DEFINING THE DOMAIN MODEL

names to page objects. We’ll do this inside our models.py file.

Because we’re using ZODB to represent our resource tree, each of these resource constructors represents
a domain model object, so we’ll call these constructors “model constructors”. Both our Page and Wiki
constructors will be class objects. A single instance of the “Wiki” class will serve as a container for
“Page” objects, which will be instances of the “Page” class.

41.5.1 Delete the database

In the next step, we’re going to remove the MyModel Python model class from our models.py file.
Since this class is referred to within our persistent storage (represented on disk as a file named Data.fs),
we’ll have strange things happen the next time we want to visit the application in a browser. Remove the
Data.fs from the tutorial directory before proceeding any further. It’s always fine to do this as
long as you don’t care about the content of the database; the database itself will be recreated as necessary.

41.5.2 Edit models.py

There is nothing special about the filename models.py. A project may have many models
throughout its codebase in arbitrarily named files. Files implementing models often have model in
their filenames or they may live in a Python subpackage of your application package named models,
but this is only by convention.

Open tutorial/tutorial/models.py file and edit it to look like the following:

1 from persistent import Persistent
2 from persistent.mapping import PersistentMapping
3

4 class Wiki(PersistentMapping):
5 __name__ = None
6 __parent__ = None
7

8 class Page(Persistent):
9 def __init__(self, data):

10 self.data = data
11

12 def appmaker(zodb_root):
13 if not 'app_root' in zodb_root:
14 app_root = Wiki()
15 frontpage = Page('This is the front page')

497

41. ZODB + TRAVERSAL WIKI TUTORIAL

16 app_root['FrontPage'] = frontpage
17 frontpage.__name__ = 'FrontPage'
18 frontpage.__parent__ = app_root
19 zodb_root['app_root'] = app_root
20 import transaction
21 transaction.commit()
22 return zodb_root['app_root']

The first thing we want to do is remove the MyModel class from the generated models.py file. The
MyModel class is only a sample and we’re not going to use it.

Then, we’ll add a Wiki class. We want it to inherit from the
persistent.mapping.PersistentMapping class because it provides mapping behavior,
and it makes sure that our Wiki page is stored as a “first-class” persistent object in our ZODB database.

Our Wiki class should have two attributes set to None at class scope: __parent__ and __name__.
If a model has a __parent__ attribute of None in a traversal-based Pyramid application, it means that
it’s the root model. The __name__ of the root model is also always None.

Then we’ll add a Page class. This class should inherit from the persistent.Persistent class.
We’ll also give it an __init__method that accepts a single parameter named data. This parameter will
contain the reStructuredText body representing the wiki page content. Note that Page objects don’t have
an initial __name__ or __parent__ attribute. All objects in a traversal graph must have a __name__
and a __parent__ attribute. We don’t specify these here because both __name__ and __parent__
will be set by a view function when a Page is added to our Wiki mapping.

As a last step, we want to change the appmaker function in our models.py file so that the root
resource of our application is a Wiki instance. We’ll also slot a single page object (the front page) into the
Wiki within the appmaker. This will provide traversal a resource tree to work against when it attempts
to resolve URLs to resources.

41.5.3 View the application in a browser

We can’t. At this point, our system is in a “non-runnable” state; we’ll need to change view-related files in
the next chapter to be able to start the application successfully. If you try to start the application (See Start
the application), you’ll wind up with a Python traceback on your console that ends with this exception:

ImportError: cannot import name MyModel

This will also happen if you attempt to run the tests.

498

41.6. DEFINING VIEWS

41.6 Defining Views

A view callable in a traversal -based Pyramid application is typically a simple Python function that
accepts two parameters: context and request. A view callable is assumed to return a response object.

A Pyramid view can also be defined as callable which accepts only a request argument. You’ll
see this one-argument pattern used in other Pyramid tutorials and applications. Either calling con-
vention will work in any Pyramid application; the calling conventions can be used interchangeably
as necessary. In traversal based applications, URLs are mapped to a context resource, and since our
resource tree also represents our application’s “domain model”, we’re often interested in the con-
text because it represents the persistent storage of our application. For this reason, in this tutorial
we define views as callables that accept context in the callable argument list. If you do need the
context within a view function that only takes the request as a single argument, you can obtain it
via request.context.

We’re going to define several view callable functions, then wire them into Pyramid using some view
configuration.

41.6.1 Declaring Dependencies in Our setup.py File

The view code in our application will depend on a package which is not a dependency of the original
“tutorial” application. The original “tutorial” application was generated by the pcreate command; it
doesn’t know about our custom application requirements.

We need to add a dependency on the docutils package to our tutorial package’s setup.py file
by assigning this dependency to the requires parameter in the setup() function.

Open tutorial/setup.py and edit it to look like the following:

1 import os
2

3 from setuptools import setup, find_packages
4

5 here = os.path.abspath(os.path.dirname(__file__))
6 with open(os.path.join(here, 'README.txt')) as f:
7 README = f.read()
8 with open(os.path.join(here, 'CHANGES.txt')) as f:
9 CHANGES = f.read()

10

499

41. ZODB + TRAVERSAL WIKI TUTORIAL

11 requires = [
12 'pyramid',
13 'pyramid_chameleon',
14 'pyramid_debugtoolbar',
15 'pyramid_tm',
16 'pyramid_zodbconn',
17 'transaction',
18 'ZODB3',
19 'waitress',
20 'docutils',
21]
22

23 setup(name='tutorial',
24 version='0.0',
25 description='tutorial',
26 long_description=README + '\n\n' + CHANGES,
27 classifiers=[
28 "Programming Language :: Python",
29 "Framework :: Pyramid",
30 "Topic :: Internet :: WWW/HTTP",
31 "Topic :: Internet :: WWW/HTTP :: WSGI :: Application",
32],
33 author='',
34 author_email='',
35 url='',
36 keywords='web pylons pyramid',
37 packages=find_packages(),
38 include_package_data=True,
39 zip_safe=False,
40 install_requires=requires,
41 tests_require=requires,
42 test_suite="tutorial",
43 entry_points="""\
44 [paste.app_factory]
45 main = tutorial:main
46 """,
47)

Only the highlighted line needs to be added.

41.6.2 Running setup.py develop

Since a new software dependency was added, you will need to run python setup.py develop
again inside the root of the tutorial package to obtain and register the newly added dependency
distribution.

500

41.6. DEFINING VIEWS

Make sure your current working directory is the root of the project (the directory in which setup.py
lives) and execute the following command.

On UNIX:

$ cd tutorial
$ $VENV/bin/python setup.py develop

On Windows:

c:\pyramidtut> cd tutorial
c:\pyramidtut\tutorial> %VENV%\Scripts\python setup.py develop

Success executing this command will end with a line to the console something like:

Finished processing dependencies for tutorial==0.0

41.6.3 Adding view functions in views.py

It’s time for a major change. Open tutorial/tutorial/views.py and edit it to look like the
following:

1 from docutils.core import publish_parts
2 import re
3

4 from pyramid.httpexceptions import HTTPFound
5 from pyramid.view import view_config
6

7 from .models import Page
8

9 # regular expression used to find WikiWords
10 wikiwords = re.compile(r"\b([A-Z]\w+[A-Z]+\w+)")
11

12 @view_config(context='.models.Wiki')
13 def view_wiki(context, request):
14 return HTTPFound(location=request.resource_url(context, 'FrontPage'))
15

16 @view_config(context='.models.Page', renderer='templates/view.pt')
17 def view_page(context, request):
18 wiki = context.__parent__
19

501

41. ZODB + TRAVERSAL WIKI TUTORIAL

20 def check(match):
21 word = match.group(1)
22 if word in wiki:
23 page = wiki[word]
24 view_url = request.resource_url(page)
25 return '%s' % (view_url, word)
26 else:
27 add_url = request.application_url + '/add_page/' + word
28 return '%s' % (add_url, word)
29

30 content = publish_parts(context.data, writer_name='html')['html_body']
31 content = wikiwords.sub(check, content)
32 edit_url = request.resource_url(context, 'edit_page')
33 return dict(page = context, content = content, edit_url = edit_url)
34

35 @view_config(name='add_page', context='.models.Wiki',
36 renderer='templates/edit.pt')
37 def add_page(context, request):
38 pagename = request.subpath[0]
39 if 'form.submitted' in request.params:
40 body = request.params['body']
41 page = Page(body)
42 page.__name__ = pagename
43 page.__parent__ = context
44 context[pagename] = page
45 return HTTPFound(location = request.resource_url(page))
46 save_url = request.resource_url(context, 'add_page', pagename)
47 page = Page('')
48 page.__name__ = pagename
49 page.__parent__ = context
50 return dict(page = page, save_url = save_url)
51

52 @view_config(name='edit_page', context='.models.Page',
53 renderer='templates/edit.pt')
54 def edit_page(context, request):
55 if 'form.submitted' in request.params:
56 context.data = request.params['body']
57 return HTTPFound(location = request.resource_url(context))
58

59 return dict(page=context,
60 save_url=request.resource_url(context, 'edit_page'))

We added some imports and created a regular expression to find “WikiWords”.

We got rid of the my_view view function and its decorator that was added when we originally rendered
the zodb scaffold. It was only an example and isn’t relevant to our application.

502

41.6. DEFINING VIEWS

Then we added four view callable functions to our views.py module:

• view_wiki() - Displays the wiki itself. It will answer on the root URL.

• view_page() - Displays an individual page.

• add_page() - Allows the user to add a page.

• edit_page() - Allows the user to edit a page.

We’ll describe each one briefly in the following sections.

There is nothing special about the filename views.py. A project may have many view callables
throughout its codebase in arbitrarily named files. Files implementing view callables often have view
in their filenames (or may live in a Python subpackage of your application package named views),
but this is only by convention.

The view_wiki view function

Following is the code for the view_wiki view function and its decorator:

12 @view_config(context='.models.Wiki')
13 def view_wiki(context, request):
14 return HTTPFound(location=request.resource_url(context, 'FrontPage'))

In our code, we use an import that is relative to our package named tutorial, meaning we can
omit the name of the package in the import and context statements. In our narrative, however, we
refer to a class and thus we use the absolute form, meaning that the name of the package is included.

view_wiki() is the default view that gets called when a request is made to the root URL of our wiki.
It always redirects to an URL which represents the path to our “FrontPage”.

We provide it with a @view_config decorator which names the class tutorial.models.Wiki
as its context. This means that when a Wiki resource is the context and no view name exists in the
request, then this view will be used. The view configuration associated with view_wiki does not use
a renderer because the view callable always returns a response object rather than a dictionary. No
renderer is necessary when a view returns a response object.

The view_wiki view callable always redirects to the URL of a Page re-
source named “FrontPage”. To do so, it returns an instance of the
pyramid.httpexceptions.HTTPFound class (instances of which implement the
pyramid.interfaces.IResponse interface, like pyramid.response.Response does).
It uses the pyramid.request.Request.route_url() API to construct an URL to the
FrontPage page resource (i.e., http://localhost:6543/FrontPage), and uses it as the
“location” of the HTTPFound response, forming an HTTP redirect.

503

41. ZODB + TRAVERSAL WIKI TUTORIAL

The view_page view function

Here is the code for the view_page view function and its decorator:

16 @view_config(context='.models.Page', renderer='templates/view.pt')
17 def view_page(context, request):
18 wiki = context.__parent__
19

20 def check(match):
21 word = match.group(1)
22 if word in wiki:
23 page = wiki[word]
24 view_url = request.resource_url(page)
25 return '%s' % (view_url, word)
26 else:
27 add_url = request.application_url + '/add_page/' + word
28 return '%s' % (add_url, word)
29

30 content = publish_parts(context.data, writer_name='html')['html_body']
31 content = wikiwords.sub(check, content)
32 edit_url = request.resource_url(context, 'edit_page')
33 return dict(page = context, content = content, edit_url = edit_url)

The view_page function is configured to respond as the default view of a Page resource. We provide
it with a @view_config decorator which names the class tutorial.models.Page as its context.
This means that when a Page resource is the context, and no view name exists in the request, this view
will be used. We inform Pyramid this view will use the templates/view.pt template file as a
renderer.

The view_page function generates the reStructuredText body of a page (stored as the data attribute
of the context passed to the view; the context will be a Page resource) as HTML. Then it substitutes an
HTML anchor for each WikiWord reference in the rendered HTML using a compiled regular expression.

The curried function named check is used as the first argument to wikiwords.sub, indicating that
it should be called to provide a value for each WikiWord match found in the content. If the wiki (our
page’s __parent__) already contains a page with the matched WikiWord name, the check function
generates a view link to be used as the substitution value and returns it. If the wiki does not already
contain a page with the matched WikiWord name, the function generates an “add” link as the substitution
value and returns it.

As a result, the content variable is now a fully formed bit of HTML containing various view and add
links for WikiWords based on the content of our current page resource.

We then generate an edit URL because it’s easier to do here than in the template, and we wrap up a number
of arguments in a dictionary and return it.

504

41.6. DEFINING VIEWS

The arguments we wrap into a dictionary include page, content, and edit_url. As a result, the
template associated with this view callable (via renderer= in its configuration) will be able to use
these names to perform various rendering tasks. The template associated with this view callable will be a
template which lives in templates/view.pt.

Note the contrast between this view callable and the view_wiki view callable. In the view_wiki
view callable, we unconditionally return a response object. In the view_page view callable, we return
a dictionary. It is always fine to return a response object from a Pyramid view. Returning a dictionary is
allowed only when there is a renderer associated with the view callable in the view configuration.

The add_page view function

Here is the code for the add_page view function and its decorator:

35 @view_config(name='add_page', context='.models.Wiki',
36 renderer='templates/edit.pt')
37 def add_page(context, request):
38 pagename = request.subpath[0]
39 if 'form.submitted' in request.params:
40 body = request.params['body']
41 page = Page(body)
42 page.__name__ = pagename
43 page.__parent__ = context
44 context[pagename] = page
45 return HTTPFound(location = request.resource_url(page))
46 save_url = request.resource_url(context, 'add_page', pagename)
47 page = Page('')
48 page.__name__ = pagename
49 page.__parent__ = context
50 return dict(page = page, save_url = save_url)

The add_page function is configured to respond when the context resource is a Wiki and the view name
is add_page. We provide it with a @view_config decorator which names the string add_page as
its view name (via name=), the class tutorial.models.Wiki as its context, and the renderer named
templates/edit.pt. This means that when a Wiki resource is the context, and a view name named
add_page exists as the result of traversal, this view will be used. We inform Pyramid this view will use
the templates/edit.pt template file as a renderer. We share the same template between add
and edit views, thus edit.pt instead of add.pt.

The add_page function will be invoked when a user clicks on a WikiWord which isn’t yet represented as
a page in the system. The check function within the view_page view generates URLs to this view. It
also acts as a handler for the form that is generated when we want to add a page resource. The context
of the add_page view is always a Wiki resource (not a Page resource).

505

41. ZODB + TRAVERSAL WIKI TUTORIAL

The request subpath in Pyramid is the sequence of names that are found after the view name in the URL
segments given in the PATH_INFO of the WSGI request as the result of traversal. If our add view is
invoked via, e.g., http://localhost:6543/add_page/SomeName, the subpath will be a tuple:
(’SomeName’,).

The add view takes the zeroth element of the subpath (the wiki page name), and aliases it to the name
attribute in order to know the name of the page we’re trying to add.

If the view rendering is not a result of a form submission (if the expression ’form.submitted’ in
request.params is False), the view renders a template. To do so, it generates a “save url” which
the template uses as the form post URL during rendering. We’re lazy here, so we’re trying to use the same
template (templates/edit.pt) for the add view as well as the page edit view. To do so, we create a
dummy Page resource object in order to satisfy the edit form’s desire to have some page object exposed
as page, and we’ll render the template to a response.

If the view rendering is a result of a form submission (if the expression ’form.submitted’ in
request.params is True), we grab the page body from the form data, create a Page object using the
name in the subpath and the page body, and save it into “our context” (the Wiki) using the __setitem__
method of the context. We then redirect back to the view_page view (the default view for a page) for
the newly created page.

The edit_page view function

Here is the code for the edit_page view function and its decorator:

52 @view_config(name='edit_page', context='.models.Page',
53 renderer='templates/edit.pt')
54 def edit_page(context, request):
55 if 'form.submitted' in request.params:
56 context.data = request.params['body']
57 return HTTPFound(location = request.resource_url(context))
58

59 return dict(page=context,
60 save_url=request.resource_url(context, 'edit_page'))

The edit_page function is configured to respond when the context is a Page resource and the view name
is edit_page. We provide it with a @view_config decorator which names the string edit_page
as its view name (via name=), the class tutorial.models.Page as its context, and the renderer
named templates/edit.pt. This means that when a Page resource is the context, and a view name
exists as the result of traversal named edit_page, this view will be used. We inform Pyramid this view
will use the templates/edit.pt template file as a renderer.

506

41.6. DEFINING VIEWS

The edit_page function will be invoked when a user clicks the “Edit this Page” button on the view
form. It renders an edit form but it also acts as the form post view callable for the form it renders. The
context of the edit_page view will always be a Page resource (never a Wiki resource).

If the view execution is not a result of a form submission (if the expression ’form.submitted’ in
request.params is False), the view simply renders the edit form, passing the page resource, and a
save_url which will be used as the action of the generated form.

If the view execution is a result of a form submission (if the expression ’form.submitted’ in
request.params is True), the view grabs the body element of the request parameter and sets it as
the data attribute of the page context. It then redirects to the default view of the context (the page),
which will always be the view_page view.

41.6.4 Adding templates

The view_page, add_page and edit_page views that we’ve added reference a template. Each
template is a Chameleon ZPT template. These templates will live in the templates directory of our
tutorial package. Chameleon templates must have a .pt extension to be recognized as such.

The view.pt template

Create tutorial/tutorial/templates/view.pt and add the following content:

1 <!DOCTYPE html>
2 <html lang="${request.locale_name}">
3 <head>
4 <meta charset="utf-8">
5 <meta http-equiv="X-UA-Compatible" content="IE=edge">
6 <meta name="viewport" content="width=device-width, initial-scale=1.0">
7 <meta name="description" content="pyramid web application">
8 <meta name="author" content="Pylons Project">
9 <link rel="shortcut icon" href="${request.static_url('tutorial:static/pyramid-16x16.png')}">

10

11 <title>${page.__name__} - Pyramid tutorial wiki (based on
12 TurboGears 20-Minute Wiki)</title>
13

14 <!-- Bootstrap core CSS -->
15 <link href="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/css/bootstrap.min.css" rel="stylesheet">
16

17 <!-- Custom styles for this scaffold -->
18 <link href="${request.static_url('tutorial:static/theme.css')}" rel="stylesheet">

507

41. ZODB + TRAVERSAL WIKI TUTORIAL

19

20 <!-- HTML5 shim and Respond.js IE8 support of HTML5 elements and media queries -->
21 <!--[if lt IE 9]>
22 <script src="//oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js"></script>
23 <script src="//oss.maxcdn.com/libs/respond.js/1.3.0/respond.min.js"></script>
24 <![endif]-->
25 </head>
26 <body>
27

28 <div class="starter-template">
29 <div class="container">
30 <div class="row">
31 <div class="col-md-2">
32
33 </div>
34 <div class="col-md-10">
35 <div class="content">
36 <div tal:replace="structure content">
37 Page text goes here.
38 </div>
39 <p>
40 <a tal:attributes="href edit_url" href="">
41 Edit this page
42
43 </p>
44 <p>
45 Viewing
46 Page Name Goes Here
47 </p>
48 <p>You can return to the
49 FrontPage.
50 </p>
51 </div>
52 </div>
53 </div>
54 <div class="row">
55 <div class="copyright">
56 Copyright © Pylons Project
57 </div>
58 </div>
59 </div>
60 </div>
61

62

63 <!-- Bootstrap core JavaScript
64 == -->

508

41.6. DEFINING VIEWS

65 <!-- Placed at the end of the document so the pages load faster -->
66 <script src="//oss.maxcdn.com/libs/jquery/1.10.2/jquery.min.js"></script>
67 <script src="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/js/bootstrap.min.js"></script>
68 </body>
69 </html>

This template is used by view_page() for displaying a single wiki page. It includes:

• A div element that is replaced with the content value provided by the view (lines 36-38).
content contains HTML, so the structure keyword is used to prevent escaping it (i.e., chang-
ing “>” to “>”, etc.)

• A link that points at the “edit” URL which invokes the edit_page view for the page being viewed
(lines 40-42).

The edit.pt template

Create tutorial/tutorial/templates/edit.pt and add the following content:

1 <!DOCTYPE html>
2 <html lang="${request.locale_name}">
3 <head>
4 <meta charset="utf-8">
5 <meta http-equiv="X-UA-Compatible" content="IE=edge">
6 <meta name="viewport" content="width=device-width, initial-scale=1.0">
7 <meta name="description" content="pyramid web application">
8 <meta name="author" content="Pylons Project">
9 <link rel="shortcut icon" href="${request.static_url('tutorial:static/pyramid-16x16.png')}">

10

11 <title>${page.__name__} - Pyramid tutorial wiki (based on
12 TurboGears 20-Minute Wiki)</title>
13

14 <!-- Bootstrap core CSS -->
15 <link href="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/css/bootstrap.min.css" rel="stylesheet">
16

17 <!-- Custom styles for this scaffold -->
18 <link href="${request.static_url('tutorial:static/theme.css')}" rel="stylesheet">
19

20 <!-- HTML5 shim and Respond.js IE8 support of HTML5 elements and media queries -->
21 <!--[if lt IE 9]>
22 <script src="//oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js"></script>
23 <script src="//oss.maxcdn.com/libs/respond.js/1.3.0/respond.min.js"></script>
24 <![endif]-->

509

41. ZODB + TRAVERSAL WIKI TUTORIAL

25 </head>
26 <body>
27

28 <div class="starter-template">
29 <div class="container">
30 <div class="row">
31 <div class="col-md-2">
32
33 </div>
34 <div class="col-md-10">
35 <div class="content">
36 <p>
37 Editing
38 Page Name Goes Here
39 </p>
40 <p>You can return to the
41 FrontPage.
42 </p>
43 <form action="${save_url}" method="post">
44 <div class="form-group">
45 <textarea class="form-control" name="body" tal:content="page.data" rows="10" cols="60"></textarea>
46 </div>
47 <div class="form-group">
48 <button type="submit" name="form.submitted" value="Save" class="btn btn-default">Save</button>
49 </div>
50 </form>
51 </div>
52 </div>
53 </div>
54 <div class="row">
55 <div class="copyright">
56 Copyright © Pylons Project
57 </div>
58 </div>
59 </div>
60 </div>
61

62

63 <!-- Bootstrap core JavaScript
64 == -->
65 <!-- Placed at the end of the document so the pages load faster -->
66 <script src="//oss.maxcdn.com/libs/jquery/1.10.2/jquery.min.js"></script>
67 <script src="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/js/bootstrap.min.js"></script>
68 </body>
69 </html>

510

41.6. DEFINING VIEWS

This template is used by add_page() and edit_page() for adding and editing a wiki page. It
displays a page containing a form that includes:

• A 10 row by 60 column textarea field named body that is filled with any existing page data
when it is rendered (line 45).

• A submit button that has the name form.submitted (line 48).

The form POSTs back to the save_url argument supplied by the view (line 43). The view will use the
body and form.submitted values.

Our templates use a request object that none of our tutorial views return in their dictionary.
request is one of several names that are available “by default” in a template when a template
renderer is used. See System Values Used During Rendering for information about other names that
are available by default when a template is used as a renderer.

Static assets

Our templates name static assets, including CSS and images. We don’t need to create these files within
our package’s static directory because they were provided at the time we created the project.

As an example, the CSS file will be accessed via http://localhost:6543/static/theme.css
by virtue of the call to the add_static_view directive we’ve made in the __init__.py
file. Any number and type of static assets can be placed in this directory (or subdirecto-
ries) and are just referred to by URL or by using the convenience method static_url, e.g.,
request.static_url(’<package>:static/foo.css’) within templates.

41.6.5 Viewing the application in a browser

We can finally examine our application in a browser (See Start the application). Launch a browser and
visit each of the following URLs, checking that the result is as expected:

• http://localhost:6543/ invokes the view_wiki view. This always redirects to the view_page
view of the FrontPage Page resource.

• http://localhost:6543/FrontPage/ invokes the view_page view of the front page resource. This is
because it’s the default view (a view without a name) for Page resources.

• http://localhost:6543/FrontPage/edit_page invokes the edit view for the FrontPage Page re-
source.

• http://localhost:6543/add_page/SomePageName invokes the add view for a Page.

• To generate an error, visit http://localhost:6543/add_page which will generate an IndexErrorr:
tuple index out of range error. You’ll see an interactive traceback facility provided by
pyramid_debugtoolbar.

511

http://localhost:6543/
http://localhost:6543/FrontPage/
http://localhost:6543/FrontPage/edit_page
http://localhost:6543/add_page/SomePageName
http://localhost:6543/add_page

41. ZODB + TRAVERSAL WIKI TUTORIAL

41.7 Adding authorization

Pyramid provides facilities for authentication and :authorization. We’ll make use of both features to
provide security :to our application. Our application currently allows anyone with access to :the server
to view, edit, and add pages to our wiki. We’ll change that to :allow only people who are members of
a group named group:editors to add :and edit wiki pages but we’ll continue allowing anyone with
access to the :server to view pages.

We will also add a login page and a logout link on all the pages. The login page will be shown when a
user is denied access to any of the views that require permission, instead of a default “403 Forbidden”
page.

We will implement the access control with the following steps:

• Add users and groups (security.py, a new module).

• Add an ACL (models.py).

• Add an authentication policy and an authorization policy (__init__.py).

• Add permission declarations to the edit_page and add_page views (views.py).

Then we will add the login and logout feature:

• Add login and logout views (views.py).

• Add a login template (login.pt).

• Make the existing views return a logged_in flag to the renderer (views.py).

• Add a “Logout” link to be shown when logged in and viewing or editing a page (view.pt,
edit.pt).

41.7.1 Access control

Add users and groups

Create a new tutorial/tutorial/security.py module with the following content:

512

41.7. ADDING AUTHORIZATION

1 USERS = {'editor':'editor',
2 'viewer':'viewer'}
3 GROUPS = {'editor':['group:editors']}
4

5 def groupfinder(userid, request):
6 if userid in USERS:
7 return GROUPS.get(userid, [])

The groupfinder function accepts a userid and a request and returns one of these values:

• If the userid exists in the system, it will return a sequence of group identifiers (or an empty sequence
if the user isn’t a member of any groups).

• If the userid does not exist in the system, it will return None.

For example, groupfinder(’editor’, request) returns [’group:editor’],
groupfinder(’viewer’, request) returns [], and groupfinder(’admin’, request)
returns None. We will use groupfinder() as an authentication policy “callback” that will provide
the principal or principals for a user.

In a production system, user and group data will most often come from a database, but here we use
“dummy” data to represent user and groups sources.

Add an ACL

Open tutorial/tutorial/models.py and add the following import statement at the head:

1 from pyramid.security import (
2 Allow,
3 Everyone,
4)

Add the following lines to the Wiki class:

9 class Wiki(PersistentMapping):
10 __name__ = None
11 __parent__ = None
12 __acl__ = [(Allow, Everyone, 'view'),
13 (Allow, 'group:editors', 'edit')]

513

41. ZODB + TRAVERSAL WIKI TUTORIAL

We import Allow , an action that means that permission is allowed, and Everyone, a special principal
that is associated to all requests. Both are used in the ACE entries that make up the ACL.

The ACL is a list that needs to be named __acl__ and be an attribute of a class. We define an ACL
with two ACE entries: the first entry allows any user the view permission. The second entry allows the
group:editors principal the edit permission.

The Wiki class that contains the ACL is the resource constructor for the root resource, which is a Wiki
instance. The ACL is provided to each view in the context of the request as the context attribute.

It’s only happenstance that we’re assigning this ACL at class scope. An ACL can be attached to an object
instance too; this is how “row level security” can be achieved in Pyramid applications. We actually need
only one ACL for the entire system, however, because our security requirements are simple, so this feature
is not demonstrated. See Assigning ACLs to Your Resource Objects for more information about what an
ACL represents.

Add authentication and authorization policies

Open tutorial/tutorial/__init__.py and add the highlighted import statements:

1 from pyramid.config import Configurator
2 from pyramid_zodbconn import get_connection
3

4 from pyramid.authentication import AuthTktAuthenticationPolicy
5 from pyramid.authorization import ACLAuthorizationPolicy
6

7 from .models import appmaker
8 from .security import groupfinder

Now add those policies to the configuration:

18 authn_policy = AuthTktAuthenticationPolicy(
19 'sosecret', callback=groupfinder, hashalg='sha512')
20 authz_policy = ACLAuthorizationPolicy()
21 config = Configurator(root_factory=root_factory, settings=settings)
22 config.set_authentication_policy(authn_policy)
23 config.set_authorization_policy(authz_policy)

Only the highlighted lines need to be added.

We are enabling an AuthTktAuthenticationPolicy, which is based in an auth ticket that may be
included in the request. We are also enabling an ACLAuthorizationPolicy, which uses an ACL to
determine the allow or deny outcome for a view.

514

41.7. ADDING AUTHORIZATION

Note that the pyramid.authentication.AuthTktAuthenticationPolicy constructor ac-
cepts two arguments: secret and callback. secret is a string representing an encryption key used
by the “authentication ticket” machinery represented by this policy: it is required. The callback is the
groupfinder() function that we created before.

Add permission declarations

Open tutorial/tutorial/views.py and add a permission=’edit’ parameter to the
@view_config decorators for add_page() and edit_page():

@view_config(name='add_page', context='.models.Wiki',
renderer='templates/edit.pt',
permission='edit')

@view_config(name='edit_page', context='.models.Page',
renderer='templates/edit.pt',
permission='edit')

Only the highlighted lines, along with their preceding commas, need to be edited and added.

The result is that only users who possess the edit permission at the time of the request may invoke those
two views.

Add a permission=’view’ parameter to the @view_config decorator for view_wiki() and
view_page() as follows:

@view_config(context='.models.Wiki',
permission='view')

@view_config(context='.models.Page', renderer='templates/view.pt',
permission='view')

Only the highlighted lines, along with their preceding commas, need to be edited and added.

This allows anyone to invoke these two views.

We are done with the changes needed to control access. The changes that follow will add the login and
logout feature.

515

41. ZODB + TRAVERSAL WIKI TUTORIAL

41.7.2 Login, logout

Add login and logout views

We’ll add a login view which renders a login form and processes the post from the login form, checking
credentials.

We’ll also add a logout view callable to our application and provide a link to it. This view will clear
the credentials of the logged in user and redirect back to the front page.

Add the following import statements to the head of tutorial/tutorial/views.py:

from pyramid.view import (
view_config,
forbidden_view_config,
)

from pyramid.security import (
remember,
forget,
)

from .security import USERS

All the highlighted lines need to be added or edited.

forbidden_view_config() will be used to customize the default 403 Forbidden page.
remember() and forget() help to create and expire an auth ticket cookie.

Now add the login and logout views at the end of the file:

82 @view_config(context='.models.Wiki', name='login',
83 renderer='templates/login.pt')
84 @forbidden_view_config(renderer='templates/login.pt')
85 def login(request):
86 login_url = request.resource_url(request.context, 'login')
87 referrer = request.url
88 if referrer == login_url:
89 referrer = '/' # never use the login form itself as came_from
90 came_from = request.params.get('came_from', referrer)
91 message = ''
92 login = ''

516

41.7. ADDING AUTHORIZATION

93 password = ''
94 if 'form.submitted' in request.params:
95 login = request.params['login']
96 password = request.params['password']
97 if USERS.get(login) == password:
98 headers = remember(request, login)
99 return HTTPFound(location = came_from,

100 headers = headers)
101 message = 'Failed login'
102

103 return dict(
104 message = message,
105 url = request.application_url + '/login',
106 came_from = came_from,
107 login = login,
108 password = password,
109)
110

111 @view_config(context='.models.Wiki', name='logout')
112 def logout(request):
113 headers = forget(request)
114 return HTTPFound(location = request.resource_url(request.context),
115 headers = headers)

login() has two decorators:

• a @view_config decorator which associates it with the login route and makes it visible when
we visit /login,

• a @forbidden_view_config decorator which turns it into a forbidden view. login() will
be invoked when a user tries to execute a view callable for which they lack authorization. For
example, if a user has not logged in and tries to add or edit a Wiki page, they will be shown the
login form before being allowed to continue.

The order of these two view configuration decorators is unimportant.

logout() is decorated with a @view_config decorator which associates it with the logout route.
It will be invoked when we visit /logout.

Add the login.pt Template

Create tutorial/tutorial/templates/login.pt with the following content:

517

41. ZODB + TRAVERSAL WIKI TUTORIAL

<!DOCTYPE html>
<html lang="${request.locale_name}">
<head>

<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta name="description" content="pyramid web application">
<meta name="author" content="Pylons Project">
<link rel="shortcut icon" href="${request.static_url('tutorial:static/pyramid-16x16.png')}">

<title>Login - Pyramid tutorial wiki (based on
TurboGears 20-Minute Wiki)</title>

<!-- Bootstrap core CSS -->
<link href="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/css/bootstrap.min.css" rel="stylesheet">

<!-- Custom styles for this scaffold -->
<link href="${request.static_url('tutorial:static/theme.css')}" rel="stylesheet">

<!-- HTML5 shim and Respond.js IE8 support of HTML5 elements and media queries -->
<!--[if lt IE 9]>

<script src="//oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js"></script>
<script src="//oss.maxcdn.com/libs/respond.js/1.3.0/respond.min.js"></script>

<![endif]-->
</head>
<body>

<div class="starter-template">
<div class="container">
<div class="row">

<div class="col-md-2">

</div>
<div class="col-md-10">

<div class="content">
<p>

Login

</p>
<form action="${url}" method="post">
<input type="hidden" name="came_from" value="${came_from}">
<div class="form-group">
<label for="login">Username</label>
<input type="text" name="login" value="${login}">

518

41.7. ADDING AUTHORIZATION

</div>
<div class="form-group">
<label for="password">Password</label>
<input type="password" name="password" value="${password}">

</div>
<div class="form-group">
<button type="submit" name="form.submitted" value="Log In" class="btn btn-default">Log In</button>

</div>
</form>

</div>
</div>

</div>
<div class="row">

<div class="copyright">
Copyright © Pylons Project

</div>
</div>

</div>
</div>

<!-- Bootstrap core JavaScript
== -->
<!-- Placed at the end of the document so the pages load faster -->
<script src="//oss.maxcdn.com/libs/jquery/1.10.2/jquery.min.js"></script>
<script src="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/js/bootstrap.min.js"></script>

</body>
</html>

The above template is referenced in the login view that we just added in views.py.

Return a logged_in flag to the renderer

Open tutorial/tutorial/views.py again. Add a logged_in parameter to the return value of
view_page(), add_page(), and edit_page() as follows:

return dict(page = context, content = content, edit_url = edit_url,
logged_in = request.authenticated_userid)

return dict(page=page, save_url=save_url,
logged_in=request.authenticated_userid)

519

41. ZODB + TRAVERSAL WIKI TUTORIAL

return dict(page=context,
save_url=request.resource_url(context, 'edit_page'),
logged_in=request.authenticated_userid)

Only the highlighted lines need to be added or edited.

The pyramid.request.Request.authenticated_userid() will be None if the user is not
authenticated, or a userid if the user is authenticated.

Add a “Logout” link when logged in

Open tutorial/tutorial/templates/edit.pt and tutorial/tutorial/templates/view.pt
and add the following code as indicated by the highlighted lines.

<div class="col-md-10">
<div class="content">
<p tal:condition="logged_in" class="pull-right">
Logout

</p>

The attribute tal:condition="logged_in"will make the element be included when logged_in
is any user id. The link will invoke the logout view. The above element will not be included if
logged_in is None, such as when a user is not authenticated.

41.7.3 Reviewing our changes

Our tutorial/tutorial/__init__.py will look like this when we’re done:

1 from pyramid.config import Configurator
2 from pyramid_zodbconn import get_connection
3

4 from pyramid.authentication import AuthTktAuthenticationPolicy
5 from pyramid.authorization import ACLAuthorizationPolicy
6

7 from .models import appmaker
8 from .security import groupfinder
9

10 def root_factory(request):
11 conn = get_connection(request)

520

41.7. ADDING AUTHORIZATION

12 return appmaker(conn.root())
13

14

15 def main(global_config, **settings):
16 """ This function returns a Pyramid WSGI application.
17 """
18 authn_policy = AuthTktAuthenticationPolicy(
19 'sosecret', callback=groupfinder, hashalg='sha512')
20 authz_policy = ACLAuthorizationPolicy()
21 config = Configurator(root_factory=root_factory, settings=settings)
22 config.set_authentication_policy(authn_policy)
23 config.set_authorization_policy(authz_policy)
24 config.include('pyramid_chameleon')
25 config.add_static_view('static', 'static', cache_max_age=3600)
26 config.scan()
27 return config.make_wsgi_app()

Only the highlighted lines need to be added or edited.

Our tutorial/tutorial/models.py will look like this when we’re done:

1 from persistent import Persistent
2 from persistent.mapping import PersistentMapping
3

4 from pyramid.security import (
5 Allow,
6 Everyone,
7)
8

9 class Wiki(PersistentMapping):
10 __name__ = None
11 __parent__ = None
12 __acl__ = [(Allow, Everyone, 'view'),
13 (Allow, 'group:editors', 'edit')]
14

15 class Page(Persistent):
16 def __init__(self, data):
17 self.data = data
18

19 def appmaker(zodb_root):
20 if not 'app_root' in zodb_root:
21 app_root = Wiki()
22 frontpage = Page('This is the front page')
23 app_root['FrontPage'] = frontpage
24 frontpage.__name__ = 'FrontPage'

521

41. ZODB + TRAVERSAL WIKI TUTORIAL

25 frontpage.__parent__ = app_root
26 zodb_root['app_root'] = app_root
27 import transaction
28 transaction.commit()
29 return zodb_root['app_root']

Only the highlighted lines need to be added or edited.

Our tutorial/tutorial/views.py will look like this when we’re done:

1 from docutils.core import publish_parts
2 import re
3

4 from pyramid.httpexceptions import HTTPFound
5

6 from pyramid.view import (
7 view_config,
8 forbidden_view_config,
9)

10

11 from pyramid.security import (
12 remember,
13 forget,
14)
15

16

17 from .security import USERS
18 from .models import Page
19

20 # regular expression used to find WikiWords
21 wikiwords = re.compile(r"\b([A-Z]\w+[A-Z]+\w+)")
22

23 @view_config(context='.models.Wiki',
24 permission='view')
25 def view_wiki(context, request):
26 return HTTPFound(location=request.resource_url(context, 'FrontPage'))
27

28 @view_config(context='.models.Page', renderer='templates/view.pt',
29 permission='view')
30 def view_page(context, request):
31 wiki = context.__parent__
32

33 def check(match):
34 word = match.group(1)
35 if word in wiki:

522

41.7. ADDING AUTHORIZATION

36 page = wiki[word]
37 view_url = request.resource_url(page)
38 return '%s' % (view_url, word)
39 else:
40 add_url = request.application_url + '/add_page/' + word
41 return '%s' % (add_url, word)
42

43 content = publish_parts(context.data, writer_name='html')['html_body']
44 content = wikiwords.sub(check, content)
45 edit_url = request.resource_url(context, 'edit_page')
46

47 return dict(page = context, content = content, edit_url = edit_url,
48 logged_in = request.authenticated_userid)
49

50 @view_config(name='add_page', context='.models.Wiki',
51 renderer='templates/edit.pt',
52 permission='edit')
53 def add_page(context, request):
54 pagename = request.subpath[0]
55 if 'form.submitted' in request.params:
56 body = request.params['body']
57 page = Page(body)
58 page.__name__ = pagename
59 page.__parent__ = context
60 context[pagename] = page
61 return HTTPFound(location = request.resource_url(page))
62 save_url = request.resource_url(context, 'add_page', pagename)
63 page = Page('')
64 page.__name__ = pagename
65 page.__parent__ = context
66

67 return dict(page=page, save_url=save_url,
68 logged_in=request.authenticated_userid)
69

70 @view_config(name='edit_page', context='.models.Page',
71 renderer='templates/edit.pt',
72 permission='edit')
73 def edit_page(context, request):
74 if 'form.submitted' in request.params:
75 context.data = request.params['body']
76 return HTTPFound(location = request.resource_url(context))
77

78 return dict(page=context,
79 save_url=request.resource_url(context, 'edit_page'),
80 logged_in=request.authenticated_userid)
81

523

41. ZODB + TRAVERSAL WIKI TUTORIAL

82 @view_config(context='.models.Wiki', name='login',
83 renderer='templates/login.pt')
84 @forbidden_view_config(renderer='templates/login.pt')
85 def login(request):
86 login_url = request.resource_url(request.context, 'login')
87 referrer = request.url
88 if referrer == login_url:
89 referrer = '/' # never use the login form itself as came_from
90 came_from = request.params.get('came_from', referrer)
91 message = ''
92 login = ''
93 password = ''
94 if 'form.submitted' in request.params:
95 login = request.params['login']
96 password = request.params['password']
97 if USERS.get(login) == password:
98 headers = remember(request, login)
99 return HTTPFound(location = came_from,

100 headers = headers)
101 message = 'Failed login'
102

103 return dict(
104 message = message,
105 url = request.application_url + '/login',
106 came_from = came_from,
107 login = login,
108 password = password,
109)
110

111 @view_config(context='.models.Wiki', name='logout')
112 def logout(request):
113 headers = forget(request)
114 return HTTPFound(location = request.resource_url(request.context),
115 headers = headers)

Only the highlighted lines need to be added or edited.

Our tutorial/tutorial/templates/edit.pt template will look like this when we’re done:

1 <!DOCTYPE html>
2 <html lang="${request.locale_name}">
3 <head>
4 <meta charset="utf-8">
5 <meta http-equiv="X-UA-Compatible" content="IE=edge">
6 <meta name="viewport" content="width=device-width, initial-scale=1.0">

524

41.7. ADDING AUTHORIZATION

7 <meta name="description" content="pyramid web application">
8 <meta name="author" content="Pylons Project">
9 <link rel="shortcut icon" href="${request.static_url('tutorial:static/pyramid-16x16.png')}">

10

11 <title>${page.__name__} - Pyramid tutorial wiki (based on
12 TurboGears 20-Minute Wiki)</title>
13

14 <!-- Bootstrap core CSS -->
15 <link href="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/css/bootstrap.min.css" rel="stylesheet">
16

17 <!-- Custom styles for this scaffold -->
18 <link href="${request.static_url('tutorial:static/theme.css')}" rel="stylesheet">
19

20 <!-- HTML5 shim and Respond.js IE8 support of HTML5 elements and media queries -->
21 <!--[if lt IE 9]>
22 <script src="//oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js"></script>
23 <script src="//oss.maxcdn.com/libs/respond.js/1.3.0/respond.min.js"></script>
24 <![endif]-->
25 </head>
26 <body>
27

28 <div class="starter-template">
29 <div class="container">
30 <div class="row">
31 <div class="col-md-2">
32
33 </div>
34 <div class="col-md-10">
35 <div class="content">
36 <p tal:condition="logged_in" class="pull-right">
37 Logout
38 </p>
39 <p>
40 Editing
41 Page Name Goes Here
42 </p>
43 <p>You can return to the
44 FrontPage.
45 </p>
46 <form action="${save_url}" method="post">
47 <div class="form-group">
48 <textarea class="form-control" name="body" tal:content="page.data" rows="10" cols="60"></textarea>
49 </div>
50 <div class="form-group">
51 <button type="submit" name="form.submitted" value="Save" class="btn btn-default">Save</button>
52 </div>

525

41. ZODB + TRAVERSAL WIKI TUTORIAL

53 </form>
54 </div>
55 </div>
56 </div>
57 <div class="row">
58 <div class="copyright">
59 Copyright © Pylons Project
60 </div>
61 </div>
62 </div>
63 </div>
64

65

66 <!-- Bootstrap core JavaScript
67 == -->
68 <!-- Placed at the end of the document so the pages load faster -->
69 <script src="//oss.maxcdn.com/libs/jquery/1.10.2/jquery.min.js"></script>
70 <script src="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/js/bootstrap.min.js"></script>
71 </body>
72 </html>

Only the highlighted lines need to be added or edited.

Our tutorial/tutorial/templates/view.pt template will look like this when we’re done:

1 <!DOCTYPE html>
2 <html lang="${request.locale_name}">
3 <head>
4 <meta charset="utf-8">
5 <meta http-equiv="X-UA-Compatible" content="IE=edge">
6 <meta name="viewport" content="width=device-width, initial-scale=1.0">
7 <meta name="description" content="pyramid web application">
8 <meta name="author" content="Pylons Project">
9 <link rel="shortcut icon" href="${request.static_url('tutorial:static/pyramid-16x16.png')}">

10

11 <title>${page.__name__} - Pyramid tutorial wiki (based on
12 TurboGears 20-Minute Wiki)</title>
13

14 <!-- Bootstrap core CSS -->
15 <link href="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/css/bootstrap.min.css" rel="stylesheet">
16

17 <!-- Custom styles for this scaffold -->
18 <link href="${request.static_url('tutorial:static/theme.css')}" rel="stylesheet">
19

20 <!-- HTML5 shim and Respond.js IE8 support of HTML5 elements and media queries -->

526

41.7. ADDING AUTHORIZATION

21 <!--[if lt IE 9]>
22 <script src="//oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js"></script>
23 <script src="//oss.maxcdn.com/libs/respond.js/1.3.0/respond.min.js"></script>
24 <![endif]-->
25 </head>
26 <body>
27

28 <div class="starter-template">
29 <div class="container">
30 <div class="row">
31 <div class="col-md-2">
32
33 </div>
34 <div class="col-md-10">
35 <div class="content">
36 <p tal:condition="logged_in" class="pull-right">
37 Logout
38 </p>
39 <div tal:replace="structure content">
40 Page text goes here.
41 </div>
42 <p>
43 <a tal:attributes="href edit_url" href="">
44 Edit this page
45
46 </p>
47 <p>
48 Viewing
49 Page Name Goes Here
50 </p>
51 <p>You can return to the
52 FrontPage.
53 </p>
54 </div>
55 </div>
56 </div>
57 <div class="row">
58 <div class="copyright">
59 Copyright © Pylons Project
60 </div>
61 </div>
62 </div>
63 </div>
64

65

66 <!-- Bootstrap core JavaScript

527

41. ZODB + TRAVERSAL WIKI TUTORIAL

67 == -->
68 <!-- Placed at the end of the document so the pages load faster -->
69 <script src="//oss.maxcdn.com/libs/jquery/1.10.2/jquery.min.js"></script>
70 <script src="//oss.maxcdn.com/libs/twitter-bootstrap/3.0.3/js/bootstrap.min.js"></script>
71 </body>
72 </html>

Only the highlighted lines need to be added or edited.

41.7.4 Viewing the application in a browser

We can finally examine our application in a browser (See Start the application). Launch a browser and
visit each of the following URLs, checking that the result is as expected:

• http://localhost:6543/ invokes the view_wiki view. This always redirects to the view_page
view of the FrontPage Page resource. It is executable by any user.

• http://localhost:6543/FrontPage invokes the view_page view of the FrontPage Page resource.
This is because it’s the default view (a view without a name) for Page resources. It is executable
by any user.

• http://localhost:6543/FrontPage/edit_page invokes the edit view for the FrontPage object. It is ex-
ecutable by only the editor user. If a different user (or the anonymous user) invokes it, a login
form will be displayed. Supplying the credentials with the username editor, password editor
will display the edit page form.

• http://localhost:6543/add_page/SomePageName invokes the add view for a page. It is executable
by only the editor user. If a different user (or the anonymous user) invokes it, a login form will be
displayed. Supplying the credentials with the username editor, password editor will display
the edit page form.

• After logging in (as a result of hitting an edit or add page and submitting the login form with the
editor credentials), we’ll see a Logout link in the upper right hand corner. When we click it,
we’re logged out, and redirected back to the front page.

41.8 Adding Tests

We will now add tests for the models and the views and a few functional tests in tests.py. Tests ensure
that an application works, and that it continues to work when changes are made in the future.

528

http://localhost:6543/
http://localhost:6543/FrontPage
http://localhost:6543/FrontPage/edit_page
http://localhost:6543/add_page/SomePageName

41.8. ADDING TESTS

41.8.1 Test the models

We write tests for the model classes and the appmaker. Changing tests.py, we’ll write a separate
test class for each model class, and we’ll write a test class for the appmaker.

To do so, we’ll retain the tutorial.tests.ViewTests class that was generated as part of the zodb
scaffold. We’ll add three test classes: one for the Page model named PageModelTests, one for the
Wiki model named WikiModelTests, and one for the appmaker named AppmakerTests.

41.8.2 Test the views

We’ll modify our tests.py file, adding tests for each view function we added previously. As a
result, we’ll delete the ViewTests class that the zodb scaffold provided, and add four other test
classes: ViewWikiTests, ViewPageTests, AddPageTests, and EditPageTests. These test
the view_wiki, view_page, add_page, and edit_page views.

41.8.3 Functional tests

We’ll test the whole application, covering security aspects that are not tested in the unit tests, like logging
in, logging out, checking that the viewer user cannot add or edit pages, but the editor user can, and
so on.

41.8.4 View the results of all our edits to tests.py

Open the tutorial/tests.py module, and edit it such that it appears as follows:

1 import unittest
2

3 from pyramid import testing
4

5 class PageModelTests(unittest.TestCase):
6

7 def _getTargetClass(self):
8 from .models import Page
9 return Page

10

11 def _makeOne(self, data=u'some data'):
12 return self._getTargetClass()(data=data)

529

41. ZODB + TRAVERSAL WIKI TUTORIAL

13

14 def test_constructor(self):
15 instance = self._makeOne()
16 self.assertEqual(instance.data, u'some data')
17

18 class WikiModelTests(unittest.TestCase):
19

20 def _getTargetClass(self):
21 from .models import Wiki
22 return Wiki
23

24 def _makeOne(self):
25 return self._getTargetClass()()
26

27 def test_it(self):
28 wiki = self._makeOne()
29 self.assertEqual(wiki.__parent__, None)
30 self.assertEqual(wiki.__name__, None)
31

32 class AppmakerTests(unittest.TestCase):
33

34 def _callFUT(self, zodb_root):
35 from .models import appmaker
36 return appmaker(zodb_root)
37

38 def test_it(self):
39 root = {}
40 self._callFUT(root)
41 self.assertEqual(root['app_root']['FrontPage'].data,
42 'This is the front page')
43

44 class ViewWikiTests(unittest.TestCase):
45 def test_it(self):
46 from .views import view_wiki
47 context = testing.DummyResource()
48 request = testing.DummyRequest()
49 response = view_wiki(context, request)
50 self.assertEqual(response.location, 'http://example.com/FrontPage')
51

52 class ViewPageTests(unittest.TestCase):
53 def _callFUT(self, context, request):
54 from .views import view_page
55 return view_page(context, request)
56

57 def test_it(self):
58 wiki = testing.DummyResource()

530

41.8. ADDING TESTS

59 wiki['IDoExist'] = testing.DummyResource()
60 context = testing.DummyResource(data='Hello CruelWorld IDoExist')
61 context.__parent__ = wiki
62 context.__name__ = 'thepage'
63 request = testing.DummyRequest()
64 info = self._callFUT(context, request)
65 self.assertEqual(info['page'], context)
66 self.assertEqual(
67 info['content'],
68 '<div class="document">\n'
69 '<p>Hello '
70 'CruelWorld '
71 ''
72 'IDoExist'
73 '</p>\n</div>\n')
74 self.assertEqual(info['edit_url'],
75 'http://example.com/thepage/edit_page')
76

77

78 class AddPageTests(unittest.TestCase):
79 def _callFUT(self, context, request):
80 from .views import add_page
81 return add_page(context, request)
82

83 def test_it_notsubmitted(self):
84 context = testing.DummyResource()
85 request = testing.DummyRequest()
86 request.subpath = ['AnotherPage']
87 info = self._callFUT(context, request)
88 self.assertEqual(info['page'].data,'')
89 self.assertEqual(
90 info['save_url'],
91 request.resource_url(context, 'add_page', 'AnotherPage'))
92

93 def test_it_submitted(self):
94 context = testing.DummyResource()
95 request = testing.DummyRequest({'form.submitted':True,
96 'body':'Hello yo!'})
97 request.subpath = ['AnotherPage']
98 self._callFUT(context, request)
99 page = context['AnotherPage']

100 self.assertEqual(page.data, 'Hello yo!')
101 self.assertEqual(page.__name__, 'AnotherPage')
102 self.assertEqual(page.__parent__, context)
103

104 class EditPageTests(unittest.TestCase):

531

41. ZODB + TRAVERSAL WIKI TUTORIAL

105 def _callFUT(self, context, request):
106 from .views import edit_page
107 return edit_page(context, request)
108

109 def test_it_notsubmitted(self):
110 context = testing.DummyResource()
111 request = testing.DummyRequest()
112 info = self._callFUT(context, request)
113 self.assertEqual(info['page'], context)
114 self.assertEqual(info['save_url'],
115 request.resource_url(context, 'edit_page'))
116

117 def test_it_submitted(self):
118 context = testing.DummyResource()
119 request = testing.DummyRequest({'form.submitted':True,
120 'body':'Hello yo!'})
121 response = self._callFUT(context, request)
122 self.assertEqual(response.location, 'http://example.com/')
123 self.assertEqual(context.data, 'Hello yo!')
124

125 class FunctionalTests(unittest.TestCase):
126

127 viewer_login = '/login?login=viewer&password=viewer' \
128 '&came_from=FrontPage&form.submitted=Login'
129 viewer_wrong_login = '/login?login=viewer&password=incorrect' \
130 '&came_from=FrontPage&form.submitted=Login'
131 editor_login = '/login?login=editor&password=editor' \
132 '&came_from=FrontPage&form.submitted=Login'
133

134 def setUp(self):
135 import tempfile
136 import os.path
137 from . import main
138 self.tmpdir = tempfile.mkdtemp()
139

140 dbpath = os.path.join(self.tmpdir, 'test.db')
141 uri = 'file://' + dbpath
142 settings = { 'zodbconn.uri' : uri ,
143 'pyramid.includes': ['pyramid_zodbconn', 'pyramid_tm'] }
144

145 app = main({}, **settings)
146 self.db = app.registry._zodb_databases['']
147 from webtest import TestApp
148 self.testapp = TestApp(app)
149

150 def tearDown(self):

532

41.8. ADDING TESTS

151 import shutil
152 self.db.close()
153 shutil.rmtree(self.tmpdir)
154

155 def test_root(self):
156 res = self.testapp.get('/', status=302)
157 self.assertEqual(res.location, 'http://localhost/FrontPage')
158

159 def test_FrontPage(self):
160 res = self.testapp.get('/FrontPage', status=200)
161 self.assertTrue(b'FrontPage' in res.body)
162

163 def test_unexisting_page(self):
164 res = self.testapp.get('/SomePage', status=404)
165 self.assertTrue(b'Not Found' in res.body)
166

167 def test_successful_log_in(self):
168 res = self.testapp.get(self.viewer_login, status=302)
169 self.assertEqual(res.location, 'http://localhost/FrontPage')
170

171 def test_failed_log_in(self):
172 res = self.testapp.get(self.viewer_wrong_login, status=200)
173 self.assertTrue(b'login' in res.body)
174

175 def test_logout_link_present_when_logged_in(self):
176 res = self.testapp.get(self.viewer_login, status=302)
177 res = self.testapp.get('/FrontPage', status=200)
178 self.assertTrue(b'Logout' in res.body)
179

180 def test_logout_link_not_present_after_logged_out(self):
181 res = self.testapp.get(self.viewer_login, status=302)
182 res = self.testapp.get('/FrontPage', status=200)
183 res = self.testapp.get('/logout', status=302)
184 self.assertTrue(b'Logout' not in res.body)
185

186 def test_anonymous_user_cannot_edit(self):
187 res = self.testapp.get('/FrontPage/edit_page', status=200)
188 self.assertTrue(b'Login' in res.body)
189

190 def test_anonymous_user_cannot_add(self):
191 res = self.testapp.get('/add_page/NewPage', status=200)
192 self.assertTrue(b'Login' in res.body)
193

194 def test_viewer_user_cannot_edit(self):
195 res = self.testapp.get(self.viewer_login, status=302)
196 res = self.testapp.get('/FrontPage/edit_page', status=200)

533

41. ZODB + TRAVERSAL WIKI TUTORIAL

197 self.assertTrue(b'Login' in res.body)
198

199 def test_viewer_user_cannot_add(self):
200 res = self.testapp.get(self.viewer_login, status=302)
201 res = self.testapp.get('/add_page/NewPage', status=200)
202 self.assertTrue(b'Login' in res.body)
203

204 def test_editors_member_user_can_edit(self):
205 res = self.testapp.get(self.editor_login, status=302)
206 res = self.testapp.get('/FrontPage/edit_page', status=200)
207 self.assertTrue(b'Editing' in res.body)
208

209 def test_editors_member_user_can_add(self):
210 res = self.testapp.get(self.editor_login, status=302)
211 res = self.testapp.get('/add_page/NewPage', status=200)
212 self.assertTrue(b'Editing' in res.body)
213

214 def test_editors_member_user_can_view(self):
215 res = self.testapp.get(self.editor_login, status=302)
216 res = self.testapp.get('/FrontPage', status=200)
217 self.assertTrue(b'FrontPage' in res.body)

41.8.5 Running the tests

We can run these tests by using setup.py test in the same way we did in Run the tests. However, first
we must edit our setup.py to include a dependency on WebTest, which we’ve used in our tests.py.
Change the requires list in setup.py to include WebTest.

1 requires = [
2 'pyramid',
3 'pyramid_chameleon',
4 'pyramid_debugtoolbar',
5 'pyramid_tm',
6 'pyramid_zodbconn',
7 'transaction',
8 'ZODB3',
9 'waitress',

10 'docutils',
11 'WebTest', # add this
12]

After we’ve added a dependency on WebTest in setup.py, we need to run setup.py develop to
get WebTest installed into our virtualenv. Assuming our shell’s current working directory is the “tutorial”
distribution directory:

534

41.9. DISTRIBUTING YOUR APPLICATION

On UNIX:

$ $VENV/bin/python setup.py develop

On Windows:

c:\pyramidtut\tutorial> %VENV%\Scripts\python setup.py develop

Once that command has completed successfully, we can run the tests themselves:

On UNIX:

$ $VENV/bin/python setup.py test -q

On Windows:

c:\pyramidtut\tutorial> %VENV%\Scripts\python setup.py test -q

The expected result should look like the following:

.........
--
Ran 23 tests in 1.653s

OK

41.9 Distributing Your Application

Once your application works properly, you can create a “tarball” from it by using the setup.py sdist
command. The following commands assume your current working directory is the tutorial package
we’ve created and that the parent directory of the tutorial package is a virtualenv representing a
Pyramid environment.

On UNIX:

$ $VENV/bin/python setup.py sdist

On Windows:

535

41. ZODB + TRAVERSAL WIKI TUTORIAL

c:\pyramidtut> %VENV%\Scripts\python setup.py sdist

The output of such a command will be something like:

running sdist
.. more output ..
creating dist
tar -cf dist/tutorial-0.0.tar tutorial-0.0
gzip -f9 dist/tutorial-0.0.tar
removing 'tutorial-0.0' (and everything under it)

Note that this command creates a tarball in the “dist” subdirectory named tutorial-0.0.tar.gz.
You can send this file to your friends to show them your cool new application. They should be able to
install it by pointing the easy_install command directly at it. Or you can upload it to PyPI and share
it with the rest of the world, where it can be downloaded via easy_install remotely like any other
package people download from PyPI.

536

http://pypi.python.org

CHAPTER 42

Running a Pyramid Application under mod_wsgi

mod_wsgi is an Apache module developed by Graham Dumpleton. It allows WSGI programs to be served
using the Apache web server.

This guide will outline broad steps that can be used to get a Pyramid application running under Apache via
mod_wsgi. This particular tutorial was developed under Apple’s Mac OS X platform (Snow Leopard,
on a 32-bit Mac), but the instructions should be largely the same for all systems, delta specific path
information for commands and files.

Unfortunately these instructions almost certainly won’t work for deploying a Pyramid applica-
tion on a Windows system using mod_wsgi. If you have experience with Pyramid and mod_wsgi
on Windows systems, please help us document this experience by submitting documentation to the
Pylons-devel maillist.

1. The tutorial assumes you have Apache already installed on your system. If you do not, install
Apache 2.X for your platform in whatever manner makes sense.

2. Once you have Apache installed, install mod_wsgi. Use the (excellent) installation instructions
for your platform into your system’s Apache installation.

3. Install virtualenv into the Python which mod_wsgi will run using the easy_install program.

$ sudo /usr/bin/easy_install-2.6 virtualenv

This command may need to be performed as the root user.

4. Create a virtualenv which we’ll use to install our application.

537

http://groups.google.com/group/pylons-devel
http://code.google.com/p/modwsgi/wiki/InstallationInstructions

42. RUNNING A PYRAMID APPLICATION UNDER MOD_WSGI

$ cd ~
$ mkdir modwsgi
$ cd modwsgi
$ /usr/local/bin/virtualenv env

5. Install Pyramid into the newly created virtualenv:

$ cd ~/modwsgi/env
$ $VENV/bin/easy_install pyramid

6. Create and install your Pyramid application. For the purposes of this tutorial, we’ll just be using
the pyramid_starter application as a baseline application. Substitute your existing Pyramid
application as necessary if you already have one.

$ cd ~/modwsgi/env
$ $VENV/bin/pcreate -s starter myapp
$ cd myapp
$ $VENV/bin/python setup.py install

7. Within the virtualenv directory (~/modwsgi/env), create a script named pyramid.wsgi. Give
it these contents:

from pyramid.paster import get_app, setup_logging
ini_path = '/Users/chrism/modwsgi/env/myapp/production.ini'
setup_logging(ini_path)
application = get_app(ini_path, 'main')

The first argument to get_app is the project configuration file name. It’s best to use the
production.ini file provided by your scaffold, as it contains settings appropriate for produc-
tion. The second is the name of the section within the .ini file that should be loaded by mod_wsgi.
The assignment to the name application is important: mod_wsgi requires finding such an
assignment when it opens the file.

The call to setup_logging initializes the standard library’s logging module to allow logging
within your application. See Logging Configuration.

There is no need to make the pyramid.wsgi script executable. However, you’ll need to make
sure that two users have access to change into the ~/modwsgi/env directory: your current user
(mine is chrism and the user that Apache will run as often named apache or httpd). Make
sure both of these users can “cd” into that directory.

538

8. Edit your Apache configuration and add some stuff. I happened to create a file named
/etc/apache2/other/modwsgi.conf on my own system while installing Apache, so this
stuff went in there.

Use only 1 Python sub-interpreter. Multiple sub-interpreters
play badly with C extensions. See
http://stackoverflow.com/a/10558360/209039
WSGIApplicationGroup %{GLOBAL}
WSGIPassAuthorization On
WSGIDaemonProcess pyramid user=chrism group=staff threads=4 \

python-path=/Users/chrism/modwsgi/env/lib/python2.6/site-packages
WSGIScriptAlias /myapp /Users/chrism/modwsgi/env/pyramid.wsgi

<Directory /Users/chrism/modwsgi/env>
WSGIProcessGroup pyramid
Order allow,deny
Allow from all

</Directory>

9. Restart Apache

$ sudo /usr/sbin/apachectl restart

10. Visit http://localhost/myapp in a browser. You should see the sample application ren-
dered in your browser.

mod_wsgi has many knobs and a great variety of deployment modes. This is just one representation of
how you might use it to serve up a Pyramid application. See the mod_wsgi configuration documentation
for more in-depth configuration information.

539

http://code.google.com/p/modwsgi/wiki/ConfigurationGuidelines

42. RUNNING A PYRAMID APPLICATION UNDER MOD_WSGI

540

Part III

API Documentation

CHAPTER 43

pyramid.authentication

43.1 Authentication Policies

class AuthTktAuthenticationPolicy(secret, callback=None, cookie_name=’auth_tkt’,
secure=False, include_ip=False, timeout=None,
reissue_time=None, max_age=None, path=’/’,
http_only=False, wild_domain=True, de-
bug=False, hashalg=<object object>, par-
ent_domain=False, domain=None)

A Pyramid authentication policy which obtains data from a Pyramid “auth ticket” cookie.

The default hash algorithm used in this policy is MD5 and has known hash collision
vulnerabilities. The risk of an exploit is low. However, for improved authentication security,
use hashalg=’sha512’.

Constructor Arguments

secret

The secret (a string) used for auth_tkt cookie signing. This value should be unique
across all values provided to Pyramid for various subsystem secrets (see Admonishment
Against Secret-Sharing). Required.

callback

543

43. PYRAMID.AUTHENTICATION

Default: None. A callback passed the userid and the request, expected to return None
if the userid doesn’t exist or a sequence of principal identifiers (possibly empty) if the
user does exist. If callback is None, the userid will be assumed to exist with no
principals. Optional.

cookie_name

Default: auth_tkt. The cookie name used (string). Optional.

secure

Default: False. Only send the cookie back over a secure conn. Optional.

include_ip

Default: False. Make the requesting IP address part of the authentication data in the
cookie. Optional.

For IPv6 this option is not recommended. The mod_auth_tkt specification does not
specify how to handle IPv6 addresses, so using this option in combination with IPv6
addresses may cause an incompatible cookie. It ties the authentication ticket to that
individual’s IPv6 address.

timeout

Default: None. Maximum number of seconds which a newly issued ticket will be
considered valid. After this amount of time, the ticket will expire (effectively logging
the user out). If this value is None, the ticket never expires. Optional.

reissue_time

Default: None. If this parameter is set, it represents the number of seconds that must
pass before an authentication token cookie is automatically reissued as the result of
a request which requires authentication. The duration is measured as the number of
seconds since the last auth_tkt cookie was issued and ‘now’. If this value is 0, a new
ticket cookie will be reissued on every request which requires authentication.

A good rule of thumb: if you want auto-expired cookies based on inactivity: set the
timeout value to 1200 (20 mins) and set the reissue_time value to perhaps a
tenth of the timeout value (120 or 2 mins). It’s nonsensical to set the timeout
value lower than the reissue_time value, as the ticket will never be reissued if so.
However, such a configuration is not explicitly prevented.

Optional.

544

43.1. AUTHENTICATION POLICIES

max_age

Default: None. The max age of the auth_tkt cookie, in seconds. This differs from
timeout inasmuch as timeout represents the lifetime of the ticket contained in the
cookie, while this value represents the lifetime of the cookie itself. When this value
is set, the cookie’s Max-Age and Expires settings will be set, allowing the auth_tkt
cookie to last between browser sessions. It is typically nonsensical to set this to a value
that is lower than timeout or reissue_time, although it is not explicitly prevented.
Optional.

path

Default: /. The path for which the auth_tkt cookie is valid. May be desirable if the
application only serves part of a domain. Optional.

http_only

Default: False. Hide cookie from JavaScript by setting the HttpOnly flag. Not honored
by all browsers. Optional.

wild_domain

Default: True. An auth_tkt cookie will be generated for the wildcard domain. If your
site is hosted as example.com this will make the cookie available for sites underneath
example.com such as www.example.com. Optional.

parent_domain

Default: False. An auth_tkt cookie will be generated for the parent domain of the
current site. For example if your site is hosted under www.example.com a cookie
will be generated for .example.com. This can be useful if you have multiple sites
sharing the same domain. This option supercedes the wild_domain option. Optional.

This option is available as of Pyramid 1.5.

domain

Default: None. If provided the auth_tkt cookie will only be set for this domain. This
option is not compatible with wild_domain and parent_domain. Optional.

This option is available as of Pyramid 1.5.

hashalg

545

43. PYRAMID.AUTHENTICATION

Default: md5 (the literal string).

Any hash algorithm supported by Python’s hashlib.new() function can be used as
the hashalg.

Cookies generated by different instances of AuthTktAuthenticationPolicy using differ-
ent hashalg options are not compatible. Switching the hashalg will imply that all
existing users with a valid cookie will be required to re-login.

A warning is emitted at startup if an explicit hashalg is not passed. This is for back-
wards compatibility reasons.

This option is available as of Pyramid 1.4.

Optional.

md5 is the default for backwards compatibility reasons. However, if you don’t
specify md5 as the hashalg explicitly, a warning is issued at application startup time.
An explicit value of sha512 is recommended for improved security, and sha512
will become the default in a future Pyramid version.

debug

Default: False. If debug is True, log messages to the Pyramid debug logger about
the results of various authentication steps. The output from debugging is useful for
reporting to maillist or IRC channels when asking for support.

Objects of this class implement the interface described by
pyramid.interfaces.IAuthenticationPolicy .

authenticated_userid(request)
Return the authenticated userid or None.

If no callback is registered, this will be the same as unauthenticated_userid.

If a callback is registered, this will return the userid if and only if the callback returns a
value that is not None.

effective_principals(request)
A list of effective principals derived from request.

This will return a list of principals including, at least, pyramid.security.Everyone.
If there is no authenticated userid, or the callback returns None, this will be the only
principal:

546

43.1. AUTHENTICATION POLICIES

return [Everyone]

If the callback does not return None and an authenticated userid is found,
then the principals will include pyramid.security.Authenticated, the
authenticated_userid and the list of principals returned by the callback:

extra_principals = callback(userid, request)
return [Everyone, Authenticated, userid] + extra_principals

forget(request)
A list of headers which will delete appropriate cookies.

remember(request, principal, **kw)
Accepts the following kw args: max_age=<int-seconds>,
‘‘tokens=<sequence-of-ascii-strings>.

Return a list of headers which will set appropriate cookies on the response.

unauthenticated_userid(request)
The userid key within the auth_tkt cookie.

class RemoteUserAuthenticationPolicy(environ_key=’REMOTE_USER’, call-
back=None, debug=False)

A Pyramid authentication policy which obtains data from the REMOTE_USER WSGI environment
variable.

Constructor Arguments

environ_key

Default: REMOTE_USER. The key in the WSGI environ which provides the userid.

callback

Default: None. A callback passed the userid and the request, expected to return None
if the userid doesn’t exist or a sequence of principal identifiers (possibly empty) repre-
senting groups if the user does exist. If callback is None, the userid will be assumed
to exist with no group principals.

debug

547

43. PYRAMID.AUTHENTICATION

Default: False. If debug is True, log messages to the Pyramid debug logger about
the results of various authentication steps. The output from debugging is useful for
reporting to maillist or IRC channels when asking for support.

Objects of this class implement the interface described by
pyramid.interfaces.IAuthenticationPolicy .

authenticated_userid(request)
Return the authenticated userid or None.

If no callback is registered, this will be the same as unauthenticated_userid.

If a callback is registered, this will return the userid if and only if the callback returns a
value that is not None.

effective_principals(request)
A list of effective principals derived from request.

This will return a list of principals including, at least, pyramid.security.Everyone.
If there is no authenticated userid, or the callback returns None, this will be the only
principal:

return [Everyone]

If the callback does not return None and an authenticated userid is found,
then the principals will include pyramid.security.Authenticated, the
authenticated_userid and the list of principals returned by the callback:

extra_principals = callback(userid, request)
return [Everyone, Authenticated, userid] + extra_principals

forget(request)
A no-op. The REMOTE_USER does not provide a protocol for forgetting the user. This will
be application-specific and can be done somewhere else or in a subclass.

remember(request, principal, **kw)
A no-op. The REMOTE_USER does not provide a protocol for remembering the user. This
will be application-specific and can be done somewhere else or in a subclass.

unauthenticated_userid(request)
The REMOTE_USER value found within the environ.

548

43.1. AUTHENTICATION POLICIES

class SessionAuthenticationPolicy(prefix=’auth.’, callback=None, debug=False)
A Pyramid authentication policy which gets its data from the configured session. For this authenti-
cation policy to work, you will have to follow the instructions in the Sessions to configure a session
factory.

Constructor Arguments

prefix

A prefix used when storing the authentication parameters in the session. Defaults to
‘auth.’. Optional.

callback

Default: None. A callback passed the userid and the request, expected to return None
if the userid doesn’t exist or a sequence of principal identifiers (possibly empty) if the
user does exist. If callback is None, the userid will be assumed to exist with no
principals. Optional.

debug

Default: False. If debug is True, log messages to the Pyramid debug logger about
the results of various authentication steps. The output from debugging is useful for
reporting to maillist or IRC channels when asking for support.

authenticated_userid(request)
Return the authenticated userid or None.

If no callback is registered, this will be the same as unauthenticated_userid.

If a callback is registered, this will return the userid if and only if the callback returns a
value that is not None.

effective_principals(request)
A list of effective principals derived from request.

This will return a list of principals including, at least, pyramid.security.Everyone.
If there is no authenticated userid, or the callback returns None, this will be the only
principal:

return [Everyone]

If the callback does not return None and an authenticated userid is found,
then the principals will include pyramid.security.Authenticated, the
authenticated_userid and the list of principals returned by the callback:

549

43. PYRAMID.AUTHENTICATION

extra_principals = callback(userid, request)
return [Everyone, Authenticated, userid] + extra_principals

forget(request)
Remove the stored principal from the session.

remember(request, principal, **kw)
Store a principal in the session.

class BasicAuthAuthenticationPolicy(check, realm=’Realm’, debug=False)
A Pyramid authentication policy which uses HTTP standard basic authentication protocol to au-
thenticate users. To use this policy you will need to provide a callback which checks the supplied
user credentials against your source of login data.

Constructor Arguments

check

A callback function passed a username, password and request, in that order as positional
arguments. Expected to return None if the userid doesn’t exist or a sequence of principal
identifiers (possibly empty) if the user does exist.

realm

Default: "Realm". The Basic Auth Realm string. Usually displayed to the user by the
browser in the login dialog.

debug

Default: False. If debug is True, log messages to the Pyramid debug logger about
the results of various authentication steps. The output from debugging is useful for
reporting to maillist or IRC channels when asking for support.

Issuing a challenge

Regular browsers will not send username/password credentials unless they first receive a challenge
from the server. The following recipe will register a view that will send a Basic Auth challenge to
the user whenever there is an attempt to call a view which results in a Forbidden response:

550

43.1. AUTHENTICATION POLICIES

from pyramid.httpexceptions import HTTPUnauthorized
from pyramid.security import forget
from pyramid.view import forbidden_view_config

@forbidden_view_config()
def basic_challenge(request):

response = HTTPUnauthorized()
response.headers.update(forget(request))
return response

authenticated_userid(request)
Return the authenticated userid or None.

If no callback is registered, this will be the same as unauthenticated_userid.

If a callback is registered, this will return the userid if and only if the callback returns a
value that is not None.

effective_principals(request)
A list of effective principals derived from request.

This will return a list of principals including, at least, pyramid.security.Everyone.
If there is no authenticated userid, or the callback returns None, this will be the only
principal:

return [Everyone]

If the callback does not return None and an authenticated userid is found,
then the principals will include pyramid.security.Authenticated, the
authenticated_userid and the list of principals returned by the callback:

extra_principals = callback(userid, request)
return [Everyone, Authenticated, userid] + extra_principals

forget(request)
Returns challenge headers. This should be attached to a response to indicate that credentials
are required.

remember(request, principal, **kw)
A no-op. Basic authentication does not provide a protocol for remembering the user. Creden-
tials are sent on every request.

551

43. PYRAMID.AUTHENTICATION

unauthenticated_userid(request)
The userid parsed from the Authorization request header.

class RepozeWho1AuthenticationPolicy(identifier_name=’auth_tkt’, callback=None)
A Pyramid authentication policy which obtains data from the repoze.who 1.X WSGI ‘API’ (the
repoze.who.identity key in the WSGI environment).

Constructor Arguments

identifier_name

Default: auth_tkt. The repoze.who plugin name that performs remember/forget.
Optional.

callback

Default: None. A callback passed the repoze.who identity and the request, ex-
pected to return None if the user represented by the identity doesn’t exist or a sequence
of principal identifiers (possibly empty) representing groups if the user does exist. If
callback is None, the userid will be assumed to exist with no group principals.

Objects of this class implement the interface described by
pyramid.interfaces.IAuthenticationPolicy .

authenticated_userid(request)
Return the authenticated userid or None.

If no callback is registered, this will be the same as unauthenticated_userid.

If a callback is registered, this will return the userid if and only if the callback returns a
value that is not None.

effective_principals(request)
A list of effective principals derived from the identity.

This will return a list of principals including, at least, pyramid.security.Everyone.
If there is no identity, or the callback returns None, this will be the only principal.

If the callback does not return None and an identity is found, then the principals will
include pyramid.security.Authenticated, the authenticated_userid and
the list of principals returned by the callback.

552

http://repozewho.readthedocs.org/en/latest/index.html#module-repoze.who
http://repozewho.readthedocs.org/en/latest/index.html#module-repoze.who
http://repozewho.readthedocs.org/en/latest/index.html#module-repoze.who

43.2. HELPER CLASSES

forget(request)
Forget the current authenticated user.

Return headers that, if included in a response, will delete the cookie responsible for tracking
the current user.

remember(request, principal, **kw)
Store the principal as repoze.who.userid.

The identity to authenticated to repoze.who will contain the given principal as userid,
and provide all keyword arguments as additional identity keys. Useful keys could be
max_age or userdata.

unauthenticated_userid(request)
Return the repoze.who.userid key from the detected identity.

43.2 Helper Classes

class AuthTktCookieHelper(secret, cookie_name=’auth_tkt’, se-
cure=False, include_ip=False, time-
out=None, reissue_time=None, max_age=None,
http_only=False, path=’/’, wild_domain=True,
hashalg=’md5’, parent_domain=False, do-
main=None)

A helper class for use in third-party authentication policy implementations.
See pyramid.authentication.AuthTktAuthenticationPolicy for the
meanings of the constructor arguments.

class AuthTicket(secret, userid, ip, tokens=(), user_data=’‘, time=None,
cookie_name=’auth_tkt’, secure=False, hashalg=’md5’)

This class represents an authentication token. You must pass in the shared secret,
the userid, and the IP address. Optionally you can include tokens (a list of strings,
representing role names), ‘user_data’, which is arbitrary data available for your
own use in later scripts. Lastly, you can override the cookie name and timestamp.

Once you provide all the arguments, use .cookie_value() to generate the appropri-
ate authentication ticket.

Usage:

553

http://repozewho.readthedocs.org/en/latest/index.html#module-repoze.who

43. PYRAMID.AUTHENTICATION

token = AuthTicket('sharedsecret', 'username',
os.environ['REMOTE_ADDR'], tokens=['admin'])

val = token.cookie_value()

exception AuthTktCookieHelper.BadTicket(msg, expected=None)
Exception raised when a ticket can’t be parsed. If we get far enough to determine
what the expected digest should have been, expected is set. This should not be
shown by default, but can be useful for debugging.

AuthTktCookieHelper.forget(request)
Return a set of expires Set-Cookie headers, which will destroy any existing
auth_tkt cookie when attached to a response

AuthTktCookieHelper.identify(request)
Return a dictionary with authentication information, or None if no valid auth_tkt
is attached to request

static AuthTktCookieHelper.parse_ticket(secret, ticket, ip,
hashalg=’md5’)

Parse the ticket, returning (timestamp, userid, tokens, user_data).

If the ticket cannot be parsed, a BadTicket exception will be raised with an
explanation.

AuthTktCookieHelper.remember(request, userid, max_age=None, to-
kens=())

Return a set of Set-Cookie headers; when set into a response, these headers will
represent a valid authentication ticket.
max_age The max age of the auth_tkt cookie, in seconds. When this value is

set, the cookie’s Max-Age and Expires settings will be set, allowing the
auth_tkt cookie to last between browser sessions. If this value is None, the
max_age value provided to the helper itself will be used as the max_age
value. Default: None.

tokens A sequence of strings that will be placed into the auth_tkt tokens field.
Each string in the sequence must be of the Python str type and must match
the regex ^[A-Za-z][A-Za-z0-9+_-]*$. Tokens are available in the re-
turned identity when an auth_tkt is found in the request and unpacked. Default:
().

554

CHAPTER 44

pyramid.authorization

class ACLAuthorizationPolicy
An authorization policy which consults an ACL object attached to a context to determine autho-
rization information about a principal or multiple principals. If the context is part of a lineage, the
context’s parents are consulted for ACL information too. The following is true about this security
policy.

•When checking whether the ‘current’ user is permitted (via the permits method), the se-
curity policy consults the context for an ACL first. If no ACL exists on the context, or
one does exist but the ACL does not explicitly allow or deny access for any of the effective
principals, consult the context’s parent ACL, and so on, until the lineage is exhausted or we
determine that the policy permits or denies.

During this processing, if any pyramid.security.Deny ACE is found
matching any principal in principals, stop processing by returning an
pyramid.security.ACLDenied instance (equals False) immediately. If any
pyramid.security.Allow ACE is found matching any principal, stop processing by
returning an pyramid.security.ACLAllowed instance (equals True) immediately.
If we exhaust the context’s lineage, and no ACE has explicitly permitted or denied access,
return an instance of pyramid.security.ACLDenied (equals False).

•When computing principals allowed by a permission via the
pyramid.security.principals_allowed_by_permission() method, we
compute the set of principals that are explicitly granted the permission in the provided
context. We do this by walking ‘up’ the object graph from the root to the context.
During this walking process, if we find an explicit pyramid.security.Allow
ACE for a principal that matches the permission, the principal is included in
the allow list. However, if later in the walking process that principal is mentioned

555

44. PYRAMID.AUTHORIZATION

in any pyramid.security.Deny ACE for the permission, the principal is re-
moved from the allow list. If a pyramid.security.Deny to the principal
pyramid.security.Everyone is encountered during the walking process that
matches the permission, the allow list is cleared for all principals encountered in previous
ACLs. The walking process ends after we’ve processed the any ACL directly attached to
context; a set of principals is returned.

Objects of this class implement the pyramid.interfaces.IAuthorizationPolicy in-
terface.

556

CHAPTER 45

pyramid.compat

The pyramid.compat module provides platform and version compatibility for Pyramid and its add-
ons across Python platform and version differences. APIs will be removed from this module over time as
Pyramid ceases to support systems which require compatibility imports.

ascii_native_(s)
Python 3: If s is an instance of text_type, return s.encode(’ascii’), otherwise return
str(s, ’ascii’, ’strict’)

Python 2: If s is an instance of text_type, return s.encode(’ascii’), otherwise return
str(s)

binary_type
Binary type for this platform. For Python 3, it’s bytes. For Python 2, it’s str.

bytes_(s, encoding=’latin-1’, errors=’strict’)
If s is an instance of text_type, return s.encode(encoding, errors), otherwise return
s

class_types
Sequence of class types for this platform. For Python 3, it’s (type,). For Python 2, it’s (type,
types.ClassType).

configparser
On Python 2, the ConfigParser module, on Python 3, the configparser module.

escape(v)
On Python 2, the cgi.escape function, on Python 3, the html.escape function.

557

45. PYRAMID.COMPAT

exec_(code, globs=None, locs=None)
Exec code in a compatible way on both Python 2 and 3.

im_func
On Python 2, the string value im_func, on Python 3, the string value __func__.

input_(v)
On Python 2, the raw_input function, on Python 3, the input function.

integer_types
Sequence of integer types for this platform. For Python 3, it’s (int,). For Python 2, it’s (int,
long).

is_nonstr_iter(v)
Return True if v is a non-str iterable on both Python 2 and Python 3.

iteritems_(d)
Return d.items() on Python 3, d.iteritems() on Python 2.

itervalues_(d)
Return d.values() on Python 3, d.itervalues() on Python 2.

iterkeys_(d)
Return d.keys() on Python 3, d.iterkeys() on Python 2.

long
Long type for this platform. For Python 3, it’s int. For Python 2, it’s long.

map_(v)
Return list(map(v)) on Python 3, map(v) on Python 2.

pickle
cPickle module if it exists, pickle module otherwise.

PY3
True if running on Python 3, False otherwise.

PYPY
True if running on PyPy, False otherwise.

reraise(tp, value, tb=None)
Reraise an exception in a compatible way on both Python 2 and Python 3, e.g.
reraise(*sys.exc_info()).

558

string_types
Sequence of string types for this platform. For Python 3, it’s (str,). For Python 2, it’s
(basestring,).

SimpleCookie
On Python 2, the Cookie.SimpleCookie class, on Python 3, the
http.cookies.SimpleCookie module.

text_(s, encoding=’latin-1’, errors=’strict’)
If s is an instance of binary_type, return s.decode(encoding, errors), otherwise
return s

text_type
Text type for this platform. For Python 3, it’s str. For Python 2, it’s unicode.

native_(s, encoding=’latin-1’, errors=’strict’)
Python 3: If s is an instance of text_type, return s, otherwise return str(s, encoding,
errors)

Python 2: If s is an instance of text_type, return s.encode(encoding, errors), oth-
erwise return str(s)

urlparse
urlparse module on Python 2, urllib.parse module on Python 3.

url_quote
urllib.quote function on Python 2, urllib.parse.quote function on Python 3.

url_quote_plus
urllib.quote_plus function on Python 2, urllib.parse.quote_plus function on
Python 3.

url_unquote
urllib.unquote function on Python 2, urllib.parse.unquote function on Python 3.

url_encode
urllib.urlencode function on Python 2, urllib.parse.urlencode function on Python
3.

url_open
urllib2.urlopen function on Python 2, urllib.request.urlopen function on Python
3.

url_unquote_text(v, encoding=’utf-8’, errors=’replace’)
On Python 2, return url_unquote(v).decode(encoding(encoding, errors)); on
Python 3, return the result of urllib.parse.unquote.

url_unquote_native(v, encoding=’utf-8’, errors=’replace’)
On Python 2, return native_(url_unquote_text_v, encoding, errors)); on
Python 3, return the result of urllib.parse.unquote.

559

45. PYRAMID.COMPAT

560

CHAPTER 46

pyramid.config

class Configurator(registry=None, package=None, settings=None, root_factory=None,
authentication_policy=None, authorization_policy=None, ren-
derers=None, debug_logger=None, locale_negotiator=None, re-
quest_factory=None, default_permission=None, session_factory=None,
default_view_mapper=None, autocommit=False, exception-
response_view=<function default_exceptionresponse_view>,
route_prefix=None, introspection=True)

A Configurator is used to configure a Pyramid application registry.

If the registry argument is not None, it must be an instance of the
pyramid.registry.Registry class representing the registry to configure. If registry is
None, the configurator will create a pyramid.registry.Registry instance itself; it will
also perform some default configuration that would not otherwise be done. After its construction,
the configurator may be used to add further configuration to the registry.

If registry is assigned the above-mentioned class instance, all other constructor argu-
ments are ignored, with the exception of package.

If the package argument is passed, it must be a reference to a Python package (e.g.
sys.modules[’thepackage’]) or a dotted Python name to the same. This value is used
as a basis to convert relative paths passed to various configuration methods, such as methods which
accept a renderer argument, into absolute paths. If None is passed (the default), the package is
assumed to be the Python package in which the caller of the Configurator constructor lives.

561

46. PYRAMID.CONFIG

If the settings argument is passed, it should be a Python dictionary rep-
resenting the deployment settings for this application. These are later retriev-
able using the pyramid.registry.Registry.settings attribute (aka
request.registry.settings).

If the root_factory argument is passed, it should be an object representing the default root
factory for your application or a dotted Python name to the same. If it is None, a default root
factory will be used.

If authentication_policy is passed, it should be an instance of an authentication policy or
a dotted Python name to the same.

If authorization_policy is passed, it should be an instance of an authorization policy or a
dotted Python name to the same.

A ConfigurationError will be raised when an authorization policy is supplied
without also supplying an authentication policy (authorization requires authentication).

If renderers is None (the default), a default set of renderer factories is used. Else, it
should be a list of tuples representing a set of renderer factories which should be configured into
this application, and each tuple representing a set of positional values that should be passed to
pyramid.config.Configurator.add_renderer().

If debug_logger is not passed, a default debug logger that logs to a logger will be used (the
logger name will be the package name of the caller of this configurator). If it is passed, it should
be an instance of the logging.Logger (PEP 282) standard library class or a Python logger
name. The debug logger is used by Pyramid itself to log warnings and authorization debugging
information.

If locale_negotiator is passed, it should be a locale negotiator implementation or a dotted
Python name to same. See Using a Custom Locale Negotiator.

If request_factory is passed, it should be a request factory implementation or a dotted Python
name to the same. See Changing the Request Factory. By default it is None, which means use the
default request factory.

If default_permission is passed, it should be a permission string to be used as the default
permission for all view configuration registrations performed against this Configurator. An exam-
ple of a permission string:’view’. Adding a default permission makes it unnecessary to protect
each view configuration with an explicit permission, unless your application policy requires some
exception for a particular view. By default, default_permission is None, meaning that view

562

http://docs.python.org/3/library/logging.html#logging.Logger

configurations which do not explicitly declare a permission will always be executable by entirely
anonymous users (any authorization policy in effect is ignored).

See also:

See also Setting a Default Permission.

If session_factory is passed, it should be an object which implements the session factory
interface. If a nondefault value is passed, the session_factory will be used to create a ses-
sion object when request.session is accessed. Note that the same outcome can be achieved
by calling pyramid.config.Configurator.set_session_factory(). By default,
this argument is None, indicating that no session factory will be configured (and thus accessing
request.session will throw an error) unless set_session_factory is called later dur-
ing configuration.

If autocommit is True, every method called on the configurator will cause an immediate action,
and no configuration conflict detection will be used. If autocommit is False, most methods of
the configurator will defer their action until pyramid.config.Configurator.commit()
is called. When pyramid.config.Configurator.commit() is called, the actions im-
plied by the called methods will be checked for configuration conflicts unless autocommit is
True. If a conflict is detected, a ConfigurationConflictError will be raised. Calling
pyramid.config.Configurator.make_wsgi_app() always implies a final commit.

If default_view_mapper is passed, it will be used as the default view
mapper factory for view configurations that don’t otherwise specify one (see
pyramid.interfaces.IViewMapperFactory). If default_view_mapper is
not passed, a superdefault view mapper will be used.

If exceptionresponse_view is passed, it must be a view callable or None. If it is a
view callable, it will be used as an exception view callable when an exception response is
raised. If exceptionresponse_view is None, no exception response view will be regis-
tered, and all raised exception responses will be bubbled up to Pyramid’s caller. By default, the
pyramid.httpexceptions.default_exceptionresponse_view function is used as
the exceptionresponse_view.

If route_prefix is passed, all routes added with pyramid.config.Configurator.add_route()
will have the specified path prepended to their pattern.

If introspection is passed, it must be a boolean value. If it’s True, introspection values
during actions will be kept for use for tools like the debug toolbar. If it’s False, introspection
values provided by registrations will be ignored. By default, it is True.

New in version 1.1: The exceptionresponse_view argument.

New in version 1.2: The route_prefix argument.

New in version 1.3: The introspection argument.

Controlling Configuration State

563

46. PYRAMID.CONFIG

commit()
Commit any pending configuration actions. If a configuration conflict is
detected in the pending configuration actions, this method will raise a
ConfigurationConflictError; within the traceback of this error will be
information about the source of the conflict, usually including file names and line
numbers of the cause of the configuration conflicts.

begin(request=None)
Indicate that application or test configuration has begun. This pushes a dictionary
containing the application registry implied by registry attribute of this configu-
rator and the request implied by the request argument onto the thread local stack
consulted by various pyramid.threadlocal API functions.

end()
Indicate that application or test configuration has ended. This pops the last value
pushed onto the thread local stack (usually by the begin method) and returns that
value.

include(callable, route_prefix=None)
Include a configuration callable, to support imperative application extensibility.

In versions of Pyramid prior to 1.2, this function accepted *callables,
but this has been changed to support only a single callable.

A configuration callable should be a callable that accepts a single argument named
config, which will be an instance of a Configurator. However, be warned that it
will not be the same configurator instance on which you call this method. The code
which runs as a result of calling the callable should invoke methods on the config-
urator passed to it which add configuration state. The return value of a callable will
be ignored.

Values allowed to be presented via the callable argument to this method: any
callable Python object or any dotted Python name which resolves to a callable
Python object. It may also be a Python module, in which case, the module will
be searched for a callable named includeme, which will be treated as the config-
uration callable.

For example, if the includeme function below lives in a module named
myapp.myconfig:

564

1 # myapp.myconfig module
2

3 def my_view(request):
4 from pyramid.response import Response
5 return Response('OK')
6

7 def includeme(config):
8 config.add_view(my_view)

You might cause it to be included within your Pyramid application like so:

1 from pyramid.config import Configurator
2

3 def main(global_config, **settings):
4 config = Configurator()
5 config.include('myapp.myconfig.includeme')

Because the function is named includeme, the function name can also be omitted
from the dotted name reference:

1 from pyramid.config import Configurator
2

3 def main(global_config, **settings):
4 config = Configurator()
5 config.include('myapp.myconfig')

Included configuration statements will be overridden by local configuration state-
ments if an included callable causes a configuration conflict by registering some-
thing with the same configuration parameters.

If the route_prefix is supplied, it must be a string. Any calls
to pyramid.config.Configurator.add_route() within the included
callable will have their pattern prefixed with the value of route_prefix. This
can be used to help mount a set of routes at a different location than the included
callable’s author intended, while still maintaining the same route names. For exam-
ple:

565

46. PYRAMID.CONFIG

1 from pyramid.config import Configurator
2

3 def included(config):
4 config.add_route('show_users', '/show')
5

6 def main(global_config, **settings):
7 config = Configurator()
8 config.include(included, route_prefix='/users')

In the above configuration, the show_users route will have an effective route pat-
tern of /users/show, instead of /show because the route_prefix argument
will be prepended to the pattern.

New in version 1.2: The route_prefix parameter.

make_wsgi_app()
Commits any pending configuration statements, sends a
pyramid.events.ApplicationCreated event to all listeners, adds
this configuration’s registry to pyramid.config.global_registries,
and returns a Pyramid WSGI application representing the committed configuration
state.

scan(package=None, categories=None, onerror=None, ignore=None, **kw)
Scan a Python package and any of its subpackages for objects marked with con-
figuration decoration such as pyramid.view.view_config. Any decorated
object found will influence the current configuration state.

The package argument should be a Python package or module object (or a dotted
Python name which refers to such a package or module). If package is None, the
package of the caller is used.

The categories argument, if provided, should be the Venusian ‘scan categories’
to use during scanning. Providing this argument is not often necessary; specify-
ing scan categories is an extremely advanced usage. By default, categories
is None which will execute all Venusian decorator callbacks including Pyramid-
related decorators such as pyramid.view.view_config. See the Venusian
documentation for more information about limiting a scan by using an explicit set
of categories.

The onerror argument, if provided, should be a Venusian onerror callback
function. The onerror function is passed to venusian.Scanner.scan() to

566

http://docs.pylonsproject.org/projects/venusian/en/latest/api.html#venusian.Scanner.scan

influence error behavior when an exception is raised during the scanning process.
See the Venusian documentation for more information about onerror callbacks.

The ignore argument, if provided, should be a Venusian ignore value. Pro-
viding an ignore argument allows the scan to ignore particular modules, pack-
ages, or global objects during a scan. ignore can be a string or a callable, or
a list containing strings or callables. The simplest usage of ignore is to pro-
vide a module or package by providing a full path to its dotted name. For exam-
ple: config.scan(ignore=’my.module.subpackage’) would ignore
the my.module.subpackage package during a scan, which would prevent the
subpackage and any of its submodules from being imported and scanned. See the
Venusian documentation for more information about the ignore argument.

To perform a scan, Pyramid creates a Venusian Scanner object. The kw ar-
gument represents a set of keyword arguments to pass to the Venusian Scanner
object’s constructor. See the venusian documentation (its Scanner class) for more
information about the constructor. By default, the only keyword arguments passed
to the Scanner constructor are {’config’:self} where self is this configu-
rator object. This services the requirement of all built-in Pyramid decorators, but
extension systems may require additional arguments. Providing this argument is
not often necessary; it’s an advanced usage.

New in version 1.1: The **kw argument.

New in version 1.3: The ignore argument.

Adding Routes and Views

add_route(name, pattern=None, permission=None, factory=None, for_=None,
header=None, xhr=None, accept=None, path_info=None, re-
quest_method=None, request_param=None, traverse=None, cus-
tom_predicates=(), use_global_views=False, path=None, pregener-
ator=None, static=False, **predicates)

Add a route configuration to the current configuration state, as well as possibly
a view configuration to be used to specify a view callable that will be invoked
when this route matches. The arguments to this method are divided into predi-
cate, non-predicate, and view-related types. Route predicate arguments narrow the
circumstances in which a route will be match a request; non-predicate arguments
are informational.

Non-Predicate Arguments

name

567

46. PYRAMID.CONFIG

The name of the route, e.g. myroute. This attribute is required. It must
be unique among all defined routes in a given application.

factory
A Python object (often a function or a class) or a dotted Python
name which refers to the same object that will generate a Pyra-
mid root resource object when this route matches. For example,
mypackage.resources.MyFactory. If this argument is not spec-
ified, a default root factory will be used. See The Resource Tree for more
information about root factories.

traverse
If you would like to cause the context to be something other than the root
object when this route matches, you can spell a traversal pattern as the
traverse argument. This traversal pattern will be used as the traversal
path: traversal will begin at the root object implied by this route (either the
global root, or the object returned by the factory associated with this
route).

The syntax of the traverse argument is the same as it is for
pattern. For example, if the pattern provided to add_route
is articles/{article}/edit, and the traverse argument pro-
vided to add_route is /{article}, when a request comes in that
causes the route to match in such a way that the article match value is
’1’ (when the request URI is /articles/1/edit), the traversal path
will be generated as /1. This means that the root object’s __getitem__
will be called with the name ’1’ during the traversal phase. If the ’1’
object exists, it will become the context of the request. Traversal has more
information about traversal.

If the traversal path contains segment marker names which are not present
in the pattern argument, a runtime error will occur. The traverse
pattern should not contain segment markers that do not exist in the
pattern argument.

A similar combining of routing and traversal is available when a route is
matched which contains a *traverse remainder marker in its pattern
(see Using *traverse in a Route Pattern). The traverse argument to
add_route allows you to associate route patterns with an arbitrary traversal
path without using a *traverse remainder marker; instead you can use
other match information.

Note that the traverse argument to add_route is ignored when at-
tached to a route that has a *traverse remainder marker in its pattern.

pregenerator

568

This option should be a callable object that implements
the pyramid.interfaces.IRoutePregenerator
interface. A pregenerator is a callable called by the
pyramid.request.Request.route_url() function to aug-
ment or replace the arguments it is passed when generating a URL for the
route. This is a feature not often used directly by applications, it is meant
to be hooked by frameworks that use Pyramid as a base.

use_global_views
When a request matches this route, and view lookup cannot find a view
which has a route_name predicate argument that matches the route, try
to fall back to using a view that otherwise matches the context, request, and
view name (but which does not match the route_name predicate).

static
If static is True, this route will never match an incoming request; it
will only be useful for URL generation. By default, static is False.
See Static Routes.

New in version 1.1.
Predicate Arguments

pattern
The pattern of the route e.g. ideas/{idea}. This argument is required.
See Route Pattern Syntax for information about the syntax of route patterns.
If the pattern doesn’t match the current URL, route matching continues.

For backwards compatibility purposes (as of Pyramid 1.0), a
path keyword argument passed to this function will be used to repre-
sent the pattern value if the pattern argument is None. If both path
and pattern are passed, pattern wins.

xhr
This value should be either True or False. If this value is specified
and is True, the request must possess an HTTP_X_REQUESTED_WITH
(aka X-Requested-With) header for this route to match. This is use-
ful for detecting AJAX requests issued from jQuery, Prototype and other
Javascript libraries. If this predicate returns False, route matching con-
tinues.

request_method
A string representing an HTTP method name, e.g. GET, POST, HEAD,
DELETE, PUT or a tuple of elements containing HTTP method names. If
this argument is not specified, this route will match if the request has any
request method. If this predicate returns False, route matching continues.

Changed in version 1.2: The ability to pass a tuple of items as
request_method. Previous versions allowed only a string.

569

46. PYRAMID.CONFIG

path_info
This value represents a regular expression pattern that will be tested against
the PATH_INFO WSGI environment variable. If the regex matches, this
predicate will return True. If this predicate returns False, route match-
ing continues.

request_param
This value can be any string. A view declaration with this argument ensures
that the associated route will only match when the request has a key in the
request.params dictionary (an HTTP GET or POST variable) that has
a name which matches the supplied value. If the value supplied as the
argument has a = sign in it, e.g. request_param="foo=123", then
the key (foo) must both exist in the request.params dictionary, and
the value must match the right hand side of the expression (123) for the
route to “match” the current request. If this predicate returns False, route
matching continues.

header
This argument represents an HTTP header name or a header name/value
pair. If the argument contains a : (colon), it will be con-
sidered a name/value pair (e.g. User-Agent:Mozilla/.* or
Host:localhost). If the value contains a colon, the value por-
tion should be a regular expression. If the value does not contain a
colon, the entire value will be considered to be the header name (e.g.
If-Modified-Since). If the value evaluates to a header name only
without a value, the header specified by the name must be present in the
request for this predicate to be true. If the value evaluates to a header
name/value pair, the header specified by the name must be present in the
request and the regular expression specified as the value must match the
header value. Whether or not the value represents a header name or a
header name/value pair, the case of the header name is not significant. If
this predicate returns False, route matching continues.

accept
This value represents a match query for one or more mimetypes in the
Accept HTTP request header. If this value is specified, it must be
in one of the following forms: a mimetype match token in the form
text/plain, a wildcard mimetype match token in the form text/*
or a match-all wildcard mimetype match token in the form */*. If any of
the forms matches the Accept header of the request, or if the Accept
header isn’t set at all in the request, this predicate will be true. If this pred-
icate returns False, route matching continues.

effective_principals
If specified, this value should be a principal iden-
tifier or a sequence of principal identifiers. If the
pyramid.request.Request.effective_principals

570

property indicates that every principal named in the argu-
ment list is present in the current request, this predicate will
return True; otherwise it will return False. For example:
effective_principals=pyramid.security.Authenticated
or effective_principals=(’fred’, ’group:admins’).

New in version 1.4a4.
custom_predicates

Deprecated since version 1.5: This value should be a sequence of refer-
ences to custom predicate callables. Use custom predicates when no set
of predefined predicates does what you need. Custom predicates can be
combined with predefined predicates as necessary. Each custom predicate
callable should accept two arguments: info and request and should
return either True or False after doing arbitrary evaluation of the info
and/or the request. If all custom and non-custom predicate callables re-
turn True the associated route will be considered viable for a given re-
quest. If any predicate callable returns False, route matching continues.
Note that the value info passed to a custom route predicate is a dictionary
containing matching information; see Custom Route Predicates for more
information about info.

predicates
Pass a key/value pair here to use a third-party predicate registered via
pyramid.config.Configurator.add_route_predicate().
More than one key/value pair can be used at the same time. See View and
Route Predicates for more information about third-party predicates.

New in version 1.4.
add_static_view(name, path, **kw)

Add a view used to render static assets such as images and CSS files.

The name argument is a string representing an application-relative local URL pre-
fix. It may alternately be a full URL.

The path argument is the path on disk where the static files reside. This can be an
absolute path, a package-relative path, or a asset specification.

The cache_max_age keyword argument is input to set the Expires and
Cache-Control headers for static assets served. Note that this argument has
no effect when the name is a url prefix. By default, this argument is None, mean-
ing that no particular Expires or Cache-Control headers are set in the response.

The permission keyword argument is used to specify the permission re-
quired by a user to execute the static view. By default, it is the
string pyramid.security.NO_PERMISSION_REQUIRED, a special sentinel

571

46. PYRAMID.CONFIG

which indicates that, even if a default permission exists for the current application,
the static view should be renderered to completely anonymous users. This default
value is permissive because, in most web apps, static assets seldom need protec-
tion from viewing. If permission is specified, the security checking will be
performed against the default root factory ACL.

Any other keyword arguments sent to add_static_view are passed on to
pyramid.config.Configurator.add_route() (e.g. factory, per-
haps to define a custom factory with a custom ACL for this static view).

Usage

The add_static_view function is typically used in conjunction
with the pyramid.request.Request.static_url() method.
add_static_view adds a view which renders a static asset when some
URL is visited; pyramid.request.Request.static_url() generates a
URL to that asset.

The name argument to add_static_view is usually a sim-
ple URL prefix (e.g. ’images’). When this is the case, the
pyramid.request.Request.static_url() API will generate a URL
which points to a Pyramid view, which will serve up a set of assets that live in the
package itself. For example:

add_static_view('images', 'mypackage:images/')

Code that registers such a view can generate URLs to the view via
pyramid.request.Request.static_url():

request.static_url('mypackage:images/logo.png')

When add_static_view is called with a name argument
that represents a URL prefix, as it is above, subsequent calls to
pyramid.request.Request.static_url() with paths that start
with the path argument passed to add_static_view will generate a URL
something like http://<Pyramid app URL>/images/logo.png, which
will cause the logo.png file in the images subdirectory of the mypackage
package to be served.

add_static_view can alternately be used with a name argument which is a
URL, causing static assets to be served from an external webserver. This happens

572

when the name argument is a fully qualified URL (e.g. starts with http:// or
similar). In this mode, the name is used as the prefix of the full URL when gener-
ating a URL using pyramid.request.Request.static_url(). Further-
more, if a protocol-relative URL (e.g. //example.com/images) is used as the
name argument, the generated URL will use the protocol of the request (http or
https, respectively).

For example, if add_static_view is called like so:

add_static_view('http://example.com/images', 'mypackage:images/')

Subsequently, the URLs generated by pyramid.request.Request.static_url()
for that static view will be prefixed with http://example.com/images
(the external webserver listening on example.com must be itself configured to
respond properly to such a request.):

static_url('mypackage:images/logo.png', request)

See Serving Static Assets for more information.

add_view(view=None, name=’‘, for_=None, permission=None, re-
quest_type=None, route_name=None, request_method=None,
request_param=None, containment=None, attr=None, ren-
derer=None, wrapper=None, xhr=None, accept=None,
header=None, path_info=None, custom_predicates=(), con-
text=None, decorator=None, mapper=None, http_cache=None,
match_param=None, check_csrf=None, **predicates)

Add a view configuration to the current configuration state. Arguments to
add_view are broken down below into predicate arguments and non-predicate ar-
guments. Predicate arguments narrow the circumstances in which the view callable
will be invoked when a request is presented to Pyramid; non-predicate arguments
are informational.

Non-Predicate Arguments

view
A view callable or a dotted Python name which refers to a view callable.
This argument is required unless a renderer argument also exists. If a
renderer argument is passed, and a view argument is not provided, the
view callable defaults to a callable that returns an empty dictionary (see
Writing View Callables Which Use a Renderer).

573

46. PYRAMID.CONFIG

permission
A permission that the user must possess in order to invoke the view callable.
See Configuring View Security for more information about view security
and permissions. This is often a string like view or edit.

If permission is omitted, a default permission may
be used for this view registration if one was named
as the pyramid.config.Configurator con-
structor’s default_permission argument, or if
pyramid.config.Configurator.set_default_permission()
was used prior to this view registration. Pass the value
pyramid.security.NO_PERMISSION_REQUIRED as the per-
mission argument to explicitly indicate that the view should always
be executable by entirely anonymous users, regardless of the default
permission, bypassing any authorization policy that may be in effect.

attr
This knob is most useful when the view definition is a class.

The view machinery defaults to using the __call__ method of the view
callable (or the function itself, if the view callable is a function) to ob-
tain a response. The attr value allows you to vary the method attribute
used to obtain the response. For example, if your view was a class, and
the class has a method named index and you wanted to use this method
instead of the class’ __call__ method to return the response, you’d say
attr="index" in the view configuration for the view.

renderer
This is either a single string term (e.g. json) or a string implying a path
or asset specification (e.g. templates/views.pt) naming a renderer
implementation. If the renderer value does not contain a dot ., the
specified string will be used to look up a renderer implementation, and that
renderer implementation will be used to construct a response from the view
return value. If the renderer value contains a dot (.), the specified term
will be treated as a path, and the filename extension of the last element in
the path will be used to look up the renderer implementation, which will be
passed the full path. The renderer implementation will be used to construct
a response from the view return value.

Note that if the view itself returns a response (see View Callable Re-
sponses), the specified renderer implementation is never called.

When the renderer is a path, although a path is usually just a simple
relative pathname (e.g. templates/foo.pt, implying that a tem-
plate named “foo.pt” is in the “templates” directory relative to the di-
rectory of the current package of the Configurator), a path can be ab-
solute, starting with a slash on UNIX or a drive letter prefix on Win-
dows. The path can alternately be a asset specification in the form

574

some.dotted.package_name:relative/path, making it possi-
ble to address template assets which live in a separate package.

The renderer attribute is optional. If it is not defined, the “null” renderer
is assumed (no rendering is performed and the value is passed back to the
upstream Pyramid machinery unmodified).

http_cache
New in version 1.1.

When you supply an http_cache value to a view configuration, the
Expires and Cache-Control headers of a response generated by the
associated view callable are modified. The value for http_cache may
be one of the following:

•A nonzero integer. If it’s a nonzero integer, it’s treated as a num-
ber of seconds. This number of seconds will be used to compute
the Expires header and the Cache-Control: max-age pa-
rameter of responses to requests which call this view. For example:
http_cache=3600 instructs the requesting browser to ‘cache this re-
sponse for an hour, please’.

•A datetime.timedelta instance. If it’s a
datetime.timedelta instance, it will be converted into a
number of seconds, and that number of seconds will be used to com-
pute the Expires header and the Cache-Control: max-age
parameter of responses to requests which call this view. For example:
http_cache=datetime.timedelta(days=1) instructs the
requesting browser to ‘cache this response for a day, please’.

•Zero (0). If the value is zero, the Cache-Control and Expires
headers present in all responses from this view will be composed such
that client browser cache (and any intermediate caches) are instructed to
never cache the response.

•A two-tuple. If it’s a two tuple (e.g. http_cache=(1,
{’public’:True})), the first value in the tuple may be a nonzero
integer or a datetime.timedelta instance; in either case this value
will be used as the number of seconds to cache the response. The second
value in the tuple must be a dictionary. The values present in the dic-
tionary will be used as input to the Cache-Control response header.
For example: http_cache=(3600, {’public’:True}) means
‘cache for an hour, and add public to the Cache-Control
header of the response’. All keys and values supported by the
webob.cachecontrol.CacheControl interface may be added
to the dictionary. Supplying {’public’:True} is equivalent to call-
ing response.cache_control.public = True.

Providing a non-tuple value as http_cache is equivalent to calling
response.cache_expires(value) within your view’s body.

575

46. PYRAMID.CONFIG

Providing a two-tuple value as http_cache is equivalent to calling
response.cache_expires(value[0], **value[1]) within
your view’s body.

If you wish to avoid influencing, the Expires header, and instead wish to
only influence Cache-Control headers, pass a tuple as http_cache
with the first element of None, e.g.: (None, {’public’:True}).

If you wish to prevent a view that uses http_cache in its configura-
tion from having its caching response headers changed by this machin-
ery, set response.cache_control.prevent_auto = True be-
fore returning the response from the view. This effectively disables any
HTTP caching done by http_cache for that response.

wrapper
The view name of a different view configuration which will receive
the response body of this view as the request.wrapped_body at-
tribute of its own request, and the response returned by this view as the
request.wrapped_response attribute of its own request. Using a
wrapper makes it possible to “chain” views together to form a compos-
ite response. The response of the outermost wrapper view will be re-
turned to the user. The wrapper view will be found as any view is found:
see View Configuration. The “best” wrapper view will be found based
on the lookup ordering: “under the hood” this wrapper view is looked
up via pyramid.view.render_view_to_response(context,
request, ’wrapper_viewname’). The context and request of a
wrapper view is the same context and request of the inner view. If this
attribute is unspecified, no view wrapping is done.

decorator
A dotted Python name to function (or the function itself, or an iterable
of the aforementioned) which will be used to decorate the registered view
callable. The decorator function(s) will be called with the view callable as
a single argument. The view callable it is passed will accept (context,
request). The decorator(s) must return a replacement view callable
which also accepts (context, request).

If decorator is an iterable, the callables will be combined and used in the
order provided as a decorator. For example:

@view_config(...,
decorator=(decorator2,

decorator1))
def myview(request):

....

576

Is similar to doing:

@view_config(...)
@decorator2
@decorator1
def myview(request):

...

Except with the existing benefits of decorator= (having a common dec-
orator syntax for all view calling conventions and not having to think about
preserving function attributes such as __name__ and __module__
within decorator logic).

All view callables in the decorator chain must return a response object
implementing pyramid.interfaces.IResponse or raise an excep-
tion:

def log_timer(wrapped):
def wrapper(context, request):

start = time.time()
response = wrapped(context, request)
duration = time.time() - start
response.headers['X-View-Time'] = '%.3f' % (duration,)
log.info('view took %.3f seconds', duration)
return response

return wrapper

Changed in version 1.4a4: Passing an iterable.
mapper

A Python object or dotted Python name which refers to a view mapper,
or None. By default it is None, which indicates that the view should use
the default view mapper. This plug-point is useful for Pyramid extension
developers, but it’s not very useful for ‘civilians’ who are just developing
stock Pyramid applications. Pay no attention to the man behind the curtain.

Predicate Arguments

name
The view name. Read Traversal to understand the concept of a view name.

context

577

46. PYRAMID.CONFIG

An object or a dotted Python name referring to an interface or class object
that the context must be an instance of, or the interface that the context must
provide in order for this view to be found and called. This predicate is true
when the context is an instance of the represented class or if the context
provides the represented interface; it is otherwise false. This argument
may also be provided to add_view as for_ (an older, still-supported
spelling).

route_name
This value must match the name of a route configuration declaration (see
URL Dispatch) that must match before this view will be called.

request_type
This value should be an interface that the request must provide in order
for this view to be found and called. This value exists only for backwards
compatibility purposes.

request_method
This value can be either a strings (such as GET, POST, PUT, DELETE, or
HEAD) representing an HTTP REQUEST_METHOD, or a tuple containing
one or more of these strings. A view declaration with this argument ensures
that the view will only be called when the method attribute of the request
(aka the REQUEST_METHOD of the WSGI environment) matches a sup-
plied value. Note that use of GET also implies that the view will respond
to HEAD as of Pyramid 1.4.

Changed in version 1.2: The ability to pass a tuple of items as
request_method. Previous versions allowed only a string.

request_param
This value can be any string or any sequence of strings. A view declara-
tion with this argument ensures that the view will only be called when the
request has a key in the request.params dictionary (an HTTP GET or
POST variable) that has a name which matches the supplied value (if the
value is a string) or values (if the value is a tuple). If any value supplied has
a = sign in it, e.g. request_param="foo=123", then the key (foo)
must both exist in the request.params dictionary, and the value must
match the right hand side of the expression (123) for the view to “match”
the current request.

match_param
New in version 1.2.

This value can be a string of the format “key=value” or a tuple containing
one or more of these strings.

A view declaration with this argument ensures that the view will only be
called when the request has key/value pairs in its matchdict that equal those
supplied in the predicate. e.g. match_param="action=edit" would

578

require the action parameter in the matchdict match the right hand side
of the expression (edit) for the view to “match” the current request.

If the match_param is a tuple, every key/value pair must match for the
predicate to pass.

containment
This value should be a Python class or interface (or a dotted Python name)
that an object in the lineage of the context must provide in order for this
view to be found and called. The nodes in your object graph must be
“location-aware” to use this feature. See Location-Aware Resources for
more information about location-awareness.

xhr
This value should be either True or False. If this value is specified and
is True, the request must possess an HTTP_X_REQUESTED_WITH (aka
X-Requested-With) header that has the value XMLHttpRequest for
this view to be found and called. This is useful for detecting AJAX requests
issued from jQuery, Prototype and other Javascript libraries.

accept
The value of this argument represents a match query for one or more mime-
types in the Accept HTTP request header. If this value is specified, it
must be in one of the following forms: a mimetype match token in the form
text/plain, a wildcard mimetype match token in the form text/* or
a match-all wildcard mimetype match token in the form */*. If any of the
forms matches the Accept header of the request, this predicate will be
true.

header
This value represents an HTTP header name or a header name/value pair.
If the value contains a : (colon), it will be considered a name/value pair
(e.g. User-Agent:Mozilla/.* or Host:localhost). The value
portion should be a regular expression. If the value does not contain a
colon, the entire value will be considered to be the header name (e.g.
If-Modified-Since). If the value evaluates to a header name only
without a value, the header specified by the name must be present in the
request for this predicate to be true. If the value evaluates to a header
name/value pair, the header specified by the name must be present in the
request and the regular expression specified as the value must match the
header value. Whether or not the value represents a header name or a
header name/value pair, the case of the header name is not significant.

path_info
This value represents a regular expression pattern that will be tested against
the PATH_INFO WSGI environment variable. If the regex matches, this
predicate will be True.

check_csrf

579

46. PYRAMID.CONFIG

If specified, this value should be one of None, True, False, or a string
representing the ‘check name’. If the value is True or a string, CSRF
checking will be performed. If the value is False or None, CSRF check-
ing will not be performed.

If the value provided is a string, that string will be used as the ‘check name’.
If the value provided is True, csrf_token will be used as the check
name.

If CSRF checking is performed, the checked value will be the value
of request.params[check_name]. This value will be compared
against the value of request.session.get_csrf_token(), and
the check will pass if these two values are the same. If the check passes,
the associated view will be permitted to execute. If the check fails, the
associated view will not be permitted to execute.

Note that using this feature requires a session factory to have been config-
ured.

New in version 1.4a2.
physical_path

If specified, this value should be a string or a tuple represent-
ing the physical path of the context found via traversal for this
predicate to match as true. For example: physical_path=’/’
or physical_path=’/a/b/c’ or physical_path=(’’, ’a’,
’b’, ’c’). This is not a path prefix match or a regex, it’s a whole-path
match. It’s useful when you want to always potentially show a view when
some object is traversed to, but you can’t be sure about what kind of ob-
ject it will be, so you can’t use the context predicate. The individual
path elements inbetween slash characters or in tuple elements should be
the Unicode representation of the name of the resource and should not be
encoded in any way.

New in version 1.4a3.
effective_principals

If specified, this value should be a principal iden-
tifier or a sequence of principal identifiers. If the
pyramid.request.Request.effective_principals
property indicates that every principal named in the argu-
ment list is present in the current request, this predicate will
return True; otherwise it will return False. For example:
effective_principals=pyramid.security.Authenticated
or effective_principals=(’fred’, ’group:admins’).

New in version 1.4a4.

580

custom_predicates
Deprecated since version 1.5: This value should be a sequence of refer-
ences to custom predicate callables. Use custom predicates when no set
of predefined predicates do what you need. Custom predicates can be
combined with predefined predicates as necessary. Each custom predicate
callable should accept two arguments: context and request and
should return either True or False after doing arbitrary evaluation
of the context and/or the request. The predicates argument to
this method and the ability to register third-party view predicates via
pyramid.config.Configurator.add_view_predicate()
obsoletes this argument, but it is kept around for backwards compatibility.

predicates
Pass a key/value pair here to use a third-party predicate registered via
pyramid.config.Configurator.add_view_predicate().
More than one key/value pair can be used at the same time. See View and
Route Predicates for more information about third-party predicates.

add_notfound_view(view=None, attr=None, renderer=None, wrap-
per=None, route_name=None, request_type=None,
request_method=None, request_param=None, contain-
ment=None, xhr=None, accept=None, header=None,
path_info=None, custom_predicates=(), decora-
tor=None, mapper=None, match_param=None,
append_slash=False, **predicates)

Add a default Not Found View to the current configuration state.
The view will be called when Pyramid or application code raises an
pyramid.httpexceptions.HTTPNotFound exception (e.g. when a
view cannot be found for the request). The simplest example is:

def notfound(request):
return Response('Not Found', status='404 Not Found')

config.add_notfound_view(notfound)

All arguments except append_slash have the same meaning as
pyramid.config.Configurator.add_view() and each predicate
argument restricts the set of circumstances under which this notfound view will
be invoked. Unlike pyramid.config.Configurator.add_view(), this
method will raise an exception if passed name, permission, context, for_,
or http_cache keyword arguments. These argument values make no sense in
the context of a Not Found View.

If append_slash is True, when this Not Found View is invoked, and the current
path info does not end in a slash, the notfound logic will attempt to find a route that

581

46. PYRAMID.CONFIG

matches the request’s path info suffixed with a slash. If such a route exists, Pyramid
will issue a redirect to the URL implied by the route; if it does not, Pyramid will
return the result of the view callable provided as view, as normal.

New in version 1.3.

add_forbidden_view(view=None, attr=None, renderer=None,
wrapper=None, route_name=None, re-
quest_type=None, request_method=None, re-
quest_param=None, containment=None, xhr=None,
accept=None, header=None, path_info=None, cus-
tom_predicates=(), decorator=None, mapper=None,
match_param=None, **predicates)

Add a forbidden view to the current configuration state. The
view will be called when Pyramid or application code raises a
pyramid.httpexceptions.HTTPForbidden exception and the set
of circumstances implied by the predicates provided are matched. The simplest
example is:

def forbidden(request):
return Response('Forbidden', status='403 Forbidden')

config.add_forbidden_view(forbidden)

All arguments have the same meaning as
pyramid.config.Configurator.add_view() and each predicate
argument restricts the set of circumstances under which this notfound view will
be invoked. Unlike pyramid.config.Configurator.add_view(), this
method will raise an exception if passed name, permission, context, for_,
or http_cache keyword arguments. These argument values make no sense in
the context of a forbidden view.

New in version 1.3.

Adding an Event Subscriber

add_subscriber(subscriber, iface=None, **predicates)
Add an event subscriber for the event stream implied by the supplied iface inter-
face.

The subscriber argument represents a callable object (or a dotted Python name
which identifies a callable); it will be called with a single object event whenever
Pyramid emits an event associated with the iface, which may be an interface or a
class or a dotted Python name to a global object representing an interface or a class.

582

Using the default iface value, None will cause the subscriber to be registered
for all event types. See Using Events for more information about events and sub-
scribers.

Any number of predicate keyword arguments may be passed in **predicates.
Each predicate named will narrow the set of circumstances in which the sub-
scriber will be invoked. Each named predicate must have been registered via
pyramid.config.Configurator.add_subscriber_predicate()
before it can be used. See Subscriber Predicates for more information.

New in version 1.4: The **predicates argument.

Using Security

set_authentication_policy(policy)
Override the Pyramid authentication policy in the current configuration.
The policy argument must be an instance of an authentication policy or
a dotted Python name that points at an instance of an authentication policy.

Using the authentication_policy argument to the
pyramid.config.Configurator constructor can be used to
achieve the same purpose.

set_authorization_policy(policy)
Override the Pyramid authorization policy in the current configuration.
The policy argument must be an instance of an authorization policy or
a dotted Python name that points at an instance of an authorization policy.

Using the authorization_policy argument to the
pyramid.config.Configurator constructor can be used to
achieve the same purpose.

set_default_permission(permission)
Set the default permission to be used by all subsequent view configura-
tion registrations. permission should be a permission string to be used
as the default permission. An example of a permission string:’view’.
Adding a default permission makes it unnecessary to protect each view
configuration with an explicit permission, unless your application policy
requires some exception for a particular view.

583

46. PYRAMID.CONFIG

If a default permission is not set, views represented by view configura-
tion registrations which do not explicitly declare a permission will be exe-
cutable by entirely anonymous users (any authorization policy is ignored).

Later calls to this method override will conflict with earlier calls; there can
be only one default permission active at a time within an application.

If a default permission is in effect, view configurations
meant to create a truly anonymously accessible view (even excep-
tion view views) must use the value of the permission importable as
pyramid.security.NO_PERMISSION_REQUIRED. When this
string is used as the permission for a view configuration, the default
permission is ignored, and the view is registered, making it available to
all callers regardless of their credentials.

See also:

See also Setting a Default Permission.

Using the default_permission argument to the
pyramid.config.Configurator constructor can be used to
achieve the same purpose.

add_permission(permission_name)
A configurator directive which registers a free-standing permission without
associating it with a view callable. This can be used so that the permission
shows up in the introspectable data under the permissions category
(permissions mentioned via add_view already end up in there). For ex-
ample:

config = Configurator()
config.add_permission('view')

Extending the Request Object

584

add_request_method(callable=None, name=None, prop-
erty=False, reify=False)

Add a property or method to the request object.

When adding a method to the request, callable may be any function
that receives the request object as the first parameter. If name is None
then it will be computed from the name of the callable.

When adding a property to the request, callable can either be a callable
that accepts the request as its single positional parameter, or it can be a
property descriptor. If name is None, the name of the property will be
computed from the name of the callable.

If the callable is a property descriptor a ValueError will be raised
if name is None or reify is True.

See pyramid.request.Request.set_property() for more de-
tails on property vs reify. When reify is True, the value of
property is assumed to also be True.

In all cases, callable may also be a dotted Python name which refers
to either a callable or a property descriptor.

If callable is None then the method is only used to assist in conflict
detection between different addons requesting the same attribute on the
request object.

This is the recommended method for extending the request object
and should be used in favor of providing a custom request factory via
pyramid.config.Configurator.set_request_factory().

New in version 1.4.

set_request_property(*args, **kw)

Using I18N

add_translation_dirs(*specs)
Add one or more translation directory paths to the current configuration
state. The specs argument is a sequence that may contain absolute di-
rectory paths (e.g. /usr/share/locale) or asset specification names
naming a directory path (e.g. some.package:locale) or a combina-
tion of the two.

Example:

585

46. PYRAMID.CONFIG

config.add_translation_dirs('/usr/share/locale',
'some.package:locale')

Later calls to add_translation_dir insert directories into the be-
ginning of the list of translation directories created by earlier calls. This
means that the same translation found in a directory added later in the
configuration process will be found before one added earlier in the config-
uration process. However, if multiple specs are provided in a single call
to add_translation_dirs, the directories will be inserted into the
beginning of the directory list in the order they’re provided in the *specs
list argument (items earlier in the list trump ones later in the list).

set_locale_negotiator(negotiator)
Set the locale negotiator for this application. The locale negotiator is a
callable which accepts a request object and which returns a locale name.
The negotiator argument should be the locale negotiator implementa-
tion or a dotted Python name which refers to such an implementation.

Later calls to this method override earlier calls; there can be only one locale
negotiator active at a time within an application. See Activating Transla-
tion for more information.

Using the locale_negotiator argument to the
pyramid.config.Configurator constructor can be used to
achieve the same purpose.

Overriding Assets

override_asset(to_override, override_with, _override=None)
Add a Pyramid asset override to the current configuration state.

to_override is a asset specification to the asset being overridden.

override_with is a asset specification to the asset that is performing
the override.

See Static Assets for more information about asset overrides.

Getting and Adding Settings

add_settings(settings=None, **kw)
Augment the deployment settings with one or more key/value pairs.

You may pass a dictionary:

586

config.add_settings({'external_uri':'http://example.com'})

Or a set of key/value pairs:

config.add_settings(external_uri='http://example.com')

This function is useful when you need to test code that ac-
cesses the pyramid.registry.Registry.settings API (or the
pyramid.config.Configurator.get_settings() API) and
which uses values from that API.

get_settings()
Return a deployment settings object for the current application. A de-
ployment settings object is a dictionary-like object that contains key/value
pairs based on the dictionary passed as the settings argument to the
pyramid.config.Configurator constructor.

the pyramid.registry.Registry.settings API per-
forms the same duty.

Hooking Pyramid Behavior

add_renderer(name, factory)
Add a Pyramid renderer factory to the current configuration state.

The name argument is the renderer name. Use None to represent the
default renderer (a renderer which will be used for all views unless they
name another renderer specifically).

The factory argument is Python reference to an implementation of a
renderer factory or a dotted Python name to same.

add_resource_url_adapter(adapter, resource_iface=None)
New in version 1.3.

When you add a traverser as described in Changing
the Traverser, it’s convenient to continue to use the

587

46. PYRAMID.CONFIG

pyramid.request.Request.resource_url() API. How-
ever, since the way traversal is done may have been modified, the URLs
that resource_url generates by default may be incorrect when
resources are returned by a custom traverser.

If you’ve added a traverser, you can change how resource_url() gen-
erates a URL for a specific type of resource by calling this method.

The adapter argument represents a class that implements the
IResourceURL interface. The class constructor should accept two
arguments in its constructor (the resource and the request) and the re-
sulting instance should provide the attributes detailed in that interface
(virtual_path and physical_path, in particular).

The resource_iface argument represents a class or interface that
the resource should possess for this url adapter to be used when
pyramid.request.Request.resource_url() looks up a re-
source url adapter. If resource_iface is not passed, or it is passed
as None, the url adapter will be used for every type of resource.

See Changing How pyramid.request.Request.resource_url() Generates a
URL for more information.

add_response_adapter(adapter, type_or_iface)
When an object of type (or interface) type_or_iface is returned from
a view callable, Pyramid will use the adapter adapter to convert it into
an object which implements the pyramid.interfaces.IResponse
interface. If adapter is None, an object returned of type (or interface)
type_or_iface will itself be used as a response object.

adapter and type_or_interface may be Python objects or strings
representing dotted names to importable Python global objects.

See Changing How Pyramid Treats View Responses for more information.

add_traverser(adapter, iface=None)
The superdefault traversal algorithm that Pyramid uses is explained in The
Traversal Algorithm. Though it is rarely necessary, this default algorithm
can be swapped out selectively for a different traversal pattern via config-
uration. The section entitled Changing the Traverser details how to create
a traverser class.

For example, to override the superdefault traverser used by Pyramid, you
might do something like this:

588

from myapp.traversal import MyCustomTraverser
config.add_traverser(MyCustomTraverser)

This would cause the Pyramid superdefault traverser to never be used;
instead all traversal would be done using your MyCustomTraverser
class, no matter which object was returned by the root factory of this ap-
plication. Note that we passed no arguments to the iface keyword pa-
rameter. The default value of iface, None represents that the registered
traverser should be used when no other more specific traverser is available
for the object returned by the root factory.

However, more than one traversal algorithm can be active at the same time.
The traverser used can depend on the result of the root factory. For in-
stance, if your root factory returns more than one type of object condi-
tionally, you could claim that an alternate traverser adapter should be used
against one particular class or interface returned by that root factory. When
the root factory returned an object that implemented that class or interface,
a custom traverser would be used. Otherwise, the default traverser would
be used. The iface argument represents the class of the object that the
root factory might return or an interface that the object might implement.

To use a particular traverser only when the root factory returns a particular
class:

config.add_traverser(MyCustomTraverser, MyRootClass)

When more than one traverser is active, the “most specific” traverser will
be used (the one that matches the class or interface of the value returned
by the root factory most closely).

Note that either adapter or iface can be a dotted Python name or a
Python object.

See Changing the Traverser for more information.

add_tween(tween_factory, under=None, over=None)
New in version 1.2.

589

46. PYRAMID.CONFIG

Add a ‘tween factory’. A tween (a contraction of ‘between’) is a bit of
code that sits between the Pyramid router’s main request handling func-
tion and the upstream WSGI component that uses Pyramid as its ‘app’.
Tweens are a feature that may be used by Pyramid framework extensions,
to provide, for example, Pyramid-specific view timing support, bookkeep-
ing code that examines exceptions before they are returned to the upstream
WSGI application, or a variety of other features. Tweens behave a bit like
WSGI ‘middleware’ but they have the benefit of running in a context in
which they have access to the Pyramid application registry as well as the
Pyramid rendering machinery.

You can view the tween ordering configured into a given Pyra-
mid application by using the ptweens command. See Displaying
“Tweens”.

The tween_factory argument must be a dotted Python name to a
global object representing the tween factory.

The under and over arguments allow the caller of add_tween to pro-
vide a hint about where in the tween chain this tween factory should be
placed when an implicit tween chain is used. These hints are only used
when an explicit tween chain is not used (when the pyramid.tweens
configuration value is not set). Allowable values for under or over (or
both) are:

•None (the default).
•A dotted Python name to a tween factory: a string representing the dot-
ted name of a tween factory added in a call to add_tween in the same
configuration session.

•One of the constants pyramid.tweens.MAIN ,
pyramid.tweens.INGRESS, or pyramid.tweens.EXCVIEW .

•An iterable of any combination of the above. This allows the user to
specify fallbacks if the desired tween is not included, as well as compat-
ibility with multiple other tweens.

under means ‘closer to the main Pyramid application than’, over means
‘closer to the request ingress than’.

For example, calling add_tween(’myapp.tfactory’,
over=pyramid.tweens.MAIN) will attempt to place the tween
factory represented by the dotted name myapp.tfactory di-
rectly ‘above’ (in ptweens order) the main Pyramid request
handler. Likewise, calling add_tween(’myapp.tfactory’,
over=pyramid.tweens.MAIN, under=’mypkg.someothertween’)

590

will attempt to place this tween factory ‘above’ the main handler but
‘below’ (a fictional) ‘mypkg.someothertween’ tween factory.

If all options for under (or over) cannot be found in the current
configuration, it is an error. If some options are specified purely
for compatibilty with other tweens, just add a fallback of MAIN
or INGRESS. For example, under=(’mypkg.someothertween’,
’mypkg.someothertween2’, INGRESS). This constraint will re-
quire the tween to be located under both the ‘mypkg.someothertween’
tween, the ‘mypkg.someothertween2’ tween, and INGRESS. If any of
these is not in the current configuration, this constraint will only organize
itself based on the tweens that are present.

Specifying neither over nor under is equivalent to specifying
under=INGRESS.

Implicit tween ordering is obviously only best-effort. Pyramid will attempt
to present an implicit order of tweens as best it can, but the only surefire
way to get any particular ordering is to use an explicit tween order. A
user may always override the implicit tween ordering by using an explicit
pyramid.tweens configuration value setting.

under, and over arguments are ignored when an explicit tween chain is
specified using the pyramid.tweens configuration value.

For more information, see Registering Tweens.

add_route_predicate(name, factory, weighs_more_than=None,
weighs_less_than=None)

Adds a route predicate factory. The view predi-
cate can later be named as a keyword argument to
pyramid.config.Configurator.add_route().

name should be the name of the predicate. It must be a valid Python
identifier (it will be used as a keyword argument to add_route).

factory should be a predicate factory or dotted Python name which
refers to a predicate factory.

See View and Route Predicates for more information.

New in version 1.4.

591

46. PYRAMID.CONFIG

add_view_predicate(name, factory, weighs_more_than=None,
weighs_less_than=None)

New in version 1.4.

Adds a view predicate factory. The associated view
predicate can later be named as a keyword argument to
pyramid.config.Configurator.add_view() in the
predicates anonyous keyword argument dictionary.

name should be the name of the predicate. It must be a valid Python
identifier (it will be used as a keyword argument to add_view by others).

factory should be a predicate factory or dotted Python name which
refers to a predicate factory.

See View and Route Predicates for more information.

set_request_factory(factory)
The object passed as factory should be an object (or a dotted Python
name which refers to an object) which will be used by the Pyramid router
to create all request objects. This factory object must have the same meth-
ods and attributes as the pyramid.request.Request class (particu-
larly __call__, and blank).

See pyramid.config.Configurator.add_request_method()
for a less intrusive way to extend the request objects with custom methods
and properties.

Using the request_factory argument to the
pyramid.config.Configurator constructor can be used
to achieve the same purpose.

set_root_factory(factory)
Add a root factory to the current configuration state. If the factory
argument is None a default root factory will be registered.

Using the root_factory argument to the
pyramid.config.Configurator constructor can be used
to achieve the same purpose.

592

set_session_factory(factory)
Configure the application with a session factory. If this method is called,
the factory argument must be a session factory callable or a dotted
Python name to that factory.

Using the session_factory argument to the
pyramid.config.Configurator constructor can be used
to achieve the same purpose.

set_view_mapper(mapper)
Setting a view mapper makes it possible to make use of view callable ob-
jects which implement different call signatures than the ones supported by
Pyramid as described in its narrative documentation.

The mapper argument should be an object implementing
pyramid.interfaces.IViewMapperFactory or a dotted
Python name to such an object. The provided mapper will become the
default view mapper to be used by all subsequent view configuration
registrations.

See also:

See also Using a View Mapper.

Using the default_view_mapper argument to the
pyramid.config.Configurator constructor can be used to
achieve the same purpose.

Extension Author APIs

action(discriminator, callable=None, args=(), kw=None, order=0, in-
trospectables=(), **extra)

Register an action which will be executed when
pyramid.config.Configurator.commit() is called (or
executed immediately if autocommit is True).

This method is typically only used by Pyramid framework exten-
sion authors, not by Pyramid application developers.

593

46. PYRAMID.CONFIG

The discriminator uniquely identifies the action. It must be given,
but it can be None, to indicate that the action never conflicts. It must be a
hashable value.

The callable is a callable object which performs the task associated
with the action when the action is executed. It is optional.

args and kw are tuple and dict objects respectively, which are passed to
callable when this action is executed. Both are optional.

order is a grouping mechanism; an action with a lower order will be exe-
cuted before an action with a higher order (has no effect when autocommit
is True).

introspectables is a sequence of introspectable objects (or the
empty sequence if no introspectable objects are associated with this ac-
tion). If this configurator’s introspection attribute is False, these
introspectables will be ignored.

extra provides a facility for inserting extra keys and values into an action
dictionary.

add_directive(name, directive, action_wrap=True)
Add a directive method to the configurator.

This method is typically only used by Pyramid framework exten-
sion authors, not by Pyramid application developers.

Framework extenders can add directive meth-
ods to a configurator by instructing their users
to call config.add_directive(’somename’,
’some.callable’). This will make some.callable acces-
sible as config.somename. some.callable should be a function
which accepts config as a first argument, and arbitrary positional and
keyword arguments following. It should use config.action as necessary
to perform actions. Directive methods can then be invoked like ‘built-in’
directives such as add_view, add_route, etc.

The action_wrap argument should be True for directives which
perform config.action with potentially conflicting discriminators.
action_wrap will cause the directive to be wrapped in a decorator
which provides more accurate conflict cause information.

add_directive does not participate in conflict detection, and later
calls to add_directive will override earlier calls.

594

with_package(package)
Return a new Configurator instance with the same registry as this config-
urator. package may be an actual Python package object or a dotted
Python name representing a package.

derive_view(view, attr=None, renderer=None)
Create a view callable using the function, instance, or class (or dotted
Python name referring to the same) provided as view object.

This method is typically only used by Pyramid framework exten-
sion authors, not by Pyramid application developers.

This is API is useful to framework extenders who create pluggable systems
which need to register ‘proxy’ view callables for functions, instances, or
classes which meet the requirements of being a Pyramid view callable.
For example, a some_other_framework function in another frame-
work may want to allow a user to supply a view callable, but he may want
to wrap the view callable in his own before registering the wrapper as a
Pyramid view callable. Because a Pyramid view callable can be any of a
number of valid objects, the framework extender will not know how to call
the user-supplied object. Running it through derive_view normalizes
it to a callable which accepts two arguments: context and request.

For example:

def some_other_framework(user_supplied_view):
config = Configurator(reg)
proxy_view = config.derive_view(user_supplied_view)
def my_wrapper(context, request):

do_something_that_mutates(request)
return proxy_view(context, request)

config.add_view(my_wrapper)

The view object provided should be one of the following:
•A function or another non-class callable object that accepts a request as
a single positional argument and which returns a response object.

•A function or other non-class callable object that accepts two positional
arguments, context, request and which returns a response ob-
ject.

595

46. PYRAMID.CONFIG

•A class which accepts a single positional argument in its constructor
named request, and which has a __call__ method that accepts no
arguments that returns a response object.

•A class which accepts two positional arguments named context,
request, and which has a __call__ method that accepts no argu-
ments that returns a response object.

•A dotted Python name which refers to any of the kinds of objects above.
This API returns a callable which accepts the arguments context,
request and which returns the result of calling the provided view ob-
ject.

The attr keyword argument is most useful when the view object is a
class. It names the method that should be used as the callable. If attr is
not provided, the attribute effectively defaults to __call__. See Defining
a View Callable as a Class for more information.

The renderer keyword argument should be a renderer name. If sup-
plied, it will cause the returned callable to use a renderer to convert the
user-supplied view result to a response object. If a renderer argument
is not supplied, the user-supplied view must itself return a response object.

Utility Methods

absolute_asset_spec(relative_spec)
Resolve the potentially relative asset specification string passed as
relative_spec into an absolute asset specification string and return
the string. Use the package of this configurator as the package to which
the asset specification will be considered relative when generating an ab-
solute asset specification. If the provided relative_spec argument is
already absolute, or if the relative_spec is not a string, it is simply
returned.

maybe_dotted(dotted)
Resolve the dotted Python name dotted to a global Python object. If
dotted is not a string, return it without attempting to do any name res-
olution. If dotted is a relative dotted name (e.g. .foo.bar, consider
it relative to the package argument supplied to this Configurator’s con-
structor.

ZCA-Related APIs

596

hook_zca()
Call zope.component.getSiteManager.sethook() with the
argument pyramid.threadlocal.get_current_registry ,
causing the Zope Component Architecture ‘global’ APIs
such as zope.component.getSiteManager(),
zope.component.getAdapter() and others to use the Pyra-
mid application registry rather than the Zope ‘global’ registry.

unhook_zca()
Call zope.component.getSiteManager.reset() to undo the
action of pyramid.config.Configurator.hook_zca().

setup_registry(settings=None, root_factory=None, authentica-
tion_policy=None, authorization_policy=None,
renderers=None, debug_logger=None, lo-
cale_negotiator=None, request_factory=None,
default_permission=None, session_factory=None,
default_view_mapper=None, excep-
tionresponse_view=<function de-
fault_exceptionresponse_view>)

When you pass a non-None registry argument to the Configurator
constructor, no initial setup is performed against the registry. This is be-
cause the registry you pass in may have already been initialized for use
under Pyramid via a different configurator. However, in some circum-
stances (such as when you want to use a global registry instead of a reg-
istry created as a result of the Configurator constructor), or when you want
to reset the initial setup of a registry, you do want to explicitly initialize
the registry associated with a Configurator for use under Pyramid. Use
setup_registry to do this initialization.

setup_registry configures settings, a root factory, security policies,
renderers, a debug logger, a locale negotiator, and various other settings
using the configurator’s current registry, as per the descriptions in the Con-
figurator constructor.

Testing Helper APIs

testing_add_renderer(path, renderer=None)
Unit/integration testing helper: register a renderer at path (usually a
relative filename ala templates/foo.pt or an asset specification)
and return the renderer object. If the renderer argument is None,
a ‘dummy’ renderer will be used. This function is useful when test-
ing code that calls the pyramid.renderers.render() function or

597

http://docs.zope.org/zope.component/api/sitemanager.html#zope.component.getSiteManager
http://docs.zope.org/zope.component/api/adapter.html#zope.component.getAdapter

46. PYRAMID.CONFIG

pyramid.renderers.render_to_response() function or any
other render_* or get_* API of the pyramid.renderers module.

Note that calling this method for with a path argument represent-
ing a renderer factory type (e.g. for foo.pt usually implies the
chameleon_zpt renderer factory) clobbers any existing renderer fac-
tory registered for that type.

This method is also available under the alias
testing_add_template (an older name for it).

testing_add_subscriber(event_iface=None)
Unit/integration testing helper: Registers a subscriber which listens for
events of the type event_iface. This method returns a list object which
is appended to by the subscriber whenever an event is captured.

When an event is dispatched that matches the value implied by
the event_iface argument, that event will be appended to the
list. You can then compare the values in the list to expected
event notifications. This method is useful when testing code
that wants to call pyramid.registry.Registry.notify(), or
zope.component.event.dispatch().

The default value of event_iface (None) implies a subscriber regis-
tered for any kind of event.

testing_resources(resources)
Unit/integration testing helper: registers a dictio-
nary of resource objects that can be resolved via the
pyramid.traversal.find_resource() API.

The pyramid.traversal.find_resource() API is called with a
path as one of its arguments. If the dictionary you register when calling this
method contains that path as a string key (e.g. /foo/bar or foo/bar),
the corresponding value will be returned to find_resource (and thus
to your code) when pyramid.traversal.find_resource() is
called with an equivalent path string or tuple.

testing_securitypolicy(userid=None, groupids=(), permis-
sive=True, remember_result=None,
forget_result=None)

Unit/integration testing helper: Registers a pair of faux Pyramid security
policies: a authentication policy and a authorization policy.

598

The behavior of the registered authorization policy depends on the
permissive argument. If permissive is true, a permissive autho-
rization policy is registered; this policy allows all access. If permissive
is false, a nonpermissive authorization policy is registered; this policy de-
nies all access.

remember_result, if provided, should be the result returned by the
remember method of the faux authentication policy. If it is not provided
(or it is provided, and is None), the default value [] (the empty list) will
be returned by remember.

forget_result, if provided, should be the result returned by the
forget method of the faux authentication policy. If it is not provided
(or it is provided, and is None), the default value [] (the empty list) will
be returned by forget.

The behavior of the registered authentication policy depends on the
values provided for the userid and groupids argument. The authen-
tication policy will return the userid identifier implied by the userid
argument and the group ids implied by the groupids argument when
the pyramid.request.Request.authenticated_userid or
pyramid.request.Request.effective_principals APIs
are used.

This function is most useful when testing code that uses the APIs
named pyramid.request.Request.has_permission(),
pyramid.request.Request.authenticated_userid,
pyramid.request.Request.effective_principals, and
pyramid.security.principals_allowed_by_permission().

New in version 1.4: The remember_result argument.

New in version 1.4: The forget_result argument.

Attributes

introspectable
A shortcut attribute which points to the
pyramid.registry.Introspectable class (used during di-
rectives to provide introspection to actions).

New in version 1.3.

599

46. PYRAMID.CONFIG

introspector
The introspector related to this configuration. It is an instance implement-
ing the pyramid.interfaces.IIntrospector interface.

New in version 1.3.

registry
The application registry which holds the configuration associated with this
configurator.

global_registries
The set of registries that have been created for Pyramid applications, one for each call to
pyramid.config.Configurator.make_wsgi_app() in the current process. The object
itself supports iteration and has a last property containing the last registry loaded.

The registries contained in this object are stored as weakrefs, thus they will only exist for the
lifetime of the actual applications for which they are being used.

class not_(value)
You can invert the meaning of any predicate value by wrapping it in a call to
pyramid.config.not_.

1 from pyramid.config import not_
2

3 config.add_view(
4 'mypackage.views.my_view',
5 route_name='ok',
6 request_method=not_('POST')
7)

The above example will ensure that the view is called if the request method is not POST, at least if
no other view is more specific.

This technique of wrapping a predicate value in not_ can be used anywhere predicate values are
accepted:

•pyramid.config.Configurator.add_view()

•pyramid.config.Configurator.add_route()

•pyramid.config.Configurator.add_subscriber()

•pyramid.view.view_config()

•pyramid.events.subscriber()

New in version 1.5.

600

CHAPTER 47

pyramid.decorator

reify(wrapped)
Use as a class method decorator. It operates almost exactly like the Python @property decorator,
but it puts the result of the method it decorates into the instance dict after the first call, effectively
replacing the function it decorates with an instance variable. It is, in Python parlance, a non-data
descriptor. An example:

class Foo(object):
@reify
def jammy(self):

print('jammy called')
return 1

And usage of Foo:

>>> f = Foo()
>>> v = f.jammy
'jammy called'
>>> print(v)
1
>>> f.jammy
1
>>> # jammy func not called the second time; it replaced itself with 1

601

47. PYRAMID.DECORATOR

602

CHAPTER 48

pyramid.events

48.1 Functions

subscriber(*ifaces, **predicates)
Decorator activated via a scan which treats the function being decorated as an event subscriber for
the set of interfaces passed as *ifaces and the set of predicate terms passed as **predicates
to the decorator constructor.

For example:

from pyramid.events import NewRequest
from pyramid.events import subscriber

@subscriber(NewRequest)
def mysubscriber(event):

event.request.foo = 1

More than one event type can be passed as a constructor argument. The decorated subscriber will
be called for each event type.

from pyramid.events import NewRequest, NewResponse
from pyramid.events import subscriber

@subscriber(NewRequest, NewResponse)
def mysubscriber(event):

print(event)

603

48. PYRAMID.EVENTS

When the subscriber decorator is used without passing an arguments, the function it decorates
is called for every event sent:

from pyramid.events import subscriber

@subscriber()
def mysubscriber(event):

print(event)

This method will have no effect until a scan is performed against the package or module which
contains it, ala:

from pyramid.config import Configurator
config = Configurator()
config.scan('somepackage_containing_subscribers')

Any **predicate arguments will be passed along to
pyramid.config.Configurator.add_subscriber(). See Subscriber Predicates
for a description of how predicates can narrow the set of circumstances in which a subscriber will
be called.

48.2 Event Types

class ApplicationCreated(app)
An instance of this class is emitted as an event when the
pyramid.config.Configurator.make_wsgi_app() is called. The instance has
an attribute, app, which is an instance of the router that will handle WSGI requests. This class
implements the pyramid.interfaces.IApplicationCreated interface.

For backwards compatibility purposes, this class can also be imported as
pyramid.events.WSGIApplicationCreatedEvent. This was the name of the event
class before Pyramid 1.0.

class NewRequest(request)
An instance of this class is emitted as an event whenever Pyramid begins to process a new re-
quest. The event instance has an attribute, request, which is a request object. This event class
implements the pyramid.interfaces.INewRequest interface.

604

48.2. EVENT TYPES

class ContextFound(request)
An instance of this class is emitted as an event after the Pyramid router finds a context object (after it
performs traversal) but before any view code is executed. The instance has an attribute, request,
which is the request object generated by Pyramid.

Notably, the request object will have an attribute named context, which is the context that will
be provided to the view which will eventually be called, as well as other attributes attached by
context-finding code.

This class implements the pyramid.interfaces.IContextFound interface.

As of Pyramid 1.0, for backwards compatibility purposes, this event may also be imported
as pyramid.events.AfterTraversal.

class NewResponse(request, response)
An instance of this class is emitted as an event whenever any Pyramid view or exception view returns
a response.

The instance has two attributes:request, which is the request which caused the response, and
response, which is the response object returned by a view or renderer.

If the response was generated by an exception view, the request will have an attribute named
exception, which is the exception object which caused the exception view to be executed. If the
response was generated by a ‘normal’ view, this attribute of the request will be None.

This event will not be generated if a response cannot be created due to an exception that is not
caught by an exception view (no response is created under this circumstace).

This class implements the pyramid.interfaces.INewResponse interface.

Postprocessing a response is usually better handled in a WSGI middleware compo-
nent than in subscriber code that is called by a pyramid.interfaces.INewResponse
event. The pyramid.interfaces.INewResponse event exists almost purely for sym-
metry with the pyramid.interfaces.INewRequest event.

class BeforeRender(system, rendering_val=None)
Subscribers to this event may introspect and modify the set of renderer globals before they are
passed to a renderer. This event object iself has a dictionary-like interface that can be used for this
purpose. For example:

605

48. PYRAMID.EVENTS

from pyramid.events import subscriber
from pyramid.events import BeforeRender

@subscriber(BeforeRender)
def add_global(event):

event['mykey'] = 'foo'

An object of this type is sent as an event just before a renderer is invoked.

If a subscriber adds a key via __setitem__ that already exists in the renderer globals dictio-
nary, it will overwrite the older value there. This can be problematic because event subscribers to
the BeforeRender event do not possess any relative ordering. For maximum interoperability with
other third-party subscribers, if you write an event subscriber meant to be used as a BeforeRender
subscriber, your subscriber code will need to ensure no value already exists in the renderer globals
dictionary before setting an overriding value (which can be done using .get or __contains__
of the event object).

The dictionary returned from the view is accessible through the rendering_val attribute of a
BeforeRender event.

Suppose you return {’mykey’: ’somevalue’, ’mykey2’: ’somevalue2’} from
your view callable, like so:

from pyramid.view import view_config

@view_config(renderer='some_renderer')
def myview(request):

return {'mykey': 'somevalue', 'mykey2': 'somevalue2'}

rendering_val can be used to access these values from the BeforeRender object:

from pyramid.events import subscriber
from pyramid.events import BeforeRender

@subscriber(BeforeRender)
def read_return(event):

{'mykey': 'somevalue'} is returned from the view
print(event.rendering_val['mykey'])

In other words, rendering_val is the (non-system) value returned by a view or passed to
render* as value. This feature is new in Pyramid 1.2.

606

48.2. EVENT TYPES

For a description of the values present in the renderer globals dictionary, see System Values Used
During Rendering.

See also:

See also pyramid.interfaces.IBeforeRender.

update(E, **F)
Update D from dict/iterable E and F. If E has a .keys() method, does: for k in E: D[k] = E[k]
If E lacks .keys() method, does: for (k, v) in E: D[k] = v. In either case, this is followed by:
for k in F: D[k] = F[k].

clear()→ None. Remove all items from D.

copy()→ a shallow copy of D

fromkeys()
Returns a new dict with keys from iterable and values equal to value.

get(k[, d])→ D[k] if k in D, else d. d defaults to None.

items()→ a set-like object providing a view on D’s items

keys()→ a set-like object providing a view on D’s keys

pop(k[, d])→ v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

popitem()→ (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

setdefault(k[, d])→ D.get(k,d), also set D[k]=d if k not in D

values()→ an object providing a view on D’s values

See Using Events for more information about how to register code which subscribes to these events.

607

48. PYRAMID.EVENTS

608

CHAPTER 49

pyramid.exceptions

exception BadCSRFToken(detail=None, headers=None, comment=None,
body_template=None, **kw)

This exception indicates the request has failed cross-site request forgery token validation.

exception PredicateMismatch(detail=None, headers=None, comment=None,
body_template=None, **kw)

This exception is raised by multiviews when no view matches all given predicates.

This exception subclasses the HTTPNotFound exception for a specific reason: if it reaches the
main exception handler, it should be treated as HTTPNotFound‘ by any exception view registra-
tions. Thus, typically, this exception will not be seen publicly.

However, this exception will be raised if the predicates of all views configured to handle an-
other exception context cannot be successfully matched. For instance, if a view is configured
to handle a context of HTTPForbidden and the configured with additional predicates, then
PredicateMismatch will be raised if:

•An original view callable has raised HTTPForbidden (thus invoking an exception view);
and

•The given request fails to match all predicates for said exception view associated with
HTTPForbidden.

The same applies to any type of exception being handled by an exception view.

Forbidden
alias of HTTPForbidden

609

49. PYRAMID.EXCEPTIONS

NotFound
alias of HTTPNotFound

exception ConfigurationError
Raised when inappropriate input values are supplied to an API method of a Configurator

exception URLDecodeError
This exception is raised when Pyramid cannot successfully decode a URL or a URL path segment.
This exception behaves just like the Python builtin UnicodeDecodeError. It is a subclass of
the builtin UnicodeDecodeError exception only for identity purposes, mostly so an exception
view can be registered when a URL cannot be decoded.

610

http://docs.python.org/3/library/exceptions.html#UnicodeDecodeError
http://docs.python.org/3/library/exceptions.html#UnicodeDecodeError

CHAPTER 50

pyramid.httpexceptions

50.1 HTTP Exceptions

This module contains Pyramid HTTP exception classes. Each class relates to a single HTTP status code.
Each class is a subclass of the HTTPException. Each exception class is also a response object.

Each exception class has a status code according to RFC 2068: codes with 100-300 are not really errors;
400s are client errors, and 500s are server errors.

Exception

HTTPException

HTTPSuccessful

• 200 - HTTPOk

• 201 - HTTPCreated

• 202 - HTTPAccepted

• 203 - HTTPNonAuthoritativeInformation

• 204 - HTTPNoContent

• 205 - HTTPResetContent

611

https://tools.ietf.org/html/rfc2068.html

50. PYRAMID.HTTPEXCEPTIONS

• 206 - HTTPPartialContent

HTTPRedirection

• 300 - HTTPMultipleChoices

• 301 - HTTPMovedPermanently

• 302 - HTTPFound

• 303 - HTTPSeeOther

• 304 - HTTPNotModified

• 305 - HTTPUseProxy

• 307 - HTTPTemporaryRedirect

HTTPError

HTTPClientError

• 400 - HTTPBadRequest

• 401 - HTTPUnauthorized

• 402 - HTTPPaymentRequired

• 403 - HTTPForbidden

• 404 - HTTPNotFound

• 405 - HTTPMethodNotAllowed

• 406 - HTTPNotAcceptable

• 407 - HTTPProxyAuthenticationRequired

• 408 - HTTPRequestTimeout

• 409 - HTTPConflict

• 410 - HTTPGone

612

50.1. HTTP EXCEPTIONS

• 411 - HTTPLengthRequired

• 412 - HTTPPreconditionFailed

• 413 - HTTPRequestEntityTooLarge

• 414 - HTTPRequestURITooLong

• 415 - HTTPUnsupportedMediaType

• 416 - HTTPRequestRangeNotSatisfiable

• 417 - HTTPExpectationFailed

• 422 - HTTPUnprocessableEntity

• 423 - HTTPLocked

• 424 - HTTPFailedDependency

HTTPServerError

• 500 - HTTPInternalServerError

• 501 - HTTPNotImplemented

• 502 - HTTPBadGateway

• 503 - HTTPServiceUnavailable

• 504 - HTTPGatewayTimeout

• 505 - HTTPVersionNotSupported

• 507 - HTTPInsufficientStorage

HTTP exceptions are also response objects, thus they accept most of the same parameters that can be
passed to a regular Response. Each HTTP exception also has the following attributes:

code the HTTP status code for the exception

title remainder of the status line (stuff after the code)

613

50. PYRAMID.HTTPEXCEPTIONS

explanation a plain-text explanation of the error message that is not subject to environ-
ment or header substitutions; it is accessible in the template via ${explanation}

detail a plain-text message customization that is not subject to environment or header
substitutions; accessible in the template via ${detail}

body_template a String.template-format content fragment used for environment
and header substitution; the default template includes both the explanation and further
detail provided in the message.

Each HTTP exception accepts the following parameters, any others will be forwarded to its Response
superclass:

detail a plain-text override of the default detail

headers a list of (k,v) header pairs

comment a plain-text additional information which is usually stripped/hidden for end-users

body_template a string.Template object containing a content fragment in HTML
that frames the explanation and further detail

body a string that will override the body_template and be used as the body of the
response.

Substitution of response headers into template values is always performed. Substitution of WSGI envi-
ronment values is performed if a request is passed to the exception’s constructor.

The subclasses of _HTTPMove (HTTPMultipleChoices, HTTPMovedPermanently ,
HTTPFound, HTTPSeeOther, HTTPUseProxy and HTTPTemporaryRedirect) are redi-
rections that require a Location field. Reflecting this, these subclasses have one additional keyword
argument: location, which indicates the location to which to redirect.

status_map
A mapping of integer status code to HTTP exception class (eg. the integer “401” maps to
pyramid.httpexceptions.HTTPUnauthorized). All mapped exception classes are chil-
dren of pyramid.httpexceptions,

exception_response(status_code, **kw)
Creates an HTTP exception based on a status code. Example:

raise exception_response(404) # raises an HTTPNotFound exception.

614

50.1. HTTP EXCEPTIONS

The values passed as kw are provided to the exception’s constructor.

exception HTTPException(detail=None, headers=None, comment=None,
body_template=None, **kw)

exception HTTPOk(detail=None, headers=None, comment=None, body_template=None, **kw)
subclass of HTTPSuccessful

Indicates that the request has succeeded.

code: 200, title: OK

exception HTTPRedirection(detail=None, headers=None, comment=None,
body_template=None, **kw)

base class for exceptions with status codes in the 300s (redirections)

This is an abstract base class for 3xx redirection. It indicates that further action needs to be taken
by the user agent in order to fulfill the request. It does not necessarly signal an error condition.

exception HTTPError(detail=None, headers=None, comment=None, body_template=None,
**kw)

base class for exceptions with status codes in the 400s and 500s

This is an exception which indicates that an error has occurred, and that any work in progress should
not be committed.

exception HTTPClientError(detail=None, headers=None, comment=None,
body_template=None, **kw)

base class for the 400s, where the client is in error

This is an error condition in which the client is presumed to be in-error. This is an expected problem,
and thus is not considered a bug. A server-side traceback is not warranted. Unless specialized, this
is a ‘400 Bad Request’

exception HTTPServerError(detail=None, headers=None, comment=None,
body_template=None, **kw)

base class for the 500s, where the server is in-error

This is an error condition in which the server is presumed to be in-error. Unless specialized, this is
a ‘500 Internal Server Error’.

exception HTTPCreated(detail=None, headers=None, comment=None, body_template=None,
**kw)

subclass of HTTPSuccessful

This indicates that request has been fulfilled and resulted in a new resource being created.

code: 201, title: Created

615

50. PYRAMID.HTTPEXCEPTIONS

exception HTTPAccepted(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPSuccessful

This indicates that the request has been accepted for processing, but the processing has not been
completed.

code: 202, title: Accepted

exception HTTPNonAuthoritativeInformation(detail=None, headers=None, com-
ment=None, body_template=None,
**kw)

subclass of HTTPSuccessful

This indicates that the returned metainformation in the entity-header is not the definitive set as
available from the origin server, but is gathered from a local or a third-party copy.

code: 203, title: Non-Authoritative Information

exception HTTPNoContent(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPSuccessful

This indicates that the server has fulfilled the request but does not need to return an entity-body,
and might want to return updated metainformation.

code: 204, title: No Content

exception HTTPResetContent(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPSuccessful

This indicates that the server has fulfilled the request and the user agent SHOULD reset the docu-
ment view which caused the request to be sent.

code: 205, title: Reset Content

exception HTTPPartialContent(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPSuccessful

This indicates that the server has fulfilled the partial GET request for the resource.

code: 206, title: Partial Content

616

50.1. HTTP EXCEPTIONS

exception HTTPMultipleChoices(location=’‘, detail=None, headers=None, com-
ment=None, body_template=None, **kw)

subclass of _HTTPMove

This indicates that the requested resource corresponds to any one of a set of representations, each
with its own specific location, and agent-driven negotiation information is being provided so that
the user can select a preferred representation and redirect its request to that location.

code: 300, title: Multiple Choices

exception HTTPMovedPermanently(location=’‘, detail=None, headers=None, com-
ment=None, body_template=None, **kw)

subclass of _HTTPMove

This indicates that the requested resource has been assigned a new permanent URI and any future
references to this resource SHOULD use one of the returned URIs.

code: 301, title: Moved Permanently

exception HTTPFound(location=’‘, detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of _HTTPMove

This indicates that the requested resource resides temporarily under a different URI.

code: 302, title: Found

exception HTTPSeeOther(location=’‘, detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of _HTTPMove

This indicates that the response to the request can be found under a different URI and SHOULD be
retrieved using a GET method on that resource.

code: 303, title: See Other

exception HTTPNotModified(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPRedirection

This indicates that if the client has performed a conditional GET request and access is allowed, but
the document has not been modified, the server SHOULD respond with this status code.

code: 304, title: Not Modified

617

50. PYRAMID.HTTPEXCEPTIONS

exception HTTPUseProxy(location=’‘, detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of _HTTPMove

This indicates that the requested resource MUST be accessed through the proxy given by the Loca-
tion field.

code: 305, title: Use Proxy

exception HTTPTemporaryRedirect(location=’‘, detail=None, headers=None, com-
ment=None, body_template=None, **kw)

subclass of _HTTPMove

This indicates that the requested resource resides temporarily under a different URI.

code: 307, title: Temporary Redirect

exception HTTPBadRequest(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPClientError

This indicates that the body or headers failed validity checks, preventing the server from being able
to continue processing.

code: 400, title: Bad Request

exception HTTPUnauthorized(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPClientError

This indicates that the request requires user authentication.

code: 401, title: Unauthorized

exception HTTPPaymentRequired(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPClientError

code: 402, title: Payment Required

618

50.1. HTTP EXCEPTIONS

exception HTTPForbidden(detail=None, headers=None, comment=None,
body_template=None, result=None, **kw)

subclass of HTTPClientError

This indicates that the server understood the request, but is refusing to fulfill it.

code: 403, title: Forbidden

Raise this exception within view code to immediately return the forbidden view to the invoking
user. Usually this is a basic 403 page, but the forbidden view can be customized as necessary. See
Changing the Forbidden View. A Forbidden exception will be the context of a Forbidden
View.

This exception’s constructor treats two arguments specially. The first argument, detail,
should be a string. The value of this string will be used as the message attribute of the
exception object. The second special keyword argument, result is usually an instance of
pyramid.security.Denied or pyramid.security.ACLDenied each of which indi-
cates a reason for the forbidden error. However, result is also permitted to be just a plain boolean
False object or None. The result value will be used as the result attribute of the exception
object. It defaults to None.

The Forbidden View can use the attributes of a Forbidden exception as necessary to provide ex-
tended information in an error report shown to a user.

exception HTTPNotFound(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPClientError

This indicates that the server did not find anything matching the Request-URI.

code: 404, title: Not Found

Raise this exception within view code to immediately return the Not Found View to the invoking
user. Usually this is a basic 404 page, but the Not Found View can be customized as necessary.
See Changing the Not Found View.

This exception’s constructor accepts a detail argument (the first argument), which should be a
string. The value of this string will be available as the message attribute of this exception, for
availability to the Not Found View.

exception HTTPMethodNotAllowed(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPClientError

This indicates that the method specified in the Request-Line is not allowed for the resource identi-
fied by the Request-URI.

code: 405, title: Method Not Allowed

619

50. PYRAMID.HTTPEXCEPTIONS

exception HTTPNotAcceptable(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPClientError

This indicates the resource identified by the request is only capable of generating response enti-
ties which have content characteristics not acceptable according to the accept headers sent in the
request.

code: 406, title: Not Acceptable

exception HTTPProxyAuthenticationRequired(detail=None, headers=None, com-
ment=None, body_template=None,
**kw)

subclass of HTTPClientError

This is similar to 401, but indicates that the client must first authenticate itself with the proxy.

code: 407, title: Proxy Authentication Required

exception HTTPRequestTimeout(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPClientError

This indicates that the client did not produce a request within the time that the server was prepared
to wait.

code: 408, title: Request Timeout

exception HTTPConflict(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPClientError

This indicates that the request could not be completed due to a conflict with the current state of the
resource.

code: 409, title: Conflict

exception HTTPGone(detail=None, headers=None, comment=None, body_template=None,
**kw)

subclass of HTTPClientError

This indicates that the requested resource is no longer available at the server and no forwarding
address is known.

code: 410, title: Gone

620

50.1. HTTP EXCEPTIONS

exception HTTPLengthRequired(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPClientError

This indicates that the server refuses to accept the request without a defined Content-Length.

code: 411, title: Length Required

exception HTTPPreconditionFailed(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPClientError

This indicates that the precondition given in one or more of the request-header fields evaluated to
false when it was tested on the server.

code: 412, title: Precondition Failed

exception HTTPRequestEntityTooLarge(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPClientError

This indicates that the server is refusing to process a request because the request entity is larger
than the server is willing or able to process.

code: 413, title: Request Entity Too Large

exception HTTPRequestURITooLong(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPClientError

This indicates that the server is refusing to service the request because the Request-URI is longer
than the server is willing to interpret.

code: 414, title: Request-URI Too Long

exception HTTPUnsupportedMediaType(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPClientError

This indicates that the server is refusing to service the request because the entity of the request is in
a format not supported by the requested resource for the requested method.

code: 415, title: Unsupported Media Type

621

50. PYRAMID.HTTPEXCEPTIONS

exception HTTPRequestRangeNotSatisfiable(detail=None, headers=None, com-
ment=None, body_template=None,
**kw)

subclass of HTTPClientError

The server SHOULD return a response with this status code if a request included a Range request-
header field, and none of the range-specifier values in this field overlap the current extent of the
selected resource, and the request did not include an If-Range request-header field.

code: 416, title: Request Range Not Satisfiable

exception HTTPExpectationFailed(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPClientError

This indidcates that the expectation given in an Expect request-header field could not be met by this
server.

code: 417, title: Expectation Failed

exception HTTPUnprocessableEntity(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPClientError

This indicates that the server is unable to process the contained instructions. Only for WebDAV.

code: 422, title: Unprocessable Entity

exception HTTPLocked(detail=None, headers=None, comment=None, body_template=None,
**kw)

subclass of HTTPClientError

This indicates that the resource is locked. Only for WebDAV

code: 423, title: Locked

exception HTTPFailedDependency(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPClientError

This indicates that the method could not be performed because the requested action depended on
another action and that action failed. Only for WebDAV.

code: 424, title: Failed Dependency

622

50.1. HTTP EXCEPTIONS

exception HTTPInternalServerError(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPServerError

This indicates that the application raised an unexcpected exception.

code: 500, title: Internal Server Error

exception HTTPNotImplemented(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPServerError

This indicates that the server does not support the functionality required to fulfill the request.

code: 501, title: Not Implemented

exception HTTPBadGateway(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPServerError

This indicates that the server, while acting as a gateway or proxy, received an invalid response from
the upstream server it accessed in attempting to fulfill the request.

code: 502, title: Bad Gateway

exception HTTPServiceUnavailable(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPServerError

This indicates that the server is currently unable to handle the request due to a temporary overload-
ing or maintenance of the server.

code: 503, title: Service Unavailable

exception HTTPGatewayTimeout(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPServerError

This indicates that the server, while acting as a gateway or proxy, did not receive a timely response
from the upstream server specified by the URI (e.g. HTTP, FTP, LDAP) or some other auxiliary
server (e.g. DNS) it needed to access in attempting to complete the request.

code: 504, title: Gateway Timeout

623

50. PYRAMID.HTTPEXCEPTIONS

exception HTTPVersionNotSupported(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPServerError

This indicates that the server does not support, or refuses to support, the HTTP protocol version
that was used in the request message.

code: 505, title: HTTP Version Not Supported

exception HTTPInsufficientStorage(detail=None, headers=None, comment=None,
body_template=None, **kw)

subclass of HTTPServerError

This indicates that the server does not have enough space to save the resource.

code: 507, title: Insufficient Storage

624

CHAPTER 51

pyramid.i18n

class TranslationString
The constructor for a translation string. A translation string is a Unicode-like object that has some
extra metadata.

This constructor accepts one required argument named msgid. msgid must be the message iden-
tifier for the translation string. It must be a unicode object or a str object encoded in the default
system encoding.

Optional keyword arguments to this object’s constructor include domain, default, and
mapping.

domain represents the translation domain. By default, the translation domain is None, indicating
that this translation string is associated with the default translation domain (usually messages).

default represents an explicit default text for this translation string. Default text appears when
the translation string cannot be translated. Usually, the msgid of a translation string serves double
duty as its default text. However, using this option you can provide a different default text for this
translation string. This feature is useful when the default of a translation string is too complicated or
too long to be used as a message identifier. If default is provided, it must be a unicode object
or a str object encoded in the default system encoding (usually means ASCII). If default is
None (its default value), the msgid value used by this translation string will be assumed to be the
value of default.

mapping, if supplied, must be a dictionary-like object which represents the replacement values
for any translation string replacement marker instances found within the msgid (or default)
value of this translation string.

625

51. PYRAMID.I18N

context represents the translation context. By default, the translation context is None.

After a translation string is constructed, it behaves like most other unicode objects; its msgid
value will be displayed when it is treated like a unicode object. Only when its ugettext
method is called will it be translated.

Its default value is available as the default attribute of the object, its translation domain is
available as the domain attribute, and the mapping is available as the mapping attribute. The
object otherwise behaves much like a Unicode string.

TranslationStringFactory(factory_domain)
Create a factory which will generate translation strings without requiring that each call to the factory
be passed a domain value. A single argument is passed to this class’ constructor: domain. This
value will be used as the domain values of translationstring.TranslationString
objects generated by the __call__ of this class. The msgid, mapping, and default values
provided to the __call__ method of an instance of this class have the meaning as described by
the constructor of the translationstring.TranslationString

class Localizer(locale_name, translations)
An object providing translation and pluralizations related to the current request’s
locale name. A pyramid.i18n.Localizer object is created using the
pyramid.i18n.get_localizer() function.

locale_name
The locale name for this localizer (e.g. en or en_US).

pluralize(singular, plural, n, domain=None, mapping=None)
Return a Unicode string translation by using two message identifier objects as a singular/plural
pair and an n value representing the number that appears in the message using gettext plural
forms support. The singular and plural objects should be unicode strings. There is no
reason to use translation string objects as arguments as all metadata is ignored.

n represents the number of elements. domain is the translation domain to use to do the
pluralization, and mapping is the interpolation mapping that should be used on the result. If
the domain is not supplied, a default domain is used (usually messages).

Example:

num = 1
translated = localizer.pluralize('Add ${num} item',

'Add ${num} items',
num,
mapping={'num':num})

626

http://docs.pylonsproject.org/projects/translationstring/en/latest/api.html#translationstring.TranslationString
http://docs.pylonsproject.org/projects/translationstring/en/latest/api.html#translationstring.TranslationString

If using the gettext plural support, which is required for languages that have pluralisation rules
other than n != 1, the singular argument must be the message_id defined in the translation
file. The plural argument is not used in this case.

Example:

num = 1
translated = localizer.pluralize('item_plural',

'',
num,
mapping={'num':num})

translate(tstring, domain=None, mapping=None)
Translate a translation string to the current language and interpolate any replacement mark-
ers in the result. The translate method accepts three arguments: tstring (required),
domain (optional) and mapping (optional). When called, it will translate the tstring
translation string to a unicode object using the current locale. If the current locale could
not be determined, the result of interpolation of the default value is returned. The optional
domain argument can be used to specify or override the domain of the tstring (useful
when tstring is a normal string rather than a translation string). The optional mapping
argument can specify or override the tstring interpolation mapping, useful when the
tstring argument is a simple string instead of a translation string.

Example:

from pyramid.18n import TranslationString
ts = TranslationString('Add ${item}', domain='mypackage',

mapping={'item':'Item'})
translated = localizer.translate(ts)

Example:

translated = localizer.translate('Add ${item}', domain='mypackage',
mapping={'item':'Item'})

get_localizer(request)
Deprecated since version 1.5: Use the pyramid.request.Request.localizer attribute
directly instead. Retrieve a pyramid.i18n.Localizer object corresponding to the current
request’s locale name.

negotiate_locale_name(request)
Negotiate and return the locale name associated with the current request.

627

51. PYRAMID.I18N

get_locale_name(request)
Deprecated since version 1.5: Use pyramid.request.Request.locale_name directly in-
stead. Return the locale name associated with the current request.

default_locale_negotiator(request)
The default locale negotiator. Returns a locale name or None.

•First, the negotiator looks for the _LOCALE_ attribute of the request object (possibly set by
a view or a listener for an event). If the attribute exists and it is not None, its value will be
used.

•Then it looks for the request.params[’_LOCALE_’] value.

•Then it looks for the request.cookies[’_LOCALE_’] value.

•Finally, the negotiator returns None if the locale could not be determined via any of the
previous checks (when a locale negotiator returns None, it signifies that the default locale
name should be used.)

make_localizer(current_locale_name, translation_directories)
Create a pyramid.i18n.Localizer object corresponding to the provided locale name from
the translations found in the list of translation directories.

See Internationalization and Localization for more information about using Pyramid internationalization
and localization services within an application.

628

CHAPTER 52

API Documentation

Comprehensive reference material for every public API exposed by Pyramid:

52.1 pyramid.interfaces

52.1.1 Event-Related Interfaces

interface IApplicationCreated
Event issued when the pyramid.config.Configurator.make_wsgi_app()
method is called. See the documentation attached to
pyramid.events.ApplicationCreated for more information.

For backwards compatibility with Pyramid ver-
sions before 1.0, this interface can also be imported as
pyramid.interfaces.IWSGIApplicationCreatedEvent.

app
Created application

interface INewRequest
An event type that is emitted whenever Pyramid begins to process a new request. See the
documentation attached to pyramid.events.NewRequest for more information.

629

52. API DOCUMENTATION

request
The request object

interface IContextFound
An event type that is emitted after Pyramid finds a context object but before it calls any
view code. See the documentation attached to pyramid.events.ContextFound
for more information.

For backwards compatibility with versions of Pyra-
mid before 1.0, this event interface can also be imported as
pyramid.interfaces.IAfterTraversal.

request
The request object

interface INewResponse
An event type that is emitted whenever any Pyramid view returns a response. See the
documentation attached to pyramid.events.NewResponse for more informa-
tion.

response
The response object

request
The request object

interface IBeforeRender
Extends: pyramid.interfaces.IDict

Subscribers to this event may introspect and modify the set of renderer globals before
they are passed to a renderer. The event object itself provides a dictionary-like interface
for adding and removing renderer globals. The keys and values of the dictionary are
those globals. For example:

from repoze.events import subscriber
from pyramid.interfaces import IBeforeRender

@subscriber(IBeforeRender)
def add_global(event):

event['mykey'] = 'foo'

See also:

See also Using the Before Render Event.

rendering_val
The value returned by a view or passed to a render method for this rendering.
This feature is new in Pyramid 1.2.

630

52.1. PYRAMID.INTERFACES

52.1.2 Other Interfaces

interface IAuthenticationPolicy
An object representing a Pyramid authentication policy.

authenticated_userid(request)
Return the authenticated userid or None if no authenticated userid can be found.
This method of the policy should ensure that a record exists in whatever persistent
store is used related to the user (the user should not have been deleted); if a record
associated with the current id does not exist in a persistent store, it should return
None.

remember(request, principal, **kw)
Return a set of headers suitable for ‘remembering’ the principal named
principal when set in a response. An individual authentication policy and its
consumers can decide on the composition and meaning of **kw.

forget(request)
Return a set of headers suitable for ‘forgetting’ the current user on subsequent
requests.

unauthenticated_userid(request)
Return the unauthenticated userid. This method performs the same duty as
authenticated_userid but is permitted to return the userid based only on
data present in the request; it needn’t (and shouldn’t) check any persistent store to
ensure that the user record related to the request userid exists.

effective_principals(request)
Return a sequence representing the effective principals including the userid and
any groups belonged to by the current user, including ‘system’ groups such as
Everyone and Authenticated.

interface IAuthorizationPolicy
An object representing a Pyramid authorization policy.

permits(context, principals, permission)
Return True if any of the principals is allowed the permission in the
current context, else return False

principals_allowed_by_permission(context, permission)
Return a set of principal identifiers allowed by the permission in
context. This behavior is optional; if you choose to not imple-
ment it you should define this method as something which raises a
NotImplementedError. This method will only be called when the
pyramid.security.principals_allowed_by_permission API is
used.

631

52. API DOCUMENTATION

interface IExceptionResponse
Extends: pyramid.interfaces.IException,
pyramid.interfaces.IResponse

An interface representing a WSGI response which is also an exception ob-
ject. Register an exception view using this interface as a context to
apply the registered view for all exception types raised by Pyramid inter-
nally (any exception that inherits from pyramid.response.Response,
including pyramid.httpexceptions.HTTPNotFound and
pyramid.httpexceptions.HTTPForbidden).

prepare(environ)
Prepares the response for being called as a WSGI application

interface IRoute
Interface representing the type of object returned from
IRoutesMapper.get_route

generate(kw)
Generate a URL based on filling in the dynamic segment markers in the pattern
using the kw dictionary provided.

match(path)
If the path passed to this function can be matched by the pattern of this route,
return a dictionary (the ‘matchdict’), which will contain keys representing the dy-
namic segment markers in the pattern mapped to values extracted from the pro-
vided path.

If the path passed to this function cannot be matched by the pattern of this
route, return None.

factory
The root factory used by the Pyramid router when this route matches (or None)

name
The route name

pregenerator
This attribute should either be None or a callable object implementing the
IRoutePregenerator interface

pattern
The route pattern

632

52.1. PYRAMID.INTERFACES

predicates
A sequence of route predicate objects used to determine if a request matches this
route or not after basic pattern matching has been completed.

interface IRoutePregenerator

__call__(request, elements, kw)
A pregenerator is a function associated by a developer with a route. The pregen-
erator for a route is called by pyramid.request.Request.route_url()
in order to adjust the set of arguments passed to it by the user for special pur-
poses, such as Pylons ‘subdomain’ support. It will influence the URL returned by
route_url.

A pregenerator should return a two-tuple of (elements, kw) after examin-
ing the originals passed to this function, which are the arguments (request,
elements, kw). The simplest pregenerator is:

def pregenerator(request, elements, kw):
return elements, kw

You can employ a pregenerator by passing a pregenerator argument to the
pyramid.config.Configurator.add_route() function.

interface ISession
Extends: pyramid.interfaces.IDict

An interface representing a session (a web session object, usually accessed via
request.session.

Keys and values of a session must be pickleable.

peek_flash(queue=’‘)
Peek at a queue in the flash storage. The queue remains in flash storage after this
message is called. The queue is returned; it is a list of flash messages added by
pyramid.interfaces.ISession.flash()

invalidate()
Invalidate the session. The action caused by invalidate is implementation-
dependent, but it should have the effect of completely dissociating any data stored
in the session with the current request. It might set response values (such as one
which clears a cookie), or it might not.

An invalidated session may be used after the call to invalidate with the effect
that a new session is created to store the data. This enables workflows requiring an
entirely new session, such as in the case of changing privilege levels or preventing
fixation attacks.

633

52. API DOCUMENTATION

pop_flash(queue=’‘)
Pop a queue from the flash storage. The queue is removed from flash storage after
this message is called. The queue is returned; it is a list of flash messages added
by pyramid.interfaces.ISession.flash()

flash(msg, queue=’‘, allow_duplicate=True)
Push a flash message onto the end of the flash queue represented by queue. An
alternate flash message queue can used by passing an optional queue, which must
be a string. If allow_duplicate is false, if the msg already exists in the queue,
it will not be re-added.

new
Boolean attribute. If True, the session is new.

get_csrf_token()
Return a random cross-site request forgery protection token. It will be a string.
If a token was previously added to the session via new_csrf_token, that to-
ken will be returned. If no CSRF token was previously set into the session,
new_csrf_token will be called, which will create and set a token, and this
token will be returned.

new_csrf_token()
Create and set into the session a new, random cross-site request forgery protection
token. Return the token. It will be a string.

changed()
Mark the session as changed. A user of a session should call this method after
he or she mutates a mutable object that is a value of the session (it should not be
required after mutating the session itself). For example, if the user has stored a dic-
tionary in the session under the key foo, and he or she does session[’foo’]
= {}, changed() needn’t be called. However, if subsequently he or she does
session[’foo’][’a’] = 1, changed() must be called for the sessioning
machinery to notice the mutation of the internal dictionary.

created
Integer representing Epoch time when created.

interface ISessionFactory
An interface representing a factory which accepts a request object and returns an ISes-
sion object

__call__(request)
Return an ISession object

634

52.1. PYRAMID.INTERFACES

interface IRendererInfo
An object implementing this interface is passed to every renderer factory constructor as
its only argument (conventionally named info)

package
The “current package” when the renderer configuration statement was found

registry
The “current” application registry when the renderer was created

type
The renderer type name

settings
The deployment settings dictionary related to the current application

name
The value passed by the user as the renderer name

interface IRendererFactory

__call__(info)
Return an object that implements pyramid.interfaces.IRenderer.
info is an object that implements pyramid.interfaces.IRendererInfo.

interface IRenderer

__call__(value, system)
Call the renderer with the result of the view (value) passed in and return a result
(a string or unicode object useful as a response body). Values computed by the
system are passed by the system in the system parameter, which is a dictionary.
Keys in the dictionary include: view (the view callable that returned the value),
renderer_name (the template name or simple name of the renderer), context
(the context object passed to the view), and request (the request object passed
to the view).

interface IViewMapperFactory

635

52. API DOCUMENTATION

__call__(self, **kw)
Return an object which implements pyramid.interfaces.IViewMapper.
kw will be a dictionary containing view-specific arguments,
such as permission, predicates, attr, renderer,
and other items. An IViewMapperFactory is used by
pyramid.config.Configurator.add_view() to provide a plug-
point to extension developers who want to modify potential view callable
invocation signatures and response values.

interface IViewMapper

__call__(self, object)
Provided with an arbitrary object (a function, class, or instance), returns a
callable with the call signature (context, request). The callable re-
turned should itself return a Response object. An IViewMapper is returned by
pyramid.interfaces.IViewMapperFactory .

interface IDict

popitem()
Pop the item with key k from the dictionary and return it as a two-tuple (k, v). If k
doesn’t exist, raise a KeyError.

keys()
Return a list of keys from the dictionary

__iter__()
Return an iterator over the keys of this dictionary

__delitem__(k)
Delete an item from the dictionary which is passed to the renderer as the renderer
globals dictionary.

setdefault(k, default=None)
Return the existing value for key k in the dictionary. If no value with k exists in
the dictionary, set the default value into the dictionary under the k name passed.
If a value already existed in the dictionary, return it. If a value did not exist in the
dictionary, return the default

values()
Return a list of values from the dictionary

636

52.1. PYRAMID.INTERFACES

pop(k, default=None)
Pop the key k from the dictionary and return its value. If k doesn’t exist, and default
is provided, return the default. If k doesn’t exist and default is not provided, raise
a KeyError.

clear()
Clear all values from the dictionary

__getitem__(k)
Return the value for key k from the dictionary or raise a KeyError if the key doesn’t
exist

__contains__(k)
Return True if key k exists in the dictionary.

__setitem__(k, value)
Set a key/value pair into the dictionary

update(d)
Update the renderer dictionary with another dictionary d.

get(k, default=None)
Return the value for key k from the renderer dictionary, or the default if no such
value exists.

items()
Return a list of [(k,v)] pairs from the dictionary

interface IMultiDict
Extends: pyramid.interfaces.IDict

An ordered dictionary that can have multiple values for each key. A multidict adds the
methods getall, getone, mixed, extend, add, and dict_of_lists to the
normal dictionary interface. A multidict data structure is used as request.POST,
request.GET, and request.params within an Pyramid application.

getone(key)
Get one value matching the key, raising a KeyError if multiple values were found.

mixed()
Returns a dictionary where the values are either single values, or a list of values
when a key/value appears more than once in this dictionary. This is similar to the
kind of dictionary often used to represent the variables in a web request.

637

52. API DOCUMENTATION

extend(other=None, **kwargs)
Add a set of keys and values, not overwriting any previous values. The other
structure may be a list of two-tuples or a dictionary. If **kwargs is passed, its
value will overwrite existing values.

getall(key)
Return a list of all values matching the key (may be an empty list)

add(key, value)
Add the key and value, not overwriting any previous value.

dict_of_lists()
Returns a dictionary where each key is associated with a list of values.

interface IResponse
Represents a WSGI response using the WebOb response interface. Some attribute and
method documentation of this interface references RFC 2616.

This interface is most famously implemented by pyramid.response.Response
and the HTTP exception classes in pyramid.httpexceptions.

headerlist
The list of response headers.

content_disposition
Gets and sets and deletes the Content-Disposition header. For more information on
Content-Disposition see RFC 2616 section 19.5.1.

content_location
Gets and sets and deletes the Content-Location header. For more information on
Content-Location see RFC 2616 section 14.14.

encode_content(encoding=’gzip’, lazy=False)
Encode the content with the given encoding (only gzip and identity are supported).

content_md5
Gets and sets and deletes the Content-MD5 header. For more information on
Content-MD5 see RFC 2616 section 14.14.

app_iter_range(start, stop)
Return a new app_iter built from the response app_iter that serves up only the given
start:stop range.

638

https://tools.ietf.org/html/rfc2616.html

52.1. PYRAMID.INTERFACES

content_length
Gets and sets and deletes the Content-Length header. For more information on
Content-Length see RFC 2616 section 14.17. Converts using int.

charset
Get/set the charset (in the Content-Type)

delete_cookie(key, path=’/’, domain=None)
Delete a cookie from the client. Note that path and domain must match how the
cookie was originally set. This sets the cookie to the empty string, and max_age=0
so that it should expire immediately.

headers
The headers in a dictionary-like object

app_iter
Returns the app_iter of the response.

If body was set, this will create an app_iter from that body (a single-item list)

allow
Gets and sets and deletes the Allow header. Converts using list. For more informa-
tion on Allow see RFC 2616, Section 14.7.

content_encoding
Gets and sets and deletes the Content-Encoding header. For more information
about Content-Encoding see RFC 2616 section 14.11.

md5_etag(body=None, set_content_md5=False)
Generate an etag for the response object using an MD5 hash of the body (the body
parameter, or self.body if not given). Sets self.etag. If set_content_md5 is True
sets self.content_md5 as well

age
Gets and sets and deletes the Age header. Converts using int. For more information
on Age see RFC 2616, section 14.6.

expires
Gets and sets and deletes the Expires header. For more information on Expires see
RFC 2616 section 14.21. Converts using HTTP date.

RequestClass
Alias for pyramid.request.Request

639

52. API DOCUMENTATION

location
Gets and sets and deletes the Location header. For more information on Location
see RFC 2616 section 14.30.

etag
Gets and sets and deletes the ETag header. For more information on ETag see RFC
2616 section 14.19. Converts using Entity tag.

unset_cookie(key, strict=True)
Unset a cookie with the given name (remove it from the response).

server
Gets and sets and deletes the Server header. For more information on Server see
RFC216 section 14.38.

conditional_response_app(environ, start_response)
Like the normal __call__ interface, but checks conditional headers:

•If-Modified-Since (304 Not Modified; only on GET, HEAD)
•If-None-Match (304 Not Modified; only on GET, HEAD)
•Range (406 Partial Content; only on GET, HEAD)

status
The status string.

environ
Get/set the request environ associated with this response, if any.

content_type_params
A dictionary of all the parameters in the content type. This is not a view, set to
change, modifications of the dict would not be applied otherwise.

set_cookie(key, value=’‘, max_age=None, path=’/’, domain=None, se-
cure=False, httponly=False, comment=None, expires=None,
overwrite=False)

Set (add) a cookie for the response

merge_cookies(resp)
Merge the cookies that were set on this response with the given resp object (which
can be any WSGI application). If the resp is a webob.Response object, then the
other object will be modified in-place.

copy()
Makes a copy of the response and returns the copy.

640

52.1. PYRAMID.INTERFACES

content_language
Gets and sets and deletes the Content-Language header. Converts using list. For
more information about Content-Language see RFC 2616 section 14.12.

cache_control
Get/set/modify the Cache-Control header (RFC 2616 section 14.9)

cache_expires
Get/set the Cache-Control and Expires headers. This sets the response to expire in
the number of seconds passed when set.

date
Gets and sets and deletes the Date header. For more information on Date see RFC
2616 section 14.18. Converts using HTTP date.

vary
Gets and sets and deletes the Vary header. For more information on Vary see
section 14.44. Converts using list.

body
The body of the response, as a str. This will read in the entire app_iter if necessary.

__call__(environ, start_response)
WSGI call interface, should call the start_response callback and should return an
iterable

status_int
The status as an integer

retry_after
Gets and sets and deletes the Retry-After header. For more information on Retry-
After see RFC 2616 section 14.37. Converts using HTTP date or delta seconds.

request
Return the request associated with this response if any.

unicode_body
Get/set the unicode value of the body (using the charset of the Content-Type)

content_range
Gets and sets and deletes the Content-Range header. For more information on
Content-Range see section 14.16. Converts using ContentRange object.

641

52. API DOCUMENTATION

pragma
Gets and sets and deletes the Pragma header. For more information on Pragma see
RFC 2616 section 14.32.

body_file
A file-like object that can be used to write to the body. If you passed in a list
app_iter, that app_iter will be modified by writes.

accept_ranges
Gets and sets and deletes the Accept-Ranges header. For more information on
Accept-Ranges see RFC 2616, section 14.5

www_authenticate
Gets and sets and deletes the WWW-Authenticate header. For more information
on WWW-Authenticate see RFC 2616 section 14.47. Converts using ‘parse_auth’
and ‘serialize_auth’.

last_modified
Gets and sets and deletes the Last-Modified header. For more information on Last-
Modified see RFC 2616 section 14.29. Converts using HTTP date.

content_type
Get/set the Content-Type header (or None), without the charset or any parameters.
If you include parameters (or ; at all) when setting the content_type, any existing
parameters will be deleted; otherwise they will be preserved.

interface IIntrospectable
An introspectable object used for configuration introspection. In addition to the meth-
ods below, objects which implement this interface must also implement all the meth-
ods of Python’s collections.MutableMapping (the “dictionary interface”), and
must be hashable.

type_name
Text type name describing this introspectable

__hash__()
Introspectables must be hashable. The typical implementation of an in-
trosepectable’s __hash__ is:

return hash((self.category_name,) + (self.discriminator,))

642

52.1. PYRAMID.INTERFACES

register(introspector, action_info)
Register this IIntrospectable with an introspector. This method is invoked
during action execution. Adds the introspectable and its relations to the
introspector. introspector should be an object implementing IIntro-
spector. action_info should be a object implementing the interface
pyramid.interfaces.IActionInfo representing the call that registered
this introspectable. Pseudocode for an implementation of this method:

def register(self, introspector, action_info):
self.action_info = action_info
introspector.add(self)
for methodname, category_name, discriminator in self._relations:

method = getattr(introspector, methodname)
method((i.category_name, i.discriminator),

(category_name, discriminator))

title
Text title describing this introspectable

category_name
introspection category name

discriminator_hash
an integer hash of the discriminator

discriminator
introspectable discriminator (within category) (must be hashable)

action_info
An IActionInfo object representing the caller that invoked the creation of this in-
trospectable (usually a sentinel until updated during self.register)

unrelate(category_name, discriminator)
Indicate an intent to break the relationship between this IIntrospectable with
another IIntrospectable (the one associated with the category_name and
discriminator) during action execution.

order
integer order in which registered with introspector (managed by introspector, usu-
ally)

643

52. API DOCUMENTATION

relate(category_name, discriminator)
Indicate an intent to relate this IIntrospectable with another IIntrospectable (the
one associated with the category_name and discriminator) during action
execution.

interface IIntrospector

get_category(category_name, default=None, sort_key=None)
Get a sequence of dictionaries in the form
[{’introspectable’:IIntrospectable,
’related’:[sequence of related IIntrospectables]},
...] where each introspectable is part of the category associated with
category_name .

If the category named category_name does not exist in the introspector the
value passed as default will be returned.

If sort_key is None, the sequence will be returned in the order the introspecta-
bles were added to the introspector. Otherwise, sort_key should be a function that
accepts an IIntrospectable and returns a value from it (ala the key function of
Python’s sorted callable).

add(intr)
Add the IIntrospectable intr (use instead of
pyramid.interfaces.IIntrospector.add() when you have a
custom IIntrospectable). Replaces any existing introspectable registered using the
same category/discriminator.

This method is not typically called directly, instead it’s called indirectly by
pyramid.interfaces.IIntrospector.register()

unrelate(*pairs)
Given any number of (category_name, discriminator) pairs passed as
positional arguments, unrelate the associated introspectables from each other. The
introspectable related to each pair must have already been added via .add or
.add_intr; a KeyError will result if this is not true. An error will not be
raised if any pair is not already related to another.

This method is not typically called directly, instead it’s called indirectly by
pyramid.interfaces.IIntrospector.register()

categories()
Return a sorted sequence of category names known by this introspector

644

http://docs.python.org/3/library/exceptions.html#KeyError

52.1. PYRAMID.INTERFACES

related(intr)
Return a sequence of IIntrospectables related to the IIntrospectable intr. Return
the empty sequence if no relations for exist.

remove(category_name, discriminator)
Remove the IIntrospectable related to category_name and discriminator
from the introspector, and fix up any relations that the introspectable participates
in. This method will not raise an error if an introspectable related to the category
name and discriminator does not exist.

get(category_name, discriminator, default=None)
Get the IIntrospectable related to the category_name and the discriminator (or dis-
criminator hash) discriminator. If it does not exist in the introspector, return
the value of default

categorized(sort_key=None)
Get a sequence of tuples in the form [(category_name,
[{’introspectable’:IIntrospectable,
’related’:[sequence of related IIntrospectables]},
...])] representing all known introspectables. If sort_key is None, each
introspectables sequence will be returned in the order the introspectables were
added to the introspector. Otherwise, sort_key should be a function that accepts
an IIntrospectable and returns a value from it (ala the key function of Python’s
sorted callable).

relate(*pairs)
Given any number of (category_name, discriminator) pairs passed
as positional arguments, relate the associated introspectables to each other. The
introspectable related to each pair must have already been added via .add or
.add_intr; a KeyError will result if this is not true. An error will not be
raised if any pair has already been associated with another.

This method is not typically called directly, instead it’s called indirectly by
pyramid.interfaces.IIntrospector.register()

interface IActionInfo
Class which provides code introspection capability associated with an action. The
ParserInfo class used by ZCML implements the same interface.

file
Filename of action-invoking code as a string

__str__()
Return a representation of the action information (including source code from file,
if possible)

645

http://docs.python.org/3/library/exceptions.html#KeyError

52. API DOCUMENTATION

line
Starting line number in file (as an integer) of action-invoking code.This will be
None if the value could not be determined.

interface IAssetDescriptor
Describes an asset.

exists()
Returns True if asset exists, otherwise returns False.

stream()
Returns an input stream for reading asset contents. Raises an exception if the asset
is a directory or does not exist.

listdir()
Returns iterable of filenames of directory contents. Raises an exception if asset is
not a directory.

absspec()
Returns the absolute asset specification for this asset (e.g.
mypackage:templates/foo.pt).

abspath()
Returns an absolute path in the filesystem to the asset.

isdir()
Returns True if the asset is a directory, otherwise returns False.

interface IResourceURL

virtual_path_tuple
The virtual url path of the resource as a tuple. (New in 1.5)

physical_path
The physical url path of the resource as a string.

virtual_path
The virtual url path of the resource as a string.

physical_path_tuple
The physical url path of the resource as a tuple. (New in 1.5)

646

52.2. PYRAMID.LOCATION

52.2 pyramid.location

lineage(resource)
Return a generator representing the lineage of the resource object implied by the resource ar-
gument. The generator first returns resource unconditionally. Then, if resource supplies a
__parent__ attribute, return the resource represented by resource.__parent__. If that
resource has a __parent__ attribute, return that resource’s parent, and so on, until the resource
being inspected either has no __parent__ attribute or which has a __parent__ attribute of
None. For example, if the resource tree is:

thing1 = Thing()
thing2 = Thing()
thing2.__parent__ = thing1

Calling lineage(thing2) will return a generator. When we turn it into a list, we will get:

list(lineage(thing2))
[<Thing object at thing2>, <Thing object at thing1>]

inside(resource1, resource2)
Is resource1 ‘inside’ resource2? Return True if so, else False.

resource1 is ‘inside’ resource2 if resource2 is a lineage ancestor of resource1. It is
a lineage ancestor if its parent (or one of its parent’s parents, etc.) is an ancestor.

52.3 pyramid.paster

bootstrap(config_uri, request=None, options=None)
Load a WSGI application from the PasteDeploy config file specified by config_uri. The envi-
ronment will be configured as if it is currently serving request, leaving a natural environment in
place to write scripts that can generate URLs and utilize renderers.

This function returns a dictionary with app, root, closer, request, and registry keys.
app is the WSGI app loaded (based on the config_uri), root is the traversal root resource of
the Pyramid application, and closer is a parameterless callback that may be called when your
script is complete (it pops a threadlocal stack).

647

52. API DOCUMENTATION

Most operations within Pyramid expect to be invoked within the context of a WSGI
request, thus it’s important when loading your application to anchor it when executing scripts
and other code that is not normally invoked during active WSGI requests.

For a complex config file containing multiple Pyramid applications, this func-
tion will setup the environment under the context of the last-loaded Pyramid applica-
tion. You may load a specific application yourself by using the lower-level functions
pyramid.paster.get_app() and pyramid.scripting.prepare() in conjunc-
tion with pyramid.config.global_registries.

config_uri – specifies the PasteDeploy config file to use for the interactive shell. The format is
inifile#name. If the name is left off, main will be assumed.

request – specified to anchor the script to a given set of WSGI parameters. For example, most
people would want to specify the host, scheme and port such that their script will generate URLs
in relation to those parameters. A request with default parameters is constructed for you if none is
provided. You can mutate the request’s environ later to setup a specific host/port/scheme/etc.

options Is passed to get_app for use as variable assignments like {‘http_port’: 8080} and then
use %(http_port)s in the config file.

See Writing a Script for more information about how to use this function.

get_app(config_uri, name=None, options=None)
Return the WSGI application named name in the PasteDeploy config file specified by
config_uri.

options, if passed, should be a dictionary used as variable assignments like {’http_port’:
8080}. This is useful if e.g. %(http_port)s is used in the config file.

If the name is None, this will attempt to parse the name from the config_uri string expecting
the format inifile#name. If no name is found, the name will default to “main”.

get_appsettings(config_uri, name=None, options=None)
Return a dictionary representing the key/value pairs in an app section within the file represented
by config_uri.

options, if passed, should be a dictionary used as variable assignments like {’http_port’:
8080}. This is useful if e.g. %(http_port)s is used in the config file.

If the name is None, this will attempt to parse the name from the config_uri string expecting
the format inifile#name. If no name is found, the name will default to “main”.

648

52.4. PYRAMID.PATH

setup_logging(config_uri)
Set up logging via the logging module’s fileConfig function with the filename specified via
config_uri (a string in the form filename#sectionname).

ConfigParser defaults are specified for the special __file__ and here variables, similar to Past-
eDeploy config loading.

52.4 pyramid.path

CALLER_PACKAGE
A constant used by the constructor of pyramid.path.DottedNameResolver and
pyramid.path.AssetResolver.

class DottedNameResolver(package=pyramid.path.CALLER_PACKAGE)
A class used to resolve a dotted Python name to a package or module object.

New in version 1.3.

The constructor accepts a single argument named package which may be any of:

•A fully qualified (not relative) dotted name to a module or package

•a Python module or package object

•The value None

•The constant value pyramid.path.CALLER_PACKAGE.

The default value is pyramid.path.CALLER_PACKAGE.

The package is used when a relative dotted name is supplied to the resolve() method. A
dotted name which has a . (dot) or : (colon) as its first character is treated as relative.

If package is None, the resolver will only be able to resolve fully qualified (not relative) names.
Any attempt to resolve a relative name will result in an ValueError exception.

If package is pyramid.path.CALLER_PACKAGE, the resolver will treat relative dotted
names as relative to the caller of the resolve() method.

If package is a module or module name (as opposed to a package or package name), its containing
package is computed and this package used to derive the package name (all names are resolved

649

http://docs.python.org/3/library/exceptions.html#ValueError

52. API DOCUMENTATION

relative to packages, never to modules). For example, if the package argument to this type was
passed the string xml.dom.expatbuilder, and .mindom is supplied to the resolve()
method, the resulting import would be for xml.minidom, because xml.dom.expatbuilder
is a module object, not a package object.

If package is a package or package name (as opposed to a module or module name), this package
will be used to relative compute dotted names. For example, if the package argument to this
type was passed the string xml.dom, and .minidom is supplied to the resolve() method, the
resulting import would be for xml.minidom.

maybe_resolve(dotted)
This method behaves just like resolve(), except if the dotted value passed is not a
string, it is simply returned. For example:

import xml
r = DottedNameResolver()
v = r.maybe_resolve(xml)
v is the xml module; no exception raised

resolve(dotted)
This method resolves a dotted name reference to a global Python object (an object which can
be imported) to the object itself.

Two dotted name styles are supported:

•pkg_resources-style dotted names where non-module attributes of a package are
separated from the rest of the path using a : e.g. package.module:attr.

•zope.dottedname-style dotted names where non-module attributes of a package are
separated from the rest of the path using a . e.g. package.module.attr.

These styles can be used interchangeably. If the supplied name contains a :
(colon), the pkg_resources resolution mechanism will be chosen, otherwise the
zope.dottedname resolution mechanism will be chosen.

If the dotted argument passed to this method is not a string, a ValueError will be raised.

When a dotted name cannot be resolved, a ValueError error is raised.

Example:

650

http://docs.python.org/3/library/exceptions.html#ValueError
http://docs.python.org/3/library/exceptions.html#ValueError

52.4. PYRAMID.PATH

r = DottedNameResolver()
v = r.resolve('xml') # v is the xml module

class AssetResolver(package=pyramid.path.CALLER_PACKAGE)
A class used to resolve an asset specification to an asset descriptor.

New in version 1.3.

The constructor accepts a single argument named package which may be any of:

•A fully qualified (not relative) dotted name to a module or package

•a Python module or package object

•The value None

•The constant value pyramid.path.CALLER_PACKAGE.

The default value is pyramid.path.CALLER_PACKAGE.

The package is used when a relative asset specification is supplied to the resolve() method.
An asset specification without a colon in it is treated as relative.

If package is None, the resolver will only be able to resolve fully qualified (not relative) asset
specifications. Any attempt to resolve a relative asset specification will result in an ValueError
exception.

If package is pyramid.path.CALLER_PACKAGE, the resolver will treat relative asset spec-
ifications as relative to the caller of the resolve() method.

If package is a module or module name (as opposed to a package or package name),
its containing package is computed and this package is used to derive the package name
(all names are resolved relative to packages, never to modules). For example, if the
package argument to this type was passed the string xml.dom.expatbuilder, and
template.pt is supplied to the resolve() method, the resulting absolute asset spec would be
xml.minidom:template.pt, because xml.dom.expatbuilder is a module object, not
a package object.

If package is a package or package name (as opposed to a module or module name), this package
will be used to compute relative asset specifications. For example, if the package argument to
this type was passed the string xml.dom, and template.pt is supplied to the resolve()
method, the resulting absolute asset spec would be xml.minidom:template.pt.

651

http://docs.python.org/3/library/exceptions.html#ValueError

52. API DOCUMENTATION

resolve(spec)
Resolve the asset spec named as spec to an object that has the attributes and methods de-
scribed in pyramid.interfaces.IAssetDescriptor.

If spec is an absolute filename (e.g. /path/to/myproject/templates/foo.pt)
or an absolute asset spec (e.g. myproject:templates.foo.pt), an asset descriptor is
returned without taking into account the package passed to this class’ constructor.

If spec is a relative asset specification (an asset specification without a : in it, e.g.
templates/foo.pt), the package argument of the constructor is used as the package
portion of the asset spec. For example:

a = AssetResolver('myproject')
resolver = a.resolve('templates/foo.pt')
print(resolver.abspath())
-> /path/to/myproject/templates/foo.pt

If the AssetResolver is constructed without a package argument of None, and a relative
asset specification is passed to resolve, an ValueError exception is raised.

52.5 pyramid.registry

class Registry(name=’‘, bases=())
A registry object is an application registry. It is used by the framework itself to perform mappings
of URLs to view callables, as well as servicing other various framework duties. A registry has
its own internal API, but this API is rarely used by Pyramid application developers (it’s usually
only used by developers of the Pyramid framework). But it has a number of attributes that may be
useful to application developers within application code, such as settings, which is a dictionary
containing application deployment settings.

For information about the purpose and usage of the application registry, see Using the Zope Com-
ponent Architecture in Pyramid.

The application registry is usually accessed as request.registry in application code.

settings
The dictionary-like deployment settings object. See Deployment Settings for in-
formation. This object is often accessed as request.registry.settings or
config.registry.settings in a typical Pyramid application.

652

http://docs.python.org/3/library/exceptions.html#ValueError

52.5. PYRAMID.REGISTRY

introspector
New in version 1.3.

When a registry is set up (or created) by a Configurator, the registry will
be decorated with an instance named introspector implementing the
pyramid.interfaces.IIntrospector interface.

See also:

See also pyramid.config.Configurator.introspector.

When a registry is created “by hand”, however, this attribute will not exist until set up by a
configurator.

This attribute is often accessed as request.registry.introspector in a typical
Pyramid application.

notify(*events)
Fire one or more events. All event subscribers to the event(s) will be notified.
The subscribers will be called synchronously. This method is often accessed as
request.registry.notify in Pyramid applications to fire custom events. See Cre-
ating Your Own Events for more information.

class Introspectable
New in version 1.3.

The default implementation of the interface pyramid.interfaces.IIntrospectable
used by framework exenders. An instance of this class is created when
pyramid.config.Configurator.introspectable is called.

class Deferred(func)
Can be used by a third-party configuration extender to wrap a discriminator during configuration if
an immediately hashable discriminator cannot be computed because it relies on unresolved values.
The function should accept no arguments and should return a hashable discriminator.

New in version 1.4.

undefer(v)
Function which accepts an object and returns it unless it is a pyramid.registry.Deferred
instance. If it is an instance of that class, its resolve method is called, and the result of the
method is returned.

New in version 1.4.

class predvalseq
A subtype of tuple used to represent a sequence of predicate values

New in version 1.4.

653

52. API DOCUMENTATION

52.6 pyramid.renderers

get_renderer(renderer_name, package=None)
Return the renderer object for the renderer renderer_name.

You may supply a relative asset spec as renderer_name. If the package argument is supplied,
a relative renderer name will be converted to an absolute asset specification by combining the
package package with the relative asset specification renderer_name. If package is None
(the default), the package name of the caller of this function will be used as the package.

render(renderer_name, value, request=None, package=None)
Using the renderer renderer_name (a template or a static renderer), render the value (or set of
values) present in value. Return the result of the renderer’s __call__ method (usually a string
or Unicode).

If the renderer_name refers to a file on disk, such as when the renderer is
a template, it’s usually best to supply the name as an asset specification (e.g.
packagename:path/to/template.pt).

You may supply a relative asset spec as renderer_name. If the package argument is supplied,
a relative renderer path will be converted to an absolute asset specification by combining the pack-
age package with the relative asset specification renderer_name. If package is None (the
default), the package name of the caller of this function will be used as the package.

The value provided will be supplied as the input to the renderer. Usually, for template renderings,
this should be a dictionary. For other renderers, this will need to be whatever sort of value the
renderer expects.

The ‘system’ values supplied to the renderer will include a basic set of top-level system names,
such as request, context, renderer_name, and view. See System Values Used During
Rendering for the full list. If renderer globals have been specified, these will also be used to
augment the value.

Supply a request parameter in order to provide the renderer with the most correct ‘system’ values
(request and context in particular).

render_to_response(renderer_name, value, request=None, package=None)
Using the renderer renderer_name (a template or a static renderer), render the value (or set of
values) using the result of the renderer’s __call__ method (usually a string or Unicode) as the
response body.

If the renderer name refers to a file on disk (such as when the renderer is a template), it’s usually
best to supply the name as a asset specification.

654

52.6. PYRAMID.RENDERERS

You may supply a relative asset spec as renderer_name. If the package argument is supplied,
a relative renderer name will be converted to an absolute asset specification by combining the
package package with the relative asset specification renderer_name. If you do not supply a
package (or package is None) the package name of the caller of this function will be used as
the package.

The value provided will be supplied as the input to the renderer. Usually, for template renderings,
this should be a dictionary. For other renderers, this will need to be whatever sort of value the
renderer expects.

The ‘system’ values supplied to the renderer will include a basic set of top-level system names,
such as request, context, renderer_name, and view. See System Values Used During
Rendering for the full list. If renderer globals have been specified, these will also be used to
argument the value.

Supply a request parameter in order to provide the renderer with the most correct ‘system’
values (request and context in particular). Keep in mind that if the request parameter is
not passed in, any changes to request.response attributes made before calling this function
will be ignored.

class JSON(serializer=<function dumps>, adapters=(), **kw)
Renderer that returns a JSON-encoded string.

Configure a custom JSON renderer using the add_renderer() API at application startup time:

from pyramid.config import Configurator

config = Configurator()
config.add_renderer('myjson', JSON(indent=4))

Once this renderer is registered as above, you can use myjson as the renderer= parameter to
@view_config or add_view‘():

from pyramid.view import view_config

@view_config(renderer='myjson')
def myview(request):

return {'greeting':'Hello world'}

Custom objects can be serialized using the renderer by either implementing the __json__ magic
method, or by registering adapters with the renderer. See Serializing Custom Objects for more
information.

655

52. API DOCUMENTATION

The default serializer uses json.JSONEncoder. A different serializer can be speci-
fied via the serializer argument. Custom serializers should accept the object, a callback
default, and any extra kw keyword arguments passed during renderer construction. This
feature isn’t widely used but it can be used to replace the stock JSON serializer with, say, sim-
plejson. If all you want to do, however, is serialize custom objects, you should use the method
explained in Serializing Custom Objects instead of replacing the serializer.

New in version 1.4: Prior to this version, there was no public API for supplying options to the
underlying serializer without defining a custom renderer.

add_adapter(type_or_iface, adapter)
When an object of the type (or interface) type_or_iface fails to automatically encode
using the serializer, the renderer will use the adapter adapter to convert it into a JSON-
serializable object. The adapter must accept two arguments: the object and the currently
active request.

class Foo(object):
x = 5

def foo_adapter(obj, request):
return obj.x

renderer = JSON(indent=4)
renderer.add_adapter(Foo, foo_adapter)

When you’ve done this, the JSON renderer will be able to serialize instances of the Foo class
when they’re encountered in your view results.

class JSONP(param_name=’callback’, **kw)
JSONP renderer factory helper which implements a hybrid json/jsonp renderer. JSONP is useful
for making cross-domain AJAX requests.

Configure a JSONP renderer using the pyramid.config.Configurator.add_renderer()
API at application startup time:

from pyramid.config import Configurator

config = Configurator()
config.add_renderer('jsonp', JSONP(param_name='callback'))

The class’ constructor also accepts arbitrary keyword arguments. All keyword arguments except
param_name are passed to the json.dumps function as its keyword arguments.

656

http://en.wikipedia.org/wiki/JSONP

52.6. PYRAMID.RENDERERS

from pyramid.config import Configurator

config = Configurator()
config.add_renderer('jsonp', JSONP(param_name='callback', indent=4))

Changed in version 1.4: The ability of this class to accept a **kw in its constructor.

The arguments passed to this class’ constructor mean the same thing as the arguments passed to
pyramid.renderers.JSON (including serializer and adapters).

Once this renderer is registered via add_renderer() as above, you
can use jsonp as the renderer= parameter to @view_config or
pyramid.config.Configurator.add_view‘():

from pyramid.view import view_config

@view_config(renderer='jsonp')
def myview(request):

return {'greeting':'Hello world'}

When a view is called that uses the JSONP renderer:

•If there is a parameter in the request’s HTTP query string that matches the param_name of
the registered JSONP renderer (by default, callback), the renderer will return a JSONP
response.

•If there is no callback parameter in the request’s query string, the renderer will return a ‘plain’
JSON response.

New in version 1.1.

See also:

See also JSONP Renderer.

add_adapter(type_or_iface, adapter)
When an object of the type (or interface) type_or_iface fails to automatically encode
using the serializer, the renderer will use the adapter adapter to convert it into a JSON-
serializable object. The adapter must accept two arguments: the object and the currently
active request.

657

52. API DOCUMENTATION

class Foo(object):
x = 5

def foo_adapter(obj, request):
return obj.x

renderer = JSON(indent=4)
renderer.add_adapter(Foo, foo_adapter)

When you’ve done this, the JSON renderer will be able to serialize instances of the Foo class
when they’re encountered in your view results.

null_renderer
An object that can be used in advanced integration cases as input to the view configuration
renderer= argument. When the null renderer is used as a view renderer argument, Pyramid
avoids converting the view callable result into a Response object. This is useful if you want to
reuse the view configuration and lookup machinery outside the context of its use by the Pyramid
router.

52.7 pyramid.request

class Request(environ, charset=None, unicode_errors=None, decode_param_names=None,
**kw)

A subclass of the WebOb Request class. An instance of this class is created by the router and is
provided to a view callable (and to other subsystems) as the request argument.

The documentation below (save for the add_response_callback and
add_finished_callback methods, which are defined in this subclass itself, and the attributes
context, registry, root, subpath, traversed, view_name, virtual_root , and
virtual_root_path, each of which is added to the request by the router at request ingress
time) are autogenerated from the WebOb source code used when this documentation was generated.

Due to technical constraints, we can’t yet display the WebOb version number from which this
documentation is autogenerated, but it will be the ‘prevailing WebOb version’ at the time of the
release of this Pyramid version. See http://webob.org/ for further information.

context
The context will be available as the context attribute of the request object. It will be the
context object implied by the current request. See Traversal for information about context
objects.

658

http://webob.org/

52.7. PYRAMID.REQUEST

registry
The application registry will be available as the registry attribute of the request object.
See Using the Zope Component Architecture in Pyramid for more information about the ap-
plication registry.

root
The root object will be available as the root attribute of the request object. It will be the
resource object at which traversal started (the root). See Traversal for information about root
objects.

subpath
The traversal subpath will be available as the subpath attribute of the request object. It
will be a sequence containing zero or more elements (which will be Unicode objects). See
Traversal for information about the subpath.

traversed
The “traversal path” will be available as the traversed attribute of the request object. It
will be a sequence representing the ordered set of names that were used to traverse to the
context, not including the view name or subpath. If there is a virtual root associated with the
request, the virtual root path is included within the traversal path. See Traversal for more
information.

view_name
The view name will be available as the view_name attribute of the request object. It will be
a single string (possibly the empty string if we’re rendering a default view). See Traversal for
information about view names.

virtual_root
The virtual root will be available as the virtual_root attribute of the request object. It
will be the virtual root object implied by the current request. See Virtual Hosting for more
information about virtual roots.

virtual_root_path
The virtual root path will be available as the virtual_root_path attribute of the request
object. It will be a sequence representing the ordered set of names that were used to traverse
to the virtual root object. See Virtual Hosting for more information about virtual roots.

exception
If an exception was raised by a root factory or a view callable, or at various other points
where Pyramid executes user-defined code during the processing of a request, the exception
object which was caught will be available as the exception attribute of the request within a
exception view, a response callback or a finished callback. If no exception occurred, the value
of request.exception will be None within response and finished callbacks.

659

52. API DOCUMENTATION

exc_info
If an exception was raised by a root factory or a view callable, or at various other points
where Pyramid executes user-defined code during the processing of a request, result of
sys.exc_info() will be available as the exc_info attribute of the request within a
exception view, a response callback or a finished callback. If no exception occurred, the value
of request.exc_info will be None within response and finished callbacks.

response
This attribute is actually a “reified” property which returns an instance of the
pyramid.response.Response class. The response object returned does not exist until
this attribute is accessed. Once it is accessed, subsequent accesses to this request object will
return the same Response object.

The request.response API can is used by renderers. A render obtains the response
object it will return from a view that uses that renderer by accessing request.response.
Therefore, it’s possible to use the request.response API to set up a response object
with “the right” attributes (e.g. by calling request.response.set_cookie(...)
or request.response.content_type = ’text/plain’, etc) within a view that
uses a renderer. For example, within a view that uses a renderer:

response = request.response
response.set_cookie('mycookie', 'mine, all mine!')
return {'text':'Value that will be used by the renderer'}

Mutations to this response object will be preserved in the response sent to the client after
rendering. For more information about using request.response in conjunction with a
renderer, see Varying Attributes of Rendered Responses.

Non-renderer code can also make use of request.response instead of creating a response “by
hand”. For example, in view code:

response = request.response
response.body = 'Hello!'
response.content_type = 'text/plain'
return response

Note that the response in this circumstance is not “global”; it still must be returned from the
view code if a renderer is not used.

session
If a session factory has been configured, this attribute will represent the current user’s session
object. If a session factory has not been configured, requesting the request.session
attribute will cause a pyramid.exceptions.ConfigurationError to be raised.

660

52.7. PYRAMID.REQUEST

matchdict
If a route has matched during this request, this attribute will be a dictionary containing the
values matched by the URL pattern associated with the route. If a route has not matched
during this request, the value of this attribute will be None. See The Matchdict.

matched_route
If a route has matched during this request, this attribute will be an object representing the route
matched by the URL pattern associated with the route. If a route has not matched during this
request, the value of this attribute will be None. See The Matched Route.

authenticated_userid
New in version 1.5.

A property which returns the userid of the currently authenticated user or None if there is
no authentication policy in effect or there is no currently authenticated user. This differs
from unauthenticated_userid, because the effective authentication policy will have
ensured that a record associated with the userid exists in persistent storage; if it has not, this
value will be None.

unauthenticated_userid
New in version 1.5.

A property which returns a value which represents the claimed (not verified) user id of the cre-
dentials present in the request. None if there is no authentication policy in effect or there is no
user data associated with the current request. This differs from authenticated_userid,
because the effective authentication policy will not ensure that a record associated with the
userid exists in persistent storage. Even if the userid does not exist in persistent storage, this
value will be the value of the userid claimed by the request data.

effective_principals
New in version 1.5.

A property which returns the list of ‘effective’ principal identifiers for this request. This
will include the userid of the currently authenticated user if a user is currently authenti-
cated. If no authentication policy is in effect, this will return a sequence containing only
the pyramid.security.Everyone principal.

invoke_subrequest(request, use_tweens=False)
New in version 1.4a1.

Obtain a response object from the Pyramid application based on information in the request
object provided. The request object must be an object that implements the Pyramid request
interface (such as a pyramid.request.Request instance). If use_tweens is True,
the request will be sent to the tween in the tween stack closest to the request ingress. If
use_tweens is False, the request will be sent to the main router handler, and no tweens
will be invoked.

This function also:

661

52. API DOCUMENTATION

•manages the threadlocal stack (so that get_current_request() and
get_current_registry() work during a request)

•Adds a registry attribute (the current Pyramid registry) and a
invoke_subrequest attribute (a callable) to the request object it’s handed.

•sets request extensions (such as those added via add_request_method() or
set_request_property()) on the request it’s passed.

•causes a NewRequest event to be sent at the beginning of request processing.

•causes a ContextFound event to be sent when a context resource is found.

•Ensures that the user implied by the request passed has the necessary authorization to
invoke view callable before calling it.

•Calls any response callback functions defined within the request’s lifetime if a response
is obtained from the Pyramid application.

•causes a NewResponse event to be sent if a response is obtained.

•Calls any finished callback functions defined within the request’s lifetime.

invoke_subrequest isn’t actually a method of the Request object; it’s a callable added
when the Pyramid router is invoked, or when a subrequest is invoked. This means that it’s not
available for use on a request provided by e.g. the pshell environment.

See also:

See also Invoking a Subrequest.

has_permission(permission, context=None)
Given a permission and an optional context, returns an instance of
pyramid.security.Allowed if the permission is granted to this request with the
provided context, or the context already associated with the request. Otherwise, returns
an instance of pyramid.security.Denied. This method delegates to the current
authentication and authorization policies. Returns pyramid.security.Allowed
unconditionally if no authentication policy has been registered for this request. If context
is not supplied or is supplied as None, the context used is the request.context attribute.

Parameters

• permission (unicode, str) – Does this request have the given per-
mission?

662

52.7. PYRAMID.REQUEST

• context (object) – A resource object or None

Returns pyramid.security.PermitsResult

New in version 1.5.

add_response_callback(callback)
Add a callback to the set of callbacks to be called by the router at a point after a response
object is successfully created. Pyramid does not have a global response object: this function-
ality allows an application to register an action to be performed against the response once one
is created.

A ‘callback’ is a callable which accepts two positional parameters: request and
response. For example:

1 def cache_callback(request, response):
2 'Set the cache_control max_age for the response'
3 response.cache_control.max_age = 360
4 request.add_response_callback(cache_callback)

Response callbacks are called in the order they’re added (first-to-most-recently-added). No
response callback is called if an exception happens in application code, or if the response
object returned by view code is invalid.

All response callbacks are called after the tweens and before the
pyramid.events.NewResponse event is sent.

Errors raised by callbacks are not handled specially. They will be propagated to the caller of
the Pyramid router application.

See also:

See also Using Response Callbacks.

add_finished_callback(callback)
Add a callback to the set of callbacks to be called unconditionally by the router at the very
end of request processing.

callback is a callable which accepts a single positional parameter: request. For exam-
ple:

663

http://docs.python.org/3/library/functions.html#object

52. API DOCUMENTATION

1 import transaction
2

3 def commit_callback(request):
4 '''commit or abort the transaction associated with request'''
5 if request.exception is not None:
6 transaction.abort()
7 else:
8 transaction.commit()
9 request.add_finished_callback(commit_callback)

Finished callbacks are called in the order they’re added (first- to most-recently- added). Fin-
ished callbacks (unlike response callbacks) are always called, even if an exception happens in
application code that prevents a response from being generated.

The set of finished callbacks associated with a request are called very late in the processing
of that request; they are essentially the last thing called by the router. They are called after
response processing has already occurred in a top-level finally: block within the router
request processing code. As a result, mutations performed to the request provided to a fin-
ished callback will have no meaningful effect, because response processing will have already
occurred, and the request’s scope will expire almost immediately after all finished callbacks
have been processed.

Errors raised by finished callbacks are not handled specially. They will be propagated to the
caller of the Pyramid router application.

See also:

See also Using Finished Callbacks.

route_url(route_name, *elements, **kw)
Generates a fully qualified URL for a named Pyramid route configuration.

Use the route’s name as the first positional argument. Additional positional arguments
(*elements) are appended to the URL as path segments after it is generated.

Use keyword arguments to supply values which match any dynamic path elements in the route
definition. Raises a KeyError exception if the URL cannot be generated for any reason (not
enough arguments, for example).

For example, if you’ve defined a route named “foobar” with the path
{foo}/{bar}/*traverse:

664

http://docs.python.org/3/library/exceptions.html#KeyError

52.7. PYRAMID.REQUEST

request.route_url('foobar',
foo='1') => <KeyError exception>

request.route_url('foobar',
foo='1',
bar='2') => <KeyError exception>

request.route_url('foobar',
foo='1',
bar='2',
traverse=('a','b')) => http://e.com/1/2/a/b

request.route_url('foobar',
foo='1',
bar='2',
traverse='/a/b') => http://e.com/1/2/a/b

Values replacing :segment arguments can be passed as strings or Unicode objects. They
will be encoded to UTF-8 and URL-quoted before being placed into the generated URL.

Values replacing *remainder arguments can be passed as strings or tuples of Uni-
code/string values. If a tuple is passed as a *remainder replacement value, its values
are URL-quoted and encoded to UTF-8. The resulting strings are joined with slashes and
rendered into the URL. If a string is passed as a *remainder replacement value, it is tacked
on to the URL after being URL-quoted-except-for-embedded-slashes.

If no _query keyword argument is provided, the request query string will be returned in the
URL. If it is present, it will be used to compose a query string that will be tacked on to the
end of the URL, replacing any request query string. The value of _query may be a sequence
of two-tuples or a data structure with an .items() method that returns a sequence of two-
tuples (presumably a dictionary). This data structure will be turned into a query string per
the documentation of pyramid.url.urlencode() function. This will produce a query
string in the x-www-form-urlencoded format. A non-x-www-form-urlencoded
query string may be used by passing a string value as _query in which case it will be URL-
quoted (e.g. query=”foo bar” will become “foo%20bar”). However, the result will not need
to be in k=v form as required by x-www-form-urlencoded. After the query data is
turned into a query string, a leading ? is prepended, and the resulting string is appended to
the generated URL.

Python data structures that are passed as _query which are sequences
or dictionaries are turned into a string under the same rules as when run through
urllib.urlencode() with the doseq argument equal to True. This means that
sequences can be passed as values, and a k=v pair will be placed into the query string for
each value.

665

http://docs.python.org/library/urllib.html#urllib.urlencode

52. API DOCUMENTATION

Changed in version 1.5: Allow the _query option to be a string to enable alternative encod-
ings.

If a keyword argument _anchor is present, its string representation will be quoted per RFC
3986#section-3.5 and used as a named anchor in the generated URL (e.g. if _anchor is
passed as foo and the route URL is http://example.com/route/url, the resulting
generated URL will be http://example.com/route/url#foo).

If _anchor is passed as a string, it should be UTF-8 encoded. If _anchor is
passed as a Unicode object, it will be converted to UTF-8 before being appended to the
URL.

Changed in version 1.5: The _anchor option will be escaped instead of using its raw string
representation.

If both _anchor and _query are specified, the anchor element will always follow the query
element, e.g. http://example.com?foo=1#bar.

If any of the keyword arguments _scheme, _host, or _port is passed and is non-None,
the provided value will replace the named portion in the generated URL. For example, if you
pass _host=’foo.com’, and the URL that would have been generated without the host
replacement is http://example.com/a, the result will be http://foo.com/a.

Note that if _scheme is passed as https, and _port is not passed, the _port value is
assumed to have been passed as 443. Likewise, if _scheme is passed as http and _port
is not passed, the _port value is assumed to have been passed as 80. To avoid this behavior,
always explicitly pass _port whenever you pass _scheme.

If a keyword _app_url is present, it will be used as the proto-
col/hostname/port/leading path prefix of the generated URL. For example, using
an _app_url of http://example.com:8080/foo would cause the URL
http://example.com:8080/foo/fleeb/flub to be returned from this
function if the expansion of the route pattern associated with the route_name
expanded to /fleeb/flub. If _app_url is not specified, the result of
request.application_url will be used as the prefix (the default).

If both _app_url and any of _scheme, _host, or _port are passed, _app_url takes
precedence and any values passed for _scheme, _host, and _port will be ignored.

This function raises a KeyError if the URL cannot be generated due to missing replacement
names. Extra replacement names are ignored.

If the route object which matches the route_name argument has a pregenerator, the
*elements and **kw arguments passed to this function might be augmented or changed.

666

https://tools.ietf.org/html/rfc3986.html#section-3.5
https://tools.ietf.org/html/rfc3986.html#section-3.5
http://docs.python.org/3/library/exceptions.html#KeyError

52.7. PYRAMID.REQUEST

route_path(route_name, *elements, **kw)
Generates a path (aka a ‘relative URL’, a URL minus the host, scheme, and port) for a named
Pyramid route configuration.

This function accepts the same argument as pyramid.request.Request.route_url()
and performs the same duty. It just omits the host, port, and scheme information in the
return value; only the script_name, path, query parameters, and anchor data are present in the
returned string.

For example, if you’ve defined a route named ‘foobar’ with the path /{foo}/{bar}, this
call to route_path:

request.route_path('foobar', foo='1', bar='2')

Will return the string /1/2.

Calling request.route_path(’route’) is the same as call-
ing request.route_url(’route’, _app_url=request.script_name).
pyramid.request.Request.route_path() is, in fact, implemented in terms
of pyramid.request.Request.route_url() in just this way. As a result, any
_app_url passed within the **kw values to route_path will be ignored.

current_route_url(*elements, **kw)
Generates a fully qualified URL for a named Pyramid route configuration based on the ‘cur-
rent route’.

This function supplements pyramid.request.Request.route_url(). It presents
an easy way to generate a URL for the ‘current route’ (defined as the route which matched
when the request was generated).

The arguments to this method have the same meaning as those with the same names passed to
pyramid.request.Request.route_url(). It also understands an extra argument
which route_url does not named _route_name.

The route name used to generate a URL is taken from either the _route_name key-
word argument or the name of the route which is currently associated with the request
if _route_name was not passed. Keys and values from the current request matchdict
are combined with the kw arguments to form a set of defaults named newkw. Then
request.route_url(route_name, *elements, **newkw) is called, returning
a URL.

667

52. API DOCUMENTATION

Examples follow.

If the ‘current route’ has the route pattern /foo/{page} and the current url
path is /foo/1 , the matchdict will be {’page’:’1’}. The result of
request.current_route_url() in this situation will be /foo/1.

If the ‘current route’ has the route pattern /foo/{page} and the current
url path is /foo/1, the matchdict will be {’page’:’1’}. The result of
request.current_route_url(page=’2’) in this situation will be /foo/2.

Usage of the _route_name keyword argument: if our routing table defines routes
/foo/{action} named ‘foo’ and /foo/{action}/{page} named fooaction, and
the current url pattern is /foo/view (which has matched the /foo/{action} route),
we may want to use the matchdict args to generate a URL to the fooaction route.
In this scenario, request.current_route_url(_route_name=’fooaction’,
page=’5’) Will return string like: /foo/view/5.

current_route_path(*elements, **kw)
Generates a path (aka a ‘relative URL’, a URL minus the host, scheme, and port) for the
Pyramid route configuration matched by the current request.

This function accepts the same argument as pyramid.request.Request.current_route_url()
and performs the same duty. It just omits the host, port, and scheme information in the
return value; only the script_name, path, query parameters, and anchor data are present in the
returned string.

For example, if the route matched by the current request has the pattern /{foo}/{bar},
this call to current_route_path:

request.current_route_path(foo='1', bar='2')

Will return the string /1/2.

Calling request.current_route_path(’route’) is
the same as calling request.current_route_url(’route’,
_app_url=request.script_name). pyramid.request.Request.current_route_path()
is, in fact, implemented in terms of pyramid.request.Request.current_route_url()
in just this way. As a result, any _app_url passed within the **kw values to
current_route_path will be ignored.

668

52.7. PYRAMID.REQUEST

static_url(path, **kw)
Generates a fully qualified URL for a static asset. The asset must live within a location
defined via the pyramid.config.Configurator.add_static_view() configu-
ration declaration (see Serving Static Assets).

Example:

request.static_url('mypackage:static/foo.css') =>

http://example.com/static/foo.css

The path argument points at a file or directory on disk which a URL should be gen-
erated for. The path may be either a relative path (e.g. static/foo.css) or an
absolute path (e.g. /abspath/to/static/foo.css) or a asset specification (e.g.
mypackage:static/foo.css).

The purpose of the **kw argument is the same as the purpose of the
pyramid.request.Request.route_url() **kw argument. See the docu-
mentation for that function to understand the arguments which you can provide to it.
However, typically, you don’t need to pass anything as *kw when generating a static asset
URL.

This function raises a ValueError if a static view definition cannot be found which matches
the path specification.

static_path(path, **kw)
Generates a path (aka a ‘relative URL’, a URL minus the host, scheme, and port) for a static
resource.

This function accepts the same argument as pyramid.request.Request.static_url()
and performs the same duty. It just omits the host, port, and scheme information in the
return value; only the script_name, path, query parameters, and anchor data are present in the
returned string.

Example:

request.static_path('mypackage:static/foo.css') =>

/static/foo.css

669

http://docs.python.org/3/library/exceptions.html#ValueError

52. API DOCUMENTATION

Calling request.static_path(apath) is the same as calling
request.static_url(apath, _app_url=request.script_name).
pyramid.request.Request.static_path() is, in fact, implemented in terms
of :meth:‘pyramid.request.Request.static_url in just this way. As a result, any _app_url
passed within the **kw values to static_path will be ignored.

resource_url(resource, *elements, **kw)
Generate a string representing the absolute URL of the resource object based on
the wsgi.url_scheme, HTTP_HOST or SERVER_NAME in the request, plus any
SCRIPT_NAME. The overall result of this method is always a UTF-8 encoded string.

Examples:

request.resource_url(resource) =>

http://example.com/

request.resource_url(resource, 'a.html') =>

http://example.com/a.html

request.resource_url(resource, 'a.html', query={'q':'1'}) =>

http://example.com/a.html?q=1

request.resource_url(resource, 'a.html', anchor='abc') =>

http://example.com/a.html#abc

request.resource_url(resource, app_url='') =>

/

Any positional arguments passed in as elementsmust be strings Unicode objects, or integer
objects. These will be joined by slashes and appended to the generated resource URL. Each
of the elements passed in is URL-quoted before being appended; if any element is Unicode, it
will converted to a UTF-8 bytestring before being URL-quoted. If any element is an integer,
it will be converted to its string representation before being URL-quoted.

if no elements arguments are specified, the resource URL will end with a trailing
slash. If any elements are used, the generated URL will not end in a trailing slash.

670

52.7. PYRAMID.REQUEST

If a keyword argument query is present, it will be used to compose a query string that will
be tacked on to the end of the URL. The value of query may be a sequence of two-tuples or
a data structure with an .items() method that returns a sequence of two-tuples (presum-
ably a dictionary). This data structure will be turned into a query string per the documen-
tation of :func:pyramid.url.urlencode function. This will produce a query string in
the x-www-form-urlencoded encoding. A non-x-www-form-urlencoded query
string may be used by passing a string value as query in which case it will be URL-quoted
(e.g. query=”foo bar” will become “foo%20bar”). However, the result will not need to be in
k=v form as required by x-www-form-urlencoded. After the query data is turned into
a query string, a leading ? is prepended, and the resulting string is appended to the generated
URL.

Python data structures that are passed as query which are sequences or
dictionaries are turned into a string under the same rules as when run through
urllib.urlencode() with the doseq argument equal to True. This means that
sequences can be passed as values, and a k=v pair will be placed into the query string for
each value.

Changed in version 1.5: Allow the query option to be a string to enable alternative encod-
ings.

If a keyword argument anchor is present, its string representation will be used as a
named anchor in the generated URL (e.g. if anchor is passed as foo and the resource
URL is http://example.com/resource/url, the resulting generated URL will be
http://example.com/resource/url#foo).

If anchor is passed as a string, it should be UTF-8 encoded. If anchor is passed
as a Unicode object, it will be converted to UTF-8 before being appended to the URL.

Changed in version 1.5: The anchor option will be escaped instead of using its raw string
representation.

If both anchor and query are specified, the anchor element will always follow the query
element, e.g. http://example.com?foo=1#bar.

If any of the keyword arguments scheme, host, or port is passed and is non-None, the
provided value will replace the named portion in the generated URL. For example, if you
pass host=’foo.com’, and the URL that would have been generated without the host
replacement is http://example.com/a, the result will be http://foo.com/a.

671

http://docs.python.org/library/urllib.html#urllib.urlencode

52. API DOCUMENTATION

If scheme is passed as https, and an explicit port is not passed, the port value is
assumed to have been passed as 443. Likewise, if scheme is passed as http and port is
not passed, the port value is assumed to have been passed as 80. To avoid this behavior,
always explicitly pass port whenever you pass scheme.

If a keyword argument app_url is passed and is not None, it should be a string that will
be used as the port/hostname/initial path portion of the generated URL instead of the default
request application URL. For example, if app_url=’http://foo’, then the resulting url
of a resource that has a path of /baz/bar will be http://foo/baz/bar. If you want
to generate completely relative URLs with no leading scheme, host, port, or initial path, you
can pass app_url=’’. Passing app_url=’’ when the resource path is /baz/bar will
return /baz/bar.

New in version 1.3: app_url

If app_url is passed and any of scheme, port, or host are also passed, app_url will
take precedence and the values passed for scheme, host, and/or port will be ignored.

If the resource passed in has a __resource_url__ method, it will be used to generate
the URL (scheme, host, port, path) for the base resource which is operated upon by this
function.

See also:

See also Overriding Resource URL Generation.

New in version 1.5: route_name, route_kw, and route_remainder_name

If route_name is passed, this function will delegate its URL production to the route_url
function. Calling resource_url(someresource, ’element1’, ’element2’,
query={’a’:1}, route_name=’blogentry’) is roughly equivalent to doing:

remainder_path = request.resource_path(someobject)
url = request.route_url(

'blogentry',
'element1',
'element2',
_query={'a':'1'},
traverse=traversal_path,
)

672

52.7. PYRAMID.REQUEST

It is only sensible to pass route_name if the route being named has a *remainder stararg
value such as *traverse. The remainder value will be ignored in the output otherwise.

By default, the resource path value will be passed as the name traversewhen route_url
is called. You can influence this by passing a different route_remainder_name value if
the route has a different *stararg value at its end. For example if the route pattern you
want to replace has a *subpath stararg ala /foo*subpath:

request.resource_url(
resource,
route_name='myroute',
route_remainder_name='subpath'
)

If route_name is passed, it is also permissible to pass route_kw,
which will passed as additional keyword arguments to route_url. Say-
ing resource_url(someresource, ’element1’, ’element2’,
route_name=’blogentry’, route_kw={’id’:’4’}, _query={’a’:’1’})
is roughly equivalent to:

remainder_path = request.resource_path_tuple(someobject)
kw = {'id':'4', '_query':{'a':'1'}, 'traverse':traversal_path}
url = request.route_url(

'blogentry',
'element1',
'element2',

**kw,
)

If route_kw or route_remainder_name is passed, but route_name is not passed,
both route_kw and route_remainder_name will be ignored. If route_name is
passed, the __resource_url__ method of the resource passed is ignored uncondition-
ally. This feature is incompatible with resources which generate their own URLs.

If the resource used is the result of a traversal, it must be location-aware. The
resource can also be the context of a URL dispatch; contexts found this way do not need
to be location-aware.

If a ‘virtual root path’ is present in the request environment (the value of the WSGI
environ key HTTP_X_VHM_ROOT), and the resource was obtained via traversal, the URL
path will not include the virtual root prefix (it will be stripped off the left hand side of the
generated URL).

673

52. API DOCUMENTATION

For backwards compatibility purposes, this method is also aliased as the
model_url method of request.

resource_path(resource, *elements, **kw)
Generates a path (aka a ‘relative URL’, a URL minus the host, scheme, and port) for a re-
source.

This function accepts the same argument as pyramid.request.Request.resource_url()
and performs the same duty. It just omits the host, port, and scheme information in the
return value; only the script_name, path, query parameters, and anchor data are present in the
returned string.

Calling request.resource_path(resource) is
the same as calling request.resource_path(resource,
app_url=request.script_name). pyramid.request.Request.resource_path()
is, in fact, implemented in terms of pyramid.request.Request.resource_url()
in just this way. As a result, any app_url passed within the **kw values to
route_path will be ignored. scheme, host, and port are also ignored.

json_body
This property will return the JSON-decoded variant of the request body. If the request body
is not well-formed JSON, or there is no body associated with this request, this property will
raise an exception.

See also:

See also Dealing with a JSON-Encoded Request Body.

set_property(callable, name=None, reify=False)
Add a callable or a property descriptor to the request instance.

Properties, unlike attributes, are lazily evaluated by executing an underlying callable when
accessed. They can be useful for adding features to an object without any cost if those features
go unused.

A property may also be reified via the pyramid.decorator.reify decorator by setting
reify=True, allowing the result of the evaluation to be cached. Thus the value of the
property is only computed once for the lifetime of the object.

callable can either be a callable that accepts the request as its single positional parameter,
or it can be a property descriptor.

674

52.7. PYRAMID.REQUEST

If the callable is a property descriptor a ValueError will be raised if name is None or
reify is True.

If name is None, the name of the property will be computed from the name of the callable.

1 def _connect(request):
2 conn = request.registry.dbsession()
3 def cleanup(request):
4 # since version 1.5, request.exception is no
5 # longer eagerly cleared
6 if request.exception is not None:
7 conn.rollback()
8 else:
9 conn.commit()

10 conn.close()
11 request.add_finished_callback(cleanup)
12 return conn
13

14 @subscriber(NewRequest)
15 def new_request(event):
16 request = event.request
17 request.set_property(_connect, 'db', reify=True)

The subscriber doesn’t actually connect to the database, it just provides the API which, when
accessed via request.db, will create the connection. Thanks to reify, only one connection
is made per-request even if request.db is accessed many times.

This pattern provides a way to augment the request object without having to subclass it,
which can be useful for extension authors.

New in version 1.3.

localizer
A localizer which will use the current locale name to translate values.

New in version 1.5.

locale_name
The locale name of the current request as computed by the locale negotiator.

New in version 1.5.

GET
Return a MultiDict containing all the variables from the QUERY_STRING.

675

52. API DOCUMENTATION

POST
Return a MultiDict containing all the variables from a form request. Returns an empty dict-
like object for non-form requests.

Form requests are typically POST requests, however PUT & PATCH requests with an appro-
priate Content-Type are also supported.

accept
Gets and sets the Accept header (HTTP spec section 14.1).

accept_charset
Gets and sets the Accept-Charset header (HTTP spec section 14.2).

accept_encoding
Gets and sets the Accept-Encoding header (HTTP spec section 14.3).

accept_language
Gets and sets the Accept-Language header (HTTP spec section 14.4).

application_url
The URL including SCRIPT_NAME (no PATH_INFO or query string)

as_bytes(skip_body=False)
Return HTTP bytes representing this request. If skip_body is True, exclude the body. If
skip_body is an integer larger than one, skip body only if its length is bigger than that number.

authorization
Gets and sets the Authorization header (HTTP spec section 14.8). Converts it using
parse_auth and serialize_auth.

blank(path, environ=None, base_url=None, headers=None, POST=None, **kw)
Create a blank request environ (and Request wrapper) with the given path (path should be
urlencoded), and any keys from environ.

The path will become path_info, with any query string split off and used.

All necessary keys will be added to the environ, but the values you pass in will take prece-
dence. If you pass in base_url then wsgi.url_scheme, HTTP_HOST, and SCRIPT_NAME
will be filled in from that value.

Any extra keyword will be passed to __init__.

body
Return the content of the request body.

676

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.8

52.7. PYRAMID.REQUEST

body_file
Input stream of the request (wsgi.input). Setting this property resets the content_length and
seekable flag (unlike setting req.body_file_raw).

body_file_raw
Gets and sets the wsgi.input key in the environment.

body_file_seekable
Get the body of the request (wsgi.input) as a seekable file-like object. Middleware and routing
applications should use this attribute over .body_file.

If you access this value, CONTENT_LENGTH will also be updated.

cache_control
Get/set/modify the Cache-Control header (HTTP spec section 14.9)

call_application(application, catch_exc_info=False)
Call the given WSGI application, returning (status_string, headerlist,
app_iter)

Be sure to call app_iter.close() if it’s there.

If catch_exc_info is true, then returns (status_string, headerlist, app_iter,
exc_info), where the fourth item may be None, but won’t be if there was an exception. If
you don’t do this and there was an exception, the exception will be raised directly.

client_addr
The effective client IP address as a string. If the HTTP_X_FORWARDED_FOR header exists
in the WSGI environ, this attribute returns the client IP address present in that header (e.g. if
the header value is 192.168.1.1, 192.168.1.2, the value will be 192.168.1.1).
If no HTTP_X_FORWARDED_FOR header is present in the environ at all, this attribute will
return the value of the REMOTE_ADDR header. If the REMOTE_ADDR header is unset, this
attribute will return the value None.

It is possible for user agents to put someone else’s IP or just any string in
HTTP_X_FORWARDED_FOR as it is a normal HTTP header. Forward proxies can
also provide incorrect values (private IP addresses etc). You cannot “blindly” trust
the result of this method to provide you with valid data unless you’re certain that
HTTP_X_FORWARDED_FOR has the correct values. The WSGI server must be behind
a trusted proxy for this to be true.

677

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9

52. API DOCUMENTATION

content_length
Gets and sets the Content-Length header (HTTP spec section 14.13). Converts it using
int.

content_type
Return the content type, but leaving off any parameters (like charset, but also things like the
type in application/atom+xml; type=entry)

If you set this property, you can include parameters, or if you don’t include any parameters in
the value then existing parameters will be preserved.

cookies
Return a dictionary of cookies as found in the request.

copy()
Copy the request and environment object.

This only does a shallow copy, except of wsgi.input

copy_body()
Copies the body, in cases where it might be shared with another request object and that is not
desired.

This copies the body in-place, either into a BytesIO object or a temporary file.

copy_get()
Copies the request and environment object, but turning this request into a GET along the way.
If this was a POST request (or any other verb) then it becomes GET, and the request body is
thrown away.

date
Gets and sets the Date header (HTTP spec section 14.8). Converts it using HTTP date.

domain
Returns the domain portion of the host value. Equivalent to:

domain = request.host
if ':' in domain:

domain = domain.split(':', 1)[0]

678

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.13
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.8

52.7. PYRAMID.REQUEST

This will be equivalent to the domain portion of the HTTP_HOST value in the environ-
ment if it exists, or the SERVER_NAME value in the environment if it doesn’t. For ex-
ample, if the environment contains an HTTP_HOST value of foo.example.com:8000,
request.domain will return foo.example.com.

Note that this value cannot be set on the request. To set the host value use
webob.request.Request.host() instead.

from_bytes(b)
Create a request from HTTP bytes data. If the bytes contain extra data after the request, raise
a ValueError.

from_file(fp)
Read a request from a file-like object (it must implement .read(size) and
.readline()).

It will read up to the end of the request, not the end of the file (unless the request is a POST
or PUT and has no Content-Length, in that case, the entire file is read).

This reads the request as represented by str(req); it may not read every valid HTTP request
properly.

get_response(application=None, catch_exc_info=False)
Like .call_application(application), except returns a response object with
.status, .headers, and .body attributes.

This will use self.ResponseClass to figure out the class of the response object to return.

If application is not given, this will send the request to
self.make_default_send_app()

headers
All the request headers as a case-insensitive dictionary-like object.

host
Host name provided in HTTP_HOST, with fall-back to SERVER_NAME

host_port
The effective server port number as a string. If the HTTP_HOST header exists in the WSGI
environ, this attribute returns the port number present in that header. If the HTTP_HOST
header exists but contains no explicit port number: if the WSGI url scheme is “https” , this
attribute returns “443”, if the WSGI url scheme is “http”, this attribute returns “80” . If no
HTTP_HOST header is present in the environ at all, this attribute will return the value of the
SERVER_PORT header (which is guaranteed to be present).

679

52. API DOCUMENTATION

host_url
The URL through the host (no path)

http_version
Gets and sets the SERVER_PROTOCOL key in the environment.

if_match
Gets and sets the If-Match header (HTTP spec section 14.24). Converts it as a Etag.

if_modified_since
Gets and sets the If-Modified-Since header (HTTP spec section 14.25). Converts it
using HTTP date.

if_none_match
Gets and sets the If-None-Match header (HTTP spec section 14.26). Converts it as a Etag.

if_range
Gets and sets the If-Range header (HTTP spec section 14.27). Converts it using IfRange
object.

if_unmodified_since
Gets and sets the If-Unmodified-Since header (HTTP spec section 14.28). Converts it
using HTTP date.

is_body_readable
webob.is_body_readable is a flag that tells us that we can read the input stream even
though CONTENT_LENGTH is missing. This allows FakeCGIBody to work and can
be used by servers to support chunked encoding in requests. For background see
https://bitbucket.org/ianb/webob/issue/6

is_body_seekable
Gets and sets the webob.is_body_seekable key in the environment.

is_response(ob)
Return True if the object passed as ob is a valid response object, False otherwise.

is_xhr
Is X-Requested-With header present and equal to XMLHttpRequest?

Note: this isn’t set by every XMLHttpRequest request, it is only set if you are using a
Javascript library that sets it (or you set the header yourself manually). Currently Prototype
and jQuery are known to set this header.

680

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.24
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.25
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.26
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.27
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.28
https://bitbucket.org/ianb/webob/issue/6

52.7. PYRAMID.REQUEST

json
Access the body of the request as JSON

localizer
Convenience property to return a localizer

make_body_seekable()
This forces environ[’wsgi.input’] to be seekable. That means that, the content is
copied into a BytesIO or temporary file and flagged as seekable, so that it will not be unnec-
essarily copied again.

After calling this method the .body_file is always seeked to the start of file and .content_length
is not None.

The choice to copy to BytesIO is made from self.request_body_tempfile_limit

make_tempfile()
Create a tempfile to store big request body. This API is not stable yet. A ‘size’ argument
might be added.

max_forwards
Gets and sets the Max-Forwards header (HTTP spec section 14.31). Converts it using int.

method
Gets and sets the REQUEST_METHOD key in the environment.

params
A dictionary-like object containing both the parameters from the query string and request
body.

path
The path of the request, without host or query string

path_info
Gets and sets the PATH_INFO key in the environment.

path_info_peek()
Returns the next segment on PATH_INFO, or None if there is no next segment. Doesn’t
modify the environment.

681

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.31

52. API DOCUMENTATION

path_info_pop(pattern=None)
‘Pops’ off the next segment of PATH_INFO, pushing it onto SCRIPT_NAME, and returning
the popped segment. Returns None if there is nothing left on PATH_INFO.

Does not return ’’ when there’s an empty segment (like /path//path); these segments
are just ignored.

Optional pattern argument is a regexp to match the return value before returning. If there
is no match, no changes are made to the request and None is returned.

path_qs
The path of the request, without host but with query string

path_url
The URL including SCRIPT_NAME and PATH_INFO, but not QUERY_STRING

pragma
Gets and sets the Pragma header (HTTP spec section 14.32).

query_string
Gets and sets the QUERY_STRING key in the environment.

range
Gets and sets the Range header (HTTP spec section 14.35). Converts it using Range object.

referer
Gets and sets the Referer header (HTTP spec section 14.36).

referrer
Gets and sets the Referer header (HTTP spec section 14.36).

relative_url(other_url, to_application=False)
Resolve other_url relative to the request URL.

If to_application is True, then resolve it relative to the URL with only SCRIPT_NAME

remote_addr
Gets and sets the REMOTE_ADDR key in the environment.

remote_user
Gets and sets the REMOTE_USER key in the environment.

682

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.32
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.35
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.36
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.36

52.7. PYRAMID.REQUEST

remove_conditional_headers(remove_encoding=True, remove_range=True, re-
move_match=True, remove_modified=True)

Remove headers that make the request conditional.

These headers can cause the response to be 304 Not Modified, which in some cases you may
not want to be possible.

This does not remove headers like If-Match, which are used for conflict detection.

response
This attribute is actually a “reified” property which returns an instance of the
pyramid.response.Response. class. The response object returned does not exist until
this attribute is accessed. Subsequent accesses will return the same Response object.

The request.response API is used by renderers. A render obtains the response object it
will return from a view that uses that renderer by accessing request.response. There-
fore, it’s possible to use the request.response API to set up a response object with “the
right” attributes (e.g. by calling request.response.set_cookie()) within a view
that uses a renderer. Mutations to this response object will be preserved in the response sent
to the client.

scheme
Gets and sets the wsgi.url_scheme key in the environment.

script_name
Gets and sets the SCRIPT_NAME key in the environment.

send(application=None, catch_exc_info=False)
Like .call_application(application), except returns a response object with
.status, .headers, and .body attributes.

This will use self.ResponseClass to figure out the class of the response object to return.

If application is not given, this will send the request to
self.make_default_send_app()

server_name
Gets and sets the SERVER_NAME key in the environment.

server_port
Gets and sets the SERVER_PORT key in the environment. Converts it using int.

683

52. API DOCUMENTATION

session
Obtain the session object associated with this request. If a ses-
sion factory has not been registered during application configuration, a
pyramid.exceptions.ConfigurationError will be raised

text
Get/set the text value of the body

upath_info
Gets and sets the PATH_INFO key in the environment.

url
The full request URL, including QUERY_STRING

url_encoding
Gets and sets the webob.url_encoding key in the environment.

urlargs
Return any positional variables matched in the URL.

Takes values from environ[’wsgiorg.routing_args’]. Systems like routes set
this value.

urlvars
Return any named variables matched in the URL.

Takes values from environ[’wsgiorg.routing_args’]. Systems like routes set
this value.

uscript_name
Gets and sets the SCRIPT_NAME key in the environment.

user_agent
Gets and sets the User-Agent header (HTTP spec section 14.43).

For information about the API of a multidict structure (such as that used as request.GET,
request.POST, and request.params), see pyramid.interfaces.IMultiDict.

684

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.43

52.8. PYRAMID.RESPONSE

52.8 pyramid.response

class Response(body=None, status=None, headerlist=None, app_iter=None, con-
tent_type=None, conditional_response=None, **kw)

accept_ranges
Gets and sets the Accept-Ranges header (HTTP spec section 14.5).

age
Gets and sets the Age header (HTTP spec section 14.6). Converts it using int.

allow
Gets and sets the Allow header (HTTP spec section 14.7). Converts it using list.

app_iter
Returns the app_iter of the response.

If body was set, this will create an app_iter from that body (a single-item list)

app_iter_range(start, stop)
Return a new app_iter built from the response app_iter, that serves up only the given
start:stop range.

body
The body of the response, as a str. This will read in the entire app_iter if necessary.

body_file
A file-like object that can be used to write to the body. If you passed in a list app_iter, that
app_iter will be modified by writes.

cache_control
Get/set/modify the Cache-Control header (HTTP spec section 14.9)

charset
Get/set the charset (in the Content-Type)

conditional_response_app(environ, start_response)
Like the normal __call__ interface, but checks conditional headers:

•If-Modified-Since (304 Not Modified; only on GET, HEAD)

•If-None-Match (304 Not Modified; only on GET, HEAD)

685

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.6
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.7
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9

52. API DOCUMENTATION

•Range (406 Partial Content; only on GET, HEAD)

content_disposition
Gets and sets the Content-Disposition header (HTTP spec section 19.5.1).

content_encoding
Gets and sets the Content-Encoding header (HTTP spec section 14.11).

content_language
Gets and sets the Content-Language header (HTTP spec section 14.12). Converts it
using list.

content_length
Gets and sets the Content-Length header (HTTP spec section 14.17). Converts it using
int.

content_location
Gets and sets the Content-Location header (HTTP spec section 14.14).

content_md5
Gets and sets the Content-MD5 header (HTTP spec section 14.14).

content_range
Gets and sets the Content-Range header (HTTP spec section 14.16). Converts it using
ContentRange object.

content_type
Get/set the Content-Type header (or None), without the charset or any parameters.

If you include parameters (or ; at all) when setting the content_type, any existing parameters
will be deleted; otherwise they will be preserved.

content_type_params
A dictionary of all the parameters in the content type.

(This is not a view, set to change, modifications of the dict would not be applied otherwise)

copy()
Makes a copy of the response

date
Gets and sets the Date header (HTTP spec section 14.18). Converts it using HTTP date.

686

http://www.w3.org/Protocols/rfc2616/rfc2616-sec19.html#sec19.5.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.11
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.12
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.14
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.14
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.16
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.18

52.8. PYRAMID.RESPONSE

delete_cookie(name, path=’/’, domain=None)
Delete a cookie from the client. Note that path and domain must match how the cookie was
originally set.

This sets the cookie to the empty string, and max_age=0 so that it should expire immediately.

encode_content(encoding=’gzip’, lazy=False)
Encode the content with the given encoding (only gzip and identity are supported).

etag
Gets and sets the ETag header (HTTP spec section 14.19). Converts it using Entity tag.

expires
Gets and sets the Expires header (HTTP spec section 14.21). Converts it using HTTP date.

from_file(fp)
Reads a response from a file-like object (it must implement .read(size) and
.readline()).

It will read up to the end of the response, not the end of the file.

This reads the response as represented by str(resp); it may not read every valid HTTP
response properly. Responses must have a Content-Length

headerlist
The list of response headers

headers
The headers in a dictionary-like object

json
Access the body of the response as JSON

json_body
Access the body of the response as JSON

last_modified
Gets and sets the Last-Modified header (HTTP spec section 14.29). Converts it using
HTTP date.

location
Gets and sets the Location header (HTTP spec section 14.30).

687

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.19
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.21
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.29
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.30

52. API DOCUMENTATION

md5_etag(body=None, set_content_md5=False)
Generate an etag for the response object using an MD5 hash of the body (the body parameter,
or self.body if not given)

Sets self.etag If set_content_md5 is True sets self.content_md5 as well

merge_cookies(resp)
Merge the cookies that were set on this response with the given resp object (which can be any
WSGI application).

If the resp is a webob.Response object, then the other object will be modified in-place.

pragma
Gets and sets the Pragma header (HTTP spec section 14.32).

retry_after
Gets and sets the Retry-After header (HTTP spec section 14.37). Converts it using HTTP
date or delta seconds.

server
Gets and sets the Server header (HTTP spec section 14.38).

set_cookie(name=None, value=’‘, max_age=None, path=’/’, domain=None, se-
cure=False, httponly=False, comment=None, expires=None, over-
write=False, key=None)

Set (add) a cookie for the response.

Arguments are:

name

The cookie name.

value

The cookie value, which should be a string or None. If value is None, it’s equiva-
lent to calling the webob.response.Response.unset_cookie() method
for this cookie key (it effectively deletes the cookie on the client).

max_age

688

http://docs.pylonsproject.org/projects/pylons-webframework/en/latest/thirdparty/webob.html#webob.Response
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.32
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.37
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.38
http://docs.webob.org/en/latest/api/response.html#webob.response.Response.unset_cookie

52.8. PYRAMID.RESPONSE

An integer representing a number of seconds, datetime.timedelta, or None.
This value is used as the Max-Age of the generated cookie. If expires is not
passed and this value is not None, the max_age value will also influence the
Expires value of the cookie (Expires will be set to now + max_age). If this
value is None, the cookie will not have a Max-Age value (unless expires is set).
If both max_age and expires are set, this value takes precedence.

path

A string representing the cookie Path value. It defaults to /.

domain

A string representing the cookie Domain, or None. If domain is None, no Domain
value will be sent in the cookie.

secure

A boolean. If it’s True, the secure flag will be sent in the cookie, if it’s False,
the secure flag will not be sent in the cookie.

httponly

A boolean. If it’s True, the HttpOnly flag will be sent in the cookie, if it’s
False, the HttpOnly flag will not be sent in the cookie.

comment

A string representing the cookie Comment value, or None. If comment is None,
no Comment value will be sent in the cookie.

expires

A datetime.timedelta object representing an amount of time,
datetime.datetime or None. A non-None value is used to generate
the Expires value of the generated cookie. If max_age is not passed, but this
value is not None, it will influence the Max-Age header. If this value is None, the
Expires cookie value will be unset (unless max_age is set). If max_age is set,
it will be used to generate the expires and this value is ignored.

overwrite

If this key is True, before setting the cookie, unset any existing cookie.

689

52. API DOCUMENTATION

status
The status string

status_code
The status as an integer

status_int
The status as an integer

text
Get/set the text value of the body (using the charset of the Content-Type)

ubody
Deprecated alias for .text

unicode_body
Deprecated alias for .text

unset_cookie(name, strict=True)
Unset a cookie with the given name (remove it from the response).

vary
Gets and sets the Vary header (HTTP spec section 14.44). Converts it using list.

www_authenticate
Gets and sets the WWW-Authenticate header (HTTP spec section 14.47). Converts it
using parse_auth and serialize_auth.

class FileResponse(path, request=None, cache_max_age=None, content_type=None, con-
tent_encoding=None)

A Response object that can be used to serve a static file from disk simply.

path is a file path on disk.

request must be a Pyramid request object. Note that a request must be passed if the response is
meant to attempt to use the wsgi.file_wrapper feature of the web server that you’re using to
serve your Pyramid application.

cache_max_age is the number of seconds that should be used to HTTP cache this response.

content_type is the content_type of the response.

content_encoding is the content_encoding of the response. It’s generally safe to leave this
set to None if you’re serving a binary file. This argument will be ignored if you also leave
content-type as None.

class FileIter(file, block_size=262144)
A fixed-block-size iterator for use as a WSGI app_iter.

file is a Python file pointer (or at least an object with a read method that takes a size hint).

block_size is an optional block size for iteration.

690

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.44
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.47

52.9. PYRAMID.SCAFFOLDS

52.8.1 Functions

response_adapter(*types_or_ifaces)
Decorator activated via a scan which treats the function being decorated as a response adapter for
the set of types or interfaces passed as *types_or_ifaces to the decorator constructor.

For example, if you scan the following response adapter:

from pyramid.response import Response
from pyramid.response import response_adapter

@response_adapter(int)
def myadapter(i):

return Response(status=i)

You can then return an integer from your view callables, and it will be converted into a response
with the integer as the status code.

More than one type or interface can be passed as a constructor argument. The decorated response
adapter will be called for each type or interface.

import json

from pyramid.response import Response
from pyramid.response import response_adapter

@response_adapter(dict, list)
def myadapter(ob):

return Response(json.dumps(ob))

This method will have no effect until a scan is performed agains the package or module which
contains it, ala:

from pyramid.config import Configurator
config = Configurator()
config.scan('somepackage_containing_adapters')

52.9 pyramid.scaffolds

class Template(name)
Inherit from this base class and override methods to use the Pyramid scaffolding system.

691

52. API DOCUMENTATION

post(command, output_dir, vars)
Called after template is applied.

pre(command, output_dir, vars)
Called before template is applied.

render_template(content, vars, filename=None)
Return a bytestring representing a templated file based on the input (content) and the variable
names defined (vars). filename is used for exception reporting.

template_dir()
Return the template directory of the scaffold. By default, it returns the value
of os.path.join(self.module_dir(), self._template_dir)
(self.module_dir() returns the module in which your subclass has been de-
fined). If self._template_dir is a tuple this method just returns the value instead
of trying to construct a path. If _template_dir is a tuple, it should be a 2-element tuple:
(package_name, package_relative_path).

class PyramidTemplate(name)
A class that can be used as a base class for Pyramid scaffolding templates.

post(command, output_dir, vars)
Overrides pyramid.scaffolds.template.Template.post(), to print “Welcome
to Pyramid. Sorry for the convenience.” after a successful scaffolding rendering.

pre(command, output_dir, vars)
Overrides pyramid.scaffolds.template.Template.pre(), adding several vari-
ables to the default variables list (including random_string, and package_logger).
It also prevents common misnamings (such as naming a package “site” or naming a package
logger “root”.

52.10 pyramid.scripting

get_root(app, request=None)
Return a tuple composed of (root, closer) when provided a router instance as the app
argument. The root returned is the application root object. The closer returned is a callable
(accepting no arguments) that should be called when your scripting application is finished using the
root.

request is passed to the Pyramid application root factory to compute the root. If
request is None, a default will be constructed using the registry’s Request Factory via the
pyramid.interfaces.IRequestFactory.blank() method.

692

52.11. PYRAMID.SECURITY

prepare(request=None, registry=None)
This function pushes data onto the Pyramid threadlocal stack (request and registry), making those
objects ‘current’. It returns a dictionary useful for bootstrapping a Pyramid application in a scripting
environment.

request is passed to the Pyramid application root factory to compute the root. If
request is None, a default will be constructed using the registry’s Request Factory via the
pyramid.interfaces.IRequestFactory.blank() method.

If registry is not supplied, the last registry loaded from
pyramid.config.global_registries will be used. If you have loaded more than
one Pyramid application in the current process, you may not want to use the last registry loaded,
thus you can search the global_registries and supply the appropriate one based on your
own criteria.

The function returns a dictionary composed of root, closer, registry, request and
root_factory. The root returned is the application’s root resource object. The closer
returned is a callable (accepting no arguments) that should be called when your scripting applica-
tion is finished using the root. registry is the registry object passed or the last registry loaded
into pyramid.config.global_registries if no registry is passed. request is the re-
quest object passed or the constructed request if no request is passed. root_factory is the root
factory used to construct the root.

52.11 pyramid.security

52.11.1 Authentication API Functions

authenticated_userid(request)
A function that returns the value of the property pyramid.request.Request.authenticated_userid.

Deprecated since version 1.5: Use pyramid.request.Request.authenticated_userid
instead.

unauthenticated_userid(request)
A function that returns the value of the property pyramid.request.Request.unauthenticated_userid.

Deprecated since version 1.5: Use pyramid.request.Request.unauthenticated_userid
instead.

693

52. API DOCUMENTATION

effective_principals(request)
A function that returns the value of the property pyramid.request.Request.effective_principals.

Deprecated since version 1.5: Use pyramid.request.Request.effective_principals
instead.

forget(request)
Return a sequence of header tuples (e.g. [(’Set-Cookie’, ’foo=abc’)]) suitable for ‘for-
getting’ the set of credentials possessed by the currently authenticated user. A common usage
might look like so within the body of a view function (response is assumed to be an WebOb
-style response object computed previously by the view code):

from pyramid.security import forget
headers = forget(request)
response.headerlist.extend(headers)
return response

If no authentication policy is in use, this function will always return an empty sequence.

remember(request, principal, **kw)
Returns a sequence of header tuples (e.g. [(’Set-Cookie’, ’foo=abc’)]) on this re-
quest’s response. These headers are suitable for ‘remembering’ a set of credentials implied by
the data passed as principal and *kw using the current authentication policy. Common usage
might look like so within the body of a view function (response is assumed to be a WebOb -style
response object computed previously by the view code):

from pyramid.security import remember
headers = remember(request, 'chrism', password='123', max_age='86400')
response = request.response
response.headerlist.extend(headers)
return response

If no authentication policy is in use, this function will always return an empty sequence. If used,
the composition and meaning of **kw must be agreed upon by the calling code and the effective
authentication policy.

52.11.2 Authorization API Functions

has_permission(permission, context, request)
A function that calls pyramid.request.Request.has_permission() and returns its re-
sult.

694

52.11. PYRAMID.SECURITY

Deprecated since version 1.5: Use pyramid.request.Request.has_permission() in-
stead.

Changed in version 1.5a3: If context is None, then attempt to use the context attribute of self; if not
set, then the AttributeError is propagated.

principals_allowed_by_permission(context, permission)
Provided a context (a resource object), and a permission (a string or unicode object), if a
authorization policy is in effect, return a sequence of principal ids that possess the permission in the
context. If no authorization policy is in effect, this will return a sequence with the single value
pyramid.security.Everyone (the special principal identifier representing all principals).

even if an authorization policy is in effect, some (exotic) authorization poli-
cies may not implement the required machinery for this function; those will cause a
NotImplementedError exception to be raised when this function is invoked.

view_execution_permitted(context, request, name=’‘)
If the view specified by context and name is protected by a permission, check the permission
associated with the view using the effective authentication/authorization policies and the request.
Return a boolean result. If no authorization policy is in effect, or if the view is not protected by a
permission, return True. If no view can view found, an exception will be raised.

Changed in version 1.4a4: An exception is raised if no view is found.

52.11.3 Constants

Everyone
The special principal id named ‘Everyone’. This principal id is granted to all requests. Its actual
value is the string ‘system.Everyone’.

Authenticated
The special principal id named ‘Authenticated’. This principal id is granted to all requests which
contain any other non-Everyone principal id (according to the authentication policy). Its actual
value is the string ‘system.Authenticated’.

ALL_PERMISSIONS
An object that can be used as the permission member of an ACE which matches all permissions
unconditionally. For example, an ACE that uses ALL_PERMISSIONS might be composed like so:
(’Deny’, ’system.Everyone’, ALL_PERMISSIONS).

695

http://docs.python.org/3/library/exceptions.html#NotImplementedError

52. API DOCUMENTATION

DENY_ALL
A convenience shorthand ACE that defines (’Deny’, ’system.Everyone’,
ALL_PERMISSIONS). This is often used as the last ACE in an ACL in systems that use
an “inheriting” security policy, representing the concept “don’t inherit any other ACEs”.

NO_PERMISSION_REQUIRED
A special permission which indicates that the view should always be executable by entirely anony-
mous users, regardless of the default permission, bypassing any authorization policy that may be in
effect. Its actual value is the string ‘__no_permission_required__’.

52.11.4 Return Values

Allow
The ACE “action” (the first element in an ACE e.g. (Allow, Everyone, ’read’) that
means allow access. A sequence of ACEs makes up an ACL. It is a string, and its actual value is
“Allow”.

Deny
The ACE “action” (the first element in an ACE e.g. (Deny, ’george’, ’read’) that means
deny access. A sequence of ACEs makes up an ACL. It is a string, and its actual value is “Deny”.

class ACLDenied
An instance of ACLDenied represents that a security check made explicitly against ACL was
denied. It evaluates equal to all boolean false types. It also has the following attributes: acl,
ace, permission, principals, and context. These attributes indicate the security values
involved in the request. Its __str__ method prints a summary of these attributes for debugging
purposes. The same summary is available as the msg attribute.

class ACLAllowed
An instance of ACLAllowed represents that a security check made explicitly against ACL was
allowed. It evaluates equal to all boolean true types. It also has the following attributes: acl,
ace, permission, principals, and context. These attributes indicate the security values
involved in the request. Its __str__ method prints a summary of these attributes for debugging
purposes. The same summary is available as the msg attribute.

class Denied
An instance of Denied is returned when a security-related API or other Pyramid code denies an
action unrelated to an ACL check. It evaluates equal to all boolean false types. It has an attribute
named msg describing the circumstances for the deny.

class Allowed
An instance of Allowed is returned when a security-related API or other Pyramid code allows an
action unrelated to an ACL check. It evaluates equal to all boolean true types. It has an attribute
named msg describing the circumstances for the allow.

696

52.12. PYRAMID.SESSION

52.12 pyramid.session

signed_serialize(data, secret)
Serialize any pickleable structure (data) and sign it using the secret (must be a string). Return
the serialization, which includes the signature as its first 40 bytes. The signed_deserialize
method will deserialize such a value.

This function is useful for creating signed cookies. For example:

cookieval = signed_serialize({'a':1}, 'secret')
response.set_cookie('signed_cookie', cookieval)

signed_deserialize(serialized, secret, hmac=<module ‘hmac’ from
‘/home/docs/checkouts/readthedocs.org/user_builds/pyramid/envs/1.5-
branch/lib/python3.4/hmac.py’>)

Deserialize the value returned from signed_serialize. If the value cannot be deserialized for
any reason, a ValueError exception will be raised.

This function is useful for deserializing a signed cookie value created by signed_serialize.
For example:

cookieval = request.cookies['signed_cookie']
data = signed_deserialize(cookieval, 'secret')

check_csrf_token(request, token=’csrf_token’, header=’X-CSRF-Token’, raises=True)
Check the CSRF token in the request’s session against the value in
request.params.get(token) or request.headers.get(header). If a token
keyword is not supplied to this function, the string csrf_token will be used to look up the
token in request.params. If a header keyword is not supplied to this function, the string
X-CSRF-Token will be used to look up the token in request.headers.

If the value supplied by param or by header doesn’t match the value supplied by
request.session.get_csrf_token(), and raises is True, this function will raise an
pyramid.exceptions.BadCSRFToken exception. If the check does succeed and raises
is False, this function will return False. If the CSRF check is successful, this function will
return True unconditionally.

Note that using this function requires that a session factory is configured.

New in version 1.4a2.

697

http://docs.python.org/3/library/exceptions.html#ValueError

52. API DOCUMENTATION

SignedCookieSessionFactory(secret, cookie_name=’session’, max_age=None,
path=’/’, domain=None, secure=False, httponly=False,
set_on_exception=True, timeout=1200, reissue_time=0,
hashalg=’sha512’, salt=’pyramid.session.’, serial-
izer=None)

New in version 1.5.

Configure a session factory which will provide signed cookie-based sessions. The return value of
this function is a session factory, which may be provided as the session_factory argument of
a pyramid.config.Configurator constructor, or used as the session_factory argu-
ment of the pyramid.config.Configurator.set_session_factory() method.

The session factory returned by this function will create sessions which are limited to storing fewer
than 4000 bytes of data (as the payload must fit into a single cookie).

Parameters:

secret A string which is used to sign the cookie. The secret should be at least as long as the block
size of the selected hash algorithm. For sha512 this would mean a 128 bit (64 character)
secret. It should be unique within the set of secret values provided to Pyramid for its various
subsystems (see Admonishment Against Secret-Sharing).

hashalg The HMAC digest algorithm to use for signing. The algorithm must be supported by
the hashlib library. Default: ’sha512’.

salt A namespace to avoid collisions between different uses of a shared secret. Reusing a secret
for different parts of an application is strongly discouraged (see Admonishment Against Secret-
Sharing). Default: ’pyramid.session.’.

cookie_name The name of the cookie used for sessioning. Default: ’session’.

max_age The maximum age of the cookie used for sessioning (in seconds). Default: None
(browser scope).

path The path used for the session cookie. Default: ’/’.

domain The domain used for the session cookie. Default: None (no domain).

secure The ‘secure’ flag of the session cookie. Default: False.

httponly Hide the cookie from Javascript by setting the ‘HttpOnly’ flag of the session cookie.
Default: False.

698

http://docs.python.org/3/library/hashlib.html#module-hashlib

52.12. PYRAMID.SESSION

timeout A number of seconds of inactivity before a session times out. If None then the cookie
never expires. This lifetime only applies to the value within the cookie. Meaning that if the
cookie expires due to a lower max_age, then this setting has no effect. Default: 1200.

reissue_time The number of seconds that must pass before the cookie is automatically reis-
sued as the result of accessing the session. The duration is measured as the number of seconds
since the last session cookie was issued and ‘now’. If this value is 0, a new cookie will be
reissued on every request accessing the session. If None then the cookie’s lifetime will never
be extended.

A good rule of thumb: if you want auto-expired cookies based on inactivity: set the timeout
value to 1200 (20 mins) and set the reissue_time value to perhaps a tenth of the
timeout value (120 or 2 mins). It’s nonsensical to set the timeout value lower than the
reissue_time value, as the ticket will never be reissued. However, such a configuration
is not explicitly prevented.

Default: 0.

set_on_exception If True, set a session cookie even if an exception occurs while rendering
a view. Default: True.

serializer An object with two methods: loads and dumps. The loads method should
accept bytes and return a Python object. The dumps method should accept a Python object
and return bytes. A ValueError should be raised for malformed inputs. If a serializer is
not passed, the pyramid.session.PickleSerializer serializer will be used.

UnencryptedCookieSessionFactoryConfig(secret, timeout=1200,
cookie_name=’session’,
cookie_max_age=None,
cookie_path=’/’, cookie_domain=None,
cookie_secure=False,
cookie_httponly=False,
cookie_on_exception=True,
signed_serialize=<function
signed_serialize>,
signed_deserialize=<function
signed_deserialize>)

Deprecated since version 1.5: Use pyramid.session.SignedCookieSessionFactory()
instead. Caveat: Cookies generated using SignedCookieSessionFactory are not compat-
ible with cookies generated using UnencryptedCookieSessionFactory, so existing user
session data will be destroyed if you switch to it.

Configure a session factory which will provide unencrypted (but signed)
cookie-based sessions. The return value of this function is a session fac-
tory, which may be provided as the session_factory argument of a

699

52. API DOCUMENTATION

pyramid.config.Configurator constructor, or used as the session_factory
argument of the pyramid.config.Configurator.set_session_factory() method.

The session factory returned by this function will create sessions which are limited to storing fewer
than 4000 bytes of data (as the payload must fit into a single cookie).

Parameters:

secret A string which is used to sign the cookie.

timeout A number of seconds of inactivity before a session times out.

cookie_name The name of the cookie used for sessioning.

cookie_max_age The maximum age of the cookie used for sessioning (in seconds). Default:
None (browser scope).

cookie_path The path used for the session cookie.

cookie_domain The domain used for the session cookie. Default: None (no domain).

cookie_secure The ‘secure’ flag of the session cookie.

cookie_httponly The ‘httpOnly’ flag of the session cookie.

cookie_on_exception If True, set a session cookie even if an exception occurs while ren-
dering a view.

signed_serialize A callable which takes more or less arbitrary Python data structure and
a secret and returns a signed serialization in bytes. Default: signed_serialize (using
pickle).

signed_deserialize A callable which takes a signed and serialized data structure in bytes
and a secret and returns the original data structure if the signature is valid. Default:
signed_deserialize (using pickle).

BaseCookieSessionFactory(serializer, cookie_name=’session’, max_age=None,
path=’/’, domain=None, secure=False, httponly=False,
timeout=1200, reissue_time=0, set_on_exception=True)

New in version 1.5.

Configure a session factory which will provide cookie-based sessions. The return value of this
function is a session factory, which may be provided as the session_factory argument of
a pyramid.config.Configurator constructor, or used as the session_factory argu-
ment of the pyramid.config.Configurator.set_session_factory() method.

The session factory returned by this function will create sessions which are limited to storing fewer
than 4000 bytes of data (as the payload must fit into a single cookie).

Parameters:

700

52.12. PYRAMID.SESSION

serializer An object with two methods: loads and dumps. The loads method should
accept bytes and return a Python object. The dumps method should accept a Python object
and return bytes. A ValueError should be raised for malformed inputs.

cookie_name The name of the cookie used for sessioning. Default: ’session’.

max_age The maximum age of the cookie used for sessioning (in seconds). Default: None
(browser scope).

path The path used for the session cookie. Default: ’/’.

domain The domain used for the session cookie. Default: None (no domain).

secure The ‘secure’ flag of the session cookie. Default: False.

httponly Hide the cookie from Javascript by setting the ‘HttpOnly’ flag of the session cookie.
Default: False.

timeout A number of seconds of inactivity before a session times out. If None then the cookie
never expires. This lifetime only applies to the value within the cookie. Meaning that if the
cookie expires due to a lower max_age, then this setting has no effect. Default: 1200.

reissue_time The number of seconds that must pass before the cookie is automatically reis-
sued as the result of a request which accesses the session. The duration is measured as the
number of seconds since the last session cookie was issued and ‘now’. If this value is 0, a
new cookie will be reissued on every request accessing the session. If None then the cookie’s
lifetime will never be extended.

A good rule of thumb: if you want auto-expired cookies based on inactivity: set the timeout
value to 1200 (20 mins) and set the reissue_time value to perhaps a tenth of the
timeout value (120 or 2 mins). It’s nonsensical to set the timeout value lower than the
reissue_time value, as the ticket will never be reissued. However, such a configuration
is not explicitly prevented.

Default: 0.

set_on_exception If True, set a session cookie even if an exception occurs while rendering
a view. Default: True.

701

52. API DOCUMENTATION

52.13 pyramid.settings

asbool(s)
Return the boolean value True if the case-lowered value of string input s is any of t, true, y,
on, or 1, otherwise return the boolean value False. If s is the value None, return False. If s is
already one of the boolean values True or False, return it.

aslist(value, flatten=True)
Return a list of strings, separating the input based on newlines and, if flatten=True (the default),
also split on spaces within each line.

52.14 pyramid.static

class static_view(root_dir, cache_max_age=3600, package_name=None,
use_subpath=False, index=’index.html’)

An instance of this class is a callable which can act as a Pyramid view callable; this view will serve
static files from a directory on disk based on the root_dir you provide to its constructor.

The directory may contain subdirectories (recursively); the static view implementation will descend
into these directories as necessary based on the components of the URL in order to resolve a path
into a response.

You may pass an absolute or relative filesystem path or a asset specification representing the direc-
tory containing static files as the root_dir argument to this class’ constructor.

If the root_dir path is relative, and the package_name argument is None, root_dir will
be considered relative to the directory in which the Python file which calls static resides. If
the package_name name argument is provided, and a relative root_dir is provided, the
root_dir will be considered relative to the Python package specified by package_name (a
dotted path to a Python package).

cache_max_age influences the Expires and Max-Age response headers returned by the view
(default is 3600 seconds or one hour).

use_subpath influences whether request.subpathwill be used as PATH_INFOwhen call-
ing the underlying WSGI application which actually serves the static files. If it is True, the static
application will consider request.subpath as PATH_INFO input. If it is False, the static
application will consider request.environ[PATH_INFO] as PATH_INFO input. By default, this is
False.

If the root_dir is relative to a package, or is a asset specification the Pyramid
pyramid.config.Configurator method can be used to override assets within the
named root_dir package-relative directory. However, if the root_dir is absolute, con-
figuration will not be able to override the assets it contains.

702

52.15. PYRAMID.TESTING

52.15 pyramid.testing

setUp(registry=None, request=None, hook_zca=True, autocommit=True, settings=None, pack-
age=None)

Set Pyramid registry and request thread locals for the duration of a single unit test.

Use this function in the setUp method of a unittest test case which directly or indirectly uses:

•any method of the pyramid.config.Configurator object returned by this function.

•the pyramid.threadlocal.get_current_registry() or
pyramid.threadlocal.get_current_request() functions.

If you use the get_current_* functions (or call Pyramid code that uses these functions) without
calling setUp, pyramid.threadlocal.get_current_registry() will return a global
application registry, which may cause unit tests to not be isolated with respect to registrations they
perform.

If the registry argument is None, a new empty application registry will be created (an instance
of the pyramid.registry.Registry class). If the registry argument is not None, the
value passed in should be an instance of the pyramid.registry.Registry class or a suitable
testing analogue.

After setUp is finished, the registry returned by the
pyramid.threadlocal.get_current_registry() function will be the passed
(or constructed) registry until pyramid.testing.tearDown() is called (or
pyramid.testing.setUp() is called again) .

If the hook_zca argument is True, setUp will attempt to per-
form the operation zope.component.getSiteManager.sethook(
pyramid.threadlocal.get_current_registry), which will cause the Zope
Component Architecture global API (e.g. zope.component.getSiteManager(),
zope.component.getAdapter(), and so on) to use the registry constructed by setUp as
the value it returns from zope.component.getSiteManager(). If the zope.component
package cannot be imported, or if hook_zca is False, the hook will not be set.

If settings is not None, it must be a dictionary representing the values passed to a Configurator
as its settings= argument.

If package is None it will be set to the caller’s package. The package
setting in the pyramid.config.Configurator will affect any rela-
tive imports made via pyramid.config.Configurator.include() or
pyramid.config.Configurator.maybe_dotted().

703

http://docs.zope.org/zope.component/api/sitemanager.html#zope.component.getSiteManager
http://docs.zope.org/zope.component/api/adapter.html#zope.component.getAdapter
http://docs.zope.org/zope.component/api/sitemanager.html#zope.component.getSiteManager

52. API DOCUMENTATION

This function returns an instance of the pyramid.config.Configurator class,
which can be used for further configuration to set up an environment suitable for a
unit or integration test. The registry attribute attached to the Configurator in-
stance represents the ‘current’ application registry; the same registry will be returned by
pyramid.threadlocal.get_current_registry() during the execution of the test.

tearDown(unhook_zca=True)
Undo the effects of pyramid.testing.setUp(). Use this function in the tearDownmethod
of a unit test that uses pyramid.testing.setUp() in its setUp method.

If the unhook_zca argument is True (the default), call
zope.component.getSiteManager.reset(). This undoes the action of
pyramid.testing.setUp() when called with the argument hook_zca=True. If
zope.component cannot be imported, unhook_zca is set to False.

testConfig(registry=None, request=None, hook_zca=True, autocommit=True, set-
tings=None)

Returns a context manager for test set up.

This context manager calls pyramid.testing.setUp() when entering and
pyramid.testing.tearDown() when exiting.

All arguments are passed directly to pyramid.testing.setUp(). If the ZCA is hooked, it
will always be un-hooked in tearDown.

This context manager allows you to write test code like this:

1 with testConfig() as config:
2 config.add_route('bar', '/bar/{id}')
3 req = DummyRequest()
4 resp = myview(req),

cleanUp(*arg, **kw)
An alias for pyramid.testing.setUp().

class DummyResource(__name__=None, __parent__=None, __provides__=None, **kw)
A dummy Pyramid resource object.

clone(__name__=<object object>, __parent__=<object object>, **kw)
Create a clone of the resource object. If __name__ or __parent__ arguments are passed,
use these values to override the existing __name__ or __parent__ of the resource. If
any extra keyword args are passed in via the kw argument, use these keywords to add to or
override existing resource keywords (attributes).

704

52.15. PYRAMID.TESTING

items()
Return the items set by __setitem__

keys()
Return the keys set by __setitem__

values()
Return the values set by __setitem__

class DummyRequest(params=None, environ=None, headers=None, path=’/’, cookies=None,
post=None, **kw)

A DummyRequest object (incompletely) imitates a request object.

The params, environ, headers, path, and cookies arguments correspond to their WebOb
equivalents.

The post argument, if passed, populates the request’s POST attribute, but not params, in order
to allow testing that the app accepts data for a given view only from POST requests. This argument
also sets self.method to “POST”.

Extra keyword arguments are assigned as attributes of the request itself.

Note that DummyRequest does not have complete fidelity with a “real” request. For example, by
default, the DummyRequest GET and POST attributes are of type dict, unlike a normal Request’s
GET and POST, which are of type MultiDict. If your code uses the features of MultiDict,
you should either use a real pyramid.request.Request or adapt your DummyRequest by
replacing the attributes with MultiDict instances.

Other similar incompatibilities exist. If you need all the features of a Request, use the
pyramid.request.Request class itself rather than this class while writing tests.

class DummyTemplateRenderer(string_response=’‘)
An instance of this class is returned from pyramid.config.Configurator.testing_add_renderer().
It has a helper function (assert_) that makes it possible to make an assertion which compares
data passed to the renderer by the view function against expected key/value pairs.

assert_(**kw)
Accept an arbitrary set of assertion key/value pairs. For each assertion key/value pair as-
sert that the renderer (eg. pyramid.renderers.render_to_response()) received
the key with a value that equals the asserted value. If the renderer did not receive the
key at all, or the value received by the renderer doesn’t match the assertion value, raise an
AssertionError.

705

http://docs.python.org/3/library/exceptions.html#AssertionError

52. API DOCUMENTATION

52.16 pyramid.threadlocal

get_current_request()
Return the currently active request or None if no request is currently active.

This function should be used extremely sparingly, usually only in unit testing code. It’s almost
always usually a mistake to use get_current_request outside a testing context because its
usage makes it possible to write code that can be neither easily tested nor scripted.

get_current_registry()
Return the currently active application registry or the global application registry if no request is
currently active.

This function should be used extremely sparingly, usually only in unit testing code. It’s almost
always usually a mistake to use get_current_registry outside a testing context because its
usage makes it possible to write code that can be neither easily tested nor scripted.

52.17 pyramid.traversal

find_interface(resource, class_or_interface)
Return the first resource found in the lineage of resourcewhich, a) if class_or_interface
is a Python class object, is an instance of the class or any subclass of that class or b) if
class_or_interface is a interface, provides the specified interface. Return None if no re-
source providing interface_or_class can be found in the lineage. The resource passed
in must be location-aware.

find_resource(resource, path)
Given a resource object and a string or tuple representing a path (such
as the return value of pyramid.traversal.resource_path() or
pyramid.traversal.resource_path_tuple()), return a resource in this applica-
tion’s resource tree at the specified path. The resource passed in must be location-aware. If the
path cannot be resolved (if the respective node in the resource tree does not exist), a KeyError
will be raised.

This function is the logical inverse of pyramid.traversal.resource_path() and
pyramid.traversal.resource_path_tuple(); it can resolve any path string or tuple
generated by either of those functions.

Rules for passing a string as the path argument: if the first character in the path string is the / char-
acter, the path is considered absolute and the resource tree traversal will start at the root resource. If

706

http://docs.python.org/3/library/exceptions.html#KeyError

52.17. PYRAMID.TRAVERSAL

the first character of the path string is not the / character, the path is considered relative and resource
tree traversal will begin at the resource object supplied to the function as the resource argument.
If an empty string is passed as path, the resource passed in will be returned. Resource path
strings must be escaped in the following manner: each Unicode path segment must be encoded
as UTF-8 and as each path segment must escaped via Python’s urllib.quote. For example,
/path/to%20the/La%20Pe%C3%B1a (absolute) or to%20the/La%20Pe%C3%B1a (rela-
tive). The pyramid.traversal.resource_path() function generates strings which fol-
low these rules (albeit only absolute ones).

Rules for passing text (Unicode) as the path argument are the same as those for a string. In
particular, the text may not have any nonascii characters in it.

Rules for passing a tuple as the path argument: if the first element in the path tuple is the empty
string (for example (’’, ’a’, ’b’, ’c’), the path is considered absolute and the resource
tree traversal will start at the resource tree root object. If the first element in the path tuple is not
the empty string (for example (’a’, ’b’, ’c’)), the path is considered relative and resource
tree traversal will begin at the resource object supplied to the function as the resource argument.
If an empty sequence is passed as path, the resource passed in itself will be returned. No
URL-quoting or UTF-8-encoding of individual path segments within the tuple is required (each
segment may be any string or unicode object representing a resource name). Resource path tuples
generated by pyramid.traversal.resource_path_tuple() can always be resolved by
find_resource.

For backwards compatibility purposes, this function can also be imported as
pyramid.traversal.find_model(), although doing so will emit a deprecation warn-
ing.

find_root(resource)
Find the root node in the resource tree to which resource belongs. Note that resource should
be location-aware. Note that the root resource is available in the request object by accessing the
request.root attribute.

resource_path(resource, *elements)
Return a string object representing the absolute physical path of the resource object based on its po-
sition in the resource tree, e.g /foo/bar. Any positional arguments passed in as elements will
be appended as path segments to the end of the resource path. For instance, if the resource’s path is
/foo/bar and elements equals (’a’, ’b’), the returned string will be /foo/bar/a/b.
The first character in the string will always be the / character (a leading / character in a path string
represents that the path is absolute).

Resource path strings returned will be escaped in the following manner: each unicode path segment
will be encoded as UTF-8 and each path segment will be escaped via Python’s urllib.quote.
For example, /path/to%20the/La%20Pe%C3%B1a.

707

52. API DOCUMENTATION

This function is a logical inverse of pyramid.traversal.find_resource: it can be used
to generate path references that can later be resolved via that function.

The resource passed in must be location-aware.

Each segment in the path string returned will use the __name__ attribute of
the resource it represents within the resource tree. Each of these segments should be
a unicode or string object (as per the contract of location-awareness). However, no
conversion or safety checking of resource names is performed. For instance, if one
of the resources in your tree has a __name__ which (by error) is a dictionary, the
pyramid.traversal.resource_path() function will attempt to append it to a string
and it will cause a pyramid.exceptions.URLDecodeError.

The root resource must have a __name__ attribute with a value of either None or the
empty string for paths to be generated properly. If the root resource has a non-null __name__
attribute, its name will be prepended to the generated path rather than a single leading ‘/’ char-
acter.

For backwards compatibility purposes, this function can also be imported as
model_path, although doing so will cause a deprecation warning to be emitted.

resource_path_tuple(resource, *elements)
Return a tuple representing the absolute physical path of the resource object based on its po-
sition in a resource tree, e.g (’’, ’foo’, ’bar’). Any positional arguments passed in as
elements will be appended as elements in the tuple representing the resource path. For instance,
if the resource’s path is (’’, ’foo’, ’bar’) and elements equals (’a’, ’b’), the re-
turned tuple will be (’’, ’foo’, ’bar’, ’a’, ’b’). The first element of this tuple will
always be the empty string (a leading empty string element in a path tuple represents that the path
is absolute).

This function is a logical inverse of pyramid.traversal.find_resource(): it can be
used to generate path references that can later be resolved by that function.

The resource passed in must be location-aware.

Each segment in the path tuple returned will equal the __name__ attribute of the resource
it represents within the resource tree. Each of these segments should be a unicode or string
object (as per the contract of location-awareness). However, no conversion or safety checking of
resource names is performed. For instance, if one of the resources in your tree has a __name__
which (by error) is a dictionary, that dictionary will be placed in the path tuple; no warning or
error will be given.

708

52.17. PYRAMID.TRAVERSAL

The root resource must have a __name__ attribute with a value of either None or
the empty string for path tuples to be generated properly. If the root resource has a non-null
__name__ attribute, its name will be the first element in the generated path tuple rather than
the empty string.

For backwards compatibility purposes, this function can also be imported as
model_path_tuple, although doing so will cause a deprecation warning to be emitted.

quote_path_segment(segment, safe=’‘)

virtual_root(resource, request)
Provided any resource and a request object, return the resource object representing the virtual
root of the current request. Using a virtual root in a traversal -based Pyramid application permits
rooting, for example, the resource at the traversal path /cms at http://example.com/ instead
of rooting it at http://example.com/cms/.

If the resource passed in is a context obtained via traversal, and if the HTTP_X_VHM_ROOT
key is in the WSGI environment, the value of this key will be treated as a ‘virtual root path’: the
pyramid.traversal.find_resource() API will be used to find the virtual root resource
using this path; if the resource is found, it will be returned. If the HTTP_X_VHM_ROOT key is not
present in the WSGI environment, the physical root of the resource tree will be returned instead.

Virtual roots are not useful at all in applications that use URL dispatch. Contexts obtained via URL
dispatch don’t really support being virtually rooted (each URL dispatch context is both its own
physical and virtual root). However if this API is called with a resource argument which is a
context obtained via URL dispatch, the resource passed in will be returned unconditionally.

traverse(resource, path)
Given a resource object as resource and a string or tuple representing a path as
path (such as the return value of pyramid.traversal.resource_path()
or pyramid.traversal.resource_path_tuple() or the value of
request.environ[’PATH_INFO’]), return a dictionary with the keys context, root,
view_name, subpath, traversed, virtual_root, and virtual_root_path.

A definition of each value in the returned dictionary:

•context: The context (a resource object) found via traversal or url dispatch. If the path
passed in is the empty string, the value of the resource argument passed to this function is
returned.

709

52. API DOCUMENTATION

•root: The resource object at which traversal begins. If the resource passed in was
found via url dispatch or if the path passed in was relative (non-absolute), the value of
the resource argument passed to this function is returned.

•view_name: The view name found during traversal or url dispatch; if the resource was
found via traversal, this is usually a representation of the path segment which directly follows
the path to the context in the path. The view_name will be a Unicode object or the
empty string. The view_name will be the empty string if there is no element which follows
the context path. An example: if the path passed is /foo/bar, and a resource object is
found at /foo (but not at /foo/bar), the ‘view name’ will be u’bar’. If the resource
was found via urldispatch, the view_name will be the name the route found was registered
with.

•subpath: For a resource found via traversal, this is a sequence of path segments found
in the path that follow the view_name (if any). Each of these items is a Unicode object.
If no path segments follow the view_name, the subpath will be the empty sequence. An
example: if the path passed is /foo/bar/baz/buz, and a resource object is found at /foo
(but not /foo/bar), the ‘view name’ will be u’bar’ and the subpath will be [u’baz’,
u’buz’]. For a resource found via url dispatch, the subpath will be a sequence of values
discerned from *subpath in the route pattern matched or the empty sequence.

•traversed: The sequence of path elements traversed from the root to find the context
object during traversal. Each of these items is a Unicode object. If no path segments were
traversed to find the context object (e.g. if the path provided is the empty string), the
traversed value will be the empty sequence. If the resource is a resource found via url
dispatch, traversed will be None.

•virtual_root: A resource object representing the ‘virtual’ root of the resource tree being
traversed during traversal. See Virtual Hosting for a definition of the virtual root object. If
no virtual hosting is in effect, and the path passed in was absolute, the virtual_root
will be the physical root resource object (the object at which traversal begins). If the
resource passed in was found via URL dispatch or if the path passed in was relative,
the virtual_root will always equal the root object (the resource passed in).

•virtual_root_path – If traversal was used to find the resource, this will be the
sequence of path elements traversed to find the virtual_root resource. Each of these
items is a Unicode object. If no path segments were traversed to find the virtual_root
resource (e.g. if virtual hosting is not in effect), the traversed value will be the empty list.
If url dispatch was used to find the resource, this will be None.

If the path cannot be resolved, a KeyError will be raised.

Rules for passing a string as the path argument: if the first character in the path string
is the with the / character, the path will considered absolute and the resource tree traver-
sal will start at the root resource. If the first character of the path string is not the /

710

http://docs.python.org/3/library/exceptions.html#KeyError

52.18. PYRAMID.TWEENS

character, the path is considered relative and resource tree traversal will begin at the re-
source object supplied to the function as the resource argument. If an empty string
is passed as path, the resource passed in will be returned. Resource path strings
must be escaped in the following manner: each Unicode path segment must be encoded as
UTF-8 and each path segment must escaped via Python’s urllib.quote. For example,
/path/to%20the/La%20Pe%C3%B1a (absolute) or to%20the/La%20Pe%C3%B1a (rela-
tive). The pyramid.traversal.resource_path() function generates strings which fol-
low these rules (albeit only absolute ones).

Rules for passing a tuple as the path argument: if the first element in the path tuple is the empty
string (for example (’’, ’a’, ’b’, ’c’), the path is considered absolute and the resource
tree traversal will start at the resource tree root object. If the first element in the path tuple is not the
empty string (for example (’a’, ’b’, ’c’)), the path is considered relative and resource tree
traversal will begin at the resource object supplied to the function as the resource argument. If
an empty sequence is passed as path, the resource passed in itself will be returned. No URL-
quoting or UTF-8-encoding of individual path segments within the tuple is required (each segment
may be any string or unicode object representing a resource name).

Explanation of the conversion of path segment values to Unicode during traversal: Each segment
is URL-unquoted, and decoded into Unicode. Each segment is assumed to be encoded using the
UTF-8 encoding (or a subset, such as ASCII); a pyramid.exceptions.URLDecodeError
is raised if a segment cannot be decoded. If a segment name is empty or if it is ., it is ignored.
If a segment name is .., the previous segment is deleted, and the .. is ignored. As a result
of this process, the return values view_name, each element in the subpath, each element in
traversed, and each element in the virtual_root_path will be Unicode as opposed to a
string, and will be URL-decoded.

traversal_path(path)
Variant of pyramid.traversal.traversal_path_info() suitable for decoding paths
that are URL-encoded.

If this function is passed a Unicode object instead of a sequence of bytes as path, that Uni-
code object must directly encodeable to ASCII. For example, u’/foo’ will work but u’/<unprintable
unicode>’ (a Unicode object with characters that cannot be encoded to ascii) will not. A
UnicodeEncodeError will be raised if the Unicode cannot be encoded directly to ASCII.

52.18 pyramid.tweens

excview_tween_factory(handler, registry)
A tween factory which produces a tween that catches an exception raised by downstream tweens (or
the main Pyramid request handler) and, if possible, converts it into a Response using an exception
view.

711

http://docs.python.org/3/library/exceptions.html#UnicodeEncodeError

52. API DOCUMENTATION

MAIN
Constant representing the main Pyramid handling function, for use in under and over arguments
to pyramid.config.Configurator.add_tween().

INGRESS
Constant representing the request ingress, for use in under and over arguments to
pyramid.config.Configurator.add_tween().

EXCVIEW
Constant representing the exception view tween, for use in under and over arguments to
pyramid.config.Configurator.add_tween().

52.19 pyramid.url

Utility functions for dealing with URLs in pyramid

resource_url(context, request, *elements, query=None, anchor=None)
This is a backwards compatibility function. Its result is the same as calling:

request.resource_url(resource, *elements, **kw)

See pyramid.request.Request.resource_url() for more information.

route_url(route_name, request, *elements, **kw)
This is a backwards compatibility function. Its result is the same as calling:

request.route_url(route_name, *elements, **kw)

See pyramid.request.Request.route_url() for more information.

current_route_url(request, *elements, **kw)
This is a backwards compatibility function. Its result is the same as calling:

request.current_route_url(*elements, **kw)

See pyramid.request.Request.current_route_url() for more information.

route_path(route_name, request, *elements, **kw)
This is a backwards compatibility function. Its result is the same as calling:

712

52.19. PYRAMID.URL

request.route_path(route_name, *elements, **kw)

See pyramid.request.Request.route_path() for more information.

current_route_path(request, *elements, **kw)
This is a backwards compatibility function. Its result is the same as calling:

request.current_route_path(*elements, **kw)

See pyramid.request.Request.current_route_path() for more information.

static_url(path, request, **kw)
This is a backwards compatibility function. Its result is the same as calling:

request.static_url(path, **kw)

See pyramid.request.Request.static_url() for more information.

static_path(path, request, **kw)
This is a backwards compatibility function. Its result is the same as calling:

request.static_path(path, **kw)

See pyramid.request.Request.static_path() for more information.

urlencode(query, doseq=True)
An alternate implementation of Python’s stdlib urllib.urlencode function which accepts unicode
keys and values within the query dict/sequence; all Unicode keys and values are first converted to
UTF-8 before being used to compose the query string.

The value of query must be a sequence of two-tuples representing key/value pairs or an object
(often a dictionary) with an .items() method that returns a sequence of two-tuples representing
key/value pairs.

For minimal calling convention backwards compatibility, this version of urlencode accepts but ig-
nores a second argument conventionally named doseq. The Python stdlib version behaves differ-
ently when doseq is False and when a sequence is presented as one of the values. This version
always behaves in the doseq=True mode, no matter what the value of the second argument.

See the Python stdlib documentation for urllib.urlencode for more information.

Changed in version 1.5: In a key/value pair, if the value is None then it will be dropped from the
resulting output.

713

http://docs.python.org/library/urllib.html

52. API DOCUMENTATION

52.20 pyramid.view

render_view_to_response(context, request, name=’‘, secure=True)
Call the view callable configured with a view configuration that matches the view name name reg-
istered against the specified context and request and return a response object. This function
will return None if a corresponding view callable cannot be found (when no view configuration
matches the combination of name / context / and request).

If secure‘ is True, and the view callable found is protected by a permission, the permission will be
checked before calling the view function. If the permission check disallows view execution (based
on the current authorization policy), a pyramid.httpexceptions.HTTPForbidden ex-
ception will be raised. The exception’s args attribute explains why the view access was disal-
lowed.

If secure is False, no permission checking is done.

render_view_to_iterable(context, request, name=’‘, secure=True)
Call the view callable configured with a view configuration that matches the view name name
registered against the specified context and request and return an iterable object which rep-
resents the body of a response. This function will return None if a corresponding view callable
cannot be found (when no view configuration matches the combination of name / context / and
request). Additionally, this function will raise a ValueError if a view function is found and
called but the view function’s result does not have an app_iter attribute.

You can usually get the bytestring representation of the return value of this function by calling
b’’.join(iterable), or just use pyramid.view.render_view() instead.

If secure is True, and the view is protected by a permission, the permission will be checked
before the view function is invoked. If the permission check disallows view execution (based on the
current authentication policy), a pyramid.httpexceptions.HTTPForbidden exception
will be raised; its args attribute explains why the view access was disallowed.

If secure is False, no permission checking is done.

render_view(context, request, name=’‘, secure=True)
Call the view callable configured with a view configuration that matches the view name name reg-
istered against the specified context and request and unwind the view response’s app_iter
(see View Callable Responses) into a single bytestring. This function will return None if a cor-
responding view callable cannot be found (when no view configuration matches the combination
of name / context / and request). Additionally, this function will raise a ValueError if
a view function is found and called but the view function’s result does not have an app_iter
attribute. This function will return None if a corresponding view cannot be found.

714

http://docs.python.org/3/library/exceptions.html#ValueError
http://docs.python.org/3/library/exceptions.html#ValueError

52.20. PYRAMID.VIEW

If secure is True, and the view is protected by a permission, the permission will be checked
before the view is invoked. If the permission check disallows view execution (based on the cur-
rent authorization policy), a pyramid.httpexceptions.HTTPForbidden exception will
be raised; its args attribute explains why the view access was disallowed.

If secure is False, no permission checking is done.

class view_config(**settings)
A function, class or method decorator which allows a developer to create view registrations nearer
to a view callable definition than use imperative configuration to do the same.

For example, this code in a module views.py:

from resources import MyResource

@view_config(name='my_view', context=MyResource, permission='read',
route_name='site1')

def my_view(context, request):
return 'OK'

Might replace the following call to the pyramid.config.Configurator.add_view()
method:

import views
from resources import MyResource
config.add_view(views.my_view, context=MyResource, name='my_view',

permission='read', route_name='site1')

pyramid.view.view_config supports the following keyword arguments: context,
permission, name, request_type, route_name, request_method,
request_param, containment, xhr, accept, header, path_info,
custom_predicates, decorator, mapper, http_cache, match_param,
check_csrf, physical_path, and predicates.

The meanings of these arguments are the same as the arguments passed to
pyramid.config.Configurator.add_view(). If any argument is left out, its de-
fault will be the equivalent add_view default.

An additional keyword argument named _depth is provided for people who wish to reuse this
class from another decorator. The default value is 0 and should be specified relative to the
view_config invocation. It will be passed in to the venusian attach function as the depth
of the callstack when Venusian checks if the decorator is being used in a class or module context.

715

52. API DOCUMENTATION

It’s not often used, but it can be useful in this circumstance. See the attach function in Venusian
for more information.

See also:

See also Adding View Configuration Using the @view_config Decorator for details about using
pyramid.view.view_config.

view_config will work ONLY on module top level members because of the limitation
of venusian.Scanner.scan.

class view_defaults(**settings)
A class decorator which, when applied to a class, will provide defaults for all view
configurations that use the class. This decorator accepts all the arguments accepted by
pyramid.view.view_config(), and each has the same meaning.

See @view_defaults Class Decorator for more information.

class notfound_view_config(**settings)
New in version 1.3.

An analogue of pyramid.view.view_config which registers a Not Found View.

The notfound_view_config constructor accepts most of the same arguments as the construc-
tor of pyramid.view.view_config. It can be used in the same places, and behaves in largely
the same way, except it always registers a not found exception view instead of a ‘normal’ view.

Example:

from pyramid.view import notfound_view_config
from pyramid.response import Response

@notfound_view_config()
def notfound(request):

return Response('Not found, dude!', status='404 Not Found')

All arguments except append_slash have the same meaning as
pyramid.view.view_config() and each predicate argument restricts the set of cir-
cumstances under which this notfound view will be invoked.

If append_slash is True, when the Not Found View is invoked, and the current path info does
not end in a slash, the notfound logic will attempt to find a route that matches the request’s path
info suffixed with a slash. If such a route exists, Pyramid will issue a redirect to the URL implied
by the route; if it does not, Pyramid will return the result of the view callable provided as view, as
normal.

See Changing the Not Found View for detailed usage information.

716

52.21. PYRAMID.WSGI

class forbidden_view_config(**settings)
New in version 1.3.

An analogue of pyramid.view.view_config which registers a forbidden view.

The forbidden_view_config constructor accepts most of the same arguments as the constructor of
pyramid.view.view_config. It can be used in the same places, and behaves in largely the
same way, except it always registers a forbidden exception view instead of a ‘normal’ view.

Example:

from pyramid.view import forbidden_view_config
from pyramid.response import Response

@forbidden_view_config()
def forbidden(request):

return Response('You are not allowed', status='401 Unauthorized')

All arguments passed to this function have the same meaning as
pyramid.view.view_config() and each predicate argument restricts the set of cir-
cumstances under which this notfound view will be invoked.

See Changing the Forbidden View for detailed usage information.

52.21 pyramid.wsgi

wsgiapp(wrapped)
Decorator to turn a WSGI application into a Pyramid view callable. This decorator differs
from the pyramid.wsgi.wsgiapp2() decorator inasmuch as fixups of PATH_INFO and
SCRIPT_NAMEwithin the WSGI environment are not performed before the application is invoked.

E.g., the following in a views.py module:

@wsgiapp
def hello_world(environ, start_response):

body = 'Hello world'
start_response('200 OK', [('Content-Type', 'text/plain'),

('Content-Length', len(body))])
return [body]

Allows the following call to pyramid.config.Configurator.add_view():

717

52. API DOCUMENTATION

from views import hello_world
config.add_view(hello_world, name='hello_world.txt')

The wsgiapp decorator will convert the result of the WSGI application to a Response and return
it to Pyramid as if the WSGI app were a Pyramid view.

wsgiapp2(wrapped)
Decorator to turn a WSGI application into a Pyramid view callable. This decorator differs
from the pyramid.wsgi.wsgiapp() decorator inasmuch as fixups of PATH_INFO and
SCRIPT_NAME within the WSGI environment are performed before the application is invoked.

E.g. the following in a views.py module:

@wsgiapp2
def hello_world(environ, start_response):

body = 'Hello world'
start_response('200 OK', [('Content-Type', 'text/plain'),

('Content-Length', len(body))])
return [body]

Allows the following call to pyramid.config.Configurator.add_view():

from views import hello_world
config.add_view(hello_world, name='hello_world.txt')

The wsgiapp2 decorator will convert the result of the WSGI application to a Response and return
it to Pyramid as if the WSGI app were a Pyramid view. The SCRIPT_NAME and PATH_INFO
values present in the WSGI environment are fixed up before the application is invoked. In partic-
ular, a new WSGI environment is generated, and the subpath of the request passed to wsgiapp2
is used as the new request’s PATH_INFO and everything preceding the subpath is used as the
SCRIPT_NAME. The new environment is passed to the downstream WSGI application.

718

Part IV

Glossary and Index

Glossary

ACE An access control entry. An access control entry is one element in an ACL. An access control entry
is a three-tuple that describes three things: an action (one of either Allow or Deny), a principal (a
string describing a user or group), and a permission. For example the ACE, (Allow, ’bob’,
’read’) is a member of an ACL that indicates that the principal bob is allowed the permission
read against the resource the ACL is attached to.

ACL An access control list. An ACL is a sequence of ACE tuples. An ACL is attached to a resource
instance. An example of an ACL is [(Allow, ’bob’, ’read’), (Deny, ’fred’,
’write’)]. If an ACL is attached to a resource instance, and that resource is findable via the
context resource, it will be consulted any active security policy to determine whether a particular
request can be fulfilled given the authentication information in the request.

action Represents a pending configuration statement generated by a call to a config-
uration directive. The set of pending configuration actions are processed when
pyramid.config.Configurator.commit() is called.

add-on A Python distribution that uses Pyramid’s extensibility to plug into a Pyramid application and
provide extra, configurable services.

Agendaless Consulting A consulting organization formed by Paul Everitt, Tres Seaver, and Chris Mc-
Donough.

See also:

See also Agendaless Consulting.

Akhet Akhet is a Pyramid library and demo application with a Pylons-like feel. It’s most known for its
former application scaffold, which helped users transition from Pylons and those preferring a more
Pylons-like API. The scaffold has been retired but the demo plays a similar role.

application registry A registry of configuration information consulted by Pyramid while servicing
an application. An application registry maps resource types to views, as well as housing other
application-specific component registrations. Every Pyramid application has one (and only one)
application registry.

721

http://agendaless.com
http://docs.pylonsproject.org/projects/akhet/en/latest/

52. GLOSSARY

asset Any file contained within a Python package which is not a Python source code file.

asset descriptor An instance representing an asset specification provided by the
pyramid.path.AssetResolver.resolve() method. It supports the methods and
attributes documented in pyramid.interfaces.IAssetDescriptor.

asset specification A colon-delimited identifier for an asset. The colon separates a Python package name
from a package subpath. For example, the asset specification my.package:static/baz.css
identifies the file named baz.css in the static subdirectory of the my.package Python pack-
age. See Understanding Asset Specifications for more info.

authentication The act of determining that the credentials a user presents during a particular request are
“good”. Authentication in Pyramid is performed via an authentication policy.

authentication policy An authentication policy in Pyramid terms is a bit of code which has an API
which determines the current principal (or principals) associated with a request.

authorization The act of determining whether a user can perform a specific action. In pyramid terms,
this means determining whether, for a given resource, any principal (or principals) associated with
the request have the requisite permission to allow the request to continue. Authorization in Pyramid
is performed via its authorization policy.

authorization policy An authorization policy in Pyramid terms is a bit of code which has an API which
determines whether or not the principals associated with the request can perform an action associ-
ated with a permission, based on the information found on the context resource.

Babel A collection of tools for internationalizing Python applications. Pyramid does not depend on
Babel to operate, but if Babel is installed, additional locale functionality becomes available to your
application.

Chameleon chameleon is an attribute language template compiler which supports the ZPT templating
specification. It is written and maintained by Malthe Borch. It has several extensions, such as the
ability to use bracketed (Mako-style) ${name} syntax. It is also much faster than the reference
implementation of ZPT. Pyramid offers Chameleon templating out of the box in ZPT and text
flavors.

configuration declaration An individual method call made to a configuration directive, such as register-
ing a view configuration (via the add_view() method of the configurator) or route configuration
(via the add_route() method of the configurator). A set of configuration declarations is also
implied by the configuration decoration detected by a scan of code in a package.

configuration decoration Metadata implying one or more configuration declaration invocations. Often
set by configuration Python decorator attributes, such as pyramid.view.view_config, aka
@view_config.

722

http://babel.pocoo.org/en/latest/
https://chameleon.readthedocs.org/en/latest/

configuration directive A method of the Configurator which causes a configuration action to occur.
The method pyramid.config.Configurator.add_view() is a configuration directive,
and application developers can add their own directives as necessary (see Adding Methods to the
Configurator via add_directive).

configurator An object used to do configuration declaration within an application. The most common
configurator is an instance of the pyramid.config.Configurator class.

conflict resolution Pyramid attempts to resolve ambiguous configuration statements made by applica-
tion developers via automatic conflict resolution. Automatic conflict resolution is described in
Automatic Conflict Resolution. If Pyramid cannot resolve ambiguous configuration statements, it is
possible to manually resolve them as described in Manually Resolving Conflicts.

console script A script written to the bin (on UNIX, or Scripts on Windows) directory of a
Python installation or virtualenv as the result of running setup.py install or setup.py
develop.

context A resource in the resource tree that is found during traversal or URL dispatch based on URL
data; if it’s found via traversal, it’s usually a resource object that is part of a resource tree; if it’s
found via URL dispatch, it’s an object manufactured on behalf of the route’s “factory”. A context
resource becomes the subject of a view, and often has security information attached to it. See the
Traversal chapter and the URL Dispatch chapter for more information about how a URL is resolved
to a context resource.

CPython The C implementation of the Python language. This is the reference implementation that most
people refer to as simply “Python”; Jython, Google’s App Engine, and PyPy are examples of non-C
based Python implementations.

declarative configuration The configuration mode in which you use the combination of configuration
decoration and a scan to configure your Pyramid application.

decorator A wrapper around a Python function or class which accepts the function or class as its first
argument and which returns an arbitrary object. Pyramid provides several decorators, used for
configuration and return value modification purposes.

See also:

See also PEP 318.

Default Locale Name The locale name used by an application when no explicit locale name is set. See
Localization-Related Deployment Settings.

723

http://doc.pypy.org/en/latest/
http://www.python.org/dev/peps/pep-0318/

52. GLOSSARY

default permission A permission which is registered as the default for an entire application. When a
default permission is in effect, every view configuration registered with the system will be effec-
tively amended with a permission argument that will require that the executing user possess the
default permission in order to successfully execute the associated view callable.

See also:

See also Setting a Default Permission.

default root factory If an application does not register a root factory at Pyramid configuration time,
a default root factory is used to created the default root object. Use of the default root object is
useful in application which use URL dispatch for all URL-to-view code mappings, and does not
(knowingly) use traversal otherwise.

Default view The default view of a resource is the view invoked when the view name is the empty string
(’’). This is the case when traversal exhausts the path elements in the PATH_INFO of a request
before it returns a context resource.

Deployment settings Deployment settings are settings passed to the Configurator as a settings ar-
gument. These are later accessible via a request.registry.settings dictionary in views
or as config.registry.settings in configuration code. Deployment settings can be used
as global application values.

discriminator The unique identifier of an action.

distribute Distribute is a fork of setuptools which runs on both Python 2 and Python 3.

distribution (Setuptools/distutils terminology). A file representing an installable library or application.
Distributions are usually files that have the suffix of .egg, .tar.gz, or .zip. Distributions are
the target of Setuptools-related commands such as easy_install.

distutils The standard system for packaging and distributing Python packages. See
http://docs.python.org/distutils/index.html for more information. setuptools is actually an
extension of the Distutils.

Django A full-featured Python web framework.

domain model Persistent data related to your application. For example, data stored in a relational
database. In some applications, the resource tree acts as the domain model.

dotted Python name A reference to a Python object by name using a string, in the form
path.to.modulename:attributename. Often used in Pyramid and setuptools configu-
rations. A variant is used in dotted names within configurator method arguments that name objects
(such as the “add_view” method’s “view” and “context” attributes): the colon (:) is not used; in its
place is a dot.

724

http://packages.python.org/distribute/
http://docs.python.org/distutils/index.html
http://djangoproject.com

entry point A setuptools indirection, defined within a setuptools distribution setup.py. It is usually a
name which refers to a function somewhere in a package which is held by the distribution.

event An object broadcast to zero or more subscriber callables during normal Pyramid system operations
during the lifetime of an application. Application code can subscribe to these events by using the
subscriber functionality described in Using Events.

exception response A response that is generated as the result of a raised exception being caught by an
exception view.

Exception view An exception view is a view callable which may be invoked by Pyramid when an ex-
ception is raised during request processing. See Custom Exception Views for more information.

finished callback A user-defined callback executed by the router unconditionally at the very end of
request processing . See Using Finished Callbacks.

Forbidden view An exception view invoked by Pyramid when the developer explicitly raises a
pyramid.httpexceptions.HTTPForbidden exception from within view code or root fac-
tory code, or when the view configuration and authorization policy found for a request disallows a
particular view invocation. Pyramid provides a default implementation of a forbidden view; it can
be overridden. See Changing the Forbidden View.

Genshi An XML templating language by Christopher Lenz.

Gettext The GNU gettext library, used by the Pyramid translation machinery.

Google App Engine Google App Engine (aka “GAE”) is a Python application hosting service offered
by Google. Pyramid runs on GAE.

Green Unicorn Aka gunicorn, a fast WSGI server that runs on UNIX under Python 2.6+ or Python
3.1+. See http://gunicorn.org/ for detailed information.

Grok A web framework based on Zope 3.

HTTP Exception The set of exception classes defined in pyramid.httpexceptions. These can
be used to generate responses with various status codes when raised or returned from a view
callable.

See also:

See also HTTP Exceptions.

imperative configuration The configuration mode in which you use Python to call methods on a Con-
figurator in order to add each configuration declaration required by your application.

725

http://pypi.python.org/pypi/Genshi/
http://www.gnu.org/software/gettext/
http://code.google.com/appengine/
http://gunicorn.org/
http://grok.zope.org

52. GLOSSARY

interface A Zope interface object. In Pyramid, an interface may be attached to a resource object or a
request object in order to identify that the object is “of a type”. Interfaces are used internally by
Pyramid to perform view lookups and other policy lookups. The ability to make use of an interface
is exposed to an application programmers during view configuration via the context argument,
the request_type argument and the containment argument. Interfaces are also exposed to
application developers when they make use of the event system. Fundamentally, Pyramid program-
mers can think of an interface as something that they can attach to an object that stamps it with a
“type” unrelated to its underlying Python type. Interfaces can also be used to describe the behavior
of an object (its methods and attributes), but unless they choose to, Pyramid programmers do not
need to understand or use this feature of interfaces.

Internationalization The act of creating software with a user interface that can potentially be displayed
in more than one language or cultural context. Often shortened to “i18n” (because the word “inter-
nationalization” is I, 18 letters, then N).

See also:

See also Localization.

introspectable An object which implements the attributes and methods described in
pyramid.interfaces.IIntrospectable. Introspectables are used by the introspector
to display configuration information about a running Pyramid application. An introspectable is
associated with a action by virtue of the pyramid.config.Configurator.action()
method.

introspector An object with the methods described by pyramid.interfaces.IIntrospector
that is available in both configuration code (for registration) and at runtime (for querying) that al-
lows a developer to introspect configuration statements and relationships between those statements.

Jinja2 A text templating language by Armin Ronacher.

jQuery A popular Javascript library.

JSON JavaScript Object Notation is a data serialization format.

Jython A Python implementation written for the Java Virtual Machine.

lineage An ordered sequence of objects based on a “location -aware” resource. The lineage of any given
resource is composed of itself, its parent, its parent’s parent, and so on. The order of the sequence
is resource-first, then the parent of the resource, then its parent’s parent, and so on. The parent of a
resource in a lineage is available as its __parent__ attribute.

Lingua A package by Wichert Akkerman which provides the pot-create command to extract trans-
lateable messages from Python sources and Chameleon ZPT template files.

726

http://pypi.python.org/pypi/zope.interface
http://jinja.pocoo.org/2/
http://jquery.org
http://www.json.org/
http://www.jython.org/

Locale Name A string like en, en_US, de, or de_AT which uniquely identifies a particular locale.

Locale Negotiator An object supplying a policy determining which locale name best repre-
sents a given request. It is used by the pyramid.i18n.get_locale_name(),
and pyramid.i18n.negotiate_locale_name() functions,
and indirectly by pyramid.i18n.get_localizer(). The
pyramid.i18n.default_locale_negotiator() function is an example of a lo-
cale negotiator.

Localization The process of displaying the user interface of an internationalized application in a partic-
ular language or cultural context. Often shortened to “l10” (because the word “localization” is L,
10 letters, then N).

See also:

See also Internationalization.

Localizer An instance of the class pyramid.i18n.Localizer which provides
translation and pluralization services to an application. It is retrieved via the
pyramid.i18n.get_localizer() function.

location The path to an object in a resource tree. See Location-Aware Resources for more information
about how to make a resource object location-aware.

Mako Mako is a template language which refines the familiar ideas of componentized layout and inher-
itance using Python with Python scoping and calling semantics.

matchdict The dictionary attached to the request object as request.matchdict when a URL dis-
patch route has been matched. Its keys are names as identified within the route pattern; its values
are the values matched by each pattern name.

Message Catalog A gettext .mo file containing translations.

Message Identifier A string used as a translation lookup key during localization. The msgid argument
to a translation string is a message identifier. Message identifiers are also present in a message
catalog.

METAL Macro Expansion for TAL, a part of ZPT which makes it possible to share common look and
feel between templates.

middleware Middleware is a WSGI concept. It is a WSGI component that acts both as a server and an
application. Interesting uses for middleware exist, such as caching, content-transport encoding, and
other functions. See WSGI.org or PyPI to find middleware for your application.

727

http://www.makotemplates.org/
http://wiki.zope.org/ZPT/METAL
http://www.wsgi.org
http://python.org/pypi

52. GLOSSARY

mod_wsgi mod_wsgi is an Apache module developed by Graham Dumpleton. It allows WSGI applica-
tions (such as applications developed using Pyramid) to be served using the Apache web server.

module A Python source file; a file on the filesystem that typically ends with the extension .py or
.pyc. Modules often live in a package.

multidict An ordered dictionary that can have multiple values for each key. Adds the methods getall,
getone, mixed, add and dict_of_lists to the normal dictionary interface. See Multidict
and pyramid.interfaces.IMultiDict.

Not Found View An exception view invoked by Pyramid when the developer explicitly raises a
pyramid.httpexceptions.HTTPNotFound exception from within view code or root fac-
tory code, or when the current request doesn’t match any view configuration. Pyramid provides a
default implementation of a Not Found View; it can be overridden. See Changing the Not Found
View.

package A directory on disk which contains an __init__.py file, making it recognizable to Python
as a location which can be import -ed. A package exists to contain module files.

PasteDeploy PasteDeploy is a library used by Pyramid which makes it possible to configure WSGI
components together declaratively within an .ini file. It was developed by Ian Bicking.

permission A string or Unicode object that represents an action being taken against a context resource. A
permission is associated with a view name and a resource type by the developer. Resources are dec-
orated with security declarations (e.g. an ACL), which reference these tokens also. Permissions are
used by the active security policy to match the view permission against the resources’s statements
about which permissions are granted to which principal in a context in order to answer the question
“is this user allowed to do this”. Examples of permissions: read, or view_blog_entries.

physical path The path required by a traversal which resolve a resource starting from the physical root.
For example, the physical path of the abc subobject of the physical root object is /abc. Physical
paths can also be specified as tuples where the first element is the empty string (representing the
root), and every other element is a Unicode object, e.g. (’’, ’abc’). Physical paths are also
sometimes called “traversal paths”.

physical root The object returned by the application root factory. Unlike the virtual root of a request, it
is not impacted by Virtual Hosting: it will always be the actual object returned by the root factory,
never a subobject.

pipeline The PasteDeploy term for a single configuration of a WSGI server, a WSGI application, with a
set of middleware in-between.

728

http://code.google.com/p/modwsgi/
http://pythonpaste.org/deploy/

pkg_resources A module which ships with setuptools and distribute that provides an API for addressing
“asset files” within a Python package. Asset files are static files, template files, etc; basically
anything non-Python-source that lives in a Python package can be considered a asset file.

See also:

See also PkgResources.

predicate A test which returns True or False. Two different types of predicates exist in Pyramid: a
view predicate and a route predicate. View predicates are attached to view configuration and route
predicates are attached to route configuration.

predicate factory A callable which is used by a third party during the registration of a route, view, or
subscriber predicates to extend the configuration system. See Adding a Third Party View, Route, or
Subscriber Predicate for more information.

pregenerator A pregenerator is a function associated by a developer with a route. It is
called by route_url() in order to adjust the set of arguments passed to it by the
user for special purposes. It will influence the URL returned by route_url(). See
pyramid.interfaces.IRoutePregenerator for more information.

principal A principal is a string or Unicode object representing an entity, typically a user or group.
Principals are provided by an authentication policy. For example, if a user has the userid bob, and
is a member of two groups named group foo and group bar, then the request might have information
attached to it indicating that Bob was represented by three principals: bob, group foo and group bar.

project (Setuptools/distutils terminology). A directory on disk which contains a setup.py file and
one or more Python packages. The setup.py file contains code that allows the package(s) to be
installed, distributed, and tested.

Pylons A lightweight Python web framework and a predecessor of Pyramid.

PyPI The Python Package Index, a collection of software available for Python.

PyPy PyPy is an “alternative implementation of the Python language”: http://pypy.org/

Pyramid Community Cookbook Additional, community-based documentation for Pyramid which
presents topical, practical uses of Pyramid: Pyramid Community Cookbook

pyramid_debugtoolbar A Pyramid add-on which displays a helpful debug toolbar “on top of”
HTML pages rendered by your application, displaying request, routing, and database in-
formation. pyramid_debugtoolbar is configured into the development.ini
of all applications which use a Pyramid scaffold. For more information, see
http://docs.pylonsproject.org/projects/pyramid_debugtoolbar/en/latest/.

729

http://peak.telecommunity.com/DevCenter/PkgResources
http://docs.pylonsproject.org/projects/pylons-webframework/en/latest/
http://pypi.python.org/pypi
http://pypy.org/
http://docs.pylonsproject.org/projects/pyramid-cookbook/en/latest/index.html#pyramid-cookbook
http://docs.pylonsproject.org/projects/pyramid-debugtoolbar/en/latest/api.html#module-pyramid_debugtoolbar
http://docs.pylonsproject.org/projects/pyramid_debugtoolbar/en/latest/

52. GLOSSARY

pyramid_exclog A package which logs Pyramid application exception (error) information to a standard
Python logger. This add-on is most useful when used in production applications, because the logger
can be configured to log to a file, to UNIX syslog, to the Windows Event Log, or even to email. See
its documentation.

pyramid_handlers An add-on package which allows Pyramid users to create classes that are analogues
of Pylons 1 “controllers”. See http://docs.pylonsproject.org/projects/pyramid_handlers/dev/ .

pyramid_jinja2 Jinja2 templating system bindings for Pyramid, documented at
http://docs.pylonsproject.org/projects/pyramid_jinja2/dev/ . This package also includes a
scaffold named pyramid_jinja2_starter, which creates an application package based on
the Jinja2 templating system.

pyramid_redis_sessions A package by Eric Rasmussen which allows you to store Pyramid session data
in a Redis database. See https://pypi.python.org/pypi/pyramid_redis_sessions for more informa-
tion.

pyramid_zcml An add-on package to Pyramid which allows applications to be configured via ZCML. It
is available on PyPI. If you use pyramid_zcml, you can use ZCML as an alternative to impera-
tive configuration or configuration decoration.

Python The programming language in which Pyramid is written.

renderer A serializer which converts non-Response return values from a view into a string, and ulti-
mately into a response, usually through view configuration. Using a renderer can make writing
views that require templating or other serialization, like JSON, less tedious. See Writing View
Callables Which Use a Renderer for more information.

renderer factory A factory which creates a renderer. See Adding and Changing Renderers for more
information.

renderer globals Values injected as names into a renderer by a pyramid.event.BeforeRender
event.

Repoze “Repoze” is essentially a “brand” of software developed by Agendaless Consulting and a set of
contributors. The term has no special intrinsic meaning. The project’s website has more informa-
tion. The software developed “under the brand” is available in a Subversion repository. Pyramid
was originally known as repoze.bfg.

repoze.catalog An indexing and search facility (fielded and full-text) based on zope.index. See the
documentation for more information.

repoze.lemonade Zope2 CMF-like data structures and helper facilities for CA-and-ZODB-based appli-
cations useful within Pyramid applications.

730

http://docs.pylonsproject.org/projects/pyramid_exclog/dev/
http://docs.pylonsproject.org/projects/pyramid_handlers/dev/
http://docs.pylonsproject.org/projects/pyramid_jinja2/dev/
https://pypi.python.org/pypi/pyramid_redis_sessions
http://docs.pylonsproject.org/projects/pyramid-zcml/en/latest/api.html#module-pyramid_zcml
http://python.org
http://agendaless.com
http://repoze.org
http://svn.repoze.org
http://pypi.python.org/pypi/zope.index
http://docs.repoze.org/catalog
http://docs.repoze.org/catalog
http://docs.repoze.org/lemonade

repoze.who Authentication middleware for WSGI applications. It can be used by Pyramid to provide
authentication information.

repoze.workflow Barebones workflow for Python apps . It can be used by Pyramid to form a workflow
system.

request An object that represents an HTTP request, usually an instance of the
pyramid.request.Request class. See Request and Response Objects (narrative) and
pyramid.request (API documentation) for information about request objects.

request factory An object which, provided a WSGI environment as a single positional argument, returns
a Pyramid-compatible request.

request type An attribute of a request that allows for specialization of view invocation based on arbi-
trary categorization. The every request object that Pyramid generates and manipulates has one
or more interface objects attached to it. The default interface attached to a request object is
pyramid.interfaces.IRequest.

resource An object representing a node in the resource tree of an application. If traversal is used,
a resource is an element in the resource tree traversed by the system. When traversal is used, a
resource becomes the context of a view. If url dispatch is used, a single resource is generated for
each request and is used as the context resource of a view.

Resource Location The act of locating a context resource given a request. Traversal and URL dispatch
are the resource location subsystems used by Pyramid.

resource tree A nested set of dictionary-like objects, each of which is a resource. The act of traversal
uses the resource tree to find a context resource.

response An object returned by a view callable that represents response data returned to the requesting
user agent. It must implement the pyramid.interfaces.IResponse interface. A response
object is typically an instance of the pyramid.response.Response class or a subclass such
as pyramid.httpexceptions.HTTPFound. See Request and Response Objects for infor-
mation about response objects.

response adapter A callable which accepts an arbitrary object and “converts” it to a
pyramid.response.Response object. See Changing How Pyramid Treats View Responses
for more information.

response callback A user-defined callback executed by the router at a point after a response object is
successfully created.

See also:

See also Using Response Callbacks.

731

http://docs.repoze.org/who
http://docs.repoze.org/workflow

52. GLOSSARY

reStructuredText A plain text markup format that is the defacto standard for documenting Python
projects. The Pyramid documentation is written in reStructuredText.

root The object at which traversal begins when Pyramid searches for a context resource (for URL Dis-
patch, the root is always the context resource unless the traverse= argument is used in route
configuration).

root factory The “root factory” of a Pyramid application is called on every request sent to the appli-
cation. The root factory returns the traversal root of an application. It is conventionally named
get_root. An application may supply a root factory to Pyramid during the construction of a
Configurator. If a root factory is not supplied, the application creates a default root object using the
default root factory.

route A single pattern matched by the url dispatch subsystem, which generally resolves to a root factory
(and then ultimately a view).

See also:

See also url dispatch.

route configuration Route configuration is the act of associating request parameters with a particular
route using pattern matching and route predicate statements. See URL Dispatch for more informa-
tion about route configuration.

route predicate An argument to a route configuration which implies a value that evaluates to True or
False for a given request. All predicates attached to a route configuration must evaluate to True
for the associated route to “match” the current request. If a route does not match the current request,
the next route (in definition order) is attempted.

router The WSGI application created when you start a Pyramid application. The router intercepts re-
quests, invokes traversal and/or URL dispatch, calls view functions, and returns responses to the
WSGI server on behalf of your Pyramid application.

Routes A system by Ben Bangert which parses URLs and compares them against a number of user
defined mappings. The URL pattern matching syntax in Pyramid is inspired by the Routes syntax
(which was inspired by Ruby On Rails pattern syntax).

routes mapper An object which compares path information from a request to an ordered set of route
patterns. See URL Dispatch.

scaffold A project template that generates some of the major parts of a Pyramid application and helps
users to quickly get started writing larger applications. Scaffolds are usually used via the pcreate
command.

732

http://docutils.sourceforge.net/rst.html
http://routes.groovie.org/

scan The term used by Pyramid to define the process of importing and examining all code in a Python
package or module for configuration decoration.

session A namespace that is valid for some period of continual activity that can be used to represent a
user’s interaction with a web application.

session factory A callable, which, when called with a single argument named request (a request
object), returns a session object. See Using the Default Session Factory, Using Alternate Session
Factories and pyramid.config.Configurator.set_session_factory() for more
information.

setuptools Setuptools builds on Python’s distutils to provide easier building, distribution, and in-
stallation of libraries and applications. As of this writing, setuptools runs under Python 2, but not
under Python 3. You can use distribute under Python 3 instead.

SQLAlchemy SQLAlchemy is an object relational mapper used in tutorials within this documentation.

subpath A list of element “left over” after the router has performed a successful traversal to a view.
The subpath is a sequence of strings, e.g. [’left’, ’over’, ’names’]. Within Pyramid
applications that use URL dispatch rather than traversal, you can use *subpath in the route
pattern to influence the subpath. See Using *subpath in a Route Pattern for more information.

subscriber A callable which receives an event. A callable becomes a subscriber via imperative configu-
ration or via configuration decoration. See Using Events for more information.

template A file with replaceable parts that is capable of representing some text, XML, or HTML when
rendered.

thread local A thread-local variable is one which is essentially a global variable in terms of how it is
accessed and treated, however, each thread used by the application may have a different value for
this same “global” variable. Pyramid uses a small number of thread local variables, as described in
Thread Locals.

See also:

See also the stdlib documentation for more information.

Translation Context A string representing the “context” in which a translation was made within a given
translation domain. See the gettext documentation, 11.2.5 Using contexts for solving ambiguities
for more information.

Translation Directory A translation directory is a gettext translation directory. It contains language
folders, which themselves contain LC_MESSAGES folders, which contain .mo files. Each .mo file
represents a set of translations for a language in a translation domain. The name of the .mo file
(minus the .mo extension) is the translation domain name.

733

http://peak.telecommunity.com/DevCenter/setuptools
http://www.sqlalchemy.org/
http://en.wikipedia.org/wiki/Thread_(computer_science)
http://docs.python.org/3/library/threading.html#threading.local
https://www.gnu.org/software/gettext/manual/gettext.html#Contexts

52. GLOSSARY

Translation Domain A string representing the “context” in which a translation was made. For ex-
ample the word “java” might be translated differently if the translation domain is “programming-
languages” than would be if the translation domain was “coffee”. A translation domain is repre-
sented by a collection of .mo files within one or more translation directory directories.

Translation String An instance of pyramid.i18n.TranslationString, which is a class that
behaves like a Unicode string, but has several extra attributes such as domain, msgid, and
mapping for use during translation. Translation strings are usually created by hand within soft-
ware, but are sometimes created on the behalf of the system for automatic template translation. For
more information, see Internationalization and Localization.

Translator A callable which receives a translation string and returns a translated Unicode object for
the purposes of internationalization. A localizer supplies a translator to a Pyramid application
accessible via its translate method.

traversal The act of descending “up” a tree of resource objects from a root resource in order to find a
context resource. The Pyramid router performs traversal of resource objects when a root factory is
specified. See the Traversal chapter for more information. Traversal can be performed instead of
URL dispatch or can be combined with URL dispatch. See Combining Traversal and URL Dispatch
for more information about combining traversal and URL dispatch (advanced).

tween A bit of code that sits between the Pyramid router’s main request handling function and the
upstream WSGI component that uses Pyramid as its ‘app’. The word “tween” is a contraction
of “between”. A tween may be used by Pyramid framework extensions, to provide, for example,
Pyramid-specific view timing support, bookkeeping code that examines exceptions before they are
returned to the upstream WSGI application, or a variety of other features. Tweens behave a bit like
WSGI middleware but they have the benefit of running in a context in which they have access to the
Pyramid application registry as well as the Pyramid rendering machinery. See Registering Tweens.

URL dispatch An alternative to traversal as a mechanism for locating a context resource for a view.
When you use a route in your Pyramid application via a route configuration, you are using URL
dispatch. See the URL Dispatch for more information.

userid A userid is a string or Unicode object used to identify and authenticate a real-world user or client.
A userid is supplied to an authentication policy in order to discover the user’s principals. In the
authentication policies which Pyramid provides, the default behavior returns the user’s userid as a
principal, but this is not strictly necessary in custom policies that define their principals differently.

Venusian Venusian is a library which allows framework authors to defer decorator actions. Instead of
taking actions when a function (or class) decorator is executed at import time, the action usually
taken by the decorator is deferred until a separate “scan” phase. Pyramid relies on Venusian to
provide a basis for its scan feature.

view Common vernacular for a view callable.

734

http://docs.pylonsproject.org/projects/venusian/en/latest/index.html#venusian

view callable A “view callable” is a callable Python object which is associated with a view configuration;
it returns a response object . A view callable accepts a single argument: request, which will be
an instance of a request object. An alternate calling convention allows a view to be defined as a
callable which accepts a pair of arguments: context and request: this calling convention is
useful for traversal-based applications in which a context is always very important. A view callable
is the primary mechanism by which a developer writes user interface code within Pyramid. See
Views for more information about Pyramid view callables.

view configuration View configuration is the act of associating a view callable with configuration in-
formation. This configuration information helps map a given request to a particular view callable
and it can influence the response of a view callable. Pyramid views can be configured via imper-
ative configuration, or by a special @view_config decorator coupled with a scan. See View
Configuration for more information about view configuration.

View handler A view handler ties together pyramid.config.Configurator.add_route()
and pyramid.config.Configurator.add_view() to make it more convenient to register
a collection of views as a single class when using url dispatch. View handlers ship as part of the
pyramid_handlers add-on package.

View Lookup The act of finding and invoking the “best” view callable, given a request and a context
resource.

view mapper A view mapper is a class which implements the
pyramid.interfaces.IViewMapperFactory interface, which performs view argu-
ment and return value mapping. This is a plug point for extension builders, not normally used by
“civilians”.

view name The “URL name” of a view, e.g index.html. If a view is configured without a name, its
name is considered to be the empty string (which implies the default view).

view predicate An argument to a view configuration which evaluates to True or False for a given
request. All predicates attached to a view configuration must evaluate to true for the associated
view to be considered as a possible callable for a given request.

virtual root A resource object representing the “virtual” root of a request; this is typically the physical
root object unless Virtual Hosting is in use.

virtualenv A term referring both to an isolated Python environment, or the leading tool that allows one
to create such environments.

Note: whenever you encounter commands prefixed with $VENV (Unix) or %VENV (Windows),
know that that is the environment variable whose value is the root of the virtual environment in
question.

735

http://www.virtualenv.org

52. GLOSSARY

Waitress A WSGI server that runs on UNIX and Windows under Python 2.6+ and Python
3.2+. Projects generated via Pyramid scaffolding use Waitress as a WGSI server. See
http://docs.pylonsproject.org/projects/waitress/en/latest/ for detailed information.

WebOb WebOb is a WSGI request/response library created by Ian Bicking.

WebTest WebTest is a package which can help you write functional tests for your WSGI application.

WSGI Web Server Gateway Interface. This is a Python standard for connecting web applications to web
servers, similar to the concept of Java Servlets. Pyramid requires that your application be served as
a WSGI application.

ZCML Zope Configuration Markup Language, an XML dialect used by Zope and pyramid_zcml for
configuration tasks.

ZODB Zope Object Database, a persistent Python object store.

Zope The Z Object Publishing Framework, a full-featured Python web framework.

Zope Component Architecture The Zope Component Architecture (aka ZCA) is a system which al-
lows for application pluggability and complex dispatching based on objects which implement an
interface. Pyramid uses the ZCA “under the hood” to perform view dispatching and other applica-
tion configuration tasks.

ZPT The Zope Page Template templating language.

736

http://docs.pylonsproject.org/projects/waitress/en/latest/
http://webob.org
http://pythonpaste.org/webtest/
http://www.wsgi.org/
http://www.muthukadan.net/docs/zca.html#zcml
http://zodb.org
http://zope.org
http://www.muthukadan.net/docs/zca.html
http://wiki.zope.org/ZPT/FrontPage

Index

Symbols
*subpath

hybrid applications, 322
*traverse route pattern

hybrid applications, 318
.ini

middleware, 204
settings, 65

__call__() (IRenderer method), 635
__call__() (IRendererFactory method), 635
__call__() (IResponse method), 641
__call__() (IRoutePregenerator method), 633
__call__() (ISessionFactory method), 634
__call__() (IViewMapper method), 636
__call__() (IViewMapperFactory method), 635
__contains__() (IDict method), 637
__delitem__() (IDict method), 636
__getitem__() (IDict method), 637
__hash__() (IIntrospectable method), 642
__init__.py, 57
__iter__() (IDict method), 636
__setitem__() (IDict method), 637
__str__() (IActionInfo method), 645

A
absolute_asset_spec() (Configurator method), 596
abspath() (IAssetDescriptor method), 646
absspec() (IAssetDescriptor method), 646
accept (Request attribute), 676
accept_charset (Request attribute), 676

accept_encoding (Request attribute), 676
accept_language (Request attribute), 676
accept_ranges (IResponse attribute), 642
accept_ranges (Response attribute), 685
access control entry, 306
access control list, 304
ACE, 306, 721
ACE (special), 308
ACL, 304, 721

resource, 304
ACL inheritance, 309
ACLAllowed (class in pyramid.security), 696
ACLAuthorizationPolicy (class in pyra-

mid.authorization), 555
ACLDenied (class in pyramid.security), 696
action, 721
action() (Configurator method), 593
action_info (IIntrospectable attribute), 643
activating

translation, 247
add() (IIntrospector method), 644
add() (IMultiDict method), 638
add-on, 721
add_adapter() (JSON method), 656
add_adapter() (JSONP method), 657
add_directive, 387
add_directive() (Configurator method), 594
add_finished_callback() (Request method), 663
add_forbidden_view() (Configurator method), 582
add_notfound_view() (Configurator method), 581

737

INDEX

add_permission() (Configurator method), 584
add_renderer() (Configurator method), 587
add_request_method() (Configurator method), 585
add_resource_url_adapter() (Configurator method),

587
add_response_adapter() (Configurator method),

588
add_response_callback() (Request method), 663
add_route, 77
add_route() (Configurator method), 567
add_route_predicate() (Configurator method), 591
add_settings() (Configurator method), 586
add_static_view, 156
add_static_view() (Configurator method), 571
add_subscriber() (Configurator method), 582
add_translation_dirs() (Configurator method), 585
add_traverser() (Configurator method), 588
add_tween() (Configurator method), 589
add_view, 147
add_view() (Configurator method), 573
add_view_predicate() (Configurator method), 591
adding

renderer, 123
translation directory, 248

adding directives
configurator, 387

adding renderer globals, 337
advanced

configuration, 378
age (IResponse attribute), 639
age (Response attribute), 685
Agendaless Consulting, 3, 721
Akhet, 721
Akkerman, Wichert, xi
alchemy scaffold, 41
ALL_PERMISSIONS (in module pyra-

mid.security), 695
Allow (in module pyramid.security), 696
allow (IResponse attribute), 639
allow (Response attribute), 685
Allowed (class in pyramid.security), 696
app (IApplicationCreated attribute), 629
app_iter (IResponse attribute), 639

app_iter (Response attribute), 685
app_iter_range() (IResponse method), 638
app_iter_range() (Response method), 685
application configuration, 36
application registry, 407, 721
application_url (Request attribute), 676
ApplicationCreated (class in pyramid.events), 604
as_bytes() (Request method), 676
asbool() (in module pyramid.settings), 702
ascii_native_() (in module pyramid.compat), 557
aslist() (in module pyramid.settings), 702
assert_() (DummyTemplateRenderer method), 705
asset, 722
asset descriptor, 722
asset specification, 722
asset specifications, 155
AssetResolver (class in pyramid.path), 651
assets, 153

generating urls, 158
overriding, 161, 378
serving, 156

Authenticated (in module pyramid.security), 695
authenticated_userid (Request attribute), 661
authenticated_userid() (AuthTktAuthentication-

Policy method), 546
authenticated_userid() (BasicAuthAuthentication-

Policy method), 551
authenticated_userid() (IAuthenticationPolicy

method), 631
authenticated_userid() (in module pyra-

mid.security), 693
authenticated_userid() (RemoteUserAuthentica-

tionPolicy method), 548
authenticated_userid() (Repoze-

Who1AuthenticationPolicy method),
552

authenticated_userid() (SessionAuthenticationPol-
icy method), 549

authentication, 722
authentication policy, 722
authentication policy (creating), 311
authentication policy (extending), 310
authorization, 722

738

INDEX

authorization (Request attribute), 676
authorization policy, 302, 722
authorization policy (creating), 313
AuthTktAuthenticationPolicy (class in pyra-

mid.authentication), 543
AuthTktCookieHelper (class in pyra-

mid.authentication), 553
AuthTktCookieHelper.AuthTicket (class in pyra-

mid.authentication), 553
AuthTktCookieHelper.BadTicket, 554
automatic reloading of templates, 133

B
Babel, 244, 722
BadCSRFToken, 609
Bangert, Ben, xi
BaseCookieSessionFactory() (in module pyra-

mid.session), 700
BasicAuthAuthenticationPolicy (class in pyra-

mid.authentication), 550
Beelby, Chris, xi
before render event, 337
BeforeRender (class in pyramid.events), 605
begin() (Configurator method), 564
Bicking, Ian, xi, 163
binary_type (in module pyramid.compat), 557
blank() (Request method), 676
body (IResponse attribute), 641
body (Request attribute), 676
body (Response attribute), 685
body_file (IResponse attribute), 642
body_file (Request attribute), 676
body_file (Response attribute), 685
body_file_raw (Request attribute), 677
body_file_seekable (Request attribute), 677
book audience, ix
book content overview, ix
bootstrap() (in module pyramid.paster), 647
Borch, Malthe, xi
bpython, 220
Brandl, Georg, xi
built-in renderers, 117
bytes_() (in module pyramid.compat), 557

C
cache_control (IResponse attribute), 641
cache_control (Request attribute), 677
cache_control (Response attribute), 685
cache_expires (IResponse attribute), 641
call_application() (Request method), 677
CALLER_PACKAGE (in module pyramid.path),

649
categories() (IIntrospector method), 644
categorized() (IIntrospector method), 645
category_name (IIntrospectable attribute), 643
Chameleon, 134, 722

translation strings, 245
changed() (ISession method), 634
changing

renderer, 125
charset (IResponse attribute), 639
charset (Response attribute), 685
check_csrf_token() (in module pyramid.session),

697
class_types (in module pyramid.compat), 557
cleaning up after request, 169
cleanUp() (in module pyramid.testing), 704
clear() (BeforeRender method), 607
clear() (IDict method), 637
client_addr (Request attribute), 677
clone() (DummyResource method), 704
code scanning, 38
commit() (Configurator method), 564
compiling

message catalog, 241
conditional_response_app() (IResponse method),

640
conditional_response_app() (Response method),

685
configparser (in module pyramid.compat), 557
configuration

advanced, 378
conflict detection, 379
including from external sources, 384
middleware, 204

configuration declaration, 722
configuration decoration, 38, 722

739

INDEX

configuration decorator, 346
configuration directive, 723
ConfigurationError, 610
Configurator, 33
configurator, 723

adding directives, 387
Configurator (class in pyramid.config), 561
Configurator testing API, 260
conflict detection

configuration, 379
conflict resolution, 723
console script, 229, 723
container resources, 267
content_disposition (IResponse attribute), 638
content_disposition (Response attribute), 686
content_encoding (IResponse attribute), 639
content_encoding (Response attribute), 686
content_language (IResponse attribute), 640
content_language (Response attribute), 686
content_length (IResponse attribute), 638
content_length (Request attribute), 677
content_length (Response attribute), 686
content_location (IResponse attribute), 638
content_location (Response attribute), 686
content_md5 (IResponse attribute), 638
content_md5 (Response attribute), 686
content_range (IResponse attribute), 641
content_range (Response attribute), 686
content_type (IResponse attribute), 642
content_type (Request attribute), 678
content_type (Response attribute), 686
content_type_params (IResponse attribute), 640
content_type_params (Response attribute), 686
context, 292, 723
context (Request attribute), 658
ContextFound (class in pyramid.events), 604
cookies (Request attribute), 678
copy() (BeforeRender method), 607
copy() (IResponse method), 640
copy() (Request method), 678
copy() (Response method), 686
copy_body() (Request method), 678
copy_get() (Request method), 678

CPython, 723
created (ISession attribute), 634
creating a project, 41
cross-site request forgery attacks, prevention, 180
current_route_path() (in module pyramid.url), 713
current_route_path() (Request method), 668
current_route_url() (in module pyramid.url), 712
current_route_url() (Request method), 667
custom settings, 69

D
date (IResponse attribute), 641
date (Request attribute), 678
date (Response attribute), 686
date and currency formatting (i18n), 244
de la Guardia, Carlos, xi
debug settings, 187
debug toolbar, 48
debug_all, 187
debug_authorization, 187
debug_notfound, 187
debug_routematch, 187
debugging

route matching, 93
templates, 133
view configuration, 153

debugging authorization failures, 310
debugging not found errors, 152
declarative configuration, 723
decorator, 723
default

permission, 304
Default Locale Name, 723
default permission, 724
default root factory, 724
Default view, 724
default view, 292
default_locale_name, 187, 246
default_locale_negotiator() (in module pyra-

mid.i18n), 628
Deferred (class in pyramid.registry), 653
delete_cookie() (IResponse method), 639
delete_cookie() (Response method), 686

740

INDEX

Denied (class in pyramid.security), 696
Deny (in module pyramid.security), 696
DENY_ALL (in module pyramid.security), 695
deployment

settings, 69
Deployment settings, 724
derive_view() (Configurator method), 595
detecting languages, 246
development install, 43
dict_of_lists() (IMultiDict method), 638
discriminator, 724
discriminator (IIntrospectable attribute), 643
discriminator_hash (IIntrospectable attribute), 643
distribute, 724
distribution, 724
distributions, showing installed, 225
distutils, 724
Django, 3, 20, 724
domain

translation, 235
domain (Request attribute), 678
domain model, 724
dotted Python name, 724
DottedNameResolver (class in pyramid.path), 649
DummyRequest (class in pyramid.testing), 705
DummyResource (class in pyramid.testing), 704
DummyTemplateRenderer (class in pyra-

mid.testing), 705
Duncan, Casey, xi

E
effective_principals (Request attribute), 661
effective_principals() (AuthTktAuthenticationPol-

icy method), 546
effective_principals() (BasicAuthAuthentication-

Policy method), 551
effective_principals() (IAuthenticationPolicy

method), 631
effective_principals() (in module pyra-

mid.security), 693
effective_principals() (RemoteUserAuthentication-

Policy method), 548

effective_principals() (Repoze-
Who1AuthenticationPolicy method),
552

effective_principals() (SessionAuthenticationPol-
icy method), 549

encode_content() (IResponse method), 638
encode_content() (Response method), 687
end() (Configurator method), 564
entry point, 725
environ (IResponse attribute), 640
environment variables, 187
escape() (in module pyramid.compat), 557
etag (IResponse attribute), 640
etag (Response attribute), 687
event, 182, 725
Everitt, Paul, xi
Everyone (in module pyramid.security), 695
exc_info (Request attribute), 659
exception (Request attribute), 659
exception response, 725
exception responses, 172
Exception view, 725
exception views, 107
exception_response() (in module pyra-

mid.httpexceptions), 614
EXCVIEW (in module pyramid.tweens), 712
excview_tween_factory() (in module pyra-

mid.tweens), 711
exec_() (in module pyramid.compat), 557
exists() (IAssetDescriptor method), 646
expires (IResponse attribute), 639
expires (Response attribute), 687
explicitly calling

renderer, 9
explictly calling

view renderer, 9
extend() (IMultiDict method), 637
extending

pshell, 218
extending an existing application, 375
extending configuration, 386
extensible application, 374
extracting

741

INDEX

messages, 240

F
factory (IRoute attribute), 632
file (IActionInfo attribute), 645
FileIter (class in pyramid.response), 690
FileResponse (class in pyramid.response), 690
find_interface() (in module pyramid.traversal), 706
find_resource() (in module pyramid.traversal), 706
find_root() (in module pyramid.traversal), 707
finding by interface or class

resource, 277
finding by path

resource, 273
finding root

resource, 275
finished callback, 339, 725
flash messages, 178
flash(), 178
flash() (ISession method), 634
Forbidden (in module pyramid.exceptions), 609
Forbidden view, 725
forbidden view, 309, 333
forbidden_view_config (class in pyramid.view),

717
forget() (AuthTktAuthenticationPolicy method),

547
forget() (AuthTktCookieHelper method), 554
forget() (BasicAuthAuthenticationPolicy method),

551
forget() (IAuthenticationPolicy method), 631
forget() (in module pyramid.security), 694
forget() (RemoteUserAuthenticationPolicy

method), 548
forget() (RepozeWho1AuthenticationPolicy

method), 552
forget() (SessionAuthenticationPolicy method),

550
forms, views, and unicode, 109
framework, 3
frameworks vs. libraries, 3
from_bytes() (Request method), 679
from_file() (Request method), 679

from_file() (Response method), 687
fromkeys() (BeforeRender method), 607
Fulton, Jim, xi
functional testing, 255
functional tests, 263

G
generate() (IRoute method), 632
generating

hybrid URLs, 323
resource url, 270

generating route URLs, 88
generating static asset urls, 158
generating urls

assets, 158
Genshi, 725
GET (Request attribute), 675
get() (BeforeRender method), 607
get() (IDict method), 637
get() (IIntrospector method), 645
get_app() (in module pyramid.paster), 648
get_appsettings() (in module pyramid.paster), 648
get_category() (IIntrospector method), 644
get_csrf_token() (ISession method), 634
get_current_registry, 404, 409, 412
get_current_registry() (in module pyra-

mid.threadlocal), 706
get_current_request, 404
get_current_request() (in module pyra-

mid.threadlocal), 706
get_locale_name() (in module pyramid.i18n), 627
get_localizer() (in module pyramid.i18n), 627
get_renderer() (in module pyramid.renderers), 654
get_response() (Request method), 679
get_root() (in module pyramid.scripting), 692
get_settings() (Configurator method), 587
getall() (IMultiDict method), 638
getGlobalSiteManager, 412
getone() (IMultiDict method), 637
getSiteManager, 407, 409
Gettext, 239, 725
gettext, 238
getUtility, 407, 409

742

INDEX

global views
hybrid applications, 322

global_registries (in module pyramid.config), 600
Google App Engine, 725
Green Unicorn, 725
Grok, 725

H
Hardwick, Nat, xi
has_permission() (in module pyramid.security),

694
has_permission() (Request method), 662
Hathaway, Shane, xi
headerlist (IResponse attribute), 638
headerlist (Response attribute), 687
headers (IResponse attribute), 639
headers (Request attribute), 679
headers (Response attribute), 687
hello world program, 29
helloworld (imperative), 33
Holth, Daniel, xi
hook_zca (configurator method), 411
hook_zca() (Configurator method), 597
host (Request attribute), 679
host_port (Request attribute), 679
host_url (Request attribute), 679
hosting an app under a prefix, 253
HTTP caching, 152
HTTP Exception, 725
HTTP exceptions, 105
http redirect (from a view), 108
http_version (Request attribute), 680
HTTPAccepted, 616
HTTPBadGateway, 623
HTTPBadRequest, 618
HTTPClientError, 615
HTTPConflict, 620
HTTPCreated, 615
HTTPError, 615
HTTPException, 615
HTTPExpectationFailed, 622
HTTPFailedDependency, 622
HTTPForbidden, 618

HTTPFound, 617
HTTPGatewayTimeout, 623
HTTPGone, 620
HTTPInsufficientStorage, 624
HTTPInternalServerError, 622
HTTPLengthRequired, 620
HTTPLocked, 622
HTTPMethodNotAllowed, 619
HTTPMovedPermanently, 617
HTTPMultipleChoices, 616
HTTPNoContent, 616
HTTPNonAuthoritativeInformation, 616
HTTPNotAcceptable, 620
HTTPNotFound, 619
HTTPNotImplemented, 623
HTTPNotModified, 617
HTTPOk, 615
HTTPPartialContent, 616
HTTPPaymentRequired, 618
HTTPPreconditionFailed, 621
HTTPProxyAuthenticationRequired, 620
HTTPRedirection, 615
HTTPRequestEntityTooLarge, 621
HTTPRequestRangeNotSatisfiable, 621
HTTPRequestTimeout, 620
HTTPRequestURITooLong, 621
HTTPResetContent, 616
HTTPSeeOther, 617
HTTPServerError, 615
HTTPServiceUnavailable, 623
HTTPTemporaryRedirect, 618
HTTPUnauthorized, 618
HTTPUnprocessableEntity, 622
HTTPUnsupportedMediaType, 621
HTTPUseProxy, 617
HTTPVersionNotSupported, 623
hybrid applications, 316

*subpath, 322
*traverse route pattern, 318
global views, 322

hybrid URLs
generating, 323

743

INDEX

I
i18n, 234
IActionInfo (interface in pyramid.interfaces), 645
IApplicationCreated (interface in pyra-

mid.interfaces), 629
IAssetDescriptor (interface in pyramid.interfaces),

646
IAuthenticationPolicy (interface in pyra-

mid.interfaces), 631
IAuthorizationPolicy (interface in pyra-

mid.interfaces), 631
IBeforeRender (interface in pyramid.interfaces),

630
IContextFound (interface in pyramid.interfaces),

630
identify() (AuthTktCookieHelper method), 554
IDict (interface in pyramid.interfaces), 636
IExceptionResponse (interface in pyra-

mid.interfaces), 631
if_match (Request attribute), 680
if_modified_since (Request attribute), 680
if_none_match (Request attribute), 680
if_range (Request attribute), 680
if_unmodified_since (Request attribute), 680
IIntrospectable (interface in pyramid.interfaces),

642
IIntrospector (interface in pyramid.interfaces), 644
im_func (in module pyramid.compat), 558
imperative configuration, 33, 37, 725
IMultiDict (interface in pyramid.interfaces), 637
include() (Configurator method), 564
including from external sources

configuration, 384
INewRequest, 182
INewRequest (interface in pyramid.interfaces), 629
INewResponse, 182
INewResponse (interface in pyramid.interfaces),

630
INGRESS (in module pyramid.tweens), 712
ini file, 51
ini file settings, 187
initializing

message catalog, 240

input_() (in module pyramid.compat), 558
inside() (in module pyramid.location), 647
install

Python (from package, UNIX), 24
Python (from package, Windows), 25
Python (from source, UNIX), 24
virtualenv, 27

install preparation, 23
installing on UNIX, 25
installing on Windows, 28
integer_types (in module pyramid.compat), 558
integration testing, 255
integration tests, 262
interactive shell, 217
interface, 726
Internationalization, 726
internationalization, 234
introspectable, 726
Introspectable (class in pyramid.registry), 653
introspectable (Configurator attribute), 599
introspection, 358
introspector, 358, 726
introspector (Configurator attribute), 599
introspector (Registry attribute), 652
invalidate() (ISession method), 633
invoke_subrequest() (Request method), 661
invoking a request, 223
IPython, 220
IRenderer (interface in pyramid.interfaces), 635
IRendererFactory (interface in pyramid.interfaces),

635
IRendererInfo (interface in pyramid.interfaces),

634
IResourceURL (interface in pyramid.interfaces),

646
IResponse, 342
IResponse (interface in pyramid.interfaces), 638
IRoute (interface in pyramid.interfaces), 632
IRoutePregenerator (interface in pyra-

mid.interfaces), 633
is_body_readable (Request attribute), 680
is_body_seekable (Request attribute), 680
is_nonstr_iter() (in module pyramid.compat), 558

744

INDEX

is_response() (Request method), 680
is_xhr (Request attribute), 680
isdir() (IAssetDescriptor method), 646
ISession (interface in pyramid.interfaces), 633
ISessionFactory (interface in pyramid.interfaces),

634
items() (BeforeRender method), 607
items() (DummyResource method), 704
items() (IDict method), 637
iteritems_() (in module pyramid.compat), 558
iterkeys_() (in module pyramid.compat), 558
itervalues_() (in module pyramid.compat), 558
IViewMapper (interface in pyramid.interfaces), 636
IViewMapperFactory (interface in pyra-

mid.interfaces), 635

J
Jinja2, 134, 726
Jinja2 i18n, 246
jQuery, 726
JSON, 726

renderer, 118
JSON (class in pyramid.renderers), 655
json (Request attribute), 680
json (Response attribute), 687
json_body

request, 168
json_body (Request attribute), 674
json_body (Response attribute), 687
JSONP

renderer, 120
JSONP (class in pyramid.renderers), 656
Jython, 726

K
keys() (BeforeRender method), 607
keys() (DummyResource method), 705
keys() (IDict method), 636
Koym, Todd, xi

L
l10n, 234
Laflamme, Blaise, xi

Laflamme, Hugues, xi
last_modified (IResponse attribute), 642
last_modified (Response attribute), 687
leaf resources, 267
line (IActionInfo attribute), 646
lineage, 726

resource, 273
lineage() (in module pyramid.location), 647
Lingua, 239, 726
listdir() (IAssetDescriptor method), 646
locale

negotiator, 247
setting, 248

Locale Name, 727
locale name, 243
Locale Negotiator, 727
locale negotiator, 249
locale_name (Localizer attribute), 626
locale_name (Request attribute), 675
Localization, 727
localization, 234
localization deployment settings, 246
Localizer, 727
localizer, 241
Localizer (class in pyramid.i18n), 626
localizer (Request attribute), 675, 681
location, 727
location (IResponse attribute), 639
location (Response attribute), 687
location-aware

resource, 268
security, 309

long (in module pyramid.compat), 558

M
MAIN (in module pyramid.tweens), 711
make_body_seekable() (Request method), 681
make_localizer() (in module pyramid.i18n), 628
make_tempfile() (Request method), 681
make_wsgi_app, 34
make_wsgi_app() (Configurator method), 566
Mako, 134, 727
Mako i18n, 245

745

INDEX

MANIFEST.in, 54
map_() (in module pyramid.compat), 558
mapping to view callable

resource, 135
URL pattern, 135

match() (IRoute method), 632
matchdict, 84, 727
matchdict (Request attribute), 660
matched_route, 84
matched_route (Request attribute), 661
matching

root URL, 88
matching the root URL, 88
matching views

printing, 215
max_forwards (Request attribute), 681
maybe_dotted() (Configurator method), 596
maybe_resolve() (DottedNameResolver method),

650
md5_etag() (IResponse method), 639
md5_etag() (Response method), 687
merge_cookies() (IResponse method), 640
merge_cookies() (Response method), 688
Merickel, Michael, xi
Message Catalog, 727
message catalog

compiling, 241
initializing, 240
updating, 241

Message Identifier, 727
message identifier, 235
messages

extracting, 240
METAL, 727
method (Request attribute), 681
middleware, 727

.ini, 204
configuration, 204
TransLogger, 204

mixed() (IMultiDict method), 637
mod_wsgi, 728
modifying

package structure, 61

module, 728
Moroz, Tom, xi
msgid

translation, 235
multidict, 728
multidict (WebOb), 168
MVC, 20

N
name (IRendererInfo attribute), 635
name (IRoute attribute), 632
native_() (in module pyramid.compat), 559
negotiate_locale_name, 243
negotiate_locale_name() (in module pyra-

mid.i18n), 627
negotiator

locale, 247
new (ISession attribute), 634
new_csrf_token() (ISession method), 634
NewRequest, 182
NewRequest (class in pyramid.events), 604
NewResponse, 182
NewResponse (class in pyramid.events), 605
NO_PERMISSION_REQUIRED (in module pyra-

mid.security), 696
not found error (debugging), 152
Not Found View, 728
not found view, 331
not_ (class in pyramid.config), 600
NotFound (in module pyramid.exceptions), 609
notfound_view_config (class in pyramid.view), 716
notify() (Registry method), 653
null_renderer (in module pyramid.renderers), 658

O
object tree, 267, 290
Oram, Simon, xi
order (IIntrospectable attribute), 643
Orr, Mike, xi
override_asset, 162
override_asset() (Configurator method), 586
overriding

assets, 161, 378

746

INDEX

resource URL generation, 271
routes, 377
views, 377

overriding at runtime
renderer, 126

P
package, 57, 728
package (IRendererInfo attribute), 635
package structure

modifying, 61
Paez, Patricio, xi
par: settings

adding custom, 197
params (Request attribute), 681
parse_ticket() (AuthTktCookieHelper static

method), 554
Passing in configuration variables, 112
PasteDeploy, 51, 728
PasteDeploy settings, 187
path (Request attribute), 681
path_info (Request attribute), 681
path_info_peek() (Request method), 681
path_info_pop() (Request method), 681
path_qs (Request attribute), 682
path_url (Request attribute), 682
pattern (IRoute attribute), 632
pcreate, 41
pdistreport, 225
peek_flash(), 179
peek_flash() (ISession method), 633
permission, 728

default, 304
permission names, 308
permissions, 303
permits() (IAuthorizationPolicy method), 631
Peters, Tim, xi
physical path, 728
physical root, 728
physical_path (IResourceURL attribute), 646
physical_path_tuple (IResourceURL attribute), 646
pickle (in module pyramid.compat), 558
pipeline, 728

pkg_resources, 729
pluralization, 241
pluralize() (Localizer method), 626
pluralizing (i18n), 242
pop() (BeforeRender method), 607
pop() (IDict method), 636
pop_flash(), 179
pop_flash() (ISession method), 633
popitem() (BeforeRender method), 607
popitem() (IDict method), 636
POST (Request attribute), 675
post() (PyramidTemplate method), 692
post() (Template method), 691
pragma (IResponse attribute), 641
pragma (Request attribute), 682
pragma (Response attribute), 688
pre() (PyramidTemplate method), 692
pre() (Template method), 692
predicate, 729
predicate factory, 729
PredicateMismatch, 609
predicates (IRoute attribute), 632
predvalseq (class in pyramid.registry), 653
pregenerator, 729
pregenerator (IRoute attribute), 632
prepare() (IExceptionResponse method), 632
prepare() (in module pyramid.scripting), 692
prequest, 223
prevent_http_cache, 187
preventing cross-site request forgery attacks, 180
principal, 307, 729
principal names, 307
principals_allowed_by_permission() (IAuthoriza-

tionPolicy method), 631
principals_allowed_by_permission() (in module

pyramid.security), 695
printing

matching views, 215
routes, 220
tweens, 222

production.ini, 54
project, 41, 729
project structure, 50

747

INDEX

protecting views, 303
proutes, 220
pserve, 45
pshell, 217

extending, 218
ptweens, 222
pviews, 215
PY3 (in module pyramid.compat), 558
Pylons, 3, 20, 729
Pylons Project, 20
Pylons-style controller dispatch, 113
PyPI, 729
PyPy, 729
PYPY (in module pyramid.compat), 558
pyramid and other frameworks, 20
Pyramid Community Cookbook, 729
pyramid genesis, x
pyramid.authentication (module), 543
pyramid.authorization (module), 555
pyramid.compat (module), 557
pyramid.config (module), 561
pyramid.decorator (module), 601
pyramid.events (module), 603
pyramid.exceptions (module), 609
pyramid.httpexceptions (module), 611
pyramid.i18n (module), 625
pyramid.interfaces (module), 629
pyramid.location (module), 647
pyramid.paster (module), 647
pyramid.path (module), 649
pyramid.registry (module), 652
pyramid.renderers (module), 654
pyramid.request (module), 658
pyramid.response (module), 685
pyramid.scaffolds (module), 691
pyramid.scripting (module), 692
pyramid.security (module), 693
pyramid.session (module), 697
pyramid.settings (module), 702
pyramid.static (module), 702
pyramid.testing, 260
pyramid.testing (module), 703
pyramid.threadlocal (module), 706

pyramid.traversal (module), 706
pyramid.tweens (module), 711
pyramid.url (module), 712
pyramid.view (module), 714
pyramid.wsgi (module), 717
pyramid_debugtoolbar, 729
pyramid_exclog, 730
pyramid_handlers, 730
pyramid_jinja2, 730
pyramid_redis_sessions, 177, 730
pyramid_zcml, 730
PyramidTemplate (class in pyramid.scaffolds), 692
Python, 730

virtual environment, 27
Python (from package, UNIX)

install, 24
Python (from package, Windows)

install, 25
Python (from source, UNIX)

install, 24

Q
query_string (Request attribute), 682
quote_path_segment() (in module pyra-

mid.traversal), 709

R
range (Request attribute), 682
redirecting to slash-appended routes, 91
referer (Request attribute), 682
referrer (Request attribute), 682
register() (IIntrospectable method), 642
Registry (class in pyramid.registry), 652
registry (Configurator attribute), 600
registry (IRendererInfo attribute), 635
registry (Request attribute), 658
reify() (in module pyramid.decorator), 601
relate() (IIntrospectable method), 643
relate() (IIntrospector method), 645
related() (IIntrospector method), 644
relative_url() (Request method), 682
reload, 45, 187
reload settings, 187

748

INDEX

reload_all, 187
reload_assets, 187, 196
reload_templates, 196
remember() (AuthTktAuthenticationPolicy

method), 547
remember() (AuthTktCookieHelper method), 554
remember() (BasicAuthAuthenticationPolicy

method), 551
remember() (IAuthenticationPolicy method), 631
remember() (in module pyramid.security), 694
remember() (RemoteUserAuthenticationPolicy

method), 548
remember() (RepozeWho1AuthenticationPolicy

method), 553
remember() (SessionAuthenticationPolicy

method), 550
remote_addr (Request attribute), 682
remote_user (Request attribute), 682
RemoteUserAuthenticationPolicy (class in pyra-

mid.authentication), 547
remove() (IIntrospector method), 645
remove_conditional_headers() (Request method),

682
render() (in module pyramid.renderers), 654
render_template() (Template method), 692
render_to_response() (in module pyra-

mid.renderers), 654
render_view() (in module pyramid.view), 714
render_view_to_iterable() (in module pyra-

mid.view), 714
render_view_to_response() (in module pyra-

mid.view), 714
renderer, 115, 730

adding, 123
changing, 125
explicitly calling, 9
JSON, 118
JSONP, 120
overriding at runtime, 126
string, 117
system values, 130
templates, 131

renderer (template), 130

renderer factory, 730
renderer globals, 730
renderer response headers, 121
renderers (built-in), 117
rendering_val (IBeforeRender attribute), 630
Repoze, 730
repoze.bfg genesis, x
repoze.catalog, 730
repoze.lemonade, 730
repoze.who, 731
repoze.workflow, 731
repoze.zope2, x
RepozeWho1AuthenticationPolicy (class in pyra-

mid.authentication), 552
request, 69, 731

json_body, 168
request (and text/unicode), 167
Request (class in pyramid.request), 658
request (IContextFound attribute), 630
request (INewRequest attribute), 629
request (INewResponse attribute), 630
request (IResponse attribute), 641
request attributes, 165
request attributes (special), 166
request factory, 334, 731
request lifecycle, 69
request method, 335
request methods, 167
request object, 165
request processing, 69
request type, 731
request URLs, 167
request.registry, 410
RequestClass (IResponse attribute), 639
reraise() (in module pyramid.compat), 558
resolve() (AssetResolver method), 651
resolve() (DottedNameResolver method), 650
resource, 283, 731

ACL, 304
finding by interface or class, 277
finding by path, 273
finding root, 275
lineage, 273

749

INDEX

location-aware, 268
mapping to view callable, 135

resource API functions, 278
resource interfaces, 275, 298
Resource Location, 731
resource path generation, 272
resource tree, 267, 290, 731
resource url

generating, 270
resource URL generation

overriding, 271
resource_path() (in module pyramid.traversal), 707
resource_path() (Request method), 674
resource_path_tuple() (in module pyra-

mid.traversal), 708
resource_url, 270
resource_url() (in module pyramid.url), 712
resource_url() (Request method), 670
response, 104, 731
Response (class in pyramid.response), 685
response (creating), 172
response (INewResponse attribute), 630
response (Request attribute), 660, 683
response adapter, 731
response callback, 338, 731
response headers, 171
response headers (from a renderer), 121
response object, 170
response_adapter() (in module pyramid.response),

691
reStructuredText, 732
retry_after (IResponse attribute), 641
retry_after (Response attribute), 688
RFC

RFC 2068, 611
RFC 2616, 638
RFC 3986#section-3.5, 666

root, 732
root (Request attribute), 659
root factory, 292, 732
root URL

matching, 88
root url (matching), 88

Rossi, Chris, xi
route, 732

view callable lookup details, 100
route configuration, 77, 732
route configuration arguments, 83
route factory, 98
route matching, 83

debugging, 93
route ordering, 83
route path pattern syntax, 78
route predicate, 732
route predicates (custom), 95
route subpath, 322
route URLs, 88
route_path() (in module pyramid.url), 712
route_path() (Request method), 667
route_url() (in module pyramid.url), 712
route_url() (Request method), 664
router, 69, 732
Routes, 732
routes

overriding, 377
printing, 220

routes mapper, 732
running an application, 45
running tests, 44

S
Sawyers, Andrew, xi
scaffold, 732
scaffolds, 41
scan, 733
scan() (Configurator method), 566
scheme (Request attribute), 683
script_name (Request attribute), 683
Seaver, Tres, xi
security, 300

location-aware, 309
URL dispatch, 99
view, 151

send() (Request method), 683
server (IResponse attribute), 640
server (Response attribute), 688

750

INDEX

server_name (Request attribute), 683
server_port (Request attribute), 683
serving

assets, 156
session, 173, 733
session (Request attribute), 660, 683
session factory, 733
session factory (alternates), 177
session factory (custom), 177
session factory (default), 175
session object, 176
session.flash, 178
session.get_csrf_token, 180
session.new_csrf_token, 181
session.peek_flash, 179
session.pop_flash, 179
SessionAuthenticationPolicy (class in pyra-

mid.authentication), 548
set_authentication_policy() (Configurator method),

583
set_authorization_policy() (Configurator method),

583
set_cookie() (IResponse method), 640
set_cookie() (Response method), 688
set_default_permission() (Configurator method),

583
set_locale_negotiator() (Configurator method), 586
set_property() (Request method), 674
set_request_factory() (Configurator method), 592
set_request_property() (Configurator method), 585
set_root_factory() (Configurator method), 592
set_session_factory() (Configurator method), 592
set_view_mapper() (Configurator method), 593
setdefault() (BeforeRender method), 607
setdefault() (IDict method), 636
setting

locale, 248
settings, 187

.ini, 65
deployment, 69
middleware, 204

settings (IRendererInfo attribute), 635
settings (Registry attribute), 652

setUp() (in module pyramid.testing), 703
setup.py, 55
setup.py develop, 43
setup_logging() (in module pyramid.paster), 648
setup_registry() (Configurator method), 597
setuptools, 733
Shipman, John, xi
showing installed distributions, 225
signed_deserialize() (in module pyramid.session),

697
signed_serialize() (in module pyramid.session),

697
SignedCookieSessionFactory() (in module pyra-

mid.session), 697
SimpleCookie (in module pyramid.compat), 559
special ACE, 308
special permission names, 308
special view responses, 342
SQLAlchemy, 733
starter scaffold, 41
startup, 45
startup process, 65
static asset urls, 158
static assets view, 159
static asssets, 153
static directory, 60
static routes, 90
static_path() (in module pyramid.url), 713
static_path() (Request method), 669
static_url() (in module pyramid.url), 713
static_url() (Request method), 668
static_view (class in pyramid.static), 702
status (IResponse attribute), 640
status (Response attribute), 689
status_code (Response attribute), 690
status_int (IResponse attribute), 641
status_int (Response attribute), 690
status_map (in module pyramid.httpexceptions),

614
stream() (IAssetDescriptor method), 646
string

renderer, 117
string_types (in module pyramid.compat), 558

751

INDEX

subpath, 292, 733
subpath (Request attribute), 659
subpath (route), 322
subrequest, 324

use_tweens, 327
subscriber, 182, 733
subscriber() (in module pyramid.events), 603
system values

renderer, 130

T
tearDown() (in module pyramid.testing), 704
template, 733
Template (class in pyramid.scaffolds), 691
template automatic reload, 133
template renderers, 130
template system bindings, 134
template_dir() (Template method), 692
templates

debugging, 133
renderer, 131

templates used as renderers, 130
templates used directly, 127
test setup, 258
test tear down, 258
testConfig() (in module pyramid.testing), 704
testing_add_renderer() (Configurator method), 597
testing_add_subscriber() (Configurator method),

598
testing_resources() (Configurator method), 598
testing_securitypolicy() (Configurator method),

598
tests (running), 44
tests.py, 60
text (Request attribute), 684
text (Response attribute), 690
text_() (in module pyramid.compat), 559
text_type (in module pyramid.compat), 559
thread local, 733
thread locals, 404
title (IIntrospectable attribute), 643
translate() (Localizer method), 627
translating (i18n), 242

translation, 241
activating, 247
domain, 235
msgid, 235

Translation Context, 733
translation directories, 238
Translation Directory, 733
translation directory, 247

adding, 248
Translation Domain, 734
Translation String, 734
translation string, 235
translation string factory, 237
translation strings

Chameleon, 245
TranslationString (class in pyramid.i18n), 625
TranslationStringFactory() (in module pyra-

mid.i18n), 626
Translator, 734
TransLogger, 204
traversal, 283, 734
traversal algorithm, 292
traversal details, 289
traversal examples, 295
traversal quick example, 279
traversal tree, 267, 290
traversal_path() (in module pyramid.traversal), 711
traverse() (in module pyramid.traversal), 709
traversed (Request attribute), 659
traverser, 340
tween, 734
tweens

printing, 222
type (IRendererInfo attribute), 635
type_name (IIntrospectable attribute), 642

U
ubody (Response attribute), 690
unauthenticated_userid (Request attribute), 661
unauthenticated_userid() (AuthTktAuthentication-

Policy method), 547
unauthenticated_userid() (BasicAuthAuthentica-

tionPolicy method), 551

752

INDEX

unauthenticated_userid() (IAuthenticationPolicy
method), 631

unauthenticated_userid() (in module pyra-
mid.security), 693

unauthenticated_userid() (RemoteUserAuthentica-
tionPolicy method), 548

unauthenticated_userid() (Repoze-
Who1AuthenticationPolicy method),
553

undefer() (in module pyramid.registry), 653
UnencryptedCookieSessionFactoryConfig() (in

module pyramid.session), 699
unhook_zca() (Configurator method), 597
unicode and text (and the request), 167
unicode, views, and forms, 109
unicode_body (IResponse attribute), 641
unicode_body (Response attribute), 690
unit testing, 255
unittest, 258
unrelate() (IIntrospectable method), 643
unrelate() (IIntrospector method), 644
unset_cookie() (IResponse method), 640
unset_cookie() (Response method), 690
upath_info (Request attribute), 684
update() (BeforeRender method), 607
update() (IDict method), 637
updating

message catalog, 241
url (Request attribute), 684
URL dispatch, 76, 281, 734

security, 99
url generation (traversal), 278
URL generator, 341
URL pattern

mapping to view callable, 135
url_encode (in module pyramid.compat), 559
url_encoding (Request attribute), 684
url_open (in module pyramid.compat), 559
url_quote (in module pyramid.compat), 559
url_quote_plus (in module pyramid.compat), 559
url_unquote (in module pyramid.compat), 559
url_unquote_native() (in module pyramid.compat),

559

url_unquote_text() (in module pyramid.compat),
559

urlargs (Request attribute), 684
URLDecodeError, 610
urlencode() (in module pyramid.url), 713
urlparse (in module pyramid.compat), 559
urlvars (Request attribute), 684
uscript_name (Request attribute), 684
use_tweens

subrequest, 327
user_agent (Request attribute), 684
userid, 734

V
values() (BeforeRender method), 607
values() (DummyResource method), 705
values() (IDict method), 636
van Rossum, Guido, xi
vary (IResponse attribute), 641
vary (Response attribute), 690
Venusian, 734
view, 734

security, 151
view callable, 735
view callable lookup details

route, 100
view callables, 103
view calling convention, 103, 104, 111
view class, 104
view configuration, 735

debugging, 153
view configuration parameters, 135
view exceptions, 105
view function, 103
View handler, 735
view http redirect, 108
View Lookup, 735
view lookup, 135, 284, 292
view mapper, 345, 735
view name, 292, 735
view predicate, 735
view renderer, 115

explictly calling, 9

753

INDEX

view response, 104
view security, 151
view_config, 38
view_config (class in pyramid.view), 715
view_config decorator, 144
view_config placement, 146
view_defaults (class in pyramid.view), 716
view_defaults class decorator, 148
view_execution_permitted() (in module pyra-

mid.security), 695
view_name (Request attribute), 659
views

overriding, 377
views, forms, and unicode, 109
views.py, 58
virtual environment

Python, 27
virtual hosting, 251
virtual root, 254, 735
virtual_path (IResourceURL attribute), 646
virtual_path_tuple (IResourceURL attribute), 646
virtual_root (Request attribute), 659
virtual_root() (in module pyramid.traversal), 709
virtual_root_path (Request attribute), 659
virtualenv, 27, 735

install, 27

W
Waitress, 736
WebOb, 163, 736
WebTest, 736
with_package() (Configurator method), 595
WSGI, 47, 736
WSGI application, 34
wsgiapp() (in module pyramid.wsgi), 717
wsgiapp2() (in module pyramid.wsgi), 718
www_authenticate (IResponse attribute), 642
www_authenticate (Response attribute), 690

Z
ZCA, 407
ZCA global API, 409
ZCA global registry, 412

ZCML, 736
ZODB, 736
zodb scaffold, 41
Zope, 3, 20, 736
Zope 2, x
Zope 3, x
Zope Component Architecture, 407, 736
zope.component, 407
ZPT, 736

754

	Front Matter
	Copyright, Trademarks, and Attributions
	Typographical Conventions
	Author Introduction

	I Narrative Documentation
	Pyramid Introduction
	Installing Pyramid
	Creating Your First Pyramid Application
	Application Configuration
	Creating a Pyramid Project
	Startup
	Request Processing
	URL Dispatch
	Views
	Renderers
	Templates
	View Configuration
	Static Assets
	Request and Response Objects
	Sessions
	Using Events
	Environment Variables and .ini File Settings
	Logging
	PasteDeploy Configuration Files
	Command-Line Pyramid
	Internationalization and Localization
	Virtual Hosting
	Unit, Integration, and Functional Testing
	Resources
	Hello Traversal World
	Much Ado About Traversal
	Traversal
	Security
	Combining Traversal and URL Dispatch
	Invoking a Subrequest
	Using Hooks
	Pyramid Configuration Introspection
	Extending an Existing Pyramid Application
	Advanced Configuration
	Extending Pyramid Configuration
	Creating Pyramid Scaffolds
	Upgrading Pyramid
	Thread Locals
	Using the Zope Component Architecture in Pyramid

	II Tutorials
	SQLAlchemy + URL Dispatch Wiki Tutorial
	ZODB + Traversal Wiki Tutorial
	Running a Pyramid Application under mod_wsgi

	III API Documentation
	pyramid.authentication
	pyramid.authorization
	pyramid.compat
	pyramid.config
	pyramid.decorator
	pyramid.events
	pyramid.exceptions
	pyramid.httpexceptions
	pyramid.i18n
	API Documentation

	IV Glossary and Index
	Glossary

