The Pyramid Web Framework
Version 1.5.8

Chris McDonough

Contents

Front Matter i
Copyright, Trademarks, and Attributions ii
Typographical Conventions v
Author Introduction ix
I Narrative Documentation 1
1 Pyramid Introduction 3
2 Installing Pyramid 23
3 Creating Your First Pyramid Application 31
4 Application Configuration 37
5 Creating a Pyramid Project 41
6 Startup 65
7 Request Processing 71
8 URL Dispatch 77

9 Views 103

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Renderers

Templates

View Configuration

Static Assets

Request and Response Objects
Sessions

Using Events

Environment Variables and . ini File Settings

Logging

PasteDeploy Configuration Files
Command-Line Pyramid
Internationalization and Localization
Virtual Hosting

Unit, Integration, and Functional Testing
Resources

Hello Traversal World

Much Ado About Traversal

Traversal

Security

Combining Traversal and URL Dispatch
Invoking a Subrequest

Using Hooks

Pyramid Configuration Introspection

Extending an Existing Pyramid Application

115

127

135

155

165

175

183

189

199

209

215

235

253

257

267

279

281

289

301

315

325

331

359

373

34 Advanced Configuration 379

35 Extending Pyramid Configuration 387
36 Creating Pyramid Scaffolds 395
37 Upgrading Pyramid 399
38 Thread Locals 405
39 Using the Zope Component Architecture in Pyramid 409
IT Tutorials 415
40 SQLAIchemy + URL Dispatch Wiki Tutorial 417
41 ZODB + Traversal Wiki Tutorial 481
42 Running a Pyramid Application under mod_wsgi 537
IIT API Documentation 541
43 pyramid.authentication 543
44 pyramid.authorization 5585
45 pyramid.compat 557
46 pyramid.config 561
47 pyramid.decorator 601
48 pyramid.events 603
49 pyramid.exceptions 609
50 pyramid.httpexceptions 611
51 pyramid.il8n 625

52 API Documentation 629

IV Glossary and Index 719

Glossary 721

Front Matter

Copyright, Trademarks, and Attributions

The Pyramid Web Framework, Version 1.1

by Chris McDonough

Copyright © 2008-2011, Agendaless Consulting.

ISBN-10: 0615445675

ISBN-13: 978-0615445670

First print publishing: February, 2011

All rights reserved. This material may be copied or distributed only subject to the terms and conditions set
forth in the Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. You
must give the original author credit. You may not use this work for commercial purposes. If you alter,

transform, or build upon this work, you may distribute the resulting work only under the same or similar
license to this one.

O While the Pyramid documentation is offered under the Creative Commons Attribution-
Nonconmmercial-Share Alike 3.0 United States License, the Pyramid software is offered under a
less restrictive (BSD-like) license .

All terms mentioned in this book that are known to be trademarks or service marks have been appropri-
ately capitalized. However, use of a term in this book should not be regarded as affecting the validity of
any trademark or service mark.

Every effort has been made to make this book as complete and as accurate as possible, but no warranty
or fitness is implied. The information provided is on an “as-is” basis. The author and the publisher shall
have neither liability nor responsibility to any person or entity with respect to any loss or damages arising
from the information contained in this book. No patent liability is assumed with respect to the use of the
information contained herein.

iii

http://creativecommons.org/licenses/by-nc-sa/3.0/us/
http://repoze.org/license.html

Attributions

Editor: Casey Duncan

Contributors: Ben Bangert, Blaise Laflamme, Rob Miller, Mike Orr, Carlos de la Guardia, Paul Everitt,
Tres Seaver, John Shipman, Marius Gedminas, Chris Rossi, Joachim Krebs, Xavier Spriet, Reed
O’Brien, William Chambers, Charlie Choiniere, Jamaludin Ahmad, Graham Higgins, Patricio Paez,
Michael Merickel, Eric Ongerth, Niall O’Higgins, Christoph Zwerschke, John Anderson, Atsushi
Odagiri, Kirk Strauser, JD Navarro, Joe Dallago, Savoir-Faire Linux, Lukasz Fidosz, Christopher
Lambacher, Claus Conrad, Chris Beelby, Phil Jenvey and a number of people with only pseudonyms
on GitHub.

Cover Designer: Hugues Laflamme of Kemeneur.
Used with permission:

The Request and Response Objects chapter is adapted, with permission, from documentation
originally written by Ian Bicking.

The Much Ado About Traversal chapter is adapted, with permission, from an article written
by Rob Miller.

The Logging is adapted, with permission, from the Pylons documentation logging chapter,
originally written by Phil Jenvey.

Print Production

The print version of this book was produced using the Sphinx documentation generation system and the
LaTeX typesetting system.

Contacting The Publisher

Please send documentation licensing inquiries, translation inquiries, and other business communications
to Agendaless Consulting. Please send software and other technical queries to the Pylons-devel mailing
list.

HTML Version and Source Code

An HTML version of this book is freely available via http://docs.pylonsproject.org/projects/pyramid/en/latest/

The source code for the examples used in this book are available within the Pyramid software distribution,
always available via https://github.com/Pylons/pyramid

v

http://www.kemeneur.com/
http://sphinx.pocoo.org/
http://www.latex-project.org/
mailto:webmaster@agendaless.com
http://groups.google.com/group/pylons-devel
http://groups.google.com/group/pylons-devel
http://docs.pylonsproject.org/projects/pyramid/en/latest/
https://github.com/Pylons/pyramid

Typographical Conventions

Literals, filenames, and function arguments are presented using the following style:
argumentl

Warnings which represent limitations and need-to-know information related to a topic or concept are
presented in the following style:

[} .. .
“=5 This is a warning.

Notes which represent additional information related to a topic or concept are presented in the following
style:

“ This is a note.

We present Python method names using the following style:
pyramid.config.Configurator.add _view()

We present Python class names, module names, attributes, and global variables using the following style:
pyramid.config.Configurator.registry

References to glossary terms are presented using the following style:
Pylons

URLS are presented using the following style:
Pylons

References to sections and chapters are presented using the following style:
Traversal

Code and configuration file blocks are presented in the following style:

http://pylonsproject.org

def foo (abc):
2 pass

Example blocks representing UNIX shell commands are prefixed with a $ character, e.g.:

S SVENV/bin/nosetests

(See virtualenv for the meaning of $VENV)

Example blocks representing Windows cmd.exe commands are prefixed with a drive letter and/or a
directory name, e.g.:

c:\examples> $VENV%\Scripts\nosetests

(See virtualenv for the meaning of $VENV%)

Sometimes, when it’s unknown which directory is current, Windows cmd . exe example block commands
are prefixed only with a > character, e.g.:

> $VENV$\Scripts\nosetests

When a command that should be typed on one line is too long to fit on a page, the backslash \ is used to
indicate that the following printed line should actually be part of the command:

c:\bigfntut\tutorial> %VENV%\Scripts\nosetests —--cover-package=tutorial \
——cover—erase —--with-coverage

A sidebar, which presents a concept tangentially related to content discussed on a page, is rendered like
so:

This is a sidebar

Sidebar information.

When multiple objects are imported from the same package, the following convention is used:

vi

from foo import (
bar,
baz,

)

It may look unusual, but it has advantages:
* It allows one to swap out the higher-level package foo for something else that provides the similar
API. An example would be swapping out one database for another (e.g., graduating from SQLite to
PostgreSQL).

* Looks more neat in cases where a large number of objects get imported from that package.

* Adding or removing imported objects from the package is quicker and results in simpler diffs.

vii

viii

Author Introduction

Welcome to “The Pyramid Web Framework”. In this introduction, I’ll describe the audience for this book,
I'll describe the book content, I'll provide some context regarding the genesis of Pyramid, and I'll thank
some important people.

I hope you enjoy both this book and the software it documents. I’ve had a blast writing both.

Audience

This book is aimed primarily at a reader that has the following attributes:
» At least a moderate amount of Python experience.
A familiarity with web protocols such as HTTP and CGIL.

If you fit into both of these categories, you’re in the direct target audience for this book. But don’t worry,
even if you have no experience with Python or the web, both are easy to pick up “on the fly”.

Python is an excellent language in which to write applications; becoming productive in Python is almost
mind-blowingly easy. If you already have experience in another language such as Java, Visual Basic, Perl,
Ruby, or even C/C++, learning Python will be a snap; it should take you no longer than a couple of days
to become modestly productive. If you don’t have previous programming experience, it will be slightly
harder, and it will take a little longer, but you’d be hard-pressed to find a better “first language.”

Web technology familiarity is assumed in various places within the book. For example, the book doesn’t
try to define common web-related concepts like “URL” or “query string.” Likewise, the book describes
various interactions in terms of the HTTP protocol, but it does not describe how the HTTP protocol works
in detail. Like any good web framework, though, Pyramid shields you from needing to know most of the
gory details of web protocols and low-level data structures. As a result, you can usually avoid becoming
“blocked” while you read this book even if you don’t yet deeply understand web technologies.

iX

Book Content

This book is divided into three major parts:
Narrative Documentation

This is documentation which describes Pyramid concepts in narrative form, written in a
largely conversational tone. Each narrative documentation chapter describes an isolated Pyra-
mid concept. You should be able to get useful information out of the narrative chapters if you
read them out-of-order, or when you need only a reminder about a particular topic while
you’re developing an application.

Tutorials

Each tutorial builds a sample application or implements a set of concepts with a sample;
it then describes the application or concepts in terms of the sample. You should read the
tutorials if you want a guided tour of Pyramid.

API Documentation

Comprehensive reference material for every public API exposed by Pyramid. The API doc-
umentation is organized alphabetically by module name.

The Genesis of repoze .bfg

Before the end of 2010, Pyramid was known as repoze.bfg.

I wrote repoze .bfg after many years of writing applications using Zope. Zope provided me with a lot
of mileage: it wasn’t until almost a decade of successfully creating applications using it that I decided
to write a different web framework. Although repoze.bfg takes inspiration from a variety of web
frameworks, it owes more of its core design to Zope than any other.

The Repoze “brand” existed before repoze .bfg was created. One of the first packages developed as
part of the Repoze brand was a package named repoze. zope2. This was a package that allowed Zope
2 applications to run under a WSGI server without modification. Zope 2 did not have reasonable WSGI
support at the time.

During the development of the repoze . zope2 package, I found that replicating the Zope 2 “publisher”
— the machinery that maps URLs to code — was time-consuming and fiddly. Zope 2 had evolved over
many years, and emulating all of its edge cases was extremely difficult. I finished the repoze. zope2

package, and it emulates the normal Zope 2 publisher pretty well. But during its development, it became
clear that Zope 2 had simply begun to exceed my tolerance for complexity, and I began to look around for
simpler options.

I considered using the Zope 3 application server machinery, but it turned out that it had become more
indirect than the Zope 2 machinery it aimed to replace, which didn’t fulfill the goal of simplification. I
also considered using Django and Pylons, but neither of those frameworks offer much along the axes of
traversal, contextual declarative security, or application extensibility; these were features I had become
accustomed to as a Zope developer.

I decided that in the long term, creating a simpler framework that retained features I had become accus-
tomed to when developing Zope applications was a more reasonable idea than continuing to use any Zope
publisher or living with the limitations and unfamiliarities of a different framework. The result is what is
now Pyramid.

The Genesis of Pyramid

What was repoze.bfg has become Pyramid as the result of a coalition built between the Repoze and
Pylons community throughout the year 2010. By merging technology, we’re able to reduce duplication
of effort, and take advantage of more of each others’ technology.

Thanks

This book is dedicated to my grandmother, who gave me my first typewriter (a Royal), and my mother,
who bought me my first computer (a VIC-20).

Thanks to the following people for providing expertise, resources, and software. Without the help of
these folks, neither this book nor the software which it details would exist: Paul Everitt, Tres Seaver,
Andrew Sawyers, Malthe Borch, Carlos de la Guardia, Chris Rossi, Shane Hathaway, Daniel Holth,
Wichert Akkerman, Georg Brandl, Blaise Laflamme, Ben Bangert, Casey Duncan, Hugues Laflamme,
Mike Orr, John Shipman, Chris Beelby, Patricio Paez, Simon Oram, Nat Hardwick, Ian Bicking, Jim
Fulton, Michael Merickel, Tom Moroz of the Open Society Institute, and Todd Koym of Environmental
Health Sciences.

Thanks to Guido van Rossum and Tim Peters for Python.

Special thanks to Tricia for putting up with me.

X1

Xii

Part 1

Narrative Documentation

CHAPTER 1

Pyramid Introduction

Pyramid is a general, open source, Python web application development framework. Its primary goal is
to make it easier for a Python developer to create web applications.

Frameworks vs. Libraries

A framework differs from a library in one very important way: library code is always called by code
that you write, while a framework always calls code that you write. Using a set of libraries to create
an application is usually easier than using a framework initially, because you can choose to cede
control to library code you have not authored very selectively. But when you use a framework, you
are required to cede a greater portion of control to code you have not authored: code that resides in
the framework itself. You needn’t use a framework at all to create a web application using Python. A
rich set of libraries already exists for the platform. In practice, however, using a framework to create
an application is often more practical than rolling your own via a set of libraries if the framework
provides a set of facilities that fits your application requirements.

Pyramid attempts to follow these design and engineering principles:

Simplicity Pyramid takes a “pay only for what you eat” approach. You can get results even if you have
only a partial understanding of Pyramid. It doesn’t force you to use any particular technology to
produce an application, and we try to keep the core set of concepts that you need to understand to
a minimum.

Minimalism Pyramid tries to solve only the fundamental problems of creating a web application: the
mapping of URLSs to code, templating, security, and serving static assets. We consider these to be
the core activities that are common to nearly all web applications.

1. PYRAMID INTRODUCTION

Documentation Pyramid’s minimalism means that it is easier for us to maintain complete and up-to-date
documentation. It is our goal that no aspect of Pyramid is undocumented.

Speed Pyramid is designed to provide noticeably fast execution for common tasks such as templating
and simple response generation.

Reliability Pyramid is developed conservatively and tested exhaustively. Where Pyramid source code is
concerned, our motto is: “If it ain’t tested, it’s broke”.

Openness As with Python, the Pyramid software is distributed under a permissive open source license.

1.1 What makes Pyramid unique

Understandably, people don’t usually want to hear about squishy engineering principles; they want to
hear about concrete stuff that solves their problems. With that in mind, what would make someone want
to use Pyramid instead of one of the many other web frameworks available today? What makes Pyramid
unique?

This is a hard question to answer because there are lots of excellent choices, and it’s actually quite hard
to make a wrong choice, particularly in the Python web framework market. But one reasonable answer
is this: you can write very small applications in Pyramid without needing to know a lot. “What?” you
say. “That can’t possibly be a unique feature. Lots of other web frameworks let you do that!” Well,
you’re right. But unlike many other systems, you can also write very large applications in Pyramid if you
learn a little more about it. Pyramid will allow you to become productive quickly, and will grow with
you. It won’t hold you back when your application is small, and it won’t get in your way when your
application becomes large. “Well that’s fine,” you say. “Lots of other frameworks let me write large apps,
too.” Absolutely. But other Python web frameworks don’t seamlessly let you do both. They seem to fall
into two non-overlapping categories: frameworks for “small apps” and frameworks for “big apps”. The
“small app” frameworks typically sacrifice “big app” features, and vice versa.

We don’t think it’s a universally reasonable suggestion to write “small apps” in a “small framework’ and
“big apps” in a “big framework”. You can’t really know to what size every application will eventually
grow. We don’t really want to have to rewrite a previously small application in another framework when
it gets “too big”. We believe the current binary distinction between frameworks for small and large
applications is just false. A well-designed framework should be able to be good at both. Pyramid strives
to be that kind of framework.

To this end, Pyramid provides a set of features that combined are unique amongst Python web frameworks.
Lots of other frameworks contain some combination of these features. Pyramid of course actually stole
many of them from those other frameworks. But Pyramid is the only one that has all of them in one place,
documented appropriately, and useful a la carte without necessarily paying for the entire banquet. These
are detailed below.

http://repoze.org/license.html

1.1. WHAT MAKES PYRAMID UNIQUE

1.1.1 Single-file applications

You can write a Pyramid application that lives entirely in one Python file, not unlike existing Python mi-
croframeworks. This is beneficial for one-off prototyping, bug reproduction, and very small applications.
These applications are easy to understand because all the information about the application lives in a sin-
gle place, and you can deploy them without needing to understand much about Python distributions and
packaging. Pyramid isn’t really marketed as a microframework, but it allows you to do almost everything
that frameworks that are marketed as “micro” offer in very similar ways.

from wsgiref.simple_server import make_server
from pyramid.config import Configurator
from pyramid.response import Response

def hello_world(request) :
return Response('Hello !'" % request.matchdict)
if _ name_ == '_ _main__ ':
config = Configurator()
config.add_route('hello', '/hello/{name}")
config.add_view(hello_world, route_name='hello')
app = config.make_wsgi_app ()
server = make_server ('0.0.0.0', 8080, app)
server.serve_forever ()

See also:

See also Creating Your First Pyramid Application.

1.1.2 Decorator-based configuration

If you like the idea of framework configuration statements living next to the code it configures, so you
don’t have to constantly switch between files to refer to framework configuration when adding new code,
you can use Pyramid decorators to localize the configuration. For example:

from pyramid.view import view_config
from pyramid.response import Response

@view_config(route_name='fred')
def fred_view(request):
return Response ('fred')

1. PYRAMID INTRODUCTION

However, unlike some other systems, using decorators for Pyramid configuration does not make your ap-
plication difficult to extend, test, or reuse. The view_config decorator, for example, does not actually
change the input or output of the function it decorates, so testing it is a “WYSIWYG” operation. You
don’t need to understand the framework to test your own code. You just behave as if the decorator is not
there. You can also instruct Pyramid to ignore some decorators, or use completely imperative configu-
ration instead of decorators to add views. Pyramid decorators are inert instead of eager. You detect and
activate them with a scan.

Example: Adding View Configuration Using the @view_config Decorator.

1.1.3 URL generation

Pyramid is capable of generating URLSs for resources, routes, and static assets. Its URL generation APIs
are easy to use and flexible. If you use Pyramid’s various APIs for generating URLs, you can change your
configuration around arbitrarily without fear of breaking a link on one of your web pages.

Example: Generating Route URLs.

1.1.4 Static file serving

Pyramid is perfectly willing to serve static files itself. It won’t make you use some external web server
to do that. You can even serve more than one set of static files in a single Pyramid web application
(e.g., /staticand /static?2). You can optionally place your files on an external web server and ask
Pyramid to help you generate URLSs to those files. This let’s you use Pyramid’s internal file serving while
doing development, and a faster static file server in production, without changing any code.

Example: Serving Static Assets.

1.1.5 Fully interactive development

When developing a Pyramid application, several interactive features are available. Pyramid can auto-
matically utilize changed templates when rendering pages and automatically restart the application to
incorporate changed Python code. Plain old print () calls used for debugging can display to a console.

Pyramid’s debug toolbar comes activated when you use a Pyramid scaffold to render a project. This
toolbar overlays your application in the browser, and allows you access to framework data, such as the
routes configured, the last renderings performed, the current set of packages installed, SQLAlchemy
queries run, logging data, and various other facts. When an exception occurs, you can use its interactive
debugger to poke around right in your browser to try to determine the cause of the exception. It’s handy.

Example: The Debug Toolbar.

1.1. WHAT MAKES PYRAMID UNIQUE

1.1.6 Debugging settings

Pyramid has debugging settings that allow you to print Pyramid runtime information to the console when
things aren’t behaving as you’re expecting. For example, you can turn on debug_not found, which
prints an informative message to the console every time a URL does not match any view. You can turn
on debug_authorization, which lets you know why a view execution was allowed or denied by
printing a message to the console. These features are useful for those WTF moments.

There are also a number of commands that you can invoke within a Pyramid environment that allow you
to introspect the configuration of your system. proutes shows all configured routes for an application
in the order they’ll be evaluated for matching. pviews shows all configured views for any given URL.
These are also WTF-crushers in some circumstances.

Examples: Debugging View Authorization Failures and Command-Line Pyramid.

1.1.7 Add-ons

Pyramid has an extensive set of add-ons held to the same quality standards as the Pyramid core itself. Add-
ons are packages which provide functionality that the Pyramid core doesn’t. Add-on packages already
exist which let you easily send email, let you use the Jinja2 templating system, let you use XML-RPC or
JSON-RPC, let you integrate with jQuery Mobile, etc.

Examples: http://docs.pylonsproject.org/en/latest/docs/pyramid.html#pyramid-add-on-documentation

1.1.8 Class-based and function-based views

Pyramid has a structured, unified concept of a view callable. View callables can be functions, methods
of classes, or even instances. When you add a new view callable, you can choose to make it a function
or a method of a class. In either case Pyramid treats it largely the same way. You can change your mind
later and move code between methods of classes and functions. A collection of similar view callables can
be attached to a single class as methods, if that floats your boat, and they can share initialization code as
necessary. All kinds of views are easy to understand and use, and operate similarly. There is no phony
distinction between them. They can be used for the same purposes.

Here’s a view callable defined as a function:

http://docs.pylonsproject.org/en/latest/docs/pyramid.html#pyramid-add-on-documentation

1. PYRAMID INTRODUCTION

1 | from pyramid.response import Response
2 | from pyramid.view import view_config

4| @view_config(route_name='aview')
s |def aview (request) :
6 return Response ('one')

Here’s a few views defined as methods of a class instead:

1 | from pyramid.response import Response

2 | from pyramid.view import view_config

3

4| class AView (object) :

5 def __init__ (self, request):

6 self.request = request

7

8 @view_config (route_name='view_one')
9 def view_one(self):

10 return Response ('one')

11

12 @view_config(route_name='view_two')
13 def view_two (self):

14 return Response ('two')

See also:

See also @view_config Placement.

1.1.9 Asset specifications

Asset specifications are strings that contain both a Python package name and a file or directory name, e.g.,
MyPackage:static/index.html. Use of these specifications is omnipresent in Pyramid. An asset
specification can refer to a template, a translation directory, or any other package-bound static resource.
This makes a system built on Pyramid extensible because you don’t have to rely on globals (“the static
directory”) or lookup schemes (“the ordered set of template directories”) to address your files. You can
move files around as necessary, and include other packages that may not share your system’s templates or
static files without encountering conflicts.

Because asset specifications are used heavily in Pyramid, we’ve also provided a way to allow users to
override assets. Say you love a system that someone else has created with Pyramid but you just need to
change “that one template” to make it all better. No need to fork the application. Just override the asset
specification for that template with your own inside a wrapper, and you’re good to go.

Examples: Understanding Asset Specifications and Overriding Assets.

1.1. WHAT MAKES PYRAMID UNIQUE

1.1.10 Extensible templating

Pyramid has a structured API that allows for pluggability of “renderers”. Templating systems such as
Mako, Genshi, Chameleon, and Jinja2 can be treated as renderers. Renderer bindings for all of these
templating systems already exist for use in Pyramid. But if you’d rather use another, it’s not a big deal.
Just copy the code from an existing renderer package, and plug in your favorite templating system. You’ll
then be able to use that templating system from within Pyramid just as you’d use one of the “built-in”
templating systems.

Pyramid does not make you use a single templating system exclusively. You can use multiple templating
systems, even in the same project.

Example: Using Templates Directly.

1.1.11 Rendered views can return dictionaries

If you use a renderer, you don’t have to return a special kind of “webby” Response object from a
view. Instead you can return a dictionary, and Pyramid will take care of converting that dictionary to a
Response using a template on your behalf. This makes the view easier to test, because you don’t have
to parse HTML in your tests. Instead just make an assertion that the view returns “the right stuff” in the
dictionary. You can write “real” unit tests instead of functionally testing all of your views.

For example, instead of returning a Response object from a render_to_response call:

from pyramid.renderers import render_to_response

w

def myview (request) :
4 return render_to_response ('myapp:templates/mytemplate.pt', {'a':1},
5 request=request)

You can return a Python dictionary:

from pyramid.view import view_config

[P SR

@view_config(renderer="'myapp:templates/mytemplate.pt')
def myview (request) :
5 return {'a':1}

=

When this view callable is called by Pyramid, the {"a’ : 1} dictionary will be rendered to a response
on your behalf. The string passed as renderer= above is an asset specification. It is in the form
packagename:directoryname/filename.ext. In this case, it refers to the mytemplate.pt
file in the templates directory within the myapp Python package. Asset specifications are omnipresent
in Pyramid. See Asset specifications for more information.

Example: Renderers.

1. PYRAMID INTRODUCTION

1.1.12 Event system

Pyramid emits events during its request processing lifecycle. You can subscribe any number of listeners to
these events. For example, to be notified of a new request, you can subscribe to the NewRequest event.
To be notified that a template is about to be rendered, you can subscribe to the BeforeRender event,
and so forth. Using an event publishing system as a framework notification feature instead of hardcoded
hook points tends to make systems based on that framework less brittle.

You can also use Pyramid’s event system to send your own events. For example, if you’d like to create
a system that is itself a framework, and may want to notify subscribers that a document has just been
indexed, you can create your own event type (Document Indexed perhaps) and send the event via
Pyramid. Users of this framework can then subscribe to your event like they’d subscribe to the events that
are normally sent by Pyramid itself.

Example: Using Events and Event Types.

1.1.13 Built-in internationalization

Pyramid ships with internationalization-related features in its core: localization, pluralization, and creat-
ing message catalogs from source files and templates. Pyramid allows for a plurality of message catalogs
via the use of translation domains. You can create a system that has its own translations without conflict
with other translations in other domains.

Example: Internationalization and Localization.

1.1.14 HTTP caching

Pyramid provides an easy way to associate views with HTTP caching policies. You can just tell Pyramid
to configure your view with an http_cache statement, and it will take care of the rest:

@view_config (http_cache=3600) # 60 minutes
def myview (request) :

Pyramid will add appropriate Cache-Control and Expires headers to responses generated when
this view is invoked.

See the add_view () method’s http_cache documentation for more information.

10

1.1. WHAT MAKES PYRAMID UNIQUE

1.1.15 Sessions

Pyramid has built-in HTTP sessioning. This allows you to associate data with otherwise anonymous
users between requests. Lots of systems do this. But Pyramid also allows you to plug in your own
sessioning system by creating some code that adheres to a documented interface. Currently there is a
binding package for the third-party Redis sessioning system that does exactly this. But if you have a
specialized need (perhaps you want to store your session data in MongoDB), you can. You can even
switch between implementations without changing your application code.

Example: Sessions.

1.1.16 Speed

The Pyramid core is, as far as we can tell, at least marginally faster than any other existing Python web
framework. It has been engineered from the ground up for speed. It only does as much work as absolutely
necessary when you ask it to get a job done. Extraneous function calls and suboptimal algorithms in its
core codepaths are avoided. It is feasible to get, for example, between 3500 and 4000 requests per second
from a simple Pyramid view on commodity dual-core laptop hardware and an appropriate WSGI server
(mod_wsgi or gunicorn). In any case, performance statistics are largely useless without requirements and
goals, but if you need speed, Pyramid will almost certainly never be your application’s bottleneck; at least
no more than Python will be a bottleneck.

Example: http://blog.curiasolutions.com/pages/the-great-web-framework-shootout.html

1.1.17 Exception views

Exceptions happen. Rather than deal with exceptions that might present themselves to a user in production
in an ad-hoc way, Pyramid allows you to register an exception view. Exception views are like regular
Pyramid views, but they’re only invoked when an exception “bubbles up” to Pyramid itself. For example,
you might register an exception view for the Except ion exception, which will catch all exceptions, and
present a pretty “well, this is embarrassing” page. Or you might choose to register an exception view for
only specific kinds of application-specific exceptions, such as an exception that happens when a file is not
found, or an exception that happens when an action cannot be performed because the user doesn’t have
permission to do something. In the former case, you can show a pretty “Not Found” page; in the latter
case you might show a login form.

Example: Custom Exception Views.

11

http://blog.curiasolutions.com/pages/the-great-web-framework-shootout.html
http://docs.python.org/3/library/exceptions.html#Exception

1. PYRAMID INTRODUCTION

1.1.18 No singletons

Pyramid is written in such a way that it requires your application to have exactly zero “singleton”
data structures. Or put another way, Pyramid doesn’t require you to construct any “mutable globals”.
Or put even another different way, an import of a Pyramid application needn’t have any “import-time
side effects”. This is esoteric-sounding, but if you’ve ever tried to cope with parameterizing a Django
settings.py file for multiple installations of the same application, or if you’ve ever needed to monkey-
patch some framework fixture so that it behaves properly for your use case, or if you've ever wanted to
deploy your system using an asynchronous server, you’ll end up appreciating this feature. It just won’t be
a problem. You can even run multiple copies of a similar but not identically configured Pyramid applica-
tion within the same Python process. This is good for shared hosting environments, where RAM is at a
premium.

1.1.19 View predicates and many views per route

Unlike many other systems, Pyramid allows you to associate more than one view per route. For example,
you can create a route with the pattern /items and when the route is matched, you can shuffle off the
request to one view if the request method is GET, another view if the request method is POST, etc. A
system known as “view predicates” allows for this. Request method matching is the most basic thing
you can do with a view predicate. You can also associate views with other request parameters, such as
the elements in the query string, the Accept header, whether the request is an XHR request or not, and
lots of other things. This feature allows you to keep your individual views clean. They won’t need much
conditional logic, so they’ll be easier to test.

Example: View Configuration Parameters.

1.1.20 Transaction management

Pyramid’s scaffold system renders projects that include a transaction management system, stolen from
Zope. When you use this transaction management system, you cease being responsible for committing
your data anymore. Instead Pyramid takes care of committing: it commits at the end of a request or
aborts if there’s an exception. Why is that a good thing? Having a centralized place for transaction
management is a great thing. If, instead of managing your transactions in a centralized place, you sprinkle
session.commit calls in your application logic itself, you can wind up in a bad place. Wherever you
manually commit data to your database, it’s likely that some of your other code is going to run after your
commit. If that code goes on to do other important things after that commit, and an error happens in the
later code, you can easily wind up with inconsistent data if you’re not extremely careful. Some data will
have been written to the database that probably should not have. Having a centralized commit point saves
you from needing to think about this; it’s great for lazy people who also care about data integrity. Either

12

1.1. WHAT MAKES PYRAMID UNIQUE

the request completes successfully, and all changes are committed, or it does not, and all changes are
aborted.

Pyramid’s transaction management system allows you to synchronize commits between multiple
databases. It also allows you to do things like conditionally send email if a transaction commits, but
otherwise keep quiet.

Example: SQLAlchemy + URL Dispatch Wiki Tutorial (note the lack of commit statements anywhere in
application code).

1.1.21 Configuration conflict detection

When a system is small, it’s reasonably easy to keep it all in your head. But when systems grow large,
you may have hundreds or thousands of configuration statements which add a view, add a route, and so
forth.

Pyramid’s configuration system keeps track of your configuration statements. If you accidentally add two
that are identical, or Pyramid can’t make sense out of what it would mean to have both statements active
at the same time, it will complain loudly at startup time. It’s not dumb though. It will automatically
resolve conflicting configuration statements on its own if you use the configuration include () system.
“More local” statements are preferred over “less local” ones. This allows you to intelligently factor large
systems into smaller ones.

Example: Conflict Detection.

1.1.22 Configuration extensibility

Unlike other systems, Pyramid provides a structured “include” mechanism (see include ()) that allows
you to combine applications from multiple Python packages. All the configuration statements that can be
performed in your “main” Pyramid application can also be performed by included packages, including
the addition of views, routes, subscribers, and even authentication and authorization policies. You can
even extend or override an existing application by including another application’s configuration in your
own, overriding or adding new views and routes to it. This has the potential to allow you to create a big
application out of many other smaller ones. For example, if you want to reuse an existing application that
already has a bunch of routes, you can just use the include statement with a route_prefix. The
new application will live within your application at an URL prefix. It’s not a big deal, and requires little
up-front engineering effort.

For example:

13

1. PYRAMID INTRODUCTION

1 | from pyramid.config import Configurator

3|if _ name_ == '_ _main_ ':

4 config = Configurator()

5 config.include ('pyramid_jinja2")

6 config.include ('pyramid exclog')

7 config.include ('some.other.guys.package', route_prefix='/someotherguy')

See also:

See also Including Configuration from External Sources and Rules for Building an Extensible Application.

1.1.23 Flexible authentication and authorization

Pyramid includes a flexible, pluggable authentication and authorization system. No matter where your
user data is stored, or what scheme you’d like to use to permit your users to access your data, you can
use a predefined Pyramid plugpoint to plug in your custom authentication and authorization code. If you
want to change these schemes later, you can just change it in one place rather than everywhere in your
code. It also ships with prebuilt well-tested authentication and authorization schemes out of the box. But
what if you don’t want to use Pyramid’s built-in system? You don’t have to. You can just write your own
bespoke security code as you would in any other system.

Example: Enabling an Authorization Policy.

1.1.24 Traversal

Traversal is a concept stolen from Zope. It allows you to create a tree of resources, each of which can
be addressed by one or more URLs. Each of those resources can have one or more views associated with
it. If your data isn’t naturally treelike, or you’re unwilling to create a treelike representation of your data,
you aren’t going to find traversal very useful. However, traversal is absolutely fantastic for sites that need
to be arbitrarily extensible. It’s a lot easier to add a node to a tree than it is to shoehorn a route into an
ordered list of other routes, or to create another entire instance of an application to service a department
and glue code to allow disparate apps to share data. It’s a great fit for sites that naturally lend themselves
to changing departmental hierarchies, such as content management systems and document management
systems. Traversal also lends itself well to systems that require very granular security (“Bob can edit this
document” as opposed to “Bob can edit documents”).

Examples: Hello Traversal World and Much Ado About Traversal.

14

1.1. WHAT MAKES PYRAMID UNIQUE

1.1.25 Tweens

Pyramid has a sort of internal WSGI-middleware-ish pipeline that can be hooked by arbitrary add-ons
named “tweens”. The debug toolbar is a “tween”, and the pyramid_tm transaction manager is also.
Tweens are more useful than WSGI middleware in some circumstances because they run in the context
of Pyramid itself, meaning you have access to templates and other renderers, a “real” request object, and
other niceties.

Example: Registering Tiveens.

1.1.26 View response adapters

A lot is made of the aesthetics of what kinds of objects you’re allowed to return from view callables in
various frameworks. In a previous section in this document, we showed you that, if you use a renderer,
you can usually return a dictionary from a view callable instead of a full-on Response object. But some
frameworks allow you to return strings or tuples from view callables. When frameworks allow for this,
code looks slightly prettier, because fewer imports need to be done, and there is less code. For example,
compare this:

def aview(request):
return "Hello world!"

S

To this:

from pyramid.response import Response

1

2

3 |def aview (request) :

4 return Response ("Hello world!")

The former is “prettier”, right?

Out of the box, if you define the former view callable (the one that simply returns a string) in Pyramid,
when it is executed, Pyramid will raise an exception. This is because “explicit is better than implicit”, in
most cases, and by default Pyramid wants you to return a Response object from a view callable. This is
because there’s usually a heck of a lot more to a response object than just its body. But if you’re the kind
of person who values such aesthetics, we have an easy way to allow for this sort of thing:

15

1. PYRAMID INTRODUCTION

1 | from pyramid.config import Configurator
2 | from pyramid.response import Response

4+ |def string_response_adapter(s):

5 response = Response(s)

6 response.content_type = 'text/html'
7 return response

8

9|if _ name_ == '_ _main_ ':

10 config = Configurator ()

1 config.add_response_adapter (string_response_adapter, basestring)

Do that once in your Pyramid application at startup. Now you can return strings from any of your view
callables, e.g.:

def helloview (request) :
2 return "Hello world!"

def goodbyeview (request) :
5 return "Goodbye world!"

I

Oh noes! What if you want to indicate a custom content type? And a custom status code? No fear:

1 | from pyramid.config import Configurator

3 |def tuple_response_adapter (val) :

4 status_int, content_type, body = val
5 response = Response (body)

6 response.content_type = content_type
7 response.status_int = status_int

8 return response

10 |def string_response_adapter (body) :

1 response = Response (body)

12 response.content_type = 'text/html'

13 response.status_int = 200

14 return response

15

16 |1f _ name_ == '__main_ ':

17 config = Configurator ()

18 config.add_response_adapter (string_response_adapter, basestring)
19 config.add_response_adapter (tuple_response_adapter, tuple)

Once this is done, both of these view callables will work:

16

1.1. WHAT MAKES PYRAMID UNIQUE

def aview(request):
return "Hello world!"

def anotherview (request) :
return (403, 'text/plain', "Forbidden")

(7 S SOV -

Pyramid defaults to explicit behavior, because it’s the most generally useful, but provides hooks that allow
you to adapt the framework to localized aesthetic desires.

See also:

See also Changing How Pyramid Treats View Responses.

1.1.27 “Global” response object

“Constructing these response objects in my view callables is such a chore! And I'm way too lazy to
register a response adapter, as per the prior section,” you say. Fine. Be that way:

def aview(request):
response = request.response
response.body = 'Hello world!'
response.content_type = 'text/plain'
return response

(7 S SOV -

See also:

See also Varying Attributes of Rendered Responses.

1.1.28 Automating repetitive configuration

Does Pyramid’s configurator allow you to do something, but you're a little adventurous and just want it a
little less verbose? Or you’d like to offer up some handy configuration feature to other Pyramid users with-
out requiring that we change Pyramid? You can extend Pyramid’s Configurator with your own directives.
For example, let’s say you find yourself calling pyramid.config.Configurator.add _view()
repetitively. Usually you can take the boring away by using existing shortcuts, but let’s say that this is a
case where there is no such shortcut:

17

1. PYRAMID INTRODUCTION

1 | from pyramid.config import Configurator

3|config = Configurator ()
4 |config.add_route ('xhr_route', '/xhr/{id}")

s|config.add_view ('my.package.GET_view', route_name='xhr_route',

6 xhr=True, permission='view', request_method='GET")
7| config.add_view('my.package.POST_view', route_name='xhr route',

8 xhr=True, permission='view', request_method='POST")
9|config.add_view ('my.package.HEAD_ view', route_name='xhr_ route',

10 xhr=True, permission='view', request_method="'HEAD')

Pretty tedious right? You can add a directive to the Pyramid configurator to automate some of the tedium
away:

from pyramid.config import Configurator

def add_protected_xhr_views (config, module):

w

4 module = config.maybe_dotted (module)

s for method in ('GET', 'POST', 'HEAD'):

6 view = getattr (module, 'xhr_ $%$s_view' % method, None)

7 if view is not None:

8 config.add_view(view, route_name='xhr_ route', xhr=True,
9 permission='view', request_method=method)

1 |config = Configurator()
2 |config.add_directive ('add protected xhr_ views', add_protected_xhr_views)

Once that’s done, you can call the directive you’ve just added as a method of the Configurator object:

config.add_route ('xhr_route', '/xhr/{id}")
config.add_protected_xhr_views ('my.package')

)

Your previously repetitive configuration lines have now morphed into one line.

You can share your configuration code with others this way, too, by packaging it up and calling
add_directive () from within a function called when another user uses the include () method
against your code.

See also:

See also Adding Methods to the Configurator via add_directive.

18

1.1. WHAT MAKES PYRAMID UNIQUE

1.1.29 Programmatic introspection

If you’re building a large system that other users may plug code into, it’s useful to be able to get an
enumeration of what code they plugged in at application runtime. For example, you might want to show
them a set of tabs at the top of the screen based on an enumeration of views they registered.

This is possible using Pyramid’s introspector.

Here’s an example of using Pyramid’s introspector from within a view callable:

from pyramid.view import view_config
from pyramid.response import Response

@view_config(route_name='bar')
def show_current_route_pattern (request) :

introspector = request.registry.introspector
route_name = request.matched_route.name
route_intr = introspector.get ('routes', route_name)

© ® N9 o wm A W N —

return Response (str (route_intr['pattern']))

See also:

See also Pyramid Configuration Introspection.

1.1.30 Python 3 compatibility

Pyramid and most of its add-ons are Python 3 compatible. If you develop a Pyramid application today,
you won’t need to worry that five years from now you’ll be backwatered because there are language
features you’d like to use but your framework doesn’t support newer Python versions.

1.1.31 Testing

Every release of Pyramid has 100% statement coverage via unit and integration tests, as measured by the
coverage tool available on PyPlI. It also has greater than 95% decision/condition coverage as measured
by the instrumental tool available on PyPl. It is automatically tested by the Jenkins tool on Python
2.6, Python 2.7, Python 3.2, Python 3.3, Python 3.4, Python 3.5, PyPy, and PyPy3 after each commit to
its GitHub repository. Official Pyramid add-ons are held to a similar testing standard. We still find bugs
in Pyramid and its official add-ons, but we’ve noticed we find a lot more of them while working on other
projects that don’t have a good testing regime.

Example: http://jenkins.pylonsproject.org/

19

http://jenkins.pylonsproject.org/

1. PYRAMID INTRODUCTION

1.1.32 Support

It’s our goal that no Pyramid question go unanswered. Whether you ask a question on IRC, on the Pylons-
discuss mailing list, or on StackOverflow, you're likely to get a reasonably prompt response. We don’t
tolerate “support trolls” or other people who seem to get their rocks off by berating fellow users in our
various official support channels. We try to keep it well-lit and new-user-friendly.

Example: Visit irc://freenode.net#pyramid (the #pyramid channel on irc.freenode.net in an IRC client)
or the pylons-discuss maillist at http://groups.google.com/group/pylons-discuss/.

1.1.33 Documentation

It’s a constant struggle, but we try to maintain a balance between completeness and new-user-friendliness
in the official narrative Pyramid documentation (concrete suggestions for improvement are always ap-
preciated, by the way). We also maintain a “cookbook” of recipes, which are usually demonstrations of
common integration scenarios too specific to add to the official narrative docs. In any case, the Pyramid
documentation is comprehensive.

Example: The Pyramid Community Cookbook.

1.2 What Is The Pylons Project?

Pyramid is a member of the collection of software published under the Pylons Project. Pylons software
is written by a loose-knit community of contributors. The Pylons Project website includes details about
how Pyramid relates to the Pylons Project.

1.3 Pyramid and Other Web Frameworks

The first release of Pyramid’s predecessor (named repoze .bfg) was made in July of 2008. At the end
of 2010, we changed the name of repoze.bfg to Pyramid. It was merged into the Pylons project as
Pyramid in November of that year.

Pyramid was inspired by Zope, Pylons (version 1.0), and Django. As a result, Pyramid borrows several
concepts and features from each, combining them into a unique web framework.

20

http://groups.google.com/group/pylons-discuss/
http://docs.pylonsproject.org/projects/pyramid-cookbook/en/latest/index.html#pyramid-cookbook
http://pylonsproject.org

1.3. PYRAMID AND OTHER WEB FRAMEWORKS

Many features of Pyramid trace their origins back to Zope. Like Zope applications, Pyramid applications
can be easily extended. If you obey certain constraints, the application you produce can be reused, mod-
ified, re-integrated, or extended by third-party developers without forking the original application. The
concepts of traversal and declarative security in Pyramid were pioneered first in Zope.

The Pyramid concept of URL dispatch is inspired by the Routes system used by Pylons version 1.0. Like
Pylons version 1.0, Pyramid is mostly policy-free. It makes no assertions about which database you
should use. Pyramid no longer has built-in templating facilities as of version 1.5a2, but instead officially
supports bindings for templating languages, including Chameleon, Jinja2, and Mako. In essence, it only
supplies a mechanism to map URLSs to view code, along with a set of conventions for calling those views.
You are free to use third-party components that fit your needs in your applications.

The concept of view is used by Pyramid mostly as it would be by Django. Pyramid has a documentation
culture more like Django’s than like Zope’s.

Like Pylons version 1.0, but unlike Zope, a Pyramid application developer may use completely imperative
code to perform common framework configuration tasks such as adding a view or a route. In Zope, ZCML
is typically required for similar purposes. In Grok, a Zope-based web framework, decorator objects
and class-level declarations are used for this purpose. Out of the box, Pyramid supports imperative and
decorator-based configuration. ZCML may be used via an add-on package named pyramid_zcml.

Also unlike Zope and other “full-stack” frameworks such as Django, Pyramid makes no assumptions
about which persistence mechanisms you should use to build an application. Zope applications are typ-
ically reliant on ZODB. Pyramid allows you to build ZODB applications, but it has no reliance on the
ZODB software. Likewise, Django tends to assume that you want to store your application’s data in a
relational database. Pyramid makes no such assumption, allowing you to use a relational database, and
neither encouraging nor discouraging the decision.

Other Python web frameworks advertise themselves as members of a class of web frameworks named
model-view-controller frameworks. Insofar as this term has been claimed to represent a class of web
frameworks, Pyramid also generally fits into this class.

You Say Pyramid is MVC, but Where’s the Controller?

The Pyramid authors believe that the MVC pattern just doesn’t really fit the web very well. In a
Pyramid application, there is a resource tree which represents the site structure, and views which
tend to present the data stored in the resource tree and a user-defined “domain model”. However,
no facility provided by the framework actually necessarily maps to the concept of a “controller”
or “model”. So if you had to give it some acronym, I guess you’d say Pyramid is actually an
“RV” framework rather than an “MVC” framework. “MVC”, however, is close enough as a general
classification moniker for purposes of comparison with other web frameworks.

21

http://en.wikipedia.org/wiki/Model\T1\textendash view\T1\textendash controller

1. PYRAMID INTRODUCTION

22

CHAPTER 2

Installing Pyramid

2.1 Before You Install

You will need Python version 2.6 or better to run Pyramid.

Python Versions

As of this writing, Pyramid has been tested under Python 2.6, Python 2.7, Python 3.2, Python 3.3,
Python 3.4, Python 3.5, PyPy, and PyPy3. Pyramid does not run under any version of Python before
2.6.

Pyramid is known to run on all popular UNIX-like systems such as Linux, Mac OS X, and FreeBSD as
well as on Windows platforms. It is also known to run on PyPy (1.9+).

Pyramid installation does not require the compilation of any C code, so you need only a Python interpreter
that meets the requirements mentioned.

Some Pyramid dependencies may attempt to build C extensions for performance speedups. If a compiler
or Python headers are unavailable the dependency will fall back to using pure Python instead.

2.1.1 For Mac OS X Users

Python comes pre-installed on Mac OS X, but due to Apple’s release cycle, it is often out of date. Unless
you have a need for a specific earlier version, it is recommended to install the latest 2.x or 3.x version of
Python.

You can install the latest verion of Python for Mac OS X from the binaries on python.org.

Alternatively, you can use the homebrew package manager.

23

http://python.org
https://www.python.org/downloads/mac-osx/
http://brew.sh/

2. INSTALLING PYRAMID

for python 2.7
$ brew install python

for python 3.5
$ brew install python3

If you use an installer for your Python, then you can skip to the section Installing Pyramid on a UNIX
System.

2.1.2 If You Don’t Yet Have a Python Interpreter (UNIX)

If your system doesn’t have a Python interpreter, and you’re on UNIX, you can either install Python using
your operating system’s package manager or you can install Python from source fairly easily on any
UNIX system that has development tools.

Package Manager Method

You can use your system’s “package manager” to install Python. Each package manager is slightly dif-
ferent, but the “flavor” of them is usually the same.

For example, on a Debian or Ubuntu system, use the following command:

$ sudo apt-get install python2.7-dev

This command will install both the Python interpreter and its development header files. Note that the
headers are required by some (optional) C extensions in software depended upon by Pyramid, not by
Pyramid itself.

Once these steps are performed, the Python interpreter will usually be invokable via python?2. 7 from a
shell prompt.

24

2.1. BEFORE YOU INSTALL

Source Compile Method

It’s useful to use a Python interpreter that isn’t the “system” Python interpreter to develop your
software. ~ The authors of Pyramid tend not to use the system Python for development pur-
poses; always a self-compiled one. Compiling Python is usually easy, and often the “system”
Python is compiled with options that aren’t optimal for web development. For an explanation, see
https://github.com/Pylons/pyramid/issues/747.

To compile software on your UNIX system, typically you need development tools. Often these can be
installed via the package manager. For example, this works to do so on an Ubuntu Linux system:

$ sudo apt-get install build-essential

On Mac OS X, installing XCode has much the same effect.

Once you’ve got development tools installed on your system, you can install a Python 2.7 interpreter from
source, on the same system, using the following commands:

cd ~

mkdir tmp

mkdir opt

cd tmp

wget http://www.python.org/ftp/python/2.7.3/Python-2.7.3.tgz
tar xvzf Python-2.7.3.tgz

cd Python-2.7.3

./configure —--prefix=$HOME/opt/Python-2.7.3

make && make install

v U Uy U r A 0 0

Once these steps are performed, the Python interpreter will be invokable via
SHOME /opt /Python-2.7.3/bin/python from a shell prompt.

2.1.3 If You Don’t Yet Have a Python Interpreter (Windows)

If your Windows system doesn’t have a Python interpreter, you’ll need to install it by downloading a
Python 2.7-series interpreter executable from python.org’s download section (the files labeled “Windows
Installer”). Once you’ve downloaded it, double click on the executable and accept the defaults during the
installation process. You may also need to download and install the Python for Windows extensions.

L After you install Python on Windows, you may need to add the C: \Python27 directory to
your environment’s Path in order to make it possible to invoke Python from a command prompt by
typing python. To do so, right click My Computer, select Properties —>Advanced Tab-—>
Environment Variables and add that directory to the end of the Path environment variable.

25

https://github.com/Pylons/pyramid/issues/747
http://developer.apple.com/tools/xcode/
http://python.org/download/

2. INSTALLING PYRAMID

2.2 Installing Pyramid on a UNIX System

It is best practice to install Pyramid into a “virtual” Python environment in order to obtain isolation
from any “system” packages you’ve got installed in your Python version. This can be done by using
the virtualenv package. Using a virtualenv will also prevent Pyramid from globally installing versions of
packages that are not compatible with your system Python.

To set up a virtualenv in which to install Pyramid, first ensure that setuprools is installed. To do so, invoke
import setuptools within the Python interpreter you’d like to run Pyramid under.

The following command will not display anything if setuptools is already installed:

$ python2.7 -c 'import setuptools'

Running the same command will yield the following output if setuptools is not yet installed:

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ImportError: No module named setuptools

If import setuptoolsraisesan ImportError asitdoes above, you will need to install setuptools
manually.

If you are using a “system” Python (one installed by your OS distributor or a third-party packager such
as Fink or MacPorts), you can usually install the setuptools package by using your system’s package
manager. If you cannot do this, or if you’re using a self-installed version of Python, you will need to
install setuptools “by hand”. Installing setuptools “by hand” is always a reasonable thing to do, even if
your package manager already has a pre-chewed version of setuptools for installation.

2.2.1 Installing Setuptools

To install setuptools by hand under Python 2, first download ez_setup.py then invoke it using the Python
interpreter into which you want to install setuptools.

$ python ez_setup.py

Once this command is invoked, setuptools should be installed on your system. If the command fails due
to permission errors, you may need to be the administrative user on your system to successfully invoke
the script. To remediate this, you may need to do:

26

http://docs.python.org/3/library/exceptions.html#ImportError
https://bootstrap.pypa.io/ez_setup.py

2.2. INSTALLING PYRAMID ON A UNIX SYSTEM

$ sudo python ez_setup.py

2.2.2 Installing the virtualenv Package

Once you’ve got setuptools installed, you should install the virfualenv package. To install the virtualenv
package into your setuptools-enabled Python interpreter, use the easy_install command.

! Python 3.3 includes pyvenv out of the box, which provides similar functionality to

virtualenv. We however suggest using virtualenv instead, which works well with Python
3.3. This isn’t a recommendation made for technical reasons; it’s made because it’s not feasible for
the authors of this guide to explain setup using multiple virtual environment systems. We are aiming
to not need to make the installation documentation Turing-complete.

If you insist on using pyvenv, you’ll need to understand how to install software such as
setuptools into the virtual environment manually, which this guide does not cover.

$ easy_install virtualenv

This command should succeed, and tell you that the virtualenv package is now installed. If it fails due to
permission errors, you may need to install it as your system’s administrative user. For example:

$ sudo easy_install virtualenv

2.2.3 Creating the Virtual Python Environment

Once the virtualenv package is installed in your Python environment, you can then create a virtual envi-
ronment. To do so, invoke the following:

$ export VENV=~/env

$ virtualenv S$VENV

New python executable in /home/foo/env/bin/python
Installing setuptools............. done.

27

2. INSTALLING PYRAMID

You can either follow the use of the environment variable, $VENV, or replace it with the root directory
of the virtualenv. In that case, the export command can be skipped. If you choose the former approach,
ensure that it’s an absolute path.

! Avoid using the ——system-site-packages option when creating the virtualenv un-
less you know what you are doing. For versions of virtualenv prior to 1.7, make sure to use the
-—no-site-packages option, because this option was formerly not the default and may produce
undesirable results.

% 4o not use sudo to run the virtualenv script. It’s perfectly acceptable (and desirable) to
create a virtualenv as a normal user.

2.2.4 Installing Pyramid into the Virtual Python Environment

After you’ve got your virtualenv installed, you may install Pyramid itself using the following commands:
$ SVENV/bin/easy_install " 'pyramid==1.5.8""

The easy_install command will take longer than the previous ones to complete, as it downloads and
installs a number of dependencies.

O If you see any warnings and/or errors related to failing to compile the C extensions, in most
cases you may safely ignore those errors. If you wish to use the C extensions, please verify that you
have a functioning compiler and the Python header files installed.

2.3 Installing Pyramid on a Windows System

You can use Pyramid on Windows under Python 2 or 3.
1. Download and install the most recent Python 2.7.x or 3.3.x version for your system.

2. Download and install the Python for Windows extensions. Carefully read the README.txt file at
the end of the list of builds, and follow its directions. Make sure you get the proper 32- or 64-bit
build and Python version.

3. Install latest setuptools distribution into the Python from step 1 above: download ez_setup.py and
run it using the python interpreter of your Python 2.7 or 3.3 installation using a command prompt:

28

http://www.python.org/download/
http://sourceforge.net/projects/pywin32/files/pywin32/
https://bootstrap.pypa.io/ez_setup.py

2.4. WHAT GETS INSTALLED

modify the command according to the python version, e.g.:
for Python 2.7:

:\> c:\Python27\python ez_setup.py

for Python 3.3:

:\> c:\Python33\python ez_setup.py

O #*= 0 = %

4. Install virtualenv:

modify the command according to the python version, e.g.:
for Python 2.7:

:\> c:\Python27\Scripts\easy_install virtualenv

for Python 3.3:

:\> c:\Python33\Scripts\easy_install virtualenv

O #*= Q %= #*

5. Make a virtualenv workspace:

:\> set VENV=c:\env

modify the command according to the python version, e.g.:
for Python 2.7:

:\> c:\Python27\Scripts\virtualenv $VENV%

for Python 3.3:

:\> c:\Python33\Scripts\virtualenv $%VENV%

Q #*= Q = #* Q

You can either follow the use of the environment variable, $VENV$, or replace it with the root
directory of the virtualenv. In that case, the set command can be skipped. If you choose the former
approach, ensure that it’s an absolute path.

6. (Optional) Consider using $VENV$\Scripts\activate.bat to make your shell environment
wired to use the virtualenv.

7. Use easy_install to get Pyramid and its direct dependencies installed:

c:\env> %$VENV$\Scripts\easy_install ' ‘pyramid==1.5.8""

2.4 What Gets Installed

When you easy_install Pyramid, various other libraries such as WebOb, PasteDeploy, and others
are installed.

Additionally, as chronicled in Creating a Pyramid Project, scaffolds will be registered, which make it
easy to start a new Pyramid project.

29

2. INSTALLING PYRAMID

30

CHAPTER 3

Creating Your First Pyramid Application

In this chapter, we will walk through the creation of a tiny Pyramid application. After we’re finished
creating the application, we’ll explain in more detail how it works. It assumes you already have Pyramid
installed. If you do not, head over to the Installing Pyramid section.

3.1 Hello World

Here’s one of the very simplest Pyramid applications:

if name == '_ _main :

from wsgiref.simple server import make_server
from pyramid.config import Configurator
from pyramid.response import Response

def hello_world(request) :

o

return Response('Hello !'" % request.matchdict)

config = Configurator()
config.add_route('hello', '/hello/{name}")
config.add_view(hello_world, route_name='hello')
app = config.make_wsgi_app ()

server = make_server ('0.0.0.0', 8080, app)
server.serve_forever ()

31

3. CREATING YOUR FIRST PYRAMID APPLICATION

When this code is inserted into a Python script named helloworld.py and executed by a Python
interpreter which has the Pyramid software installed, an HTTP server is started on TCP port 8080.

On UNIX:

’$ SVENV/bin/python helloworld.py ‘

On Windows:

’C:\> $VENVS$\Scripts\python.exe helloworld.py ‘

This command will not return and nothing will be printed to the console. When port 8080 is visited
by a browser on the URL /hello/world, the server will simply serve up the text “Hello world!”. If
your application is running on your local system, using http://localhost:8080/hello/world in a browser will
show this result.

Each time you visit a URL served by the application in a browser, a logging line will be emitted to the
console displaying the hostname, the date, the request method and path, and some additional information.
This output is done by the wsgiref server we’ve used to serve this application. It logs an “access log” in
Apache combined logging format to the console.

Press Ctr1-C (or Ctr1-Break on Windows) to stop the application.

Now that we have a rudimentary understanding of what the application does, let’s examine it piece by
piece.

3.1.1 Imports

The above helloworld. py script uses the following set of import statements:

from wsgiref.simple_server import make_server
from pyramid.config import Configurator
from pyramid.response import Response

[P R

The script imports the Configurator class from the pyramid. config module. An instance of the
Configurator class is later used to configure your Pyramid application.

Like many other Python web frameworks, Pyramid uses the WSGI protocol to connect an application and
a web server together. The wsgiref server is used in this example as a WSGI server for convenience,
as it is shipped within the Python standard library.

The script also imports the pyramid. response.Response class for later use. An instance of this
class will be used to create a web response.

32

http://localhost:8080/hello/world
http://docs.python.org/3/library/wsgiref.html#module-wsgiref

3.1. HELLO WORLD

3.1.2 View Callable Declarations

The above script, beneath its set of imports, defines a function named hello_world.

def hello_world(request):
return Response('Hello !'" % request.matchdict)

)

The function accepts a single argument (request) and it returns an instance of the
pyramid.response.Response class. The single argument to the class’ constructor is a string com-
puted from parameters matched from the URL. This value becomes the body of the response.

This function is known as a view callable. A view callable accepts a single argument, request. Itis
expected to return a response object. A view callable doesn’t need to be a function; it can be represented
via another type of object, like a class or an instance, but for our purposes here, a function serves us well.

A view callable is always called with a request object. A request object is a representation of an HTTP
request sent to Pyramid via the active WSGI server.

A view callable is required to return a response object because a response object has all the information
necessary to formulate an actual HTTP response; this object is then converted to text by the WSGI server
which called Pyramid and it is sent back to the requesting browser. To return a response, each view
callable creates an instance of the Response class. In the hello_world function, a string is passed
as the body to the response.

3.1.3 Application Configuration

In the above script, the following code represents the configuration of this simple application. The ap-
plication is configured using the previously defined imports and function definitions, placed within the
confines of an if statement:

if _ name_ == '__main__ ':
config = Configurator()
config.add_route('hello', '/hello/{name}'")
config.add_view(hello_world, route_name='hello')

[P SR

=

5 app = config.make_wsgi_app ()
6 server = make_server ('0.0.0.0', 8080, app)
7 server.serve_forever ()

Let’s break this down piece by piece.

3.1.4 Configurator Construction

33

3. CREATING YOUR FIRST PYRAMID APPLICATION

1 |1if name == '__main '

config = Configurator ()

©

The if _ _name_ == ’__main__’ : line in the code sample above represents a Python idiom: the
code inside this if clause is not invoked unless the script containing this code is run directly from the
operating system command line. For example, if the file named helloworld.py contains the entire
script body, the code within the i f statement will only be invoked when python helloworld.py is
executed from the command line.

Using the 1f clause is necessary—or at least best practice—because code in a Python . py file may be
eventually imported via the Python import statement by another . py file. . py files that are imported
by other . py files are referred to as modules. By usingthe if _ name_ == ’__main__ '’ : idiom,
the script above is indicating that it does not want the code within the if statement to execute if this
module is imported from another; the code within the if block should only be run during a direct script
execution.

The config = Configurator () line above creates an instance of the Configurator class. The
resulting config object represents an API which the script uses to configure this particular Pyramid
application. Methods called on the Configurator will cause registrations to be made in an application
registry associated with the application.

3.1.5 Adding Configuration

1 config.add_route('hello', '/hello/{name}'")
2 config.add_view(hello_world, route_name='hello')

The first line above calls the pyramid.config.Configurator.add_route () method, which
registers a route to match any URL path that begins with /hello/ followed by a string.

The second line registers the hello_world function as a view callable and makes sure that it will be
called when the hel1o route is matched.

3.1.6 WSGI Application Creation

1 app = config.make_wsgi_app ()

34

3.1. HELLO WORLD

After configuring views and ending configuration, the script creates a WSGI application via the
pyramid.config.Configurator.make_wsgi_app () method. A call to make_wsgi_app
implies that all configuration is finished (meaning all method calls to the configurator, which sets up
views and various other configuration settings, have been performed). The make_wsgi_app method
returns a WSGI application object that can be used by any WSGI server to present an application to a
requestor. WSGI is a protocol that allows servers to talk to Python applications. We don’t discuss WSGI
in any depth within this book, but you can learn more about it by visiting wsgi.org.

The Pyramid application object, in particular, is an instance of a class representing a Pyramid router. It
has a reference to the application registry which resulted from method calls to the configurator used to
configure it. The router consults the registry to obey the policy choices made by a single application.
These policy choices were informed by method calls to the Configurator made earlier; in our case, the
only policy choices made were implied by calls to its add_view and add_route methods.

3.1.7 WSGI Application Serving

1 server = make_server ('0.0.0.0', 8080, app)
2 server.serve_forever ()

Finally, we actually serve the application to requestors by starting up a WSGI server. We happen to use the
wsgiref make_server server maker for this purpose. We pass in as the first argument 0.0.0.0",
which means “listen on all TCP interfaces”. By default, the HTTP server listens only onthe 127.0.0.1
interface, which is problematic if you’re running the server on a remote system and you wish to access
it with a web browser from a local system. We also specify a TCP port number to listen on, which is
8080, passing it as the second argument. The final argument is the app object (a router), which is the
application we wish to serve. Finally, we call the server’s serve_forever method, which starts the
main loop in which it will wait for requests from the outside world.

When this line is invoked, it causes the server to start listening on TCP port 8080. The server will serve

requests forever, or at least until we stop it by killing the process which runs it (usually by pressing
Ctrl-Cor Ctrl-Break in the terminal we used to start it).

3.1.8 Conclusion

Our hello world application is one of the simplest possible Pyramid applications, configured “impera-
tively”. We can see that it’s configured imperatively because the full power of Python is available to us as
we perform configuration tasks.

35

http://wsgi.org
http://docs.python.org/3/library/wsgiref.html#module-wsgiref

3. CREATING YOUR FIRST PYRAMID APPLICATION

3.2 References

For more information about the API of a Configurator object, see Configurator .

For more information about view configuration, see View Configuration.

36

CHAPTER 4

Application Configuration

Most people already understand “configuration” as settings that influence the operation of an application.
For instance, it’s easy to think of the values in a . ini file parsed at application startup time as “configu-
ration”. However, if you’re reasonably open-minded, it’s easy to think of code as configuration too. Since
Pyramid, like most other web application platforms, is a framework, it calls into code that you write (as
opposed to a library, which is code that exists purely for you to call). The act of plugging application
code that you’ve written into Pyramid is also referred to within this documentation as “configuration”;
you are configuring Pyramid to call the code that makes up your application.

See also:
For information on . ini files for Pyramid applications see the Startup chapter.

There are two ways to configure a Pyramid application: imperative configuration and declarative config-
uration. Both are described below.

4.1 Imperative Configuration

“Imperative configuration” just means configuration done by Python statements, one after the next. Here’s
one of the simplest Pyramid applications, configured imperatively:

37

4. APPLICATION CONFIGURATION

1 | from wsgiref.simple_ server import make_server
2 | from pyramid.config import Configurator
3 | from pyramid.response import Response

s|def hello_world(request) :

6 return Response ('Hello world!")

7

s|if _ name_ == '__main__ ':

9 config = Configurator()

10 config.add_view(hello_world)

1 app = config.make_wsgi_app ()

12 server = make_server ('0.0.0.0', 8080, app)
13 server.serve_forever ()

We won’t talk much about what this application does yet. Just note that the “configuration’ statements
take place underneath the if _ name_ == ’__main__ '’ : stanza in the form of method calls on a
Configurator object (e.g., config.add_view (.. .)). These statements take place one after the other,
and are executed in order, so the full power of Python, including conditionals, can be employed in this
mode of configuration.

4.2 Declarative Configuration

It’s sometimes painful to have all configuration done by imperative code, because often the code for a
single application may live in many files. If the configuration is centralized in one place, you’ll need to
have at least two files open at once to see the “big picture”: the file that represents the configuration, and
the file that contains the implementation objects referenced by the configuration. To avoid this, Pyramid
allows you to insert configuration decoration statements very close to code that is referred to by the
declaration itself. For example:

from pyramid.response import Response
from pyramid.view import view_config

S}

@view_config(name='hello', request_method='GET")
def hello(request):
6 return Response('Hello')

~

[

The mere existence of configuration decoration doesn’t cause any configuration registration to be per-
formed. Before it has any effect on the configuration of a Pyramid application, a configuration decoration
within application code must be found through a process known as a scan.

38

4.3. SUMMARY

For example, the pyramid.view.view_config decorator in the code example above adds an at-
tribute to the he 1 1o function, making it available for a scan to find it later.

A scan of a module or a package and its subpackages for decorations happens when the
pyramid.config.Configurator.scan () method is invoked: scanning implies searching for
configuration declarations in a package and its subpackages. For example:

1 | from wsgiref.simple_server import make_server
2 | from pyramid.config import Configurator

3 | from pyramid.response import Response

4| from pyramid.view import view_config

¢ | @view_config()
7|def hello(request) :

8 return Response ('Hello')

9

10 |if _ name_ == '__main_ ':

11 config = Configurator ()

12 config.scan()

13 app = config.make_wsgi_app ()

14 server = make_server ('0.0.0.0', 8080, app)
15 server.serve_forever ()

The scanning machinery imports each module and subpackage in a package or module recursively, look-
ing for special attributes attached to objects defined within a module. These special attributes are typically
attached to code via the use of a decorator. For example, the view_config decorator can be attached
to a function or instance method.

Once scanning is invoked, and configuration decoration is found by the scanner, a set of calls are made
to a Configurator on your behalf. These calls replace the need to add imperative configuration statements
that don’t live near the code being configured.

The combination of configuration decoration and the invocation of a scan is collectively known as declar-
ative configuration.

In the example above, the scanner translates the arguments to view_config into a call to the
pyramid.config.Configurator.add_view () method, effectively:

’config.add_view(hello)

4.3 Summary

There are two ways to configure a Pyramid application: declaratively and imperatively. You can choose
the mode with which you’re most comfortable; both are completely equivalent. Examples in this docu-
mentation will use both modes interchangeably.

39

4. APPLICATION CONFIGURATION

40

CHAPTER S5

Creating a Pyramid Project

As we saw in Creating Your First Pyramid Application, it’s possible to create a Pyramid application
completely manually. However, it’s usually more convenient to use a scaffold to generate a basic Pyramid
project.

A project is a directory that contains at least one Python package. You’ll use a scaffold to create a project,
and you’ll create your application logic within a package that lives inside the project. Even if your
application is extremely simple, it is useful to place code that drives the application within a package,
because (1) a package is more easily extended with new code, and (2) an application that lives inside a
package can also be distributed more easily than one which does not live within a package.

Pyramid comes with a variety of scaffolds that you can use to generate a project. Each scaffold makes
different configuration assumptions about what type of application you’re trying to construct.

These scaffolds are rendered using the pcreate command that is installed as part of Pyramid.

5.1 Scaffolds Included with Pyramid

The convenience scaffolds included with Pyramid differ from each other on a number of axes:
* the persistence mechanism they offer (no persistence mechanism, ZODB, or SQLAlchemy)
¢ the mechanism they use to map URLs to code (traversal or URL dispatch)

The included scaffolds are these:

starter URL mapping via URL dispatch and no persistence mechanism

zodb URL mapping via traversal and persistence via ZODB

alchemy URL mapping via URL dispatch and persistence via SQLAlchemy

41

5. CREATING A PYRAMID PROJECT

5.2 Creating the Project

See also:

See also the output of pcreate —help.

In Installing Pyramid, you created a virtual Python environment via the virtualenv command. To
start a Pyramid project, use the pcreate command installed within the virtualenv. We’ll choose the
starter scaffold for this purpose. When we invoke pcreate, it will create a directory that represents

our project.

In Installing Pyramid we called the virtualenv directory env. The following commands assume that our
current working directory is the env directory.

The below example uses the pcreate command to create a project with the starter scaffold.

On UNIX:

’$ SVENV/bin/pcreate -s starter MyProject ‘

Or on Windows:

’> SVENV$\Scripts\pcreate -s starter MyProject ‘

Here’s sample output from a run of pcreate on UNIX for a project we name MyProject:

$ SVENV/bin/pcreate -s starter MyProject

Creating template pyramid

Creating directory ./MyProject

... more output

Running /Users/chrism/projects/pyramid/bin/python setup.py egg_info

As a result of invoking the pcreate command, a directory named MyProject is created. That direc-
tory is a project directory. The setup . py file in that directory can be used to distribute your application,
or install your application for deployment or development.

A .ini file named development . ini will be created in the project directory. You will use this . ini

file to configure a server, to run your application, and to debug your application. It contains configuration
that enables an interactive debugger and settings optimized for development.

42

5.3. INSTALLING YOUR NEWLY CREATED PROJECT FOR DEVELOPMENT

Another . ini file named production.ini will also be created in the project directory. It contains
configuration that disables any interactive debugger (to prevent inappropriate access and disclosure), and
turns off a number of debugging settings. You can use this file to put your application into production.

The MyProject project directory contains an additional subdirectory named myproject (note the
case difference) representing a Python package which holds very simple Pyramid sample code. This is
where you’ll edit your application’s Python code and templates.

We created this project within an env virtualenv directory. However, note that this is not mandatory. The
project directory can go more or less anywhere on your filesystem. You don’t need to put it in a special
“web server” directory, and you don’t need to put it within a virtualenv directory. The author uses Linux
mainly, and tends to put project directories which he creates within his ~/projects directory. On
Windows, it’s a good idea to put project directories within a directory that contains no space characters,
S0 it’s wise to avoid a path that contains, i.e., My Documents. As a result, the author, when he uses
Windows, just puts his projects in C: \projects.

L You'll need to avoid using pcreate to create a project with the same name as a Python

standard library component. In particular, this means you should avoid using the names site or
test, both of which conflict with Python standard library packages. You should also avoid using the
name pyramid, which will conflict with Pyramid itself.

5.3 Installing your Newly Created Project for Development

To install a newly created project for development, you should cd to the newly created project directory
and use the Python interpreter from the virtualenv you created during Installing Pyramid to invoke the
command python setup.py develop

The file named setup.py will be in the root of the pcreate-generated project directory. The python
you’re invoking should be the one that lives in the bin (or Scripts on Windows) directory of your
virtual Python environment. Your terminal’s current working directory must be the newly created project
directory.

On UNIX:

$ cd MyProject
$ SVENV/bin/python setup.py develop

Or on Windows:

43

5. CREATING A PYRAMID PROJECT

> cd MyProject
> $VENVS$\Scripts\python.exe setup.py develop

Elided output from a run of this command on UNIX is shown below:

$ cd MyProject
$ SVENV/bin/python setup.py develop

Finished processing dependencies for MyProject==0.0

This will install a distribution representing your project into the virtual environment interpreter’s library
set so it can be found by import statements and by other console scripts such as pserve, pshell,
proutes, and pviews.

5.4 Running the Tests for Your Application

To run unit tests for your application, you should invoke them using the Python interpreter from the
virtualenv you created during Installing Pyramid (the python command that lives in the bin directory
of your virtualenv).

On UNIX:

’$ SVENV/bin/python setup.py test —-g ‘

Or on Windows:

’> $VENV$\Scripts\python.exe setup.py test -qg ‘

Here’s sample output from a test run on UNIX:

$ SVENV/bin/python setup.py test —q

running test

running egg_info

writing requirements to MyProject.egg-info/requires.txt

writing MyProject.egg-info/PKG-INFO

writing top-level names to MyProject.egg-info/top_level.txt

writing dependency_links to MyProject.egg-info/dependency_links.txt
writing entry points to MyProject.egg-info/entry_points.txt

44

5.5. RUNNING THE PROJECT APPLICATION

reading manifest file 'MyProject.egg-info/SOURCES.txt'
writing manifest file 'MyProject.egg-info/SOURCES.txt'
running build_ext

Ran 1 test in 0.108s

OK

The tests themselves are found in the tests.py module in your pcreate generated project. Within a
project generated by the starter scaffold, a single sample test exists.

ﬁ The —qg option is passed to the setup.py test command to limit the output to a stream
of dots. If you don’t pass —qg, you’ll see more verbose test result output (which normally isn’t very
useful).

5.5 Running the Project Application

See also:
See also the output of pserve —help.

Once a project is installed for development, you can run the application it represents using the pserve
command against the generated configuration file. In our case, this file is named development . ini.

On UNIX:

’$ SVENV/bin/pserve development.ini ‘

On Windows:

’> $VENV$\Scripts\pserve development.ini

Here’s sample output from a run of pserve on UNIX:

45

5. CREATING A PYRAMID PROJECT

$ SVENV/bin/pserve development.ini
Starting server in PID 16601.
serving on http://0.0.0.0:6543

When you use pserve to start the application implied by the default rendering of a scaffold, it will
respond to requests on all IP addresses possessed by your system, not just requests to localhost.
This is what the 0.0.0.0 in serving on http://0.0.0.0:6543 means. The server will
respond to requests made to 127.0.0.1 and on any external IP address. For example, your sys-
tem might be configured to have an external IP address 192.168.1.50. If that’s the case, if you
use a browser running on the same system as Pyramid, it will be able to access the application via
http://127.0.0.1:6543/ as well as via http://192.168.1.50:6543/. However, other
people on other computers on the same network will also be able to visit your Pyramid application in
their browser by visiting http://192.168.1.50:6543/.

If you want to restrict access such that only a browser running on the same machine as Pyramid will be
able to access your Pyramid application, edit the development . ini file, and replace the host value
in the [server:main] section. Change it from 0.0.0.0t0 127.0.0. 1. For example:

[server:main]

use = egg:waltress#main
host = 127.0.0.1

port = 6543

You can change the port on which the server runs on by changing the same portion of
the development.ini file. For example, you can change the port = 6543 line in the
development.ini file’s [server:main] sectionto port = 8080 to run the server on port 8080
instead of port 6543.

You can shut down a server started this way by pressing Ctr1-C (or Ctr1-Break on Windows).

The default server used to run your Pyramid application when a project is created from a scaffold is named
Waitress. This server is what prints the serving on. .. line when you run pserve. It’s a good idea
to use this server during development because it’s very simple. It can also be used for light production.
Setting your application up under a different server is not advised until you’ve done some development
work under the default server, particularly if you’re not yet experienced with Python web development.
Python web server setup can be complex, and you should get some confidence that your application
works in a default environment before trying to optimize it or make it “more like production”. It’s awfully
easy to get sidetracked trying to set up a non-default server for hours without actually starting to do any
development. One of the nice things about Python web servers is that they’re largely interchangeable, so
if your application works under the default server, it will almost certainly work under any other server in
production if you eventually choose to use a different one. Don’t worry about it right now.

For more detailed information about the startup process, see Startup. For more information about environ-
ment variables and configuration file settings that influence startup and runtime behavior, see Environment
Variables and .ini File Settings.

46

5.6. VIEWING THE APPLICATION

5.5.1 Reloading Code

During development, it’s often useful to run pserve using its ——reload option. When —-reload is
passed to pserve, changes to any Python module your project uses will cause the server to restart. This
typically makes development easier, as changes to Python code made within a Pyramid application is not
put into effect until the server restarts.

For example, on UNIX:

$ SVENV/bin/pserve development.ini —--reload
Starting subprocess with file monitor
Starting server in PID 16601.

serving on http://0.0.0.0:6543

Now if you make a change to any of your project’s . py files or . ini files, you’ll see the server restart
automatically:

development.ini changed; reloading...
———————————————————— Restarting ———————----—----———~
Starting server in PID 16602.

serving on http://0.0.0.0:6543

Changes to template files (such as .pt or .mak files) won’t cause the server to restart. Changes to
template files don’t require a server restart as long as the pyramid.reload_templates setting in
the development . ini file is t rue. Changes made to template files when this setting is true will take
effect immediately without a server restart.

5.6 Viewing the Application

Once your application is running via pserve, you may visit http://localhost:6543/ in your
browser. You will see something in your browser like what is displayed in the following image:

47

5. CREATING A PYRAMID PROJECT

B O O /& starter scaffold for The Py % '\, Steve | i

€ = C [} localhost:6543 QA @ = O R

|

Pyramid Starter scaffold

Welcome to MyProject, an application generated by

the Pyramid Web Framework 1.6a1.

Generated byvi.6al W Docs % Github Project @ IRC Channel % Pylons Project

copyright © pylons project

This is the page shown by default when you visit an unmodified pcreate generated starter applica-
tion in a browser.

5.6.1 The Debug Toolbar

Show Toolbar

48

5.6. VIEWING THE APPLICATION

If you click on the Pyramid logo at the top right of the page, a new target window will open to present
a debug toolbar that provides various niceties while you’re developing. This logo will float above every
HTML page served by Pyramid while you develop an application, and allows you to show the toolbar as
necessary.

B OO | & starter scaffold for The 7y x)/ [Pyramid Debug Toolbar % \|__| Ste e
<« C' [} localhost:6543/_debug_toolbar/34333836383933393034# Qi &% @ « O B 9 =
Pyramid DebugToolbar History Global Settings
Requests HTTP Headers Logging Performance(liEid Renderers@) Request Vars SQLAIchemy
GET 200 Traceback
/
GET 200 Renderers
/
Renderer Name
GET @ templates/mytemplate.pt
/
Rendering Value
GET
/ @ {'project’: ‘"MyProject'}
System Values
GET 200
/ context <pyramid.traversal. DefaultRootFactory instance at 0x10574a128>
ferns @ renderer_info <pyramid.renderers.RendererHelper object at 0x105797450>
/ renderer_name ‘templates/mytemplate.pt’
GET @ req <Request at 0x1057ab050 GET http://localhost:6543/>
/static/pyramid-...
request <Request at 0x1057ab050 GET http://localnost:6543/>
GET @ view <function my_view at 0x1053299b0>
/static/theme.css
GET [200
/static/pyramid....

If you don’t see the Pyramid logo on the top right of the page, it means you’re browsing from a system
that does not have debugging access. By default, for security reasons, only a browser originating from
localhost (127.0.0.1) can see the debug toolbar. To allow your browser on a remote system to
access the server, add a line within the [app:main] section of the development.ini file in the
form debugtoolbar.hosts = X .X.X.X. For example, if your Pyramid application is running
on a remote system, and you’re browsing from a host with the IP address 192.168.1.1, you'd add
something like this to enable the toolbar when your system contacts Pyramid:

[app:main]
.. other settings
debugtoolbar.hosts = 192.168.1.1

49

5. CREATING A PYRAMID PROJECT

For more information about what the debug toolbar allows you to do, see the documentation for pyra-
mid_debugtoolbar.

The debug toolbar will not be shown (and all debugging will be turned off) when you use the
production.ini file instead of the development . ini ini file to run the application.

You can also turn the debug toolbar off by editing development . ini and commenting out a line. For
example, instead of:

[app:main]

... elided configuration

pyramid.includes =
pyramid_debugtoolbar

B oW o =

Put a hash mark at the beginning of the pyramid_debugtoolbar line:

[app:main]

... elided configuration
pyramid.includes =

pyramid_debugtoolbar

B oW o =

Then restart the application to see that the toolbar has been turned off.

Note that if you comment out the pyramid_debugtoolbar line, the # must be in the first column.
If you put it anywhere else, and then attempt to restart the application, you’ll receive an error that ends
something like this:

’ImportError: No module named #pyramid_debugtoolbar

5.7 The Project Structure

The st arter scaffold generated a project (named MyP ro ject), which contains a Python package. The
package is also named mypro ject, but it’s lowercased; the scaffold generates a project which contains
a package that shares its name except for case.

All Pyramid pcreate-generated projects share a similar structure. The MyProject project we've
generated has the following directory structure:

50

http://docs.pylonsproject.org/projects/pyramid_debugtoolbar/en/latest/
http://docs.pylonsproject.org/projects/pyramid_debugtoolbar/en/latest/

5.8. THE MYPROJECT PROJECT

MyProject/

| -—— CHANGES.txt

| -— development.ini

| -— MANIFEST.in

| -— myproject

| |-— __init___.py

|-— static

| |-— pyramid-16x16.png
| | -— pyramid.png

| |-— theme.css

| "—— theme.min.css
|-— templates

\ ‘—— mytemplate.pt
|-— tests.py

\ -— views.py

| -— production.ini

| —— README.txt

" —— setup.py

5.8 The MyProject Project

The MyProject project directory is the distribution and deployment wrapper for your application. It
contains both the myproject package representing your application as well as files used to describe,
run, and test your application.

1. CHANGES. txt describes the changes you’ve made to the application. It is conventionally written
in ReStructuredText format.

2. README. txt describes the application in general. It is conventionally written in ReStructuredText
format.

3. development.ini is a PasteDeploy configuration file that can be used to execute your applica-
tion during development.

4. production. ini is a PasteDeploy configuration file that can be used to execute your application
in a production configuration.

5. MANIFEST.in is a distutils “manifest” file, naming which files should be included in a source
distribution of the package when python setup.py sdist isrun.

6. setup.py is the file you’ll use to test and distribute your application. It is a standard setuptools
setup.py file.

51

5. CREATING A PYRAMID PROJECT

5.8.1 development.ini

The development . ini fileis a PasteDeploy configuration file. Its purpose is to specify an application

to run when you invoke pserve, as well as the deployment settings provided to that application.

The generated development . ini file looks like so:

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

#H##

app configuration

http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/environment
#H##

[app:main]
use = egg:MyProject

pyramid.reload_templates = true
pyramid.debug_authorization = false
pyramid.debug_notfound = false
pyramid.debug_routematch = false
pyramid.default_locale_name = en
pyramid.includes =
pyramid_debugtoolbar

By default, the toolbar only appears for clients from IP addresses
'127.0.0.1" and '::1"'.
debugtoolbar.hosts = 127.0.0.1 ::1

###
wsgl server configuration

#H##

[server:main]

use = egg:wailtress#main
host = 0.0.0.0

port = 6543

#H##

logging configuration
http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/logging.htm
#H##

[loggers]
keys = root, myproject

[handlers]
keys = console

52

. html

5.8. THE MYPROJECT PROJECT

40
41 | [formatters]

|keys = generic
43
4 | [logger_root]
45 | level = INFO
4 | handlers

= console
47
4 | [Logger_myproject]
4 | level = DEBUG

50 | handlers =

51 | qualname

= myproject
52

53 | [handler_ console]

4 |class = StreamHandler
ss |args = (sys.stderr,)
s6 | Llevel = NOTSET

57| formatter = generic

58
59 | [formatter_ generic]
6o | format = % (asctime)s % (levelname)-5.5s [%(name)s][%(threadName)s] % (message

This file contains several sections including [app:main], [server:main], and several other sec-
tions related to logging configuration.

The [app:main] section represents configuration for your Pyramid application. The use setting is the
only setting required to be present in the [app:main] section. Its default value, egg:MyProject,
indicates that our MyProject project contains the application that should be served. Other settings
added to this section are passed as keyword arguments to the function named main in our package’s
__init__ .py module. You can provide startup-time configuration parameters to your application by
adding more settings to this section.

See also:

See Entry Points and PasteDeploy .ini Files for more information about the meaning of the use =
egqg:MyProject value in this section.

The pyramid.reload_templates settinginthe [app:main] section is a Pyramid-specific setting
which is passed into the framework. If it exists, and its value is true, supported template changes
will not require an application restart to be detected. See Automatically Reloading Templates for more
information.

& The pyramid.reload_templates option should be turned off for production applications,
as template rendering is slowed when it is turned on.

53

5. CREATING A PYRAMID PROJECT

The pyramid. includes setting inthe [app:main] section tells Pyramid to “include” configuration
from another package. In this case, the line pyramid.includes = pyramid_debugtoolbar
tells Pyramid to include configuration from the pyramid_debugtoolbar package. This turns on a
debugging panel in development mode which can be opened by clicking on the Pyramid logo on the top
right of the screen. Including the debug toolbar will also make it possible to interactively debug exceptions
when an error occurs.

Various other settings may exist in this section having to do with debugging or influencing runtime be-
havior of a Pyramid application. See Environment Variables and .ini File Settings for more information
about these settings.

The name main in [app:main] signifies that this is the default application run by pserve when it is
invoked against this configuration file. The name main is a convention used by PasteDeploy signifying
that it is the default application.

The [server:main] section of the configuration file configures a WSGI server which listens on
TCP port 6543. It is configured to listen on all interfaces (0.0.0.0). This means that any re-
mote system which has TCP access to your system can see your Pyramid application. = The sec-
tions that live between the markers # Begin logging configuration and # End logging
configuration represent Python’s standard library 1 0ogging module configuration for your applica-
tion. The sections between these two markers are passed to the logging module’s config file configuration
engine when the pserve or pshell commands are executed. The default configuration sends appli-
cation logging output to the standard error output of your terminal. For more information about logging
configuration, see Logging.

See the PasteDeploy documentation for more information about other types of things you can put into this
. in1i file, such as other applications, middleware, and alternate WSGI server implementations.

5.8.2 production.ini

The production.ini file is a PasteDeploy configuration file with a purpose much like that of
development .ini. However, it disables the debug toolbar, and filters all log messages except those
above the WARN level. It also turns off template development options such that templates are not au-
tomatically reloaded when changed, and turns off all debugging options. This file is appropriate to use
instead of development .ini when you put your application into production.

It’s important to use production. ini (and not development . ini) to benchmark your application
and put it into production. development . ini configures your system with a debug toolbar that helps
development, but the inclusion of this toolbar slows down page rendering times by over an order of
magnitude. The debug toolbar is also a potential security risk if you have it configured incorrectly.

54

http://docs.python.org/3/library/logging.html#module-logging
http://docs.python.org/howto/logging.html#configuring-logging
http://docs.python.org/howto/logging.html#configuring-logging

5.8. THE MYPROJECT PROJECT

5.8.3 MANIFEST. in

The MANIFEST. in file is a distutils configuration file which specifies the non-Python files that should
be included when a distribution of your Pyramid project is created when you run python setup.py
sdist. Due to the information contained in the default MANIFEST . in, an sdist of your Pyramid project
will include . txt files, . ini files, . rst files, graphics files, and template files, as well as . py files.
See http://docs.python.org/distutils/sourcedist.html#the-manifest-in-template for more information about
the syntax and usage of MANIFEST . in.

Without the presence of a MANIFEST. in file or without checking your source code into a version
control repository, setup.py sdist places only Python source files (files ending with a .py ex-
tension) into tarballs generated by python setup.py sdist. This means, for example, if your
project was not checked into a setuptools-compatible source control system, and your project direc-
tory didn’t contain a MANIFEST. in file that told the sdist machinery to include «.pt files, the
myproject/templates/mytemplate.pt file would not be included in the generated tarball.

Projects generated by Pyramid scaffolds include a default MANIFEST. in file. The MANIFEST.in
file contains declarations which tell it to include files like *.pt, x.css and . js in the gen-
erated tarball. If you include files with extensions other than the files named in the project’s
MANIFEST.in and you don’t make use of a setuptools-compatible version control system, you’ll need
to edit the MANIFEST. in file and include the statements necessary to include your new files. See
http://docs.python.org/distutils/sourcedist.html#principle for more information about how to do this.

You can also delete MANIFEST. in from your project and rely on a setuptools feature which simply
causes all files checked into a version control system to be put into the generated tarball. To allow this to
happen, check all the files that you’d like to be distributed along with your application’s Python files into
Subversion. After you do this, when you rerun setup.py sdist, all files checked into the version
control system will be included in the tarball. If you don’t use Subversion, and instead use a different
version control system, you may need to install a setuptools add-on such as setuptools-git or
setuptools—hg for this behavior to work properly.

5.8.4 setup.py

The setup.py file is a setuptools setup file. It is meant to be run directly from the command line to
perform a variety of functions, such as testing, packaging, and distributing your application.

ﬁ setup.py is the de facto standard which Python developers use to distribute their reusable
code. You can read more about setup . py files and their usage in the Setuptools documentation and
Python Packaging User Guide.

Our generated setup . py looks like this:

55

http://docs.python.org/distutils/sourcedist.html#the-manifest-in-template
http://docs.python.org/distutils/sourcedist.html#principle
http://peak.telecommunity.com/DevCenter/setuptools
https://packaging.python.org/en/latest/

5. CREATING A PYRAMID PROJECT

1 | import os
3 | from setuptools import setup, find_packages

s |here = os.path.abspath(os.path.dirname(___file_))
¢ |with open (os.path.join (here, 'README.txt')) as f:

7 README = f.read()

s |{with open(os.path.join (here, 'CHANGES.txt')) as f:
9 CHANGES = f.read()

10

1 |requires = [

12 'pyramid’,

13 'pyramid_chameleon',

14 'pyramid_debugtoolbar’,

15 'waitress',

16]

18 | setup (name="'MyProject',

19 version='0.0",

20 description='MyProject',

21 long_description=README + '\n\n' + CHANGES,
b2 classifiers=[

23 "Programming Language :: Python",
2 "Framework :: Pyramid",

25 "Topic :: Internet :: WWW/HTTP",
2% "Topic :: Internet :: WWW/HTTP :: WSGI :: Application",
27 1,

28 author="",

29 author_email="",

30 url="",

31 keywords="'web pyramid pylons',

2 packages=find_packages(),

33 include_package_data=True,

34 zip_safe=False,

35 install_requires=requires,

36 tests_require=requires,

37 test_suite="myproject",

38 entry_points="""\

39 [paste.app_factory]

40 main = myproject:main

41 nwn ,

42)

The setup.py file calls the setuptools setup function, which does various things depending on the
arguments passed to setup . py on the command line.

56

5.9. THE MYPROJECT PACKAGE

Within the arguments to this function call, information about your application is kept. While it’s be-
yond the scope of this documentation to explain everything about setuptools setup files, we’ll provide a
whirlwind tour of what exists in this file in this section.

Your application’s name can be any string; it is specified in the name field. The version number is
specified in the version value. A short description is provided in the description field. The
long_description is conventionally the content of the README and CHANGES file appended to-
gether. The classifiers field is a list of Trove classifiers describing your application. author and
author_email are text fields which probably don’t need any description. url is a field that should
point at your application project’s URL (if any). packages=find_packages () causes all packages
within the project to be found when packaging the application. include_package_data will in-
clude non-Python files when the application is packaged if those files are checked into version control.
zip_safe indicates that this package is not safe to use as a zipped egg; instead it will always unpack as
a directory, which is more convenient. install_requires and tests_require indicate that this
package depends on the pyramid package. test_suite points at the package for our application,
which means all tests found in the package will be run when setup.py test is invoked. We ex-
amined entry_points in our discussion of the development .ini file; this file defines the main
entry point that represents our project’s application.

Usually you only need to think about the contents of the setup . py file when distributing your applica-
tion to other people, when adding Python package dependencies, or when versioning your application for
your own use. For fun, you can try this command now:

$ SVENV/bin/python setup.py sdist

This will create a tarball of your application in a dist subdirectory named MyProject-0.1.tar.gz.
You can send this tarball to other people who want to install and use your application.

5.9 The myproject Package

The myproject package lives inside the MyPro ject project. It contains:

1. An __init__ .py file signifies that this is a Python package. It also contains code that helps
users run the application, including a main function which is used as a entry point for commands
such as pserve, pshell, pviews, and others.

2. A templates directory, which contains Chameleon (or other types of) templates.
3. A tests.py module, which contains unit test code for the application.
4. A views.py module, which contains view code for the application.

These are purely conventions established by the scaffold. Pyramid doesn’t insist that you name things in
any particular way. However, it’s generally a good idea to follow Pyramid standards for naming, so that
other Pyramid developers can get up to speed quickly on your code when you need help.

57

http://pypi.python.org/pypi?%3Aaction=list_classifiers

5. CREATING A PYRAMID PROJECT

5.9.1 _ init_ .py

We need a small Python module that configures our application and which advertises an entry point
for use by our PasteDeploy .ini file. This is the file named __init__ .py. The presence of an
__init__ .py also informs Python that the directory which contains it is a package.

from pyramid.config import Configurator

def main(global_config, =x*settings):

""" This function returns a Pyramid WSGI application.

o

config = Configurator (settings=settings)

config.include ('pyramid_chameleon')
config.add_static_view('static', 'static', cache_max_age=3600)
config.add_route('home', '/')

config.scan()

return config.make_wsgi_app ()

1. Line 1 imports the Configurator class from pyramid. config that we use later.

2. Lines 4-12 define a function named main that returns a Pyramid WSGI application. This function

is meant to be called by the PasteDeploy framework as a result of running pserve.
Within this function, application configuration is performed.
Line 7 creates an instance of a Configurator.

Line 8 adds support for Chameleon templating bindings, allowing us to specify renderers with the
. pt extension.

Line 9 registers a static view, which will serve up the files from the myproject:static asset
specification (the static directory of the myproject package).

Line 10 adds a route to the configuration. This route is later used by a view in the views module.

Line 11 calls config. scan (), which picks up view registrations declared elsewhere in the pack-
age (in this case, in the views . py module).

Line 12 returns a WSGI application to the caller of the function (Pyramid’s pserve).

5.9.2 views.py

Much of the heavy lifting in a Pyramid application is done by view callables. A view callable is the main
tool of a Pyramid web application developer; it is a bit of code which accepts a request and which returns
a response.

58

5.9. THE MYPROJECT PACKAGE

from pyramid.view import view_config

=

@view_config(route_name='home', renderer='templates/mytemplate.pt')
def my_view(request) :
6 return {'project': 'MyProject'}

w

Lines 4-6 define and register a view callable named my_view. The function named my_view is
decorated with a view_config decorator (which is processed by the config.scan () line in our
__init__ .py). The view_config decorator asserts that this view be found when a route named home is
matched. In our case, because our __init__ .py maps the route named home to the URL pattern /, this
route will match when a visitor visits the root URL. The view_config decorator also names a renderer,
which in this case is a template that will be used to render the result of the view callable. This particular
view declaration points at templates/mytemplate.pt, which is an asset specification that speci-
fies the mytemplate.pt file within the templates directory of the myproject package. The as-
set specification could have also been specified as myproject:templates/mytemplate.pt; the
leading package name and colon is optional. The template file pointed to is a Chameleon ZPT template
file (templates/my_template.pt).

This view callable function is handed a single piece of information: the request. The request is an instance
of the WebOb Request class representing the browser’s request to our server.

This view is configured to invoke a renderer on a template. The dictionary the view returns (on line 6)
provides the value the renderer substitutes into the template when generating HTML. The renderer then
returns the HTML in a response.

O Dictionaries provide values to femplates.

O When the application is run with the scaffold’s default development.ini configuration, logging is
set up to aid debugging. If an exception is raised, uncaught tracebacks are displayed after the startup
messages on the console running the server. Also print () statements may be inserted into the
application for debugging to send output to this console.

O development.ini has a setting that controls how templates are reloaded,
pyramid.reload_templates.

* When set to True (as in the scaffold development . ini), changed templates automatically

reload without a server restart. This is convenient while developing, but slows template render-

ing speed.
* When set to False (the default value), changing templates requires a server restart to reload
them. Production applications should use pyramid.reload_templates = False.

59

5. CREATING A PYRAMID PROJECT

See also:

See also Writing View Callables Which Use a Renderer for more information about how views, renderers,
and templates relate and cooperate.

See also:

Pyramid can also dynamically reload changed Python files. See also Reloading Code.

See also:

See also the The Debug Toolbar, which provides interactive access to your application’s internals and,

should an exception occur, allows interactive access to traceback execution stack frames from the Python
interpreter.

5.9.3 static

This directory contains static assets which support the mytemplate.pt template. It includes CSS and
images.

5.9.4 templates/mytemplate.pt

This is the single Chameleon template that exists in the project. Its contents are too long to show here,
but it displays a default page when rendered. It is referenced by the call to @view_config as the
renderer of the my_view view callable in the views.py file. See Writing View Callables Which
Use a Renderer for more information about renderers.

Templates are accessed and used by view configurations and sometimes by view functions themselves.
See Using Templates Directly and Templates Used as Renderers via Configuration.

5.9.5 tests.py

The tests.py module includes unit tests for your application.

60

5.10. MODIFYING PACKAGE STRUCTURE

import unittest

from pyramid import testing

(7 S SOV -

class ViewTests (unittest.TestCase) :

o

7 def setUp(self):

8 self.config = testing.setUp/()
9

10 def tearDown (self):

1 testing.tearDown ()

13 def test_my_view(self):

14 from .views import my_view

15 request = testing.DummyRequest ()

16 info = my_view (request)

17 self.assertEqual (info['project'], 'MyProject')

This sample tests. py file has a single unit test defined within it. This test is executed when you run
python setup.py test. You may add more tests here as you build your application. You are not
required to write tests to use Pyramid. This file is simply provided for convenience and example.

See Unit, Integration, and Functional Testing for more information about writing Pyramid unit tests.

5.10 Modifying Package Structure

It is best practice for your application’s code layout to not stray too much from accepted Pyramid scaffold
defaults. If you refrain from changing things very much, other Pyramid coders will be able to more
quickly understand your application. However, the code layout choices made for you by a scaffold are in
no way magical or required. Despite the choices made for you by any scaffold, you can decide to lay your
code out any way you see fit.

For example, the configuration method named add_view () requires you to pass a dotted Python name
or a direct object reference as the class or function to be used as a view. By default, the st arter scaffold
would have you add view functions to the views . py module in your package. However, you might be
more comfortable creating a views directory, and adding a single file for each view.

If your project package name was myproject and you wanted to arrange all your views in a Python

subpackage within the myproject package named views instead of within a single views.py file,
you might do the following.

61

5. CREATING A PYRAMID PROJECT

* Create a views directory inside your myproject package directory (the same directory which
holds views.py).

¢ Create a file within the new views directory named __init__ .py. (It can be empty. This just
tells Python that the views directory is a package.)

* Move the content from the existing views . py file to a file inside the new views directory named,
say, blog.py. Because the templates directory remains in the myproject package, the
template asset specification values in blog.py must now be fully qualified with the project’s
package name (myproject:templates/blog.pt).

You can then continue to add view callable functions to the blog.py module, but you can also add
other .py files which contain view callable functions to the views directory. As long as you use the
@view_config directive to register views in conjunction with config. scan (), they will be picked
up automatically when the application is restarted.

5.11 Using the Interactive Shell

Itis possible to use the pshe 11l command to load a Python interpreter prompt with a similar configuration
as would be loaded if you were running your Pyramid application via pserve. This can be a useful
debugging tool. See The Interactive Shell for more details.

5.12 What Is This pserve Thing

The code generated by a Pyramid scaffold assumes that you will be using the pserve command to start
your application while you do development. pserve is a command that reads a PasteDeploy . in1i file
(e.g., development .ini), and configures a server to serve a Pyramid application based on the data in
the file.

pserve is by no means the only way to start up and serve a Pyramid application. As we saw in Creating
Your First Pyramid Application, pserve needn’t be invoked at all to run a Pyramid application. The
use of pserve to run a Pyramid application is purely conventional based on the output of its scaffold-
ing. But we strongly recommend using pserve while developing your application because many other
convenience introspection commands (such as pviews, prequest, proutes, and others) are also
implemented in terms of configuration availability of this . ini file format. It also configures Pyramid
logging and provides the ——reload switch for convenient restarting of the server when code changes.

62

5.13. USING AN ALTERNATE WSGI SERVER

5.13 Using an Alternate WSGI Server

Pyramid scaffolds generate projects which use the Waitress WSGI server. Waitress is a server that is
suited for development and light production usage. It’s not the fastest nor the most featureful WSGI
server. Instead, its main feature is that it works on all platforms that Pyramid needs to run on, making it a
good choice as a default server from the perspective of Pyramid’s developers.

Any WSGI server is capable of running a Pyramid application. But we suggest you stick with the default
server for development, and that you wait to investigate other server options until you’re ready to deploy
your application to production. Unless for some reason you need to develop on a non-local system, inves-
tigating alternate server options is usually a distraction until you’re ready to deploy. But we recommend
developing using the default configuration on a local system that you have complete control over; it will
provide the best development experience.

One popular production alternative to the default Waitress server is mod_wsgi. You can use mod_wsgi to
serve your Pyramid application using the Apache web server rather than any “pure-Python” server like
Waitress. It is fast and featureful. See Running a Pyramid Application under mod_wsgi for details.

Another good production alternative is Green Unicorn (aka gunicorn). It’s faster than Waitress and

slightly easier to configure than mod_wsgi, although it depends, in its default configuration, on having a
buffering HTTP proxy in front of it. It does not, as of this writing, work on Windows.

63

5. CREATING A PYRAMID PROJECT

64

CHAPTER 6

Startup

When you cause a Pyramid application to start up in a console window, you’ll see something much like
this show up on the console:

$ pserve development.ini
Starting server in PID 16601.
serving on 0.0.0.0:6543 view at http://127.0.0.1:6543

This chapter explains what happens between the time you press the “Return” key on your keyboard after
typing pserve development.ini and the time the line serving on 0.0.0.0:6543 ... is
output to your console.

6.1 The Startup Process

The easiest and best-documented way to start and serve a Pyramid application is to use the pserve
command against a PasteDeploy .ini file. This uses the . ini file to infer settings and starts a server
listening on a port. For the purposes of this discussion, we’ll assume that you are using this command to
run your Pyramid application.

Here’s a high-level time-ordered overview of what happens when you press return after running
pserve development.ini.

1. The pserve command is invoked under your shell with the argument development.ini. As

a result, Pyramid recognizes that it is meant to begin to run and serve an application using the
information contained within the development . ini file.

65

6. STARTUP

2. The framework finds a section named either [app:main], [pipeline:main], or
[composite:main] in the .ini file. This section represents the configuration of a WSGI
application that will be served. If you’re using a simple application (e.g., [app:main]), the
application’s paste.app_factory entry point will be named on the use= line within the
section’s configuration. If instead of a simple application, you’re using a WSGI pipeline (e.g.,
a [pipeline:main] section), the application named on the “last” element will refer to your
Pyramid application. If instead of a simple application or a pipeline, you’re using a “composite”
(e.g., [composite:main]), refer to the documentation for that particular composite to under-
stand how to make it refer to your Pyramid application. In most cases, a Pyramid application built
from a scaffold will have a single [app:main] section in it, and this will be the application
served.

3. The framework finds all 1ogging related configuration in the . ini file and uses it to configure
the Python standard library logging system for this application. See Logging Configuration for
more information.

4. The application’s constructor named by the entry point referenced on the use= line of the section
representing your Pyramid application is passed the key/value parameters mentioned within the
section in which it’s defined. The constructor is meant to return a router instance, which is a WSGI
application.

For Pyramid applications, the constructor will be a function named main inthe __init__ .py
file within the package in which your application lives. If this function succeeds, it will return a
Pyramid router instance. Here’s the contents of an example __init__ .py module:

from pyramid.config import Configurator

o

def main(global_config, =xxsettings):

~

5 """ This function returns a Pyramid WSGI application.

p mon

7 config = Configurator (settings=settings)

8 config.include ('pyramid_chameleon')

9 config.add_static_view('static', 'static', cache_max_age=3600)
10 config.add_route('home', '/")

11 config.scan()
12 return config.make_wsgi_app ()

Note that the constructor function accepts a global_config argument, which is a dictionary of
key/value pairs mentioned in the [DEFAULT] section of an . ini file (if /[DEFAULT] is present).
It also accepts a »xsettings argument, which collects another set of arbitrary key/value pairs.
The arbitrary key/value pairs received by this function in « x sett ings will be composed of all the
key/value pairs that are present in the [app:main] section (except for the use= setting) when
this function is called when you run pserve.

Our generated development . ini file looks like so:

66

http://docs.python.org/3/library/logging.html#module-logging

6.1. THE STARTUP PROCESS

20

21

22

23

25

26

27

28

29

40

41

42

43

45

46

###

app configuration
http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/envirol
###

[app:main]
use = egg:MyProject

pyramid.reload_templates = true
pyramid.debug_authorization = false
pyramid.debug_notfound = false
pyramid.debug_routematch = false
pyramid.default_locale_name = en
pyramid.includes =
pyramid_debugtoolbar

By default, the toolbar only appears for clients from IP addresses
'127.0.0.1" and '::1"'.
debugtoolbar.hosts = 127.0.0.1 ::1

##4#
wsgli server configuration

#H#

[server:main]

use = egg:waltress#main
host = 0.0.0.0

port = 6543

#H##

logging configuration
http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/logging
#H##

[loggers]
keys = root, myproject

[handlers]
keys = console

[formatters]
keys = generic

[logger_root]
level = INFO

ment .html

.html

handlers = console

67

6. STARTUP

47
4 | [logger_myproject]
| level = DEBUG

50 | handlers

s1 | qualname = myproject

53 | [handler_console]

s4 | class = StreamHandler
ss|args = (sys.stderr,)
s6 | level = NOTSET

57| formatter = generic

so | [formatter_generic]
o | format = % (asctime)s % (levelname)-5.5s [%$(name)s][%(threadName)s] % (megsage)s

In this case, the myproject._ _init__ :main function referred to by

the entry point URI egg:MyProject (see development.ini for more infor-

mation about entry point URIs, and how they relate to callables) will re-

ceive the key/value pairs {’pyramid.reload_templates’ :’true’,
"pyramid.debug_authorization’ :’ false’, ’'pyramid.debug_notfound’:’false’,
'pyramid.debug_routematch’ :’ false’, ’'pyramid.debug_templates’:’true’,
"pyramid.default_locale_name’ :’en’}. See Environment Variables and .ini File
Settings for the meanings of these keys.

5. The main function first constructs a Configurator instance, passing the sett ings dictionary
captured via the » * settings kwarg as its settings argument.

The settings dictionary contains all the options in the [app:main] section of our .ini file ex-
cept the use option (which is internal to PasteDeploy) such as pyramid.reload_templates,
pyramid.debug_authorization, etc.

6. The main function then calls various methods on the instance of the class Configurator cre-
ated in the previous step. The intent of calling these methods is to populate an application registry,
which represents the Pyramid configuration related to the application.

7. The make_wsqgi_app () method is called. The result is a router instance. The router is associated
with the application registry implied by the configurator previously populated by other methods run
against the Configurator. The router is a WSGI application.

8. An ApplicationCreated event is emitted (see Using Events for more information about
events).

9. Assuming there were no errors, the main function in myproject returns the router instance
created by pyramid.config.Configurator.make_wsgi_app () back to pserve. As
far as pserve is concerned, it is “just another WSGI application”.

68

6.2. DEPLOYMENT SETTINGS

10. pserve starts the WSGI server defined within the [server :main] section. In our case, this is
the Waitress server (use = egg:waitress#main), and it will listen on all interfaces (host
= 0.0.0.0), on port number 6543 (port = 6543). The server code itself is what prints
serving on 0.0.0.0:6543 view at http://127.0.0.1:6543. The server serves
the application, and the application is running, waiting to receive requests.

See also:

Logging configuration is described in the Logging chapter. There, in Request Logging with Paste’s
TransLogger, you will also find an example of how to configure middleware to add pre-packaged func-
tionality to your application.

6.2 Deployment Settings

Note that an augmented version of the values passed as x+*settings to the Configurator con-
structor will be available in Pyramid view callable code as request .registry.settings. You
can create objects you wish to access later from view code, and put them into the dictionary you pass to
the configurator as settings. They will then be present in the request.registry.settings
dictionary at application runtime.

69

6. STARTUP

70

71

7. REQUEST PROCESSING

CHAPTER 7

Request Processing

Request Processing

p
. . Legend
middleware ingress

i event

external process
(middleware, tween)

tween ingress

i ““““““““““““ NewRequest
internal process

URL dispatch o

route predicates
¢ callback

\. 7
traversal
¢ ---------------- ContextFound
Gk authorization
predicates decorators ingress
i view mapper ingress
view
view pipeline
view mapper egress
l response g&apter ----- BeforeRender
decorators egress

tween egress

Once a Pyramid application is up and running, it is ready to accept requests and return responses. What
happens from the time a WSGI request enters a Pyramid application through to the point that Pyramid
hands off a response back to WSGI for upstream processing?

1.

10.

A user initiates a request from their browser to the hostname and port number of the WSGI server
used by the Pyramid application.

The WSGI server used by the Pyramid application passes the WSGI environmenttothe ___call_
method of the Pyramid router object.

A request object is created based on the WSGI environment.

The application registry and the request object created in the last step are pushed on to the thread
local stack that Pyramid uses to allow the functions named get_current_request () and
get_current_registry () to work.

A NewRequest event is sent to any subscribers.

If any route has been defined within application configuration, the Pyramid router calls a URL
dispatch “‘route mapper.” The job of the mapper is to examine the request to determine whether
any user-defined route matches the current WSGI environment. The router passes the request as an
argument to the mapper.

If any route matches, the route mapper adds attributes to the request: matchdict and
matched_route attributes are added to the request object. The former contains a dictionary
representing the matched dynamic elements of the request’s PATH_INFO value, and the latter con-
tains the TRoute object representing the route which matched. The root object associated with the
route found is also generated: if the route configuration which matched has an associated factory
argument, this factory is used to generate the root object, otherwise a default root factory is used.

. If a route match was not found, and a root__factory argument was passed to the Configurator

constructor, that callable is used to generate the root object. If the root_factory argument
passed to the Configurator constructor was None, a default root factory is used to generate a root
object.

The Pyramid router calls a “traverser” function with the root object and the request. The traverser
function attempts to traverse the root object (using any existing __getitem___ on the root object
and subobjects) to find a context. If the root object has no __getitem__ method, the root itself
is assumed to be the context. The exact traversal algorithm is described in Traversal. The traverser
function returns a dictionary, which contains a context and a view name as well as other ancillary
information.

The request is decorated with various names returned from the traverser (such as context,

view_name, and so forth), so they can be accessed via, for example, request . context within
view code.

73

7. REQUEST PROCESSING

11

12.

13.

14.

15.

16.

17.

A ContextFound event is sent to any subscribers.

Pyramid looks up a view callable using the context, the request, and the view name. If a view
callable doesn’t exist for this combination of objects (based on the type of the context, the type
of the request, and the value of the view name, and any predicate attributes applied to the view
configuration), Pyramid raises a HTTPNotFound exception, which is meant to be caught by a
surrounding exception view.

If a view callable was found, Pyramid attempts to call it. If an authorization policy is in use,
and the view configuration is protected by a permission, Pyramid determines whether the view
callable being asked for can be executed by the requesting user based on credential information
in the request and security information attached to the context. If the view execution is allowed,
Pyramid calls the view callable to obtain a response. If view execution is forbidden, Pyramid raises
a HTTPForbidden exception.

If any exception is raised within a root factory, by traversal, by a view callable, or by Pyramid itself
(such as when it raises HTTPNotFound or HTTPForbidden), the router catches the exception,
and attaches it to the request as the except ion attribute. It then attempts to find a exception view
for the exception that was caught. If it finds an exception view callable, that callable is called, and is
presumed to generate a response. If an exception view that matches the exception cannot be found,
the exception is reraised.

The following steps occur only when a response could be successfully generated by a normal view
callable or an exception view callable. Pyramid will attempt to execute any response callback
functions attached via add_response_callback (). A NewResponse event is then sent
to any subscribers. The response object’s ___call_ _ method is then used to generate a WSGI
response. The response is sent back to the upstream WSGI server.

Pyramid will attempt to execute any finished callback functions attached via
add_finished callback ().

The thread local stack is popped.

74

Pyramid Router

Obtain a root object from the root factory

v

Traverse the model graph
from the root using the path

v

Traversal locates
the context and view name

v

Look up a view callable in the registry
using the context and view name

Y

View callable
found?

Return the Not Found View

Current user has
authorization to invoke

the view callable?

Return the Forbidden View

Invoke the view callable,
which returns a response

!

Return the response

7. REQUEST PROCESSING

This is a very high-level overview that leaves out various details. For more detail about subsystems
invoked by the Pyramid router, such as traversal, URL dispatch, views, and event processing, see URL
Dispatch, Views, and Using Events.

76

CHAPTER 8

URL Dispatch

URL dispatch provides a simple way to map URLSs to view code using a simple pattern matching language.
An ordered set of patterns is checked one by one. If one of the patterns matches the path information
associated with a request, a particular view callable is invoked. A view callable is a specific bit of code,
defined in your application, that receives the request and returns a response object.

8.1 High-Level Operational Overview

If any route configuration is present in an application, the Pyramid Router checks every incoming request
against an ordered set of URL matching patterns present in a route map.

If any route pattern matches the information in the request, Pyramid will invoke the view lookup process
to find a matching view.

If no route pattern in the route map matches the information in the request provided in your application,
Pyramid will fail over to using traversal to perform resource location and view lookup.

8.2 Route Configuration

Route configuration is the act of adding a new route to an application. A route has a name, which
acts as an identifier to be used for URL generation. The name also allows developers to asso-
ciate a view configuration with the route. A route also has a pattern, meant to match against the
PATH_INFO portion of a URL (the portion following the scheme and port, e.g., /foo/bar in the
URL http://localhost:8080/foo/bar). It also optionally has a factory and a set of route
predicate attributes.

77

8. URL DISPATCH

8.2.1 Configuring a Route to Match a View

The pyramid.config.Configurator.add_route () method adds a single route configuration
to the application registry. Here’s an example:

"config" below is presumed to be an instance of the

pyramid.config.Configurator class; "myview" is assumed
to be a "view callable" function

from views import myview

config.add_route ('myroute', '/prefix/{one}/{two}")
config.add_view (myview, route_name='myroute')

When a view callable added to the configuration by way of add_view () becomes associated with a
route via its route_name predicate, that view callable will always be found and invoked when the
associated route pattern matches during a request.

More commonly, you will not use any add_view statements in your project’s “setup” code. You will
instead use add_route statements, and use a scan to associate view callables with routes. For example,
if this is a portion of your project’s __init__ .py:

config.add_route ('myroute', '/prefix/{one}/{two}")
config.scan ('mypackage")

Note that we don’t call add_view () in this setup code. However, the above scan execution
config.scan ('mypackage’) will pick up each configuration decoration, including any objects
decorated with the pyramid.view.view_config decorator in the mypackage Python package.
For example, if you have a views.py in your package, a scan will pick up any of its configuration
decorators, so we can add one there that references myroute as a route_name parameter:

from pyramid.view import view_config
from pyramid.response import Response

@view_config(route_name='myroute')
def myview (request) :
return Response ('OK")

The above combination of add_route and scan is completely equivalent to using the previous combi-
nation of add_route and add_view.

78

8.2. ROUTE CONFIGURATION

8.2.2 Route Pattern Syntax

The syntax of the pattern matching language used by Pyramid URL dispatch in the pattern argument is
straightforward. It is close to that of the Routes system used by Pylons.

The pattern used in route configuration may start with a slash character. If the pattern does not start with
a slash character, an implicit slash will be prepended to it at matching time. For example, the following
patterns are equivalent:

’{foo}/bar/baz ‘

and:

’/{foo}/bar/baz ‘

If a pattern is a valid URL it won’t be matched against an incoming request. Instead it can be useful for
generating external URLs. See External routes for details.

A pattern segment (an individual item between / characters in the pattern) may either be a literal string
(e.g., foo) or it may be a replacement marker (e.g., {foo}), or a certain combination of both. A
replacement marker does not need to be preceded by a / character.

A replacement marker is in the format { name }, where this means “accept any characters up to the next
slash character and use this as the name matchdict value.”

A replacement marker in a pattern must begin with an uppercase or lowercase ASCII letter or an under-
score, and can be composed only of uppercase or lowercase ASCII letters, underscores, and numbers. For
example: a, a_b, _b, and b9 are all valid replacement marker names, but Oa is not.

Changed in version 1.2: A replacement marker could not start with an underscore until Pyramid 1.2.
Previous versions required that the replacement marker start with an uppercase or lowercase letter.

A matchdict is the dictionary representing the dynamic parts extracted from a URL based on the routing
pattern. It is available as request .matchdict. For example, the following pattern defines one literal
segment (foo) and two replacement markers (baz, and bar):

foo/{baz}/{bar}

The above pattern will match these URLSs, generating the following matchdicts:

79

8. URL DISPATCH

foo/1/2 -> {'baz':u'l', 'bar':u'2'}
foo/abc/def -> {'baz':u'abc', 'bar':u'def'}

It will not match the following patterns however:

foo/1/2/ -> No match (trailing slash)
bar/abc/def —-> First segment literal mismatch

The match for a segment replacement marker in a segment will be done only up to the first non-
alphanumeric character in the segment in the pattern. So, for instance, if this route pattern was used:

foo/{name}.html

The literal path /foo/biz.html will match the above route pattern, and the match result will be
{"name’ :u’biz’ }. However, the literal path / foo/biz will not match, because it does not contain
a literal .html at the end of the segment represented by {name} .html (it only contains biz, not
biz.html).

To capture both segments, two replacement markers can be used:

foo/{name}. {ext}

The literal path /foo/biz.html will match the above route pattern, and the match result will be
{'name’: ’'biz’, ’'ext’: "html’}. This occurs because there is a literal part of . (period)
between the two replacement markers {name} and {ext}.

Replacement markers can optionally specify a regular expression which will be used to decide whether a
path segment should match the marker. To specify that a replacement marker should match only a specific
set of characters as defined by a regular expression, you must use a slightly extended form of replacement
marker syntax. Within braces, the replacement marker name must be followed by a colon, then directly
thereafter, the regular expression. The default regular expression associated with a replacement marker
[~/ 1+ matches one or more characters which are not a slash. For example, under the hood, the replace-
ment marker {foo} can more verbosely be spelled as {foo: [~/]+}. You can change this to be an
arbitrary regular expression to match an arbitrary sequence of characters, such as { foo:\d+} to match
only digits.

It is possible to use two replacement markers without any literal characters between them, for instance
/{foo}{bar}. However, this would be a nonsensical pattern without specifying a custom regular
expression to restrict what each marker captures.

Segments must contain at least one character in order to match a segment replacement marker. For
example, for the URL /abc/:

80

8.2. ROUTE CONFIGURATION

e /abc/{foo} will not match.
e /{foo}/ will match.

Note that values representing matched path segments will be URL-unquoted and decoded from UTF-8
into Unicode within the matchdict. So for instance, the following pattern:

’foo/{bar} ‘

When matching the following URL:

’http://example.com/foo/La%2OPe%C3%Bla

The matchdict will look like so (the value is URL-decoded / UTF-8 decoded):

’{'bar':u'La Pe\xfla'} ‘

Literal strings in the path segment should represent the decoded value of the PATH_INFO provided to
Pyramid. You don’t want to use a URL-encoded value or a bytestring representing the literal encoded as
UTF-8 in the pattern. For example, rather than this:

’/Foo%ZOBar/{baz} ‘

You’ll want to use something like this:

’/Foo Bar/{baz} ‘

For patterns that contain “high-order” characters in its literals, you’ll want to use a Unicode value as the
pattern as opposed to any URL-encoded or UTF-8-encoded value. For example, you might be tempted to
use a bytestring pattern like this:

/La Pe\xc3\xbla/{x}

But this will either cause an error at startup time or it won’t match properly. You’ll want to use a Unicode
value as the pattern instead rather than raw bytestring escapes. You can use a high-order Unicode value
as the pattern by using Python source file encoding plus the “real” character in the Unicode pattern in the
source, like so:

81

http://www.python.org/dev/peps/pep-0263/

8. URL DISPATCH

’/La Pefia/{x} ‘

Or you can ignore source file encoding and use equivalent Unicode escape characters in the pattern.

’/La Pe\xfla/{x} ‘

Dynamic segment names cannot contain high-order characters, so this applies only to literals in the pat-
tern.

If the pattern has a * in it, the name which follows it is considered a “remainder match”. A remainder
match must come at the end of the pattern. Unlike segment replacement markers, it does not need to be
preceded by a slash. For example:

foo/{baz}/{bar}*fizzle

The above pattern will match these URLSs, generating the following matchdicts:

foo/1/2/ ->
{'"baz':u'l', 'bar':u'2', 'fizzle':()}

foo/abc/def/a/b/c >
{'baz':u'abc', 'bar':u'def', 'fizzle':(u'a', u'b', u'c')}

Note that when a » st ararg remainder match is matched, the value put into the matchdict is turned into
a tuple of path segments representing the remainder of the path. These path segments are URL-unquoted
and decoded from UTF-8 into Unicode. For example, for the following pattern:

’foo/*fizzle ‘

When matching the following path:

’/foo/La%2OPe%C3%Bla/a/b/c ‘

Will generate the following matchdict:

’{'fizzle':(u'La Pe\xfla', u'a', u'b', u'c")} ‘

By default, the » stararg will parse the remainder sections into a tuple split by segment. Changing the
regular expression used to match a marker can also capture the remainder of the URL, for example:

82

8.2. ROUTE CONFIGURATION

foo/{baz}/{bar}{fizzle:.*}

The above pattern will match these URLSs, generating the following matchdicts:

foo/1/2/ -> {'baz':u'l', 'bar':u'2', 'fizzle':u''}
foo/abc/def/a/b/c -> {'baz':u'abc', 'bar':u'def', 'fizzle': u'a/b/c'}

This occurs because the default regular expression for a marker is [*/]+ which will match everything
up to the first /, while {fizzle: .} will result in a regular expression match of . x capturing the
remainder into a single value.

8.2.3 Route Declaration Ordering

Route configuration declarations are evaluated in a specific order when a request enters the system. As a
result, the order of route configuration declarations is very important. The order in which route declara-
tions are evaluated is the order in which they are added to the application at startup time. (This is unlike a
different way of mapping URLSs to code that Pyramid provides, named traversal, which does not depend
on pattern ordering).

For routes added via the add_route method, the order that routes are evaluated is the order in which
they are added to the configuration imperatively.

For example, route configuration statements with the following patterns might be added in the following
order:

members/ {def}
members/abc

In such a configuration, the members/abc pattern would never be matched. This is because the match
ordering will always match members/{def} first; the route configuration with members/abc will
never be evaluated.

8.2.4 Route Configuration Arguments
Route configuration add_route statements may specify a large number of arguments. They are docu-
mented as part of the API documentation at pyramid.config.Configurator.add_route ().

Many of these arguments are route predicate arguments. A route predicate argument specifies that some
aspect of the request must be true for the associated route to be considered a match during the route
matching process. Examples of route predicate arguments are pattern, xhr, and request_method.

Other arguments are name and factory. These arguments represent neither predicates nor view con-
figuration information.

83

8. URL DISPATCH

8.3 Route Matching

The main purpose of route configuration is to match (or not match) the PATH_INFO present in the WSGI
environment provided during a request against a URL path pattern. PATH_INFO represents the path
portion of the URL that was requested.

The way that Pyramid does this is very simple. When a request enters the system, for each
route configuration declaration present in the system, Pyramid checks the request’s PATH_INFO
against the pattern declared. This checking happens in the order that the routes were declared via
pyramid.config.Configurator.add_route ().

When a route configuration is declared, it may contain route predicate arguments. All route predicates
associated with a route declaration must be True for the route configuration to be used for a given request
during a check. If any predicate in the set of route predicate arguments provided to a route configuration
returns False during a check, that route is skipped and route matching continues through the ordered set
of routes.

If any route matches, the route matching process stops and the view lookup subsystem takes over to find
the most reasonable view callable for the matched route. Most often, there’s only one view that will
match (a view configured with a route_name argument matching the matched route). To gain a better
understanding of how routes and views are associated in a real application, you can use the pviews
command, as documented in Displaying Matching Views for a Given URL.

If no route matches after all route patterns are exhausted, Pyramid falls back to traversal to do resource
location and view lookup.

8.3.1 The Matchdict

When the URL pattern associated with a particular route configuration is matched by a request, a dictio-
nary named matchdict is added as an attribute of the request object. Thus, request .matchdict
will contain the values that match replacement patterns in the pattern element. The keys in a matchdict
will be strings. The values will be Unicode objects.

O If no route URL pattern matches, the mat chdict object attached to the request will be None.

84

8.4. ROUTING EXAMPLES

8.3.2 The Matched Route

When the URL pattern associated with a particular route configuration is matched by a re-
quest, an object named matched_route is added as an attribute of the request object. Thus,
request .matched_route will be an object implementing the TRoute interface which matched
the request. The most useful attribute of the route object is name, which is the name of the route that
matched.

O If no route URL pattern matches, the mat ched_route object attached to the request will be
None.

8.4 Routing Examples

Let’s check out some examples of how route configuration statements might be commonly declared, and
what will happen if they are matched by the information present in a request.

8.4.1 Example 1

The simplest route declaration which configures a route match to directly result in a particular view
callable being invoked:

config.add_route('idea', 'site/{id}")
config.scan()

[N}

When a route configuration with a view attribute is added to the system, and an incoming request matches
the pattern of the route configuration, the view callable named as the view attribute of the route config-
uration will be invoked.

Recall that the @view_config 1is equivalent to «calling config.add_view, because
the config.scan() call will import mypackage.views, shown below, and execute
config.add_view under the hood. Each view then maps the route name to the matching view
callable. In the case of the above example, when the URL of a request matches /site/ {id}, the view
callable at the Python dotted path name mypackage.views.site_view will be called with the
request. In other words, we’ve associated a view callable directly with a route pattern.

When the /site/{id} route pattern matches during a request, the site_view view callable is in-
voked with that request as its sole argument. When this route matches, a matchdict will be generated

85

8. URL DISPATCH

and attached to the request as request .matchdict. If the specific URL matched is /site/1,
the matchdict will be a dictionary with a single key, id; the value will be the string " 17, ex.:
{rid’:"1"1}.

The mypackage . views module referred to above might look like so:

1 | from pyramid.view import view_config
from pyramid.response import Response

©

4| @view_config(route_name="idea')
s |def site_view (request) :
6 return Response (request.matchdict['id'])

The view has access to the matchdict directly via the request, and can access variables within it that match
keys present as a result of the route pattern.

See Views, and View Configuration for more information about views.

8.4.2 Example 2

Below is an example of a more complicated set of route statements you might add to your application:

1 |config.add_route('idea', 'ideas/{idea}')
> |config.add_route ('user', 'users/{user}')
3 |config.add_route ('tag', 'tags/{tag}')

4| config.scan ()

Here is an example of a corresponding mypackage . views module:

1 | from pyramid.view import view_config
2 | from pyramid.response import Response

4| @view_config(route_name="idea')
s |def idea_view(request):
6 return Response (request.matchdict['id'])

s | @view_config(route_name='user')

9 |def user_view (request) :

10 user = request.matchdict['user']

11 return Response (u'The user is {}.'.format (user))

86

8.4. ROUTING EXAMPLES

13 |@view_config (route_name='tag')

4 |def tag_view(request) :

15 tag = request.matchdict['tag']

16 return Response (u'The tag is {}.'.format (tag))

The above configuration will allow Pyramid to service URLSs in these forms:

/ideas/{idea}
/users/{user}
/tags/{tag}

e When a URL matches the pattern /ideas/{idea}, the view callable available at the dot-
ted Python pathname mypackage.views.idea_view will be called. For the specific
URL /ideas/1, the matchdict generated and attached to the request will consist of
{’idea’ : " 17 }.

e When a URL matches the pattern /users/{user}, the view callable available at the dot-
ted Python pathname mypackage.views.user_view will be called. For the specific
URL /users/1, the matchdict generated and attached to the request will consist of
{"user’ :"1"}.

* When a URL matches the pattern /tags/ {tag}, the view callable available at the dotted Python
pathname mypackage.views.tag_view will be called. For the specific URL /tags/1, the
matchdict generated and attached to the request will consist of {’ tag’ : "1’ }.

In this example we’ve again associated each of our routes with a view callable directly. In all cases,

the request, which will have a matchdict attribute detailing the information found in the URL by the
process will be passed to the view callable.

8.4.3 Example 3

The context resource object passed in to a view found as the result of URL dispatch will, by default, be
an instance of the object returned by the root factory configured at startup time (the root_factory
argument to the Configurator used to configure the application).

You can override this behavior by passing in a factory argument to the add_route () method for a
particular route. The factory should be a callable that accepts a request and returns an instance of a

class that will be the context resource used by the view.

An example of using a route with a factory:

87

8. URL DISPATCH

config.add_route('idea', 'ideas/{idea}', factory='myproject.resources.Idea'
config.scan ()

[N}

The above route will manufacture an Idea resource as a context, assuming that
mypackage.resources.Idea resolves to a class that accepts a request in its __init_ .
For example:

class Idea (object) :
2 def _ _init__ (self, request):
3 pass

In a more complicated application, this root factory might be a class representing a SQLAlchemy model.
The view mypackage .views.idea_view might look like this:

@view_config(route_name='idea')
def idea_view(request):

[S)

3 idea = request.context
4 return Response (idea)

Here, request .context is an instance of Idea. If indeed the resource object is a SQLAlchemy
model, you do not even have to perform a query in the view callable, since you have access to the resource
via request.context.

See Route Factories for more details about how to use route factories.

8.5 Matching the Root URL

It’s not entirely obvious how to use a route pattern to match the root URL (“/””). To do so, give the empty
string as a pattern in a call to add_route ():

config.add_route('root', '") ‘

Or provide the literal string / as the pattern:

1’config.add_route('root', VD

88

8.6. GENERATING ROUTE URLS

8.6 Generating Route URLs

Use the pyramid. request.Request.route_url () method to generate URLs based on route
patterns. For example, if you’ve configured a route with the name “foo” and the pattern
“{a}/{b}/{c}”, you might do this.

1 |url = request.route_url('foo', a='1l", b='2', c="'3")

This would return something like the string http://example.com/1/2/3 (at least if the current
protocol and hostname implied http://example.com).

To generate only the path portion of a URL from a route, use the
pyramid.request.Request.route_path () APlinstead of route_url ().

url = request.route_path('foo', a='1", b="'2", c='3")

This will return the string /1/2/ 3 rather than a full URL.

Replacement values passed to route_url or route_path must be Unicode or bytestrings encoded
in UTF-8. One exception to this rule exists: if you're trying to replace a “remainder” match value (a
xstararg replacement value), the value may be a tuple containing Unicode strings or UTF-8 strings.

Note that URLs and paths generated by route_url and route_path are always URL-quoted string
types (they contain no non-ASCII characters). Therefore, if you’ve added a route like so:

’config.add_route('la', u'/La Pefia/{city}") ‘

And you later generate a URL using route_path or route_url like so:

’url = request.route_path('la', city=u'Québec') ‘

You will wind up with the path encoded to UTF-8 and URL-quoted like so:

’/La%2OPe%C3%B1a/Qu%C3%A9bec ‘

If you have a xstararg remainder dynamic part of your route pattern:

89

8. URL DISPATCH

config.add_route('abc', 'a/b/c/xfoo')

And you later generate a URL using route_path or route_url using a string as the replacement
value:

’url = request.route_path('abc', foo=u'Québec/biz') ‘

The value you pass will be URL-quoted except for embedded slashes in the result:

’/a/b/c/Qu%C3%A9bec/biz ‘

You can get a similar result by passing a tuple composed of path elements:

’url = request.route_path('abc', foo=(u'Québec', u'biz')) ‘

Each value in the tuple will be URL-quoted and joined by slashes in this case:

’/a/b/c/Qu%C3%A9bec/biz ‘

8.7 Static Routes

Routes may be added with a static keyword argument. For example:

config = Configurator ()
config.add_route ('page', '/page/{action}', static=True)

©

Routes added with a True static keyword argument will never be considered for matching at request
time. Static routes are useful for URL generation purposes only. As a result, it is usually nonsensical to
provide other non-name and non-pattern arguments to add_route () when static is passed as
True, as none of the other arguments will ever be employed. A single exception to this rule is use of the
pregenerator argument, which is not ignored when staticis True.

External routes are implicitly static.
New in version 1.1: the static argument to add_route ().

90

8.8. EXTERNAL ROUTES

8.8 External Routes

New in version 1.5.

Route patterns that are valid URLs, are treated as external routes. Like static routes they are useful for
URL generation purposes only and are never considered for matching at request time.

1|>>> config = Configurator()
2 |>>> config.add_route ('youtube', 'https://youtube.com/watch/{video_id}")

4|>>> request.route_url ('youtube', video_id='oHg5SJYRHAO")
s [>>> "https://youtube.com/watch/oHg5SJYRHAO"

Most pattern replacements and calls to pyramid. request.Request.route_url () will work as
expected. However, calls to pyramid. request.Request.route_path () against external pat-
terns will raise an exception, and passing _app_url to route_url () to generate a URL against a
route that has an external pattern will also raise an exception.

8.9 Redirecting to Slash-Appended Routes

For behavior like Django’s APPEND_SLASH=True, use the append_slash argument
to pyramid.config.Configurator.add_notfound_view/() or the equivalent
append_slash argument to the pyramid. view.not found_view_config decorator.

Adding append_slash=True is a way to automatically redirect requests where the URL lacks a trail-
ing slash, but requires one to match the proper route. When configured, along with at least one other
route in your application, this view will be invoked if the value of PATH_INFO does not already end
in a slash, and if the value of PATH_INFO plus a slash matches any route’s pattern. In this case it
does an HTTP redirect to the slash-appended PATH_INFO. In addition you may pass anything that im-
plements pyramid.interfaces.IResponse which will then be used in place of the default class
(pyramid. httpexceptions.HTTPFound).

Let’s use an example. If the following routes are configured in your application:

1 | from pyramid.httpexceptions import HTTPNotFound

3 |def notfound(request) :
return HTTPNotFound ('Not found, bro.")

IS

91

e}

. URL DISPATCH

¢ |def no_slash(request) :
7 return Response ('No slash')

9 |def has_slash(request) :
10 return Response ('Has slash'")

2 |def main(g, **settings):

13 config = Configurator()

14 config.add_route('noslash', 'no_slash')

15 config.add_route ('hasslash', 'has_slash/")

16 config.add_view(no_slash, route_name='noslash')

17 config.add_view (has_slash, route_name='hasslash')

18 config.add_notfound_view (notfound, append_slash=True)

If a request enters the application with the PATH_INFO value of /no_slash, the first route will match
and the browser will show “No slash”. However, if a request enters the application with the PATH_INFO
value of /no_slash/, no route will match, and the slash-appending not found view will not find a
matching route with an appended slash. As a result, the not found view will be called and it will return
a “Not found, bro.” body.

If a request enters the application with the PATH_INFO value of /has_slash/, the second route will
match. If a request enters the application with the PATH_INFO value of /has_slash, a route will be
found by the slash-appending Not Found View. An HTTP redirect to /has_slash/ will be returned to
the user’s browser. As a result, the not found view will never actually be called.

The following application uses the pyramid.view.notfound view_config and
pyramid.view.view_config decorators and a scan to do exactly the same job:

1 | from pyramid.httpexceptions import HTTPNotFound
> | from pyramid.view import notfound_view_config, view_config

4| @notfound_view_config (append_slash=True)
s |def notfound(request) :
6 return HTTPNotFound ('Not found, bro.")

s | @view_config(route_name='noslash')
9 |def no_slash (request) :
10 return Response ('No slash')

2 |@view_config (route_name='hasslash')
13 |def has_slash(request):
14 return Response ('Has slash'")

16 |def main (g, **settings):

92

8.10. DEBUGGING ROUTE MATCHING

17 config = Configurator ()

18 config.add_route('noslash', 'no_slash'")

19 config.add_route ('hasslash', 'has_slash/")
20 config.scan()

% You should not rely on this mechanism to redirect POST requests. The redirect of the slash-
appending Not Found View will turn a POST request into a GET, losing any POST data in the original
request.

See pyramid.view and Changing the Not Found View for a more general description of how to configure a
view and/or a Not Found View.

8.10 Debugging Route Matching

It’s useful to be able to take a peek under the hood when requests that enter your applica-
tion aren’t matching your routes as you expect them to. To debug route matching, use the
PYRAMID_DEBUG_ROUTEMATCH environment variable or the pyramid.debug_routematch
configuration file setting (set either to true). Details of the route matching decision for a particular
request to the Pyramid application will be printed to the stderr of the console which you started the
application from. For example:

$ PYRAMID_DEBUG_ROUTEMATCH=true $VENV/bin/pserve development.ini
2| Starting server in PID 13586.

3 |serving on 0.0.0.0:6543 view at http://127.0.0.1:6543
412010-12-16 14:45:19,956 no route matched for url \

5 http://localhost:6543/wontmatch
6|12010-12-16 14:45:20,010 no route matched for url \

7 http://localhost:6543/favicon.ico
812010-12-16 14:41:52,084 route matched for url \

9 http://localhost:6543/static/logo.png; \
10 route_name: 'static/',

See Environment Variables and .ini File Settings for more information about how and where to set these
values.

You can also use the proutes command to see a display of all the routes configured in your application.
For more information, see Displaying All Application Routes.

93

8. URL DISPATCH

8.11 Using a Route Prefix to Compose Applications

New in version 1.2.

The pyramid.config.Configurator.include () method allows configuration statements to
be included from separate files. See Rules for Building an Extensible Application for information about
this method. Using pyramid. config.Configurator.include () allows you to build your ap-
plication from small and potentially reusable components.

The pyramid.config.Configurator.include () method accepts an argument named
route_prefix which can be useful to authors of URL-dispatch-based applications. It
route_prefix is supplied to the include method, it must be a string. This string represents a route
prefix that will be prepended to all route patterns added by the included configuration. Any calls to
pyramid.config.Configurator.add _route () within the included callable will have their
pattern prefixed with the value of route_prefix. This can be used to help mount a set of routes
at a different location than the included callable’s author intended while still maintaining the same route
names. For example:

from pyramid.config import Configurator

w

def users_include (confiqg) :
4 config.add_route('show_users', '/show')

¢ |def main(global_config, =**settings):
7 config = Configurator()

8 config.include (users_include, route_prefix='/users')

In the above configuration, the show_users route will have an effective route pattern of
/users/show instead of /show because the route_prefix argument will be prepended
to the pattern. The route will then only match if the URL path is /users/show, and
when the pyramid. request.Request.route_url () function is called with the route name
show_users, it will generate a URL with that same path.

Route prefixes are recursive, so if a callable executed via an include itself turns around and includes
another callable, the second-level route prefix will be prepended with the first:

1 | from pyramid.config import Configurator

3 |def timing_include (config) :

4 config.add_route ('show_times', '/times')
5

¢ |def users_include (configqg) :

94

8.12. CUSTOM ROUTE PREDICATES

7 config.add_route ('show_users', '/show')
8 config.include (timing_include, route_prefix='/timing")

10 |def main(global_config, =**settings):
1 config = Configurator()
12 config.include (users_include, route_prefix='/users')

In the above configuration, the show_users route will still have an effective route pat-
tern of /users/show. The show_times route, however, will have an effective pattern of

/users/timing/times.

Route prefixes have no impact on the requirement that the set of route names in any given Pyramid
configuration must be entirely unique. If you compose your URL dispatch application out of many small
subapplications using pyramid.config.Configurator.include (), it’s wise to use a dotted
name for your route names so they’ll be unlikely to conflict with other packages that may be added in the
future. For example:

1 | from pyramid.config import Configurator

3 |def timing_include (config) :
4 config.add_route('timing.show_times', '/times')

¢ |def users_include (configqg) :
7 config.add_route ('users.show_users', '/show')
8 config.include (timing_include, route_prefix='/timing')

10 |def main(global_config, xxsettings):
11 config = Configurator ()
12 config.include (users_include, route_prefix='/users')

8.12 Custom Route Predicates

Each of the predicate callables fed to the custom_predicates argument of add_route () must
be a callable accepting two arguments. The first argument passed to a custom predicate is a dictionary
conventionally named info. The second argument is the current request object.

The info dictionary has a number of contained values, including match and route. match is a
dictionary which represents the arguments matched in the URL by the route. route is an object rep-
resenting the route which was matched (see pyramid. interfaces. IRoute for the API of such a
route object).

info[’match’] is useful when predicates need access to the route match. For example:

95

8. URL DISPATCH

def any_of (segment_name, =xallowed):

2 def predicate(info, request):

3 if info['match'] [segment_name] in allowed:

4 return True

5 return predicate

6

7 |num_one_two_or_three = any_of('num', 'one', 'two', 'three')

©

config.add_route('route_to_num', '/{num}',
10 custom_predicates=(num_one_two_or_three,))

The above any_of function generates a predicate which ensures that the match value named
segment_name is in the set of allowable values represented by allowed. We use this any_of func-
tion to generate a predicate function named num_one_two_or_three, which ensures that the num
segment is one of the values one, two, or three , and use the result as a custom predicate by feeding it
inside a tuple to the custom_predicates argument to add_route ().

A custom route predicate may also modify the mat ch dictionary. For instance, a predicate might do some
type conversion of values:

1 |def integers (xsegment_names) :

2 def predicate(info, request):

3 match = info['match']

4 for segment_name in segment_names:

5 try:

6 match[segment_name] = int (match[segment_name])
7 except (TypeError, ValueError):

8 pass

9 return True

10 return predicate

11

2 |ymd_to_int = integers('year', 'month', 'day")

13

1| config.add_route ('ymd', '/{year}/{month}/{day}',
15 custom_predicates=(ymd_to_int,))

Note that a conversion predicate is still a predicate, so it must return True or False. A predicate that
does only conversion, such as the one we demonstrate above, should unconditionally return True.

To avoid the try/except uncertainty, the route pattern can contain regular expressions specifying require-
ments for that marker. For instance:

96

8.12. CUSTOM ROUTE PREDICATES

1 |def integers (xsegment_names) :

2 def predicate(info, request):

3 match = info['match']

4 for segment_name in segment_names:

5 match[segment_name] = int (match[segment_name])
6 return True

7 return predicate

8

9 |ymd_to_int = integers('year', 'month', 'day')

10

n|config.add_route('ymd', '/{year:\d+}/{month:\d+}/{day:\d+}",
12 custom_predicates=(ymd_to_int,))

Now the try/except is no longer needed because the route will not match at all unless these markers match
\d+ which requires them to be valid digits for an int type conversion.

The match dictionary passed within info to each predicate attached to a route will be the same dictio-
nary. Therefore, when registering a custom predicate which modifies the mat ch dict, the code registering
the predicate should usually arrange for the predicate to be the last custom predicate in the custom predi-
cate list. Otherwise, custom predicates which fire subsequent to the predicate which performs the mat ch
modification will receive the modified match dictionary.

D Itisa poor idea to rely on ordering of custom predicates to build a conversion pipeline, where
one predicate depends on the side effect of another. For instance, it’s a poor idea to register two custom
predicates, one which handles conversion of a value to an int, the next which handles conversion of
that integer to some custom object. Just do all that in a single custom predicate.

The route object in the info dict is an object that has two useful attributes: name and pattern. The
name attribute is the route name. The pattern attribute is the route pattern. Here’s an example of using
the route in a set of route predicates:

1 |def twenty_ten(info, request):
2 if info['route'].name in ('ymd', ym', 'y'):
3 return info['match']['year'] == '2010'

s |config.add_route('y', '/{year}', custom_predicates=(twenty_ten,))

¢ |config.add_route('ym', '/{year}/{month}', custom_predicates=(twenty_ten,))
7 |config.add_route ('ymd', '/{year}/{month}/{day}",

8 custom_predicates=(twenty_ten,))

97

8. URL DISPATCH

The above predicate, when added to a number of route configurations ensures that the year match argu-
ment is ‘2010’ if and only if the route name is ‘ymd’, ‘ym’, or ‘y’.

You can also caption the predicates by setting the ___text__ attribute. This will help you with the
pviews command (see Displaying All Application Routes) and the pyramid_debugtoolbar.

If a predicate is a class, justadd ___text__ property in a standard manner.

class DummyCustomPredicatel (object) :
2 def _ init_ (self):
3 self.__text_ = 'my custom class predicate'

5 |class DummyCustomPredicate2 (object) :
6 __text_ = 'my custom class predicate’

If a predicate is a method, you’ll need to assign it after method declaration (see PEP 232).

def custom_predicate():
pass
custom_predicate.__text___ = 'my custom method predicate'’

S

w

If a predicate is a classmethod, using @classmethod will not work, but you can still easily do it by
wrapping it in a classmethod call.

def classmethod_predicate () :

2 pass
3| classmethod_predicate.__text__ = 'my classmethod predicate'’
4| classmethod_predicate = classmethod(classmethod_predicate)

The same will work with staticmethod, using staticmethod instead of classmethod.

See also:

See also pyramid. interfaces. IRoute for more API documentation about route objects.

8.13 Route Factories

Although it is not a particularly common need in basic applications, a “route” configuration declaration
can mention a “factory”’. When a route matches a request, and a factory is attached to the route, the root
factory passed at startup time to the Configurator is ignored. Instead the factory associated with the route
is used to generate a root object. This object will usually be used as the context resource of the view
callable ultimately found via view lookup.

98

http://www.python.org/dev/peps/pep-0232/

8.14. USING PYRAMID SECURITY WITH URL DISPATCH

config.add_route('abc', '/abc',
2 factory='myproject.resources.root_factory')
config.add_view('myproject.views.theview', route_name='abc'")

w

The factory can either be a Python object or a dotted Python name (a string) which points to such a Python
object, as it is above.

In this way, each route can use a different factory, making it possible to supply a different context resource
object to the view related to each particular route.

A factory must be a callable which accepts a request and returns an arbitrary Python object. For example,
the below class can be used as a factory:

class Mine (object) :
2 def _ _init__ (self, request):
3 pass

A route factory is actually conceptually identical to the root factory described at The Resource Tree.

Supplying a different resource factory for each route is useful when you’re trying to use a Pyramid au-
thorization policy to provide declarative, “context sensitive” security checks. Each resource can maintain
a separate ACL, as documented in Using Pyramid Security with URL Dispatch. It is also useful when
you wish to combine URL dispatch with traversal as documented within Combining Traversal and URL
Dispatch.

8.14 Using Pyramid Security with URL Dispatch

Pyramid provides its own security framework which consults an authorization policy before allowing any
application code to be called. This framework operates in terms of an access control list, which is stored
asan __acl___ attribute of a resource object. A common thing to want to do is to attachan __acl__to
the resource object dynamically for declarative security purposes. You can use the factory argument
that points at a factory which attaches a custom __acl___ to an object at its creation time.

Such a factory might look like so:

1 |class Article (object):

2 def __init__ (self, request):

3 matchdict = request.matchdict

4 article = matchdict.get ('article', None)

5 if article == '1"'":

6 self.__acl___ = [(Allow, 'editor', 'wview')]

99

8. URL DISPATCH

If the route archives/{article} is matched, and the article number is 1, Pyramid will generate an
Article context resource with an ACL on it that allows the editor principal the view permission.
Obviously you can do more generic things than inspect the route’s match dict to see if the article
argument matches a particular string. Our sample Article factory class is not very ambitious.

U see Security for more information about Pyramid security and ACLs.

8.15 Route View Callable Registration and Lookup Details

When a request enters the system which matches the pattern of the route, the usual result is simple: the
view callable associated with the route is invoked with the request that caused the invocation.

For most usage, you needn’t understand more than this. How it works is an implementation detail. In the
interest of completeness, however, we’ll explain how it does work in this section. You can skip it if you're
uninterested.

When a view is associated with a route configuration, Pyramid ensures that a view configuration is regis-
tered that will always be found when the route pattern is matched during a request. To do so:

* A special route-specific inferface is created at startup time for each route configuration declaration.

e When an add_view statement mentions a route name attribute, a view configuration is regis-
tered at startup time. This view configuration uses a route-specific interface as a request type.

e At runtime, when a request causes any route to match, the request object is decorated with the
route-specific interface.

 The fact that the request is decorated with a route-specific interface causes the view lookup ma-
chinery to always use the view callable registered using that interface by the route configuration to
service requests that match the route pattern.

As we can see from the above description, technically, URL dispatch doesn’t actually map a URL pattern
directly to a view callable. Instead URL dispatch is a resource location mechanism. A Pyramid resource
location subsystem (i.e., URL dispatch or traversal) finds a resource object that is the context of a request.
Once the context is determined, a separate subsystem named view lookup is then responsible for finding
and invoking a view callable based on information available in the context and the request. When URL
dispatch is used, the resource location and view lookup subsystems provided by Pyramid are still being
utilized, but in a way which does not require a developer to understand either of them in detail.

If no route is matched using URL dispatch, Pyramid falls back to traversal to handle the request.

100

8.16. REFERENCES

8.16 References

A tutorial showing how URL dispatch can be used to create a Pyramid application exists in SQLAlchemy
+ URL Dispatch Wiki Tutorial.

101

8. URL DISPATCH

102

CHAPTER 9

Views

One of the primary jobs of Pyramid is to find and invoke a view callable when a request reaches your
application. View callables are bits of code which do something interesting in response to a request made
to your application. They are the “meat” of any interesting web application.

O A Pyramid view callable is often referred to in conversational shorthand as a view. In this
documentation, however, we need to use less ambiguous terminology because there are significant
differences between view configuration, the code that implements a view callable, and the process of
view lookup.

This chapter describes how view callables should be defined. We’ll have to wait until a following chap-
ter (entitled View Configuration) to find out how we actually tell Pyramid to wire up view callables to
particular URL patterns and other request circumstances.

9.1 View Callables

View callables are, at the risk of sounding obvious, callable Python objects. Specifically, view callables
can be functions, classes, or instances that implement a _ _call__ method (making the instance
callable).

View callables must, at a minimum, accept a single argument named request. This argument represents
a Pyramid Request object. A request object represents a WSGI environment provided to Pyramid by the
upstream WSGI server. As you might expect, the request object contains everything your application
needs to know about the specific HTTP request being made.

A view callable’s ultimate responsibility is to create a Pyramid Response object. This can be done by
creating a Response object in the view callable code and returning it directly or by raising special kinds
of exceptions from within the body of a view callable.

103

9. VIEWS

9.2 Defining a View Callable as a Function

One of the easiest way to define a view callable is to create a function that accepts a single argument
named request, and which returns a Response object. For example, this is a “hello world” view callable
implemented as a function:

from pyramid.response import Response

w

def hello_world(request) :
4 return Response('Hello world!")

9.3 Defining a View Callable as a Class

A view callable may also be represented by a Python class instead of a function. When a view callable is
a class, the calling semantics are slightly different than when it is a function or another non-class callable.
When a view callable is a class, the class’s __init__ method is called with a request parameter. As
a result, an instance of the class is created. Subsequently, that instance’s ___call__ method is invoked
with no parameters. Views defined as classes must have the following traits.

e an__init__ method that accepts a request argument

e a__call__ (or other) method that accepts no parameters and which returns a response

For example:

from pyramid.response import Response

w

class MyView (object):

4 def _ _init__ (self, request):
5 self.request = request

6

7 def _ call_ (self):

8 return Response('hello")

The request object passed to __init___is the same type of request object described in Defining a View
Callable as a Function.

If you’d like to use a different attribute than __call__ to represent the method expected to return a
response, you can use an attr value as part of the configuration for the view. See View Configuration
Parameters. The same view callable class can be used in different view configuration statements with
different at t r values, each pointing at a different method of the class if you’d like the class to represent
a collection of related view callables.

104

9.4. VIEW CALLABLE RESPONSES

9.4 View Callable Responses

A view callable may return an object that implements the Pyramid Response interface. The
easiest way to return something that implements the Response interface is to return a
pyramid.response.Response object instance directly. For example:

from pyramid.response import Response

def view(request):
return Response ('OK'")

S

Pyramid provides a range of different “exception” classes which inherit from
pyramid.response.Response. For example, an instance of the class
pyramid.httpexceptions.HTTPFound is also a valid response object because it inherits
from Response. For examples, see HTTP Exceptions and Using a View Callable to do an HTTP
Redirect.

O You can also return objects from view callables that aren’t instances of
pyramid.response.Response in various circumstances. This can be helpful when writ-
ing tests and when attempting to share code between view callables. See Renderers for the common
way to allow for this. A much less common way to allow for view callables to return non-Response
objects is documented in Changing How Pyramid Treats View Responses.

9.5 Using Special Exceptions in View Callables

Usually when a Python exception is raised within a view callable, Pyramid allows the exception to prop-
agate all the way out to the WSGI server which invoked the application. It is usually caught and logged
there.

However, for convenience, a special set of exceptions exists. When one of these exceptions is raised

within a view callable, it will always cause Pyramid to generate a response. These are known as HTTP
exception objects.

105

9. VIEWS

9.5.1 HTTP Exceptions

All pyramid.httpexceptions classes which are documented as inheriting from the
pyramid.httpexceptions.HTTPException are http exception objects. Instances of an
HTTP exception object may either be returned or raised from within view code. In either case (return or
raise) the instance will be used as the view’s response.

For example, the pyramid. httpexceptions.HTTPUnauthorized exception can be raised. This
will cause a response to be generated with a 401 Unauthorized status:

from pyramid.httpexceptions import HTTPUnauthorized

w

def aview(request) :
4 raise HTTPUnauthorized()

An HTTP exception, instead of being raised, can alternately be refurned (HTTP exceptions are also valid
response objects):

from pyramid.httpexceptions import HTTPUnauthorized

w

def aview(request):
4 return HTTPUnauthorized ()

A shortcut for creating an HTTP exception is the pyramid. ht tpexceptions.exception _response ()
function. This function accepts an HTTP status code and returns the corresponding HTTP exception. For
example, instead of importing and constructing a HTTPUnauthorized response object, you can use

the exception_response () function to construct and return the same object.

from pyramid.httpexceptions import exception_response

w

def aview(request) :
4 raise exception_response (401)

This is the case because 401 is the HTTP status code for “HTTP Unauthorized”. Therefore, raise
exception_response (401) is functionally equivalent to raise HTTPUnauthorized().
Documentation which maps each HTTP response code to its purpose and its associated HTTP excep-
tion object is provided within pyramid. httpexceptions.

New in version 1.1: The exception_response () function.

106

9.6. CUSTOM EXCEPTION VIEWS

9.5.2 How Pyramid Uses HTTP Exceptions

HTTP exceptions are meant to be used directly by application developers. However, Pyramid itself will
raise two HTTP exceptions at various points during normal operations.

* HTTPNotFound gets raised when a view to service a request is not found.
* HTTPForbidden gets raised when authorization was forbidden by a security policy.

If HTTPNotFound is raised by Pyramid itself or within view code, the result of the Not Found View will
be returned to the user agent which performed the request.

If HTTPForbidden is raised by Pyramid itself within view code, the result of the Forbidden View will
be returned to the user agent which performed the request.

9.6 Custom Exception Views

The machinery which allows HTTP exceptions to be raised and caught by specialized views as described
in Using Special Exceptions in View Callables can also be used by application developers to convert
arbitrary exceptions to responses.

To register a view that should be called whenever a particular exception is raised from within Pyramid
view code, use the exception class (or one of its superclasses) as the context of a view configuration which
points at a view callable for which you’d like to generate a response.

For example, given the following exception class in a module named helloworld.exceptions:

1 |class ValidationFailure (Exception) :
2 def _ _init__ (self, msqg):
3 self.msg = msg

You can wire a view callable to be called whenever any of your other code raises a
helloworld.exceptions.ValidationFailure exception:

i | from pyramid.view import view_config
2 | from helloworld.exceptions import ValidationFailure

4| @view_config(context=ValidationFailure)
s|def failed_validation (exc, request):

6 response = Response('Failed validation: ' % exc.msqg)
7 response.status_int = 500
8 return response

107

9. VIEWS

Assuming that a scan was run to pick up this view registration, this view callable will be invoked whenever
a helloworld.exceptions.ValidationFailure is raised by your application’s view code.
The same exception raised by a custom root factory, a custom traverser, or a custom view or route predicate
is also caught and hooked.

Other normal view predicates can also be used in combination with an exception view registration:

from pyramid.view import view_config
from helloworld.exceptions import ValidationFailure

[S)

=

@view_config(context=ValidationFailure, route_name='home')
s |def failed _validation(exc, request):

6 response = Response('Failed validation: ' % exc.msqg)
7 response.status_int = 500
8 return response

The above exception view names the route_name of home, meaning that it will only be called when
the route matched has a name of home. You can therefore have more than one exception view for any

given exception in the system: the “most specific”” one will be called when the set of request circumstances
match the view registration.

The only view predicate that cannot be used successfully when creating an exception view configuration
is name. The name used to look up an exception view is always the empty string. Views registered as
exception views which have a name will be ignored.

O Normal (i.e., non-exception) views registered against a context resource type which inherits from
Exception will work normally. When an exception view configuration is processed, two views are
registered. One as a “normal” view, the other as an “exception” view. This means that you can use an
exception as context for a normal view.

Exception views can be configured with any view registration mechanism: @view_config decorator
or imperative add_view styles.

O Pyramid’s exception view handling logic is implemented as a tween factory func-
tion: pyramid.tweens.excview_tween_factory (). If Pyramid exception view han-
dling is desired, and tween factories are specified via the pyramid.tweens configuration set-
ting, the pyramid. tweens.excview_tween_factory () function must be added to the
pyramid.tweens configuration setting list explicitly. If it is not present, Pyramid will not per-
form exception view handling.

108

http://docs.python.org/3/library/exceptions.html#Exception

9.7. USING A VIEW CALLABLE TO DO AN HTTP REDIRECT

9.7 Using a View Callable to do an HTTP Redirect

You can issue an HTTP redirect by using the pyramid. ht tpexceptions.HTTPFound class. Rais-
ing or returning an instance of this class will cause the client to receive a “302 Found” response.

To do so, you can return a pyramid. httpexceptions.HTTPFound instance.

from pyramid.httpexceptions import HTTPFound

1

2

3 |def myview (request) :

4 return HTTPFound (location='http://example.com")

Alternately, you can raise an HTTPFound exception instead of returning one.

from pyramid.httpexceptions import HTTPFound

def myview (request) :
raise HTTPFound(location='http://example.com')

[

When the instance is raised, it is caught by the default exception response handler and turned into a
response.

9.8 Handling Form Submissions in View Callables (Unicode
and Character Set Issues)

Most web applications need to accept form submissions from web browsers and various other clients.
In Pyramid, form submission handling logic is always part of a view. For a general overview of how to
handle form submission data using the WebOb API, see Request and Response Objects and “Query and
POST variables” within the WebOb documentation. Pyramid defers to WebOb for its request and re-
sponse implementations, and handling form submission data is a property of the request implementation.
Understanding WebOb’s request API is the key to understanding how to process form submission data.

There are some defaults that you need to be aware of when trying to handle form submission data in a
Pyramid view. Having high-order (i.e., non-ASCII) characters in data contained within form submissions
is exceedingly common, and the UTF-8 encoding is the most common encoding used on the web for
character data. Since Unicode values are much saner than working with and storing bytestrings, Pyramid
configures the WebOb request machinery to attempt to decode form submission values into Unicode from
UTF-8 implicitly. This implicit decoding happens when view code obtains form field values via the

109

http://docs.webob.org/en/latest/reference.html#query-post-variables
http://docs.webob.org/en/latest/reference.html#query-post-variables

9. VIEWS

request.params, request .GET, or request .POST APIs (see pyramid.request for details about
these APIs).

O Many people find the difference between Unicode and UTF-8 confusing. Unicode is a standard
for representing text that supports most of the world’s writing systems. However, there are many ways
that Unicode data can be encoded into bytes for transit and storage. UTF-8 is a specific encoding for
Unicode that is backwards-compatible with ASCII. This makes UTF-8 very convenient for encoding
data where a large subset of that data is ASCII characters, which is largely true on the web. UTF-8 is
also the standard character encoding for URLs.

As an example, let’s assume that the following form page is served up to a browser client, and its act ion
points at some Pyramid view code:

1 | <html xmlns="http://www.w3.0rg/1999/xhtml">
2 <head>

3 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
4 </head>

5 <form method="POST" action="myview">

6 <div>

7 <input type="text" name="firstname"/>

8 </div>

9 <div>

10 <input type="text" name="lastname"/>

11 </div>

12 <input type="submit" value="Submit"/>

13 </form>

14 | </html>

The myview view code in the Pyramid application must expect that the values returned by
request .params will be of type unicode, as opposed to type str. The following will work to
accept a form post from the above form:

def myview (request) :
2 firstname = request.params['firstname']
3 lastname = request.params|['lastname']

But the following myview view code may not work, as it tries to decode already-decoded (unicode)
values obtained from request .params:

110

9.9. ALTERNATE VIEW CALLABLE ARGUMENT/CALLING CONVENTIONS

def myview (request) :
the .decode('utf-8') will break below if there are any high-order
characters in the firstname or lastname
firstname = request.params['firstname'].decode('utf-8")
lastname = request.params|['lastname'].decode ('utf-8")

(7 S SOV -

For implicit decoding to work reliably, you should ensure that every form you render that posts to a
Pyramid view explicitly defines a charset encoding of UTF-8. This can be done via a response that
has a ; charset=UTF-8 in its Content-Type header; or, as in the form above, with a meta
http-equiv tag that implies that the charset is UTF-8 within the HTML head of the page containing
the form. This must be done explicitly because all known browser clients assume that they should encode
form data in the same character set implied by the Content-Type value of the response containing the
form when subsequently submitting that form. There is no other generally accepted way to tell browser
clients which charset to use to encode form data. If you do not specify an encoding explicitly, the browser
client will choose to encode form data in its default character set before submitting it, which may not
be UTF-8 as the server expects. If a request containing form data encoded in a non-UTF-8 charset is
handled by your view code, eventually the request code accessed within your view will throw an error
when it can’t decode some high-order character encoded in another character set within form data, e.g.,
when request .params [/ somename’] is accessed.

If you are using the Response class to generate a response, or if you use the render_template_»*
templating APIs, the UTF-8 charset is set automatically as the default via the Content-Type
header. If you return a Content—-Type header without an explicit charset, a request will add a
; charset=ut £-8 trailer to the Content-Type header value for you for response content types that
are textual (e.g., text /html or application/xml) as it is rendered. If you are using your own
response object, you will need to ensure you do this yourself.

O Only the values of request params obtained via request.params, request.GET or
request .POST are decoded to Unicode objects implicitly in the Pyramid default configuration.
The keys are still (byte) strings.

9.9 Alternate View Callable Argument/Calling Conventions

Usually view callables are defined to accept only a single argument: request. However, view callables
may alternately be defined as classes, functions, or any callable that accept two positional arguments: a
context resource as the first argument and a request as the second argument.

The context and request arguments passed to a view function defined in this style can be defined as
follows:

111

9. VIEWS

context The resource object found via tree traversal or URL dispatch.

request A Pyramid Request object representing the current WSGI request.

The following types work as view callables in this style:

1. Functions that accept two arguments: context and request, e.g.:

from pyramid.response import Response

def view (context, request):
4 return Response ('OK")

w

2. Classes that have an __init__ method that accepts context,
method which accepts no arguments, e.g.:

request,anda__ call_

from pyramid.response import Response

2

w

class view (object) :

4 def _ _init__ (self, context, request):
5 self.context = context

6 self.request = request

7

8 def _ call_ (self):

9 return Response ('OK")

3. Arbitrary callables that have a___call__ method that accepts context, request,e.g.:

from pyramid.response import Response

class View (object) :

w

4 def _ _call_(self, context, request):
5 return Response ('OK")
6 | view = View() # this 1s the view callable

This style of calling convention is most useful for traversal based applications, where the context object

is frequently used within the view callable code itself.

No matter which view calling convention is used, the view code always has access to the context via

request.context.

112

9.10. PASSING CONFIGURATION VARIABLES TO A VIEW

9.10 Passing Configuration Variables to a View

For information on passing a variable from the configuration .ini files to a view, see Deployment Settings.

9.11 Pylons-1.0-Style “Controller”’ Dispatch

A package named pyramid_handlers (available from PyPI) provides an analogue of Pylons-style “con-
trollers”, which are a special kind of view class which provides more automation when your application
uses URL dispatch solely.

113

9. VIEWS

114

cHAPTER 10

Renderers

A view callable needn’t always return a Response object. If a view happens to return something which
does not implement the Pyramid Response interface, Pyramid will attempt to use a renderer to construct
a response. For example:

from pyramid.view import view_config

w

@view_config(renderer='json')
def hello_world(request):
5 return {'content':'Hello!'}

~

The above example returns a dictionary from the view callable. A dictionary does not implement the Pyra-
mid response interface, so you might believe that this example would fail. However, since a renderer
is associated with the view callable through its view configuration (in this case, using a renderer ar-
gument passed to view_config()), if the view does not return a Response object, the renderer will
attempt to convert the result of the view to a response on the developer’s behalf.

Of course, if no renderer is associated with a view’s configuration, returning anything except an object
which implements the Response interface will result in an error. And, if a renderer is used, whatever is
returned by the view must be compatible with the particular kind of renderer used, or an error may occur
during view invocation.

One exception exists: it is always OK to return a Response object, even when a renderer is configured.
In such cases, the renderer is bypassed entirely.

Various types of renderers exist, including serialization renderers and renderers which use templating
systems.

115

10. RENDERERS

10.1 Writing View Callables Which Use a Renderer

As we’ve seen, a view callable needn’t always return a Response object. Instead, it may return an arbitrary
Python object, with the expectation that a renderer will convert that object into a response instance on
your behalf. Some renderers use a templating system, while other renderers use object serialization
techniques. In practice, renderers obtain application data values from Python dictionaries so, in practice,
view callables which use renderers return Python dictionaries.

View callables can explicitly call renderers, but typically don’t. Instead view configuration declares the
renderer used to render a view callable’s results. This is done with the renderer attribute. For example,
this call to add_view () associates the json renderer with a view callable:

config.add_view ('myproject.views.my_view', renderer='json')

When this configuration is added to an application, the myproject.views.my_view view callable
will now use a json renderer, which renders view return values to a JSON response serialization.

Pyramid defines several Built-in Renderers, and additional renderers can be added by developers to the
system as necessary. See Adding and Changing Renderers.

Views which use a renderer and return a non-Response value can vary non-body response attributes (such
as headers and the HTTP status code) by attaching a property to the request . response attribute.
See Varying Attributes of Rendered Responses.

As already mentioned, if the view callable associated with a view configuration returns a Response object
(or its instance), any renderer associated with the view configuration is ignored, and the response is passed
back to Pyramid unchanged. For example:

from pyramid.response import Response
from pyramid.view import view_config

[N}

~

@view_config(renderer='json')
s |def view (request) :
6 return Response ('OK') # json renderer avoided

Likewise for an HTTP exception response:

1 | from pyramid.httpexceptions import HTTPFound
2 | from pyramid.view import view_config

4| @view_config(renderer="json')
s |def view (request) :
6 return HTTPFound (location='http://example.com') # json renderer avoided

116

10.2. BUILT-IN RENDERERS

You can of course also return the request . response attribute instead to avoid rendering:

from pyramid.view import view_config

@view_config(renderer='json')

4+ |def view (request) :

5 request.response.body = 'OK'

6 return request.response # json renderer avoided

w

10.2 Built-in Renderers

Several built-in renderers exist in Pyramid. These renderers can be used in the renderer attribute of
view configurations.

indings for officially supported templating languages can be found at Available -On Tem-
uB'd' for officiall d lating 1 be found at Available Add-On Te
plate System Bindings.

10.2.1 string: String Renderer

The st ring renderer renders a view callable result to a string. If a view callable returns a non-Response
object, and the string renderer is associated in that view’s configuration, the result will be to run the
object through the Python st r function to generate a string. Note that if a Unicode object is returned by

the view callable, it is not st r () -ified.

Here’s an example of a view that returns a dictionary. If the st ring renderer is specified in the con-
figuration for this view, the view will render the returned dictionary to the str () representation of the

dictionary:

from pyramid.view import view_config

@view_config(renderer='string')
def hello_world(request) :
5 return {'content':'Hello!'}

w

I

The body of the response returned by such a view will be a string representing the st r () serialization of
the return value:

117

10. RENDERERS

{'content': 'Hello!'}

Views which use the string renderer can vary non-body response attributes by using the API of the
request .response attribute. See Varying Attributes of Rendered Responses.

10.2.2 JSON Renderer

The json renderer renders view callable results to JSON. By default, it passes the return value through
the json.dumps standard library function, and wraps the result in a response object. It also sets the
response content-type to application/json.

Here’s an example of a view that returns a dictionary. Since the json renderer is specified in the config-
uration for this view, the view will render the returned dictionary to a JSON serialization:

from pyramid.view import view_config

w

@view_config(renderer='json')
def hello_world(request) :
5 return {'content':'Hello!'}

=

The body of the response returned by such a view will be a string representing the JSON serialization of
the return value:

{"content": "Hello!"}

The return value needn’t be a dictionary, but the return value must contain values serializable by the
configured serializer (by default json.dumps).

You can configure a view to use the JSON renderer by naming json as the renderer argument of a
view configuration, e.g., by using add_view():

config.add_view('myproject.views.hello_world',

2 name="'hello',
3 context="myproject.resources.Hello',
4 renderer="'json')

Views which use the JSON renderer can vary non-body response attributes by using the API of the
request . response attribute. See Varying Attributes of Rendered Responses.

118

10.2. BUILT-IN RENDERERS

Serializing Custom Objects

Some objects are not, by default, JSON-serializable (such as datetimes and other arbitrary Python objects).
You can, however, register code that makes non-serializable objects serializable in two ways:

* Definea__ json__ method on objects in your application.

* For objects you don’t “own”, you can register a JSON renderer that knows about an adapter for
that kind of object.

Using a Custom __json___ Method

Custom objects can be made easily JSON-serializable in Pyramid by defining a ___json___ method
on the object’s class. This method should return values natively JSON-serializable (such as ints, lists,
dictionaries, strings, and so forth). It should accept a single additional argument, request, which will
be the active request object at render time.

1 | from pyramid.view import view_config

3 | class MyObject (object) :

4 def _ init_ (self, x):

5 self.x = x

6

7 def _ json__ (self, request):
8 return {'x':self.x}

10 | @view_config(renderer="json')
1 |def objects (request) :
12 return [MyObiject (1), MyObiject (2)]

4 |# the JSON value returned by " objects ' will be:
15 | # [{"x": 1}, {"x": 2}]

Using the add_adapter Method of a Custom JSON Renderer

If you aren’t the author of the objects being serialized, it won’t be possible (or at least not reasonable) to
add a custom ___json___ method to their classes in order to influence serialization. If the object passed
to the renderer is not a serializable type and has no ___json__ method, usually a TypeError will be
raised during serialization. You can change this behavior by creating a custom JSON renderer and adding
adapters to handle custom types. The renderer will attempt to adapt non-serializable objects using the
registered adapters. A short example follows:

119

http://docs.python.org/3/library/exceptions.html#TypeError

10. RENDERERS

1 | from pyramid.renderers import JSON

2

3|if _ name_ == '_ _main_ ':

4 config = Configurator()

5 json_renderer = JSON ()

6 def datetime_adapter (obj, request):

7 return obj.isoformat ()

8 json_renderer.add_adapter (datetime.datetime, datetime_adapter)
9 config.add_renderer ('json', Jjson_renderer)

The add_adapter method should accept two arguments: the class of the object that you want this
adapter to run for (in the example above, datetime.datet ime), and the adapter itself.

The adapter should be a callable. It should accept two arguments: the object needing to be serialized
and request, which will be the current request object at render time. The adapter should raise a
TypeError if it can’t determine what to do with the object.

See pyramid. renderers.JSON and Adding and Changing Renderers for more information.

New in version 1.4: Serializing custom objects.

10.2.3 JSONP Renderer

New in version 1.1.

pyramid.renderers.JSONP is a JSONP renderer factory helper which implements a hybrid
JSON/JSONP renderer. JSONP is useful for making cross-domain AJAX requests.

Unlike other renderers, a JSONP renderer needs to be configured at startup time “by hand”. Configure a
JSONP renderer using the pyramid.config.Configurator.add renderer () method:

from pyramid.config import Configurator
from pyramid.renderers import JSONP

config = Configurator ()

config.add_renderer ('jsonp', JSONP (param_name='callback'))
Once this renderer is registered via add_renderer () as above, you
can use jsonp as the renderer= parameter to @view_config or

pyramid.config.Configurator.add _view():

120

http://docs.python.org/3/library/exceptions.html#TypeError
http://en.wikipedia.org/wiki/JSONP

10.3. VARYING ATTRIBUTES OF RENDERED RESPONSES

from pyramid.view import view_config

@view_config(renderer="'jsonp"')
def myview (request) :
return {'greeting':'Hello world'}

When a view is called that uses a JSONP renderer:
* If there is a parameter in the request’s HTTP query string (aka request . GET) that matches the
param_name of the registered JSONP renderer (by default, callback), the renderer will return

a JSONP response.

e If there is no callback parameter in the request’s query string, the renderer will return a “plain”
JSON response.

Javscript library AJAX functionality will help you make JSONP requests. For example, JQuery has a
getJSON function, and has equivalent (but more complicated) functionality in its ajax function.

For example (JavaScript):

var api_url = 'http://api.geonames.org/timezoneJSON' +
'?21at=38.301733840000004" +
'&1lng=-77.45869621" +
'&username=fred' +
'&callback=?";

jghxr = $.getJSON (api_url);

The string callback="? above in the url param to the JQuery get JSON function indicates to jQuery
that the query should be made as a JSONP request; the callback parameter will be automatically filled
in for you and used.

The same custom-object serialization scheme defined used for a “normal” JSON renderer in Serializing
Custom Objects can be used when passing values to a JSONP renderer too.

10.3 Varying Attributes of Rendered Responses

Before a response constructed by a renderer is returned to Pyramid, several attributes of the request are
examined which have the potential to influence response behavior.

121

http://api.jquery.com/jQuery.getJSON/
http://api.jquery.com/jQuery.ajax/

10. RENDERERS

View callables that don’t directly return a response should use the API of the
pyramid.response.Response attribute, available as request.response during their
execution, to influence associated response behavior.

For example, if you need to change the response status from within a view callable that uses a renderer,
assign the status attribute to the response attribute of the request before returning a result:

from pyramid.view import view_config

@view_config(name='gone', renderer='templates/gone.pt")
def nmyview (request) :

5 request.response.status = '404 Not Found'

6 return {'URL':request.URL}

w

IS

Note that mutations of request .response in views which return a Response object directly will
have no effect unless the response object returned is request . response. For example, the following
example calls request . response.set_cookie, but this call will have no effect because a different
Response object is returned.

from pyramid.response import Response

3 |def view (request) :
4 request.response.set_cookie('abc', '123'") # this has no effect
5 return Response ('OK') # because we're returning a different response

If you mutate request .response and you’d like the mutations to have an effect, you must return
request.response:

def view (request):
2 request .response.set_cookie('abc', '123")

3 return request.response

For more information on attributes of the request, see the API documentation in
pyramid.request. For more information on the API of request.response, see
pyramid.request.Request.response.

10.4 Adding and Changing Renderers

New templating systems and serializers can be associated with Pyramid renderer names. To this end,
configuration declarations can be made which change an existing renderer factory, and which add a new
renderer factory.

122

10.4. ADDING AND CHANGING RENDERERS

Renderers can be registered imperatively using the pyramid. config.Configurator.add_renderer ()
APL

For example, to add a renderer which renders views which have a renderer attribute that is a path that
endsin . jinja2:

config.add_renderer('.jinja2', 'mypackage.MyJinjaZ2Renderer')

The first argument is the renderer name. The second argument is a reference to an implementation of a
renderer factory or a dotted Python name referring to such an object.

10.4.1 Adding a New Renderer

You may add a new renderer by creating and registering a renderer factory.

A renderer factory implementation should conform to the pyramid. interfaces. IRendererFactory
interface. It should be capable of creating an object that conforms to the
pyramid.interfaces.IRenderer interface. A typical class that follows this setup is as
follows:

1 | class RendererFactory:

2 def _ init_ (self, info):

3 """ Constructor: info will be an object having the

4 following attributes: name (the renderer name), package
5 (the package that was 'current' at the time the

6 renderer was registered), type (the renderer type

7 name), registry (the current application registry) and
8 settings (the deployment settings dictionary). """

9

10 def _ call_(self, value, system):

1 "mr Call the renderer implementation with the value

12 and the system value passed in as arguments and return
13 the result (a string or unicode object). The value 1is
14 the return value of a view. The system value is a

15 dictionary containing available system values

16 (e.g., view, context, and request). """

The formal interface definition of the info object passed to a renderer factory constructor is available as
pyramid.interfaces.IRendererInfo.

There are essentially two different kinds of renderer factories:

123

10. RENDERERS

* A renderer factory which expects to accept an asset specification, or an absolute path, as the name
attribute of the info object fed to its constructor. These renderer factories are registered with a
name value that begins with a dot (.). These types of renderer factories usually relate to a file on
the filesystem, such as a template.

* A renderer factory which expects to accept a token that does not represent a filesystem path or an
asset specification in the name attribute of the info object fed to its constructor. These renderer
factories are registered with a name value that does not begin with a dot. These renderer factories
are typically object serializers.

Asset Specifications

An asset specification is a colon-delimited identifier for an asset. The colon separates
a Python package name from a package subpath. For example, the asset specification
my .package:static/baz.css identifies the file named baz.css in the static subdirec-
tory of the my . package Python package.

Here’s an example of the registration of a simple renderer factory via add_renderer (), where
configisaninstance of pyramid.config.Configurator ():

config.add_renderer (name='amf', factory='my.package.MyAMFRenderer')

Adding the above code to your application startup configuration will allow you to use the
my . package.MyAMFRenderer renderer factory implementation in view configurations. Your ap-
plication can use this renderer by specifying amf in the renderer attribute of a view configuration:

from pyramid.view import view_config

w

@view_config(renderer='amf')
def myview (request) :
5 return {'Hello':'world'}

~

At startup time, when a view configuration is encountered which has a name attribute that does not contain
a dot, the full name value is used to construct a renderer from the associated renderer factory. In this case,
the view configuration will create an instance of an MyAMFRenderer for each view configuration which
includes amf as its renderer value. The name passed to the MyAMFRenderer constructor will always
be amf.

Here’s an example of the registration of a more complicated renderer factory, which expects to be passed
a filesystem path:

124

10.4. ADDING AND CHANGING RENDERERS

config.add_renderer (name='.7jinja2', factory='my.package.MyJinja2Renderer")

Adding the above code to your application startup will allow you to use the
my .package.MyJinja2Renderer renderer factory implementation in view configurations by
referring to any renderer which ends in . jinja2 in the renderer attribute of a view configura-
tion:

from pyramid.view import view_config

w

@view_config(renderer="'templates/mytemplate. jinja2")
def nmyview (request) :
5 return {'Hello':'world'}

~

When a view configuration is encountered at startup time which has a name attribute that does contain a
dot, the value of the name attribute is split on its final dot. The second element of the split is typically the
filename extension. This extension is used to look up a renderer factory for the configured view. Then the
value of renderer is passed to the factory to create a renderer for the view. In this case, the view con-
figuration will create an instance of a My Jinja2Renderer for each view configuration which includes
anything ending with . jinja2 inits renderer value. The name passed to the MyJinja2Renderer
constructor will be the full value that was set as renderer= in the view configuration.

10.4.2 Adding a Default Renderer

To associate a default renderer with all view configurations (even ones which do not possess a renderer
attribute), pass None as the name attribute to the renderer tag:

config.add_renderer (None, 'mypackage.json_renderer_factory')

10.4.3 Changing an Existing Renderer

Pyramid supports overriding almost every aspect of its setup through its Conflict Resolution
mechanism. This means that, in most cases, overriding a renderer is as simple as using the
pyramid.config.Configurator.add renderer () method to redefine the template exten-
sion. For example, if you would like to override the json renderer to specify a new renderer, you
could do the following:

125

10. RENDERERS

json_renderer = pyramid.renderers.JSON ()
config.add_renderer ('json', Jjson_renderer)

After doing this, any views registered with the json renderer will use the new renderer.

10.5 Overriding a Renderer at Runtime

& This is an advanced feature, not typically used by “civilians”.

In some circumstances, it is necessary to instruct the system to ignore the static renderer declaration
provided by the developer in view configuration, replacing the renderer with another after a request
starts. For example, an “omnipresent” XML-RPC implementation that detects that the request is from
an XML-RPC client might override a view configuration statement made by the user instructing the view
to use a template renderer with one that uses an XML-RPC renderer. This renderer would produce an
XML-RPC representation of the data returned by an arbitrary view callable.

To use this feature, create a NewRequest subscriber which sniffs at the request data and which con-
ditionally sets an override_renderer attribute on the request itself, which in turn is the name of a
registered renderer. For example:

1 | from pyramid.events import subscriber

2 | from pyramid.events import NewRequest

3

4 | @subscriber (NewRequest)

5 |def set_xmlrpc_params (event) :

6 request = event.request

7 if (request.content_type == 'text/xml'

8 and request.method == 'POST'

9 and not 'soapaction' in request.headers

10 and not 'x-pyramid-avoid-zxmlrpc' in request.headers):
11 params, method = parse_xmlrpc_request (request)

12 request.xmlrpc_params, request.xmlrpc_method = params, method
13 request.is_xmlrpc = True

14 request.override_renderer = 'xmlrpc'

15 return True

The result of such a subscriber will be to replace any existing static renderer configured by the developer
with a (notional, nonexistent) XML-RPC renderer, if the request appears to come from an XML-RPC
client.

126

CHAPTER 11

Templates

A template is a file on disk which can be used to render dynamic data provided by a view. Pyramid offers
a number of ways to perform templating tasks out of the box, and provides add-on templating support
through a set of bindings packages.

Before discussing how built-in templates are used in detail, we’ll discuss two ways to render templates
within Pyramid in general: directly and via renderer configuration.

11.1 Using Templates Directly

The most straightforward way to use a template within Pyramid is to cause it to be rendered directly
within a view callable. You may use whatever API is supplied by a given templating engine to do so.

Pyramid provides various APIs that allow you to render templates directly from within a view callable.
For example, if there is a Chameleon ZPT template named foo.pt in a directory named templates
in your application, you can render the template from within the body of a view callable like so:

from pyramid.renderers import render_to_response

def sample_view (request) :
return render_to_response ('templates/foo.pt',
{'foo':1, 'bar':2},
request=request)

[Y S SO VO

127

11. TEMPLATES

The sample_view view callable function above returns a response object which contains the body
of the templates/foo.pt template. In this case, the templates directory should live in the same
directory as the module containing the sample_view function. The template author will have the names
foo and bar available as top-level names for replacement or comparison purposes.

In the example above, the path templates/foo.pt is relative to the directory containing the
file which defines the view configuration. In this case, this is the directory containing the file
that defines the sample_view function. Although a renderer path is usually just a simple rela-
tive pathname, a path named as a renderer can be absolute, starting with a slash on UNIX or a
drive letter prefix on Windows. The path can alternatively be an asset specification in the form
some.dotted.package_name:relative/path. This makes it possible to address template as-
sets which live in another package. For example:

from pyramid.renderers import render_to_response

w

def sample_view (request) :

4 return render_to_response ('mypackage:templates/foo.pt',
5 {'foo':1, 'bar':2},
6 request=request)

An asset specification points at a file within a Python package. In this case, it points at a file named
foo.pt within the templates directory of the mypackage package. Using an asset specification
instead of a relative template name is usually a good idea, because calls to render._to_response ()
using asset specifications will continue to work properly if you move the code containing them to another
location.

In the examples above we pass in a keyword argument named request representing the current Pyramid
request. Passing a request keyword argument will cause the render_to_response function to supply
the renderer with more correct system values (see System Values Used During Rendering), because most
of the information required to compose proper system values is present in the request. If your template
relies on the name request or context, or if you've configured special renderer globals, make sure to
pass request as a keyword argument in every call to a pyramid.renderers.render_* function.

Every view must return a response object, except for views which use a renderer named via view configu-
ration (which we’ll see shortly). The pyramid. renderers. render_to_response () function is
a shortcut function that actually returns a response object. This allows the example view above to simply
return the result of its call to render_to_response () directly.

Obviously not all APIs you might call to get response data will return a response object. For exam-
ple, you might render one or more templates to a string that you want to use as response data. The
pyramid.renderers.render () API renders a template to a string. We can manufacture a re-
sponse object directly, and use that string as the body of the response:

128

11.1. USING TEMPLATES DIRECTLY

from pyramid.renderers import render
from pyramid.response import Response

[N}

4 |def sample_view (request):

5 result render ('mypackage:templates/foo.pt"',
6 {'"foo':1, 'bar':2},

7 request=request)

8 response = Response (result)

9 return response

Because view callable functions are typically the only code in Pyramid that need to know anything about
templates, and because view functions are very simple Python, you can use whatever templating system
with which you’re most comfortable within Pyramid. Install the templating system, import its API func-

tions into your views module, use those APIs to generate a string, then return that string as the body of a
Pyramid Response object.

For example, here’s an example of using “raw” Mako from within a Pyramid view:

from mako.template import Template
from pyramid.response import Response

)

~

def make_view(request) :

5 template = Template (filename='/templates/template.mak'")
6 result template.render (name=request.params|['name'])

7 response = Response (result)

8 return response

You probably wouldn’t use this particular snippet in a project, because it’s easier to use the supported
Mako bindings. But if your favorite templating system is not supported as a renderer extension for Pyra-
mid, you can create your own simple combination as shown above.

O If you use third-party templating languages without cooperating Pyramid bindings directly
within view callables, the auto-template-reload strategy explained in Automatically Reloading Tem-
plates will not be available, nor will the template asset overriding capability explained in Overriding
Assets be available, nor will it be possible to use any template using that language as a renderer. How-
ever, it’s reasonably easy to write custom templating system binding packages for use under Pyramid
so that templates written in the language can be used as renderers. See Adding and Changing Ren-
derers for instructions on how to create your own template renderer and Available Add-On Template
System Bindings for example packages.

If you need more control over the status code and content-type, or other response attributes from views
that use direct templating, you may set attributes on the response that influence these values.

129

http://www.makotemplates.org/

11. TEMPLATES

Here’s an example of changing the content-type and status of the response object returned by
render_to_response():

from pyramid.renderers import render_to_response

3 |def sample_view (request):

4 response = render_to_response ('templates/foo.pt',
5 {"foo':1, 'bar':2},
6 request=request)

7 response.content_type = 'text/plain'

8 response.status_int = 204

9 return response

Here’s an example of manufacturing a response object using the result of render () (a string):

from pyramid.renderers import render
from pyramid.response import Response

[S)

=

def sample_view(request):

5 result = render ('mypackage:templates/foo.pt',
6 {'"foo':1, 'bar':2},

7 request=request)

8 response = Response (result)

9 response.content_type = 'text/plain'

10 return response

11.2 System Values Used During Rendering

When a template is rendered using render. to_response () or render (), or a renderer= ar-
gument to view configuration (see Templates Used as Renderers via Configuration), the renderer repre-
senting the template will be provided with a number of system values. These values are provided to the
template:

request The value provided as the request keyword argument to render_to_response or
render or the request object passed to the view when the renderer= argument to view config-
uration is being used to render the template.

req An alias for request.

context The current Pyramid context if request was provided as a keyword argument to
render_to_response or render, or None if the request keyword argument was not pro-
vided. This value will always be provided if the template is rendered as the result of a renderer=
argument to the view configuration being used.

130

11.3. TEMPLATES USED AS RENDERERS VIA CONFIGURATION

renderer name The renderer name used to perform the rendering, e.g.,
mypackage:templates/foo.pt.

renderer_info An object implementing the pyramid. interfaces.IRendererInfo inter-
face. Basically, an object with the following attributes: name, package, and type.

view The view callable object that was used to render this template. If the view callable is a method of
a class-based view, this will be an instance of the class that the method was defined on. If the view
callable is a function or instance, it will be that function or instance. Note that this value will only
be automatically present when a template is rendered as a result of a renderer= argument; it will
be None when the render_to_response or render APIs are used.

You can define more values which will be passed to every template executed as a result of rendering by
defining renderer globals.

What any particular renderer does with these system values is up to the renderer itself, but most template
renderers make these names available as top-level template variables.

11.3 Templates Used as Renderers via Configuration

An alternative to using render._to_response () to render templates manually in your view callable
code is to specify the template as a renderer in your view configuration. This can be done with any of the
templating languages supported by Pyramid.

To use a renderer via view configuration, specify a template asset specification as the renderer ar-
gument, or attribute to the view configuration of a view callable. Then return a dictionary from that
view callable. The dictionary items returned by the view callable will be made available to the renderer
template as top-level names.

The association of a template as a renderer for a view configuration makes it possible to replace code
within a view callable that handles the rendering of a template.

Here’s an example of using a view_config decorator to specify a view configuration that names a
template renderer:

from pyramid.view import view_config

@view_config(renderer='templates/foo.pt")
def my_view(request) :
return {'foo':1, 'bar':2}

[S O -

131

11. TEMPLATES

O You do not need to supply the request value as a key in the dictionary result returned from
a renderer-configured view callable. Pyramid automatically supplies this value for you, so that the
“most correct” system values are provided to the renderer.

% The renderer argument to the @view_config configuration decorator shown above is the

template path. In the example above, the path templates/foo.pt is relative. Relative to what,
you ask? Because we’re using a Chameleon renderer, it means “relative to the directory in which
the file that defines the view configuration lives”. In this case, this is the directory containing the
file that defines the my_ view function. View-configuration-relative asset specifications work only in
Chameleon, not in Mako templates.

Similar renderer configuration can be done imperatively. See Writing View Callables Which Use a Ren-
derer.

See also:

See also Built-in Renderers.

Although a renderer path is usually just a simple relative pathname, a path named as a renderer can be
absolute, starting with a slash on UNIX or a drive letter prefix on Windows. The path can alternatively
be an asset specification in the form some . dotted.package_name:relative/path, making it

possible to address template assets which live in another package.

Not just any template from any arbitrary templating system may be used as a renderer. Bindings must
exist specifically for Pyramid to use a templating language template as a renderer.

Why Use a Renderer via View Configuration

Using a renderer in view configuration is usually a better way to render templates than using any ren-
dering API directly from within a view callable because it makes the view callable more unit-testable.
Views which use templating or rendering APIs directly must return a Response object. Making test-
ing assertions about response objects is typically an indirect process, because it means that your
test code often needs to somehow parse information out of the response body (often HTML). View
callables configured with renderers externally via view configuration typically return a dictionary,
as above. Making assertions about results returned in a dictionary is almost always more direct and
straightforward than needing to parse HTML.

132

11.4. DEBUGGING TEMPLATES

By default, views rendered via a template renderer return a Response object which has a status code
of 200 OK, and a content-type of text/html. To vary attributes of the response of a view that
uses a renderer, such as the content-type, headers, or status attributes, you must use the API of the
pyramid.response.Response object exposed as request . response within the view before
returning the dictionary. See Varying Attributes of Rendered Responses for more information.

The same set of system values are provided to templates rendered via a renderer view configuration as
those provided to templates rendered imperatively. See System Values Used During Rendering.

11.4 Debugging Templates

A NameError exception resulting from rendering a template with an undefined variable (e.g.
$ {wrong}) might end up looking like this:

RuntimeError: Caught exception rendering template.

- Expression: ' “wrong
- Filename: /home/fred/env/proj/proj/templates/mytemplate.pt
- Arguments: renderer_name: proj:templates/mytemplate.pt

template: <PageTemplateFile - at 0Oxld2ecf0>
xincludes: <XIncludes - at 0x1d3al30>
request: <Request - at 0x1ld2ecd0>

project: proj

macros: <Macros - at 0x1ld3aed0>

context: <MyResource None at 0x1d39130>
view: <function my_view at 0x1d23570>

NameError: wrong

The output tells you which template the error occurred in, as well as displaying the arguments passed to
the template itself.

11.5 Automatically Reloading Templates

It’s often convenient to see changes you make to a template file appear immediately without needing to
restart the application process. Pyramid allows you to configure your application development environ-
ment so that a change to a template will be automatically detected, and the template will be reloaded on
the next rendering.

133

http://docs.python.org/3/library/exceptions.html#NameError

11. TEMPLATES

! Auto-template-reload behavior is not recommended for production sites as it slows rendering
slightly; it’s usually only desirable during development.

In order to turn on automatic reloading of templates, you can use an environment variable or a configura-
tion file setting.

To wuse an environment variable, start your application under a shell wusing the
PYRAMID_RELOAD_TEMPLATES operating system environment variable set to 1, For example:

$ PYRAMID_RELOAD_TEMPLATES=1 S$VENV/bin/pserve myproject.ini

To wuse a setting in the application .ini file for the same purpose, set the
pyramid.reload_templates key to true within the application’s configuration section,

e.g.:

[app:main]
use = egg:MyProject
pyramid.reload_templates = true

)

w

11.6 Available Add-On Template System Bindings

The Pylons Project maintains several packages providing bindings to different templating languages in-
cluding the following:

Template Language | Pyramid Bindings | Default Extensions
Chameleon pyramid_chameleon | .pt, .txt

Jinja2 pyramid_jinja2 Jjinja2

Mako pyramid_mako .mak, .mako

134

http://chameleon.readthedocs.org/en/latest/
https://pypi.python.org/pypi/pyramid_chameleon
http://jinja.pocoo.org/docs/
https://pypi.python.org/pypi/pyramid_jinja2
http://www.makotemplates.org/
https://pypi.python.org/pypi/pyramid_mako

CHAPTER 12

View Configuration

View lookup is the Pyramid subsystem responsible for finding and invoking a view callable. View config-
uration controls how view lookup operates in your application. During any given request, view config-
uration information is compared against request data by the view lookup subsystem in order to find the
“best” view callable for that request.

In earlier chapters, you have been exposed to a few simple view configuration declarations without much
explanation. In this chapter we will explore the subject in detail.

12.1 Mapping a Resource or URL Pattern to a View Callable

A developer makes a view callable available for use within a Pyramid application via view configura-
tion. A view configuration associates a view callable with a set of statements that determine the set of
circumstances which must be true for the view callable to be invoked.
A view configuration statement is made about information present in the context resource and the request.
View configuration is performed in one of two ways:
* By running a scan against application source code which has a pyramid. view.view_config
decorator attached to a Python object as per Adding View Configuration Using the @view_config

Decorator.

* By using the pyramid. config.Configurator.add _view () method as per Adding View
Configuration Using add_view().

135

12. VIEW CONFIGURATION

12.1.1 View Configuration Parameters

All forms of view configuration accept the same general types of arguments.

Many arguments supplied during view configuration are view predicate arguments. View predicate argu-
ments used during view configuration are used to narrow the set of circumstances in which view lookup
will find a particular view callable.

View predicate attributes are an important part of view configuration that enables the view lookup subsys-
tem to find and invoke the appropriate view. The greater the number of predicate attributes possessed by
a view’s configuration, the more specific the circumstances need to be before the registered view callable
will be invoked. The fewer the number of predicates which are supplied to a particular view configuration,
the more likely it is that the associated view callable will be invoked. A view with five predicates will
always be found and evaluated before a view with two, for example.

This does not mean however, that Pyramid “stops looking” when it finds a view registration with pred-
icates that don’t match. If one set of view predicates does not match, the “next most specific” view (if
any) is consulted for predicates, and so on, until a view is found, or no view can be matched up with
the request. The first view with a set of predicates all of which match the request environment will be
invoked.

If no view can be found with predicates which allow it to be matched up with the request, Pyramid will
return an error to the user’s browser, representing a “not found” (404) page. See Changing the Not Found
View for more information about changing the default Not Found View.

Other view configuration arguments are non-predicate arguments. These tend to modify the response of
the view callable or prevent the view callable from being invoked due to an authorization policy. The

presence of non-predicate arguments in a view configuration does not narrow the circumstances in which
the view callable will be invoked.

Non-Predicate Arguments

permission The name of a permission that the user must possess in order to invoke the view callable.
See Configuring View Security for more information about view security and permissions.

If permission is not supplied, no permission is registered for this view (it’s accessible by any
caller).

136

12.1. MAPPING A RESOURCE OR URL PATTERN TO A VIEW CALLABLE

attr The view machinery defaults to using the __call__ method of the view callable (or the function
itself, if the view callable is a function) to obtain a response. The att r value allows you to vary the
method attribute used to obtain the response. For example, if your view was a class, and the class
has a method named index and you wanted to use this method instead of the class’s ___call_
method to return the response, you’d say attr="index" in the view configuration for the view.
This is most useful when the view definition is a class.

If attr is not supplied, None is used (implying the function itself if the view is a function, or the
__call__ callable attribute if the view is a class).

renderer Denotes the renderer implementation which will be used to construct a response from the
associated view callable’s return value.

See also:
See also Renderers.

This is either a single string term (e.g., json) or a string implying a path or asset specification (e.g.,
templates/views.pt) naming a renderer implementation. If the renderer value does not
contain a dot (.), the specified string will be used to look up a renderer implementation, and that
renderer implementation will be used to construct a response from the view return value. If the
renderer value contains a dot (.), the specified term will be treated as a path, and the filename
extension of the last element in the path will be used to look up the renderer implementation, which
will be passed the full path.

When the renderer is a path—although a path is usually just a simple relative pathname (e.g.,
templates/foo.pt, implying that a template named “foo.pt” is in the “templates” directory
relative to the directory of the current package)—the path can be absolute, starting with a slash
on UNIX or a drive letter prefix on Windows. The path can alternatively be a asset specification
in the form some . dotted.package_name:relative/path, making it possible to address
template assets which live in a separate package.

The renderer attribute is optional. If it is not defined, the “null” renderer is assumed (no ren-
dering is performed and the value is passed back to the upstream Pyramid machinery unchanged).
Note that if the view callable itself returns a response (see View Callable Responses), the specified
renderer implementation is never called.

http_cache When you supply an http_cache value to a view configuration, the Expires and
Cache-Control headers of a response generated by the associated view callable are modified.
The value for ht tp_cache may be one of the following:

* A nonzero integer. If it’s a nonzero integer, it’s treated as a number of seconds. This num-
ber of seconds will be used to compute the Expires header and the Cache-Control:
max—age parameter of responses to requests which call this view. For example:
http_cache=3600 instructs the requesting browser to ‘cache this response for an hour,
please’.

137

12. VIEW CONFIGURATION

e A datetime.timedelta instance. If i's a datetime.timedelta in-
stance, it will be converted into a number of seconds, and that number of sec-
onds will be used to compute the Expires header and the Cache-Control:
max-age parameter of responses to requests which call this view. For example:
http_cache=datetime.timedelta (days=1) instructs the requesting browser
to ‘cache this response for a day, please’.

e Zero (0). If the value is zero, the Cache-Control and Expires headers present in all re-
sponses from this view will be composed such that client browser cache (and any intermediate
caches) are instructed to never cache the response.

* A two-tuple. If it’s a two-tuple (e.g., http_cache=(1, {’public’:True})), the
first value in the tuple may be a nonzero integer or a datetime.timedelta in-
stance. In either case this value will be used as the number of seconds to cache
the response. The second value in the tuple must be a dictionary. The values
present in the dictionary will be used as input to the Cache-Control response
header. For example: http_cache=(3600, {’public’:True}) means ‘cache
for an hour, and add public to the Cache-Control header of the response’. All keys
and values supported by the webob.cachecontrol.CacheControl interface may
be added to the dictionary. Supplying {’public’ :True} is equivalent to calling
response.cache_control.public = True.

Providing a non-tuple value as http_cache is equivalent to calling
response.cache_expires (value) within your view’s body.

Providing a two-tuple value as http_cache is equivalent to calling
response.cache_expires (value[0], x*value[l]) within your view’s body.

If you wish to avoid influencing the Expires header, and instead wish to only influence
Cache-Control headers, pass a tuple as http_cache with the first element of None, i.e.,
(None, {’public’:True}).

wrapper The view name of a different view configuration which will receive the response body
of this view as the request.wrapped_body attribute of its own request, and the re-
sponse returned by this view as the request .wrapped_response attribute of its own re-
quest. Using a wrapper makes it possible to “chain” views together to form a composite re-
sponse. The response of the outermost wrapper view will be returned to the user. The wrap-
per view will be found as any view is found. See View Configuration. The “best” wrap-
per view will be found based on the lookup ordering. “Under the hood” this wrapper view
is looked up via pyramid.view.render_view_to_response (context, request,
"wrapper_viewname’). The context and request of a wrapper view is the same context and
request of the inner view.

If wrapper is not supplied, no wrapper view is used.

138

12.1. MAPPING A RESOURCE OR URL PATTERN TO A VIEW CALLABLE

decorator A dotted Python name to a function (or the function itself) which will be used to deco-
rate the registered view callable. The decorator function will be called with the view callable as a
single argument. The view callable it is passed will accept (context, request). The deco-
rator must return a replacement view callable which also accepts (context, request). The
decorator may also be an iterable of decorators, in which case they will be applied one after the
other to the view, in reverse order. For example:

@view_config (..., decorator=(decorator2, decoratorl))
def nyview (request) :

Is similar to doing:

@view_config(...)
@decorator2
@decoratorl

def myview (request) :

All view callables in the decorator chain must return a response object implementing
pyramid.interfaces.IResponse Or raise an exception:

def log_timer (wrapped) :
def wrapper (context, request):

start = time.time ()

response = wrapped(context, request)

duration = time.time() - start
response.headers['X-View-Time'] = ' ' % (duration,)
log.info ('view took seconds', duration)

return response
return wrapper

mapper A Python object or dotted Python name which refers to a view mapper, or None. By default it is
None, which indicates that the view should use the default view mapper. This plug-point is useful
for Pyramid extension developers, but it’s not very useful for “civilians” who are just developing
stock Pyramid applications. Pay no attention to the man behind the curtain.

Predicate Arguments

These arguments modify view lookup behavior. In general the more predicate arguments that are supplied,
the more specific and narrower the usage of the configured view.

139

12. VIEW CONFIGURATION

name The view name required to match this view callable. A name argument is typically only used
when your application uses traversal. Read Traversal to understand the concept of a view name.

If name is not supplied, the empty string is used (implying the default view).

context An object representing a Python class of which the context resource must be an instance or the
interface that the context resource must provide in order for this view to be found and called. This
predicate is true when the confext resource is an instance of the represented class or if the context
resource provides the represented interface; it is otherwise false.

If context is not supplied, the value None, which matches any resource, is used.

route_name If route_name is supplied, the view callable will be invoked only when the named
route has matched.

This value must match the name of a route configuration declaration (see URL Dispatch) that
must match before this view will be called. Note that the route configuration referred to by
route_name will usually have a xt raverse token in the value of its pat tern, representing a
part of the path that will be used by traversal against the result of the route’s root factory.

If route_name is not supplied, the view callable will only have a chance of being invoked if no
other route was matched. This is when the request/context pair found via resource location does

not indicate it matched any configured route.

request_type This value should be an interface that the request must provide in order for this view
to be found and called.

If request_type is not supplied, the value None is used, implying any request type.
This is an advanced feature, not often used by “civilians”.

request_method This value can be either a string (such as "GET", "POST", "PUT", "DELETE",
"HEAD", or "OPTIONS") representing an HTTP REQUEST_METHOD or a tuple containing one
or more of these strings. A view declaration with this argument ensures that the view will only
be called when the method attribute of the request (i.e., the REQUEST_METHOD of the WSGI
environment) matches a supplied value.

Changed in version 1.4: The use of "GET" also implies that the view will respond to "HEAD".

If request_method is not supplied, the view will be invoked regardless of the
REQUEST_METHOD of the WSGI environment.

140

12.1. MAPPING A RESOURCE OR URL PATTERN TO A VIEW CALLABLE

request_param This value can be any string or a sequence of strings. A view declaration with
this argument ensures that the view will only be called when the request has a key in the
request .params dictionary (an HTTP GET or POST variable) that has a name which matches
the supplied value.

If any value supplied has an = signinit, e.g., request_param="foo=123", then the key (foo)
must both exist in the request . params dictionary, and the value must match the right hand side
of the expression (12 3) for the view to “match” the current request.

If request_param is not supplied, the view will be invoked without consideration of keys and
values in the request . params dictionary.

match_param This param may be either a single string of the format ‘“key=value” or a tuple containing
one or more of these strings.

This argument ensures that the view will only be called when the request has key/value
pairs in its matchdict that equal those supplied in the predicate. For example,
match_param="action=edit" would require the action parameter in the matchdict match
the right hand side of the expression (edit) for the view to “match” the current request.

If the match_paramis a tuple, every key/value pair must match for the predicate to pass.

If match_param is not supplied, the view will be invoked without consideration of the keys and
values in request .matchdict.

New in version 1.2.

containment This value should be a reference to a Python class or inferface that a parent object in the
context resource’s lineage must provide in order for this view to be found and called. The resources
in your resource tree must be “location-aware” to use this feature.

If containment is not supplied, the interfaces and classes in the lineage are not considered when
deciding whether or not to invoke the view callable.

See Location-Aware Resources for more information about location-awareness.

xhr This value should be either True or False. If this value is specified and is True, the WSGI
environment must possess an HTTP_X_REQUESTED_WITH header (i.e., X-Requested-With)
that has the value XMLHt t pRequest for the associated view callable to be found and called. This

is useful for detecting AJAX requests issued from jQuery, Prototype, and other Javascript libraries.

If xhr is not specified, the HTTP_X_REQUESTED_WITH HTTP header is not taken into consid-
eration when deciding whether or not to invoke the associated view callable.

141

12. VIEW CONFIGURATION

accept The value of this argument represents a match query for one or more mimetypes in the Accept
HTTP request header. If this value is specified, it must be in one of the following forms: a mimetype
match token in the form text /plain, a wildcard mimetype match token in the form text /x,
or a match-all wildcard mimetype match token in the form = /. If any of the forms matches the
Accept header of the request, this predicate will be true.

If accept is not specified, the HTTP_ACCEPT HTTP header is not taken into consideration when
deciding whether or not to invoke the associated view callable.

header This value represents an HTTP header name or a header name/value pair.
If header is specified, it must be a header name or a headername : headervalue pair.

If header is specified without a value (a bare header name only, e.g., If-Modified-Since),
the view will only be invoked if the HTTP header exists with any value in the request.

If header is specified, and possesses a name/value pair (e.g., User—Agent :Mozilla/.x),
the view will only be invoked if the HTTP header exists and the HTTP header matches the value
requested. When the headervalue contains a : (colon), it will be considered a name/value
pair (e.g., User—Agent:Mozilla/.* or Host:localhost). The value portion should be a
regular expression.

Whether or not the value represents a header name or a header name/value pair, the case of the
header name is not significant.

If header is not specified, the composition, presence, or absence of HTTP headers is not taken
into consideration when deciding whether or not to invoke the associated view callable.

path_info This value represents a regular expression pattern that will be tested against the
PATH_INFO WSGI environment variable to decide whether or not to call the associated view
callable. If the regex matches, this predicate will be True.

If path_info is not specified, the WSGI PATH_INFO is not taken into consideration when
deciding whether or not to invoke the associated view callable.

check_csrf If specified, this value should be one of None, True, False, or a string representing
the “check name”. If the value is True or a string, CSRF checking will be performed. If the value

is False or None, CSRF checking will not be performed.

If the value provided is a string, that string will be used as the “check name”. If the value provided
is True, csrf_token will be used as the check name.

If CSRF checking is performed, the checked value will be the value of
request.params [check_name]. This value will be compared against the value of

142

12.1. MAPPING A RESOURCE OR URL PATTERN TO A VIEW CALLABLE

request.session.get_csrf_token (), and the check will pass if these two values are the
same. If the check passes, the associated view will be permitted to execute. If the check fails, the
associated view will not be permitted to execute.

Note that using this feature requires a session factory to have been configured.
New in version 1.4a2.

physical_path If specified, this value should be a string or a tuple representing the physical
path of the context found via traversal for this predicate to match as true. For example,
physical_path=’/’,physical_path='/a/b/c’,or physical_path=("", "a’,
"b’, ’c’). This is not a path prefix match or a regex, but a whole-path match. It’s useful when
you want to always potentially show a view when some object is traversed to, but you can’t be sure
about what kind of object it will be, so you can’t use the context predicate. The individual path
elements between slash characters or in tuple elements should be the Unicode representation of the
name of the resource and should not be encoded in any way.

New in version 1.4a3.

effective_principals If specified, this value should be a principal identifier or a sequence of
principal identifiers. If the pyramid. request.Request.effective_principals ()
method indicates that every principal named in the argument list is present in the cur-
rent request, this predicate will return True; otherwise it will return False. For ex-
ample: effective_principals=pyramid.security.Authenticated or
effective_principals=(’'fred’, ’'group:admins’).

New in version 1.4a4.

custom predicates If custom predicates is specified, it must be a sequence of references to
custom predicate callables. Use custom predicates when no set of predefined predicates do what you
need. Custom predicates can be combined with predefined predicates as necessary. Each custom
predicate callable should accept two arguments, context and request, and should return either
True or False after doing arbitrary evaluation of the context resource and/or the request. If all
callables return True, the associated view callable will be considered viable for a given request.

If custom_predicates is not specified, no custom predicates are used.

predicates Pass a key/value pair here to use a third-party predicate registered via
pyramid.config.Configurator.add _view_predicate (). More than one key/value
pair can be used at the same time. See View and Route Predicates for more information about
third-party predicates.

New in version 1.4al.

143

12. VIEW CONFIGURATION

Inverting Predicate Values

You can invert the meaning of any predicate value by wrapping itin a call to pyramid. config.not_.

from pyramid.config import not_

config.add_view (
'mypackage.views.my_view',
route_name='ok',
request_method=not_ ('POST")
)

4 o u A W N =

The above example will ensure that the view is called if the request method is not POST, at least if no
other view is more specific.

This technique of wrapping a predicate value in not__ can be used anywhere predicate values are ac-
cepted:

* pyramid.config.Configurator.add view()
* pyramid.view.view_config/()

New in version 1.5.

12.1.2 Adding View Configuration Using the @view_config Decorator

! Using this feature tends to slow down application startup slightly, as more work is performed
at application startup to scan for view configuration declarations. For maximum startup performance,
use the view configuration method described in Adding View Configuration Using add_view() instead.

The view_config decorator can be used to associate view configuration information with a function,
method, or class that acts as a Pyramid view callable.

Here’s an example of the view_config decorator that lives within a Pyramid application module
views.py:

144

12.1. MAPPING A RESOURCE OR URL PATTERN TO A VIEW CALLABLE

1 | from resources import MyResource
2 | from pyramid.view import view_config
3 | from pyramid.response import Response

5 | @view_config(route_name='ok', request_method='POST', permission='read')
¢ |def my_view (request) :
7 return Response ('OK'")

Using this decorator as above replaces the need to add this imperative configuration stanza:

config.add_view ('mypackage.views.my_view', route_name='ok',
2 request_method="'POST', permission='read')

All arguments to view_config may be omitted. For example:

from pyramid.response import Response
from pyramid.view import view_config

)

@view_config()

def my_view(request) :
6 mmn My VleW mmn

7 return Response ()

IS

[

Such a registration as the one directly above implies that the view name will be my_ view, registered with
a context argument that matches any resource type, using no permission, registered against requests
with any request method, request type, request param, route name, or containment.

The mere existence of a @view_config decorator doesn’t suffice to perform view configuration. All
that the decorator does is “annotate” the function with your configuration declarations, it doesn’t process
them. To make Pyramid process your pyramid. view.view_config declarations, you must use the
scan method of a pyramid.config.Configurator:

config is assumed to be an instance of the
pyramid.config.Configurator class

)

w

config.scan()

Please see Declarative Configuration for detailed information about what happens when code is scanned
for configuration declarations resulting from use of decorators like view_config.

See pyramid.config for additional API arguments to the scan () method. For example, the method allows
you to supply a package argument to better control exactly which code will be scanned.

145

12. VIEW CONFIGURATION

All arguments to the view_config decorator mean precisely the same thing as they would if they were
passed as arguments to the pyramid.config.Configurator.add_view () method save for the
view argument. Usage of the view_config decorator is a form of declarative configuration, while
pyramid.config.Configurator.add view () isaform of imperative configuration. However,
they both do the same thing.

@view_config Placement

A view_config decorator can be placed in various points in your application.

If your view callable is a function, it may be used as a function decorator:

1 | from pyramid.view import view_config
2 | from pyramid.response import Response

4| @view_config(route_name='edit")
s |def edit (request) :
6 return Response ('edited!")

If your view callable is a class, the decorator can also be used as a class decorator. All the arguments to
the decorator are the same when applied against a class as when they are applied against a function. For
example:

from pyramid.response import Response
from pyramid.view import view_config

[S)

@view_config(route_name='hello')
class MyView (object) :

=

w

6 def __init__ (self, request):
7 self.request = request

8

9 def _ call_ (self):

10 return Response ('hello')

More than one view_config decorator can be stacked on top of any number of others. Each decorator
creates a separate view registration. For example:

1 | from pyramid.view import view_config
2 | from pyramid.response import Response

4| @view_config(route_name='edit")

5 |@view_config (route_name='change')
¢ |def edit (request) :

7 return Response ('edited!")

146

12.1. MAPPING A RESOURCE OR URL PATTERN TO A VIEW CALLABLE

This registers the same view under two different names.

The decorator can also be used against a method of a class:

from pyramid.response import Response
from pyramid.view import view_config

)

IS

class MyView (object):

5 def _ _init__ (self, request):

6 self.request = request

7

8 @view_config(route_name='hello')
9 def amethod(self) :

10 return Response('hello")

When the decorator is used against a method of a class, a view is registered for the class, so the class
constructor must accept an argument list in one of two forms: either a single argument, request, or two
arguments, context, request.

The method which is decorated must return a response.
Using the decorator against a particular method of a class is equivalent to using the att r parameter in a

decorator attached to the class itself. For example, the above registration implied by the decorator being
used against the amethod method could be written equivalently as follows:

from pyramid.response import Response
from pyramid.view import view_config

S}

@view_config(attr='amethod', route_name='hello')
class MyView (object) :

~

w

6 def __init__ (self, request):
7 self.request = request

8

9 def amethod(self):

10 return Response ('hello')

12.1.3 Adding View Configuration Using add_view ()

The pyramid.config.Configurator.add_view () method within pyramid.config is used to
configure a view “imperatively” (without a view_config decorator). The arguments to this method
are very similar to the arguments that you provide to the view_config decorator. For example:

147

12. VIEW CONFIGURATION

from pyramid.response import Response

3 |def hello_world(request) :
4 return Response('hello!")

6| # config is assumed to be an instance of the
pyramid.config.Configurator class
config.add_view(hello_world, route_name='hello'")

)

=3

The first argument, a view callable, is the only required argument. It must either be a Python object which
is the view itself or a dotted Python name to such an object. In the above example, the view callable
is the hello_ world function.

When you use only add_view () to add view configurations, you don’t need to issue a scan in order for
the view configuration to take effect.

12.2 @view_defaults Class Decorator

New in version 1.3.

If you use a class as a view, you can use the pyramid.view. view_defaults class decorator on the
class to provide defaults to the view configuration information used by every @view_config decorator
that decorates a method of that class.

For instance, if you’ve got a class that has methods that represent “REST actions”, all of which are mapped
to the same route but different request methods, instead of this:

1 | from pyramid.view import view_config

2 | from pyramid.response import Response

3

4| class RESTView (object) :

5 def __init__ (self, request):

6 self.request = request

7

8 @view_config(route_name='rest', request_method='GET')
9 def get (self):

10 return Response('get')

11

12 @view_config(route_name='rest', request_method='POST")
13 def post (self):

14 return Response ('post')

148

12.2. @VIEW_DEFAULTS CLASS DECORATOR

16 @view_config(route_name='rest', request_method='DELETE")
17 def delete(self):
18 return Response ('delete')

You can do this:

i1 | from pyramid.view import view_defaults
2 | from pyramid.view import view_config

3 | from pyramid.response import Response

4

5 | @view_defaults (route_name='rest')

¢ |class RESTView (object) :

7 def _ _init_ (self, request):

8 self.request = request

9

10 @view_config(request_method='GET'")
1 def get (self):

12 return Response('get')

13

14 @view_config(request_method='POST")
15 def post (self):

16 return Response ('post')

17

18 @view_config(request_method='DELETE")
19 def delete(self):

20 return Response ('delete')

In the above example, we were able to take the route_name=' rest’ argument out of the call to each
individual @view_config statement because we used a @view_defaults class decorator to provide
the argument as a default to each view method it possessed.

Arguments passed to @view_config will override any default passed to @view_defaults.
The view_defaults class decorator can also provide defaults to the

pyramid.config.Configurator.add _view () directive when a decorated class is passed
to that directive as its view argument. For example, instead of this:

1 | from pyramid.response import Response
2 | from pyramid.config import Configurator

3
4 |class RESTView (object) :
5 def _ _init__ (self, request):

149

12. VIEW CONFIGURATION

20

21

22

23

24

25

26

def

self.request = request

def get (self):
return Response('get')

def post (self):
return Response ('post')

def delete(self):
return Response ('delete')

main(global_config, **settings):
config = Configurator()

config.add_route('rest', '/rest')

config.add_view (

RESTView, route_name='rest',
config.add_view(

RESTView, route_name='rest',
config.add_view (

RESTView, route_name='rest',
return config.make_wsgi_app ()

attr="get', request_method='GET")
attr="post', request_method="'POST")

attr='delete', request_method='DELETE'

To reduce the amount of repetition in the config.add_view statements, we can move the
route_name='rest’ argumentto a @view_defaults class decorator on the RESTView class:

from pyramid.view import view_defaults

from pyramid.response import Response

from pyramid.config import Configurator

@view_defaults (route_name='rest')
class RESTView (object) :

def main(global_config, =**settings):

def _ _init_ (self, request):
self.request = request

def get (self):
return Response ('get')

def post (self):
return Response ('post')

def delete(self):
return Response ('delete')

config = Configurator ()

150

12.2. @VIEW_DEFAULTS CLASS DECORATOR

21 config.add_route('rest', '/rest')

2 config.add_view (RESTView, attr='get', request_method='GET")

23 config.add_view (RESTView, attr='post', request_method='POST")

24 config.add_view (RESTView, attr='delete', request_method='DELETE")
25 return config.make_wsgi_app ()

pyramid.view.view_defaults accepts the same set of arguments that
pyramid.view.view_config does, and they have the same meaning. Each argument passed to
view_defaults provides a default for the view configurations of methods of the class it’s decorating.

Normal Python inheritance rules apply to defaults added via view_defaults. For example:

@view _defaults (route_name='rest')
class Foo (object) :
3 pass

[N}

class Bar (Foo) :
6 pass

w

The Bar class above will inherit its view defaults from the arguments passed to the view_defaults
decorator of the Foo class. To prevent this from happening, use a view_defaults decorator without
any arguments on the subclass:

@view _defaults (route_name='rest')
class Foo (object) :
3 pass

)

w

@view_defaults ()
class Bar (Foo) :
7 pass

o

The view_defaults decorator only works as a class decorator; using it against a function or a method
will produce nonsensical results.

12.2.1 Configuring View Security

If an authorization policy is active, any permission attached to a view configuration found during view
lookup will be verified. This will ensure that the currently authenticated user possesses that permission
against the context resource before the view function is actually called. Here’s an example of specifying
a permission in a view configuration using add_view():

151

12. VIEW CONFIGURATION

1| # config is an instance of pyramid.config.Configurator

©

w

config.add_route('add', '/add.html', factory='mypackage.Blog')
config.add_view ('myproject.views.add_entry', route_name='add',
5 permission="add")

~

When an authorization policy is enabled, this view will be protected with the add permission. The view
will not be called if the user does not possess the add permission relative to the current context. Instead
the forbidden view result will be returned to the client as per Protecting Views with Permissions.

12.2.2 NotFound Errors

It’s useful to be able to debug NotFound error responses when they occur unexpectedly due to an
application registry misconfiguration. To debug these errors, use the PYRAMID_DEBUG_NOTFOUND
environment variable or the pyramid.debug_not found configuration file setting. Details of why a
view was not found will be printed to stderr, and the browser representation of the error will include
the same information. See Environment Variables and .ini File Settings for more information about how,
and where to set these values.

12.3 Influencing HTTP Caching

New in version 1.1.

When anon-None http_cache argument is passed to a view configuration, Pyramid will set Expires
and Cache-Control response headers in the resulting response, causing browsers to cache the re-
sponse data for some time. See http_cache in Non-Predicate Arguments for the allowable values and
what they mean.

Sometimes it’s undesirable to have these headers set as the result of returning a response from a view,
even though you’d like to decorate the view with a view configuration decorator that has http_cache.
Perhaps there’s an alternative branch in your view code that returns a response that should never be
cacheable, while the “normal” branch returns something that should always be cacheable. If this is the
case, set the prevent_auto attribute of the response.cache_control object to a non-False
value. For example, the below view callable is configured with a @view_config decorator that indi-
cates any response from the view should be cached for 3600 seconds. However, the view itself prevents
caching from taking place unless there’s a should_cache GET or POST variable:

152

12.4. DEBUGGING VIEW CONFIGURATION

from pyramid.view import view_config

@view_config (http_cache=3600)
def view(request):
response = Response ()
if 'should_cache' not in request.params:
response.cache_control.prevent_auto = True
return response

Note that the ht tp_cache machinery will overwrite or add to caching headers you set within the view
itself, unless you use prevent_auto.

You can also turn off the effect of http_cache entirely for the duration of a Pyramid applica-
tion lifetime. To do so, set the PYRAMID_PREVENT_HTTP_CACHE environment variable or the
pyramid.prevent_http_cache configuration value setting to a true value. For more information,
see Preventing HITP Caching.

Note that setting pyramid.prevent_http_cache will have no effect on caching headers that your
application code itself sets. It will only prevent caching headers that would have been set by the Pyramid
HTTP caching machinery invoked as the result of the ht t p_cache argument to view configuration.

12.4 Debugging View Configuration

See Displaying Matching Views for a Given URL for information about how to display each of the view
callables that might match for a given URL. This can be an effective way to figure out why a particular
view callable is being called instead of the one you’d like to be called.

153

12. VIEW CONFIGURATION

154

CHAPTER 13

Static Assets

An asset is any file contained within a Python package which is not a Python source code file. For
example, each of the following is an asset:

* a GIF image file contained within a Python package or contained within any subdirectory of a
Python package.

a CSS file contained within a Python package or contained within any subdirectory of a Python
package.

* aJavaScript source file contained within a Python package or contained within any subdirectory of
a Python package.

* A directory within a package that does not have an __init__ .py in it (if it possessed an
__init__ .py it would be a package).

* a Chameleon or Mako template file contained within a Python package.

The use of assets is quite common in most web development projects. For example, when you create
a Pyramid application using one of the available scaffolds, as described in Creating the Project, the
directory representing the application contains a Python package. Within that Python package, there are
directories full of files which are static assets. For example, there’s a static directory which contains
.css, . js, and . gif files. These asset files are delivered when a user visits an application URL.

13.1 Understanding Asset Specifications

Let’s imagine you’ve created a Pyramid application that uses a Chameleon ZPT template via the
pyramid.renderers.render_to_response () APL For example, the application might ad-
dress the asset using the asset specification myapp:templates/some_template.pt using that
API within a views . py file inside a myapp package:

155

13. STATIC ASSETS

from pyramid.renderers import render_to_response
render_to_response ('myapp:templates/some_template.pt', {}, request)

[N}

“Under the hood”, when this API is called, Pyramid attempts to make sense out of the string
myapp:templates/some_template.pt provided by the developer. This string is an asset speci-
fication. It is composed of two parts:

* The package name (myapp)
* The asset name (templates/some_template.pt), relative to the package directory.
The two parts are separated by a colon : character.

Pyramid uses the Python pkg_resources API to resolve the package name and asset name to an absolute
(operating system-specific) file name. It eventually passes this resolved absolute filesystem path to the
Chameleon templating engine, which then uses it to load, parse, and execute the template file.

There is a second form of asset specification: a relative asset specification. Instead of using an “absolute”
asset specification which includes the package name, in certain circumstances you can omit the package
name from the specification. For example, you might be able to use templates/mytemplate.pt
instead of myapp:templates/some_template.pt. Such asset specifications are usually relative
to a “current package”. The “current package” is usually the package which contains the code that uses
the asset specification. Pyramid APIs which accept relative asset specifications typically describe to what
the asset is relative in their individual documentation.

13.2 Serving Static Assets

Pyramid makes it possible to serve up static asset files from a directory on a filesystem to an application
user’s browser. Use the pyramid.config.Configurator.add_static_view () to instruct
Pyramid to serve static assets, such as JavaScript and CSS files. This mechanism makes a directory of
static files available at a name relative to the application root URL, e.g., /static, or as an external
URL.

@ add_static_view () cannot serve a single file, nor can it serve a directory of static files
directly relative to the root URL of a Pyramid application. For these features, see Advanced: Serving
Static Assets Using a View Callable.

Here’s an example of a use of add static_view() that will serve files up from the
/var/www/static directory of the computer which runs the Pyramid application as URLs beneath
the /static URL prefix.

156

13.2. SERVING STATIC ASSETS

config is an instance of pyramid.config.Configurator
config.add_static_view (name='static', path='/var/www/static")

[N}

The name represents a URL prefix. In order for files that live in the path directory to be served,
a URL that requests one of them must begin with that prefix. In the example above, name is
static and path is /var/www/static. In English this means that you wish to serve the
files that live in /var/www/static as sub-URLs of the /static URL prefix. Therefore, the
file /var/www/static/foo.css will be returned when the user visits your application’s URL
/static/foo.css.

A static directory named at path may contain subdirectories recursively, and any subdirectories may
hold files; these will be resolved by the static view as you would expect. The Content-Type header
returned by the static view for each particular type of file is dependent upon its file extension.

By default, all files made available via add_static_view () are accessible by completely anonymous
users. Simple authorization can be required, however. To protect a set of static files using a permission, in
addition to passing the required name and path arguments, also pass the permission keyword argu-
ment to add_static_view (). The value of the permission argument represents the permission
that the user must have relative to the current context when the static view is invoked. A user will be
required to possess this permission to view any of the files represented by path of the static view. If your
static assets must be protected by a more complex authorization scheme, see Advanced: Serving Static
Assets Using a View Callable.

Here’s another example that uses an asset specification instead of an absolute path as the path ar-
gument. To convince add_static_view () to serve files up under the /static URL from the
a/b/c/static directory of the Python package named some_package, we can use a fully qualified
asset specification as the path:

config 1is an instance of pyramid.config.Configurator

S

config.add_static_view (name='static', path='some_package:a/b/c/static")

The path providedto add_static_view () may be afully qualified asset specification or an absolute
path.

Instead of representing a URL prefix, the name argument of a call to add_static_view() can
alternately be a URL. Each of the examples we’ve seen so far have shown usage of the name ar-
gument as a URL prefix. However, when name is a URL, static assets can be served from an ex-
ternal webserver. In this mode, the name is used as the URL prefix when generating a URL using
pyramid.request.Request.static_url ().

For example, add _static_view() may be fed a name argument which is
http://example.com/images:

157

13. STATIC ASSETS

config is an instance of pyramid.config.Configurator
config.add_static_view (name='http://example.com/images',
3 path="mypackage:images"')

[N}

Because add_static_view() is provided with a name argument that is the URL
http://example.com/images, subsequent calls to static_url () with paths that start
with the path argument passed to add_static_view() will generate a URL something like
http://example.com/images/logo.png. The external webserver listening on example . com
must be itself configured to respond properly to such a request. The static_url () APlis discussed
in more detail later in this chapter.

13.2.1 Generating Static Asset URLs

When an add_static_view () method is used to register a static asset directory, a special helper
APInamed pyramid. request.Request.static_url () canbe used to generate the appropriate
URL for an asset that lives in one of the directories named by the static registration path attribute.

For example, let’s assume you create a set of static declarations like so:

config.add_static_view (name='staticl', path='mypackage:assets/1")
config.add_static_view (name='static2', path='mypackage:assets/2")

S}

These declarations create URL-accessible directories which have URLSs that begin with /staticl and
/static2, respectively. The assets in the assets/1 directory of the mypackage package are con-
sulted when a user visits a URL which begins with /static1, and the assets in the asset s /2 directory
of the mypackage package are consulted when a user visits a URL which begins with /static2.

You needn’t generate the URLs to static assets “by hand” in such a configuration. Instead, use the
static_url () API to generate them for you. For example:

from pyramid.renderers import render_to_response

w

def my_view(request) :

4 css_url = request.static_url ('mypackage:assets/1/foo.css')

5 js_url = request.static_url ('mypackage:assets/2/foo.Js")

6 return render_to_response ('templates/my_template.pt',

7 dict (css_url=css_url, Jjs_url=js_url),
8 request=request)

158

13.3. ADVANCED: SERVING STATIC ASSETS USING A VIEW CALLABLE

If the request “application URL” of the running system is http://example.com, the css_url
generated above would be: http://example.com/staticl/foo.css. The js_url generated
above would be http://example.com/static2/foo. js.

One benefit of using the static_url () function rather than constructing static URLs “by hand” is that
if you need to change the name of a static URL declaration, the generated URLs will continue to resolve
properly after the rename.

URLSs may also be generated by static_url () to static assets that live outside the Pyramid ap-
plication. This will happen when the add_static_view () API associated with the path fed to
static_url () is a URL instead of a view name. For example, the name argument may be
http://example.com while the path given may be mypackage: images:

config.add_static_view (name='http://example.com/images',
2 path="mypackage:images"')

Under such a configuration, the URL generated by static_url for assets which begin with
mypackage: images will be prefixed with http://example.com/images:

request.static_url ('mypackage:images/logo.png')
—> http://example.com/images/logo.png

S

Using static_url () in conjunction with a add_static_view () makes it possible to put static
media on a separate webserver during production (if the name argument to add_static_view()
is a URL), while keeping static media package-internal and served by the development webserver dur-
ing development (if the name argument to add_static_view () is a URL prefix). To create such
a circumstance, we suggest using the pyramid.registry.Registry.settings API in con-
junction with a setting in the application .ini file named media_ location. Then set the value
of media_location to either a prefix or a URL depending on whether the application is being run
in development or in production (use a different . ini file for production than you do for development).
This is just a suggestion for a pattern; any setting name other than media_location could be used.

13.3 Advanced: Serving Static Assets Using a View Callable

For more flexibility, static assets can be served by a view callable which you register manually. For
example, if you’re using URL dispatch, you may want static assets to only be available as a fallback if no
previous route matches. Alternatively, you might like to serve a particular static asset manually, because
its download requires authentication.

Note that you cannot use the static_url () API to generate URLs against assets made accessible by
registering a custom static view.

159

13. STATIC ASSETS

13.3.1 Root-Relative Custom Static View (URL Dispatch Only)

The pyramid.static.static_view helper class generates a Pyramid view callable. This view
callable can serve static assets from a directory. An instance of this class is actually used by the
add_static_view () configuration method, so its behavior is almost exactly the same once it’s con-

figured.

& The following example will not work for applications that use traversal; it will only work if
you use URL dispatch exclusively. The root-relative route we’ll be registering will always be matched
before traversal takes place, subverting any views registered via add_view (at least those without a
route_name). A static_view static view cannot be made root-relative when you use traversal

unless it’s registered as a Not Found View.

To serve files within a directory located on your filesystem at /path/to/static/dir as the result of
a “catchall” route hanging from the root that exists at the end of your routing table, create an instance of
the static_view classinside a static.py file in your application root as below.

from pyramid.static import static_view
static_view = static_view('/path/to/static/dir', use_subpath=True)

[S)

O For better cross-system flexibility, use an asset specification as the argument to
static_view instead of a physical absolute filesystem path, e.g., mypackage: static, instead
of /path/to/mypackage/static.

Subsequently, you may wire the files that are served by this view up to be accessible as /<filename>
using a configuration method in your application’s startup code.

1| # .. every other add_route declaration should come
before this one, as it will, by default, catch all requests

)

config.add_route ('catchall_static', '/*subpath')
config.add_view('myapp.static.static_view', route_name='catchall static')

I

w

The special name ~subpath above is used by the static_view view callable to signify the path of
the file relative to the directory you’re serving.

160

13.4. OVERRIDING ASSETS

13.3.2 Registering a View Callable to Serve a “Static” Asset

You can register a simple view callable to serve a single static asset. To do so, do things “by hand”. First
define the view callable.

import os
from pyramid.response import FileResponse

)

IS

def favicon_view (request) :

5 here = os.path.dirname(__file_)
6 icon = os.path.join(here, 'static', 'favicon.ico')
7 return FileResponse (icon, request=request)

The above bit of code within favicon_view computes “here”, which is a path relative to the Python
file in which the function is defined. It then creates a pyramid. response.FileResponse using
the file path as the response’s path argument and the request as the response’s request argument.
pyramid.response.FileResponse will serve the file as quickly as possible when it’s used this
way. It makes sure to set the right content length and content_type, too, based on the file extension of the
file you pass.

You might register such a view via configuration as a view callable that should be called as the result of a
traversal:

1 |config.add_view('myapp.views.favicon_view', name='favicon.ico')

Or you might register it to be the view callable for a particular route:

config.add_route('favicon', '/favicon.ico")
config.add_view('myapp.views.favicon_view', route_name='favicon')

)

Because this is a simple view callable, it can be protected with a permission or can be configured to
respond under different circumstances using view predicate arguments.

13.4 Overriding Assets

It can often be useful to override specific assets from “outside” a given Pyramid application. For example,
you may wish to reuse an existing Pyramid application more or less unchanged. However, some specific
template file owned by the application might have inappropriate HTML, or some static asset (such as a
logo file or some CSS file) might not be appropriate. You could just fork the application entirely, but

161

13. STATIC ASSETS

it’s often more convenient to just override the assets that are inappropriate and reuse the application “as
is”. This is particularly true when you reuse some “core” application over and over again for some set of
customers (such as a CMS application, or some bug tracking application), and you want to make arbitrary
visual modifications to a particular application deployment without forking the underlying code.

To this end, Pyramid contains a feature that makes it possible to “override” one asset with
one or more other assets. In support of this feature, a Configurator API exists named
pyramid.config.Configurator.override_asset (). This API allows you to override the
following kinds of assets defined in any Python package:

¢ Individual template files.

* A directory containing multiple template files.

* Individual static files served up by an instance of the pyramid.static.static_view helper
class.

* A directory of static files served up by an instance of the pyramid.static.static_view
helper class.

* Any other asset (or set of assets) addressed by code that uses the setuptools pkg_resources APL

13.4.1 The override asset API

An individual call to override_asset () can override a single asset. For example:

config.override_asset (
2 to_override='some.package:templates/mytemplate.pt’,
3 override_with='another.package:othertemplates/anothertemplate.pt"')

The string value passed to both to_override and override_with senttothe override_asset
API is called an asset specification. The colon separator in a specification separates the package name
from the asset name. The colon and the following asset name are optional. If they are not specified,
the override attempts to resolve every lookup into a package from the directory of another package. For
example:

config.override_asset (to_override='some.package',
2 override_with="another.package')

Individual subdirectories within a package can also be overridden:

162

13.4. OVERRIDING ASSETS

config.override_asset (to_override="'some.package:templates/',
2 override_with='"another.package:othertemplates/")

If you wish to override a directory with another directory, you must make sure to attach the slash to the
end of both the to_override specification and the override_with specification. If you fail to
attach a slash to the end of a specification that points to a directory, you will get unexpected results.

You cannot override a directory specification with a file specification, and vice versa; a startup error will
occur if you try. You cannot override an asset with itself; a startup error will occur if you try.

Only individual package assets may be overridden. Overrides will not traverse through subpack-
ages within an overridden package. This means that if you want to override assets for both
some.package:templates, and some.package.views:templates, you will need to reg-
ister two overrides.

The package name in a specification may start with a dot, meaning that the package is relative to
the package in which the configuration construction file resides (or the package argument to the
Configurator class construction). For example:

config.override_asset (to_override="'.subpackage:templates/"',
2 override_with='another.package:templates/")

Multiple calls to override_asset which name a shared to_override but a different
override_with specification can be “stacked” to form a search path. The first asset that exists in
the search path will be used; if no asset exists in the override path, the original asset is used.

Asset overrides can actually override assets other than templates and static files.
Any software which uses the pkg_resources.get_resource_filename (),
pkg_resources.get_resource_stream(),orpkg_resources.get_resource_string()
APIs will obtain an overridden file when an override is used.

163

13. STATIC ASSETS

164

CHAPTER 14

Request and Response Objects

O This chapter is adapted from a portion of the WebOb documentation, originally written by Ian
Bicking.

Pyramid uses the WebOb package as a basis for its request and response object implementations. The re-
quest object that is passed to a Pyramid view is an instance of the pyramid. request . Request class,
which is a subclass of webob . Request. The response returned from a Pyramid view renderer is an in-
stance of the pyramid. response.Response class, which is a subclass of the webob . Response
class. Users can also return an instance of pyramid. response.Response directly from a view as
necessary.

WebOb is a project separate from Pyramid with a separate set of authors and a fully separate set of
documentation. Pyramid adds some functionality to the standard WebOb request, which is documented
in the pyramid.request API documentation.

WebOb provides objects for HTTP requests and responses. Specifically it does this by wrapping the
WSGI request environment and response status, header list, and app_iter (body) values.

WebOb request and response objects provide many conveniences for parsing WSGI requests and forming
WSGI responses. WebOb is a nice way to represent “raw” WSGI requests and responses. However, we
won’t cover that use case in this document, as users of Pyramid don’t typically need to use the WSGI-
related features of WebOb directly. The reference documentation shows many examples of creating re-
quests and using response objects in this manner, however.

165

http://docs.pylonsproject.org/projects/pylons-webframework/en/latest/thirdparty/webob.html#webob.Request
http://docs.pylonsproject.org/projects/pylons-webframework/en/latest/thirdparty/webob.html#webob.Response
http://docs.webob.org/en/latest/index.html
http://docs.webob.org/en/latest/index.html
http://wsgi.org
http://docs.webob.org/en/latest/reference.html

14. REQUEST AND RESPONSE OBJECTS

14.1 Request

The request object is a wrapper around the WSGI environ dictionary. This dictionary contains keys for
each header, keys that describe the request (including the path and query string), a file-like object for the
request body, and a variety of custom keys. You can always access the environ with req.environ.

Some of the most important and interesting attributes of a request object are below.

req.

req.

req.

req.

req.

req.

req.

req.

req.

method The request method, e.g., GET, POST
GET A multidict with all the variables in the query string.

POST A multidict with all the variables in the request body. This only has variables if the request
was a POST and it is a form submission.

params A multidict with a combination of everything in req.GET and req.POST.
body The contents of the body of the request. This contains the entire request body as a string.
This is useful when the request is a POST that is not a form submission, or a request like a PUT.

You can also get req.body_file for a file-like object.

json_body The JSON-decoded contents of the body of the request. See Dealing with a JSON-
Encoded Request Body.

cookies A simple dictionary of all the cookies.
headers A dictionary of all the headers. This dictionary is case-insensitive.
urlvars and req.urlargs req.urlvars are the keyword parameters associated with the

request URL. reqg.urlargs are the positional parameters. These are set by products like Routes
and Selector.

Also for standard HTTP request headers, there are usually attributes such as req.accept_language,

req.

content_length, and reqg.user_agent. These properties expose the parsed form of

each header, for whatever parsing makes sense. For instance, req.if_modified_since returns
a datetime object (or None if the header is was not provided).

O Full API documentation for the Pyramid request object is available in pyramid.request.

166

http://www.python.org/dev/peps/pep-0333/#environ-variables
http://routes.readthedocs.org/en/latest/
https://github.com/lukearno/selector
http://docs.python.org/3/library/datetime.html#module-datetime

14.1. REQUEST

14.1.1 Special Attributes Added to the Request by Pyramid

In addition to the standard WebOb attributes, Pyramid adds special attributes to every re-
quest: context, registry, root, subpath, traversed, view_name, virtual_root,
virtual_root_path, session, matchdict, and matched_route. These attributes are docu-
mented further within the pyramid. request.Request API documentation.

14.1.2 URLs

In addition to these attributes, there are several ways to get the URL of the request and its parts. We’ll show
various values for an example URL http://localhost/app/blog?id=10, where the application
is mounted at http://localhost/app.

req.url The full request URL with query string, e.g., http://localhost/app/blog?id=10
req.host The host information in the URL, e.g., localhost
req.host_url The URL with the host, e.g., http://localhost

req.application_url The URL of the application (just the SCRIPT_NAME portion of the path,
not PATH_INFO), e.g., http://localhost/app

req.path_url The URL of the application including the PATH_INFO, e.g.,
http://localhost/app/blog

req.path The URL including PATH_ INFO without the host or scheme, e.g., /app/blog
req.path_gs The URL including PATH_INFO and the query string, e.g, /app/blog?id=10
req.query_ string The query string in the URL, e.g., 1d=10

req.relative_url (url, to_application=False) Gives a URL relative to the current
URL. If to_application is True, then resolves it relative to req.application_url.

14.1.3 Methods

There are methods of request objects documented in pyramid. request.Request but you'll find
that you won’t use very many of them. Here are a couple that might be useful:

Request .blank (base_url) Creates a new request with blank information, based at the given
URL. This can be useful for subrequests and artificial requests. You can also use reqg.copy ()
to copy an existing request, or for subrequests req.copy_get () which copies the request but
always turns it into a GET (which is safer to share for subrequests).

req.get_response (wsgi_application) This method calls the given WSGI application with
this request, and returns a pyramid. response.Response object. You can also use this for
subrequests or testing.

167

14. REQUEST AND RESPONSE OBJECTS

14.1.4 Text (Unicode)

Many of the properties of the request object will be text values (unicode under Python 2 or
str under Python 3) if the request encoding/charset is provided. If it is provided, the values in
req.POST, req.GET, req.params, and req. cookies will contain text. The client can indicate
the charset with something like Content-Type: application/x-www-form-urlencoded;
charset=utf8, but browsers seldom set this. You can reset the charset of an existing request
with newreq = reqg.decode (utf-8’), or during instantiation with Request (environ,
charset="utf8’).

14.1.5 Multidict

Several attributes of a WebOb request are multidict structures (such as request.GET,
request .POST, and request .params). A multidict is a dictionary where a key can have mul-
tiple values. The quintessential example is a query string like ?pref=red&pref=blue; the pref
variable has two values: red and blue.

In a multidict, when you do request .GET [’ pref’], you’ll get back only "blue" (the last value
of pref). This returned result might not be expected—sometimes returning a string, and sometimes
returning a list—and may be cause of frequent exceptions. If you want all the values back, use
request.GET.getall ('pref’). If you want to be sure there is one and only one value, use
request .GET.getone (' pref’), which will raise an exception if there is zero or more than one
value for pref.

When you use operations like request.GET.items (), you’ll get back something like
[("pref’, ’"red’), ('pref’, ’'blue’)]. All the key/value pairs will show up. Similarly
request .GET.keys () returns [pref’, ’pref’]. Multidictis a view on a list of tuples; all the
keys are ordered, and all the values are ordered.

API documentation for a multidict exists as pyramid. interfaces.IMultiDict.

14.1.6 Dealing with a JSON-Encoded Request Body

New in version 1.1.

pyramid.request.Request. json_body is a property that returns a JSON-decoded representa-
tion of the request body. If the request does not have a body, or the body is not a properly JSON-encoded
value, an exception will be raised when this attribute is accessed.

This attribute is useful when you invoke a Pyramid view callable via, for example, jQuery’s $.ajax
function, which has the potential to send a request with a JSON-encoded body.

Using request . json_body is equivalent to:

168

14.1. REQUEST

from json import loads
loads (request .body, encoding=request.charset)

Here’s how to construct an AJAX request in JavaScript using jQuery that allows you to use the
request . json_body attribute when the request is sent to a Pyramid application:

jQuery.ajax ({type:'POST',
url: 'http://localhost:6543/', // the pyramid server
data: JSON.stringify({'a':1}),
contentType: 'application/Jjson; charset=utf-8'});

When such a request reaches a view in your application, the request . json_body attribute will be
available in the view callable body.

@view_config(renderer='string')
def aview (request):
print (request. json_body)
return 'OK'

For the above view, printed to the console will be:

{uta': 1}

For bonus points, here’s a bit of client-side code that will produce a request that has a body suitable for
reading via request . json_body using Python’s ur11ib2 instead of a JavaScript AJAX request:

import urllib2
import json

json_payload = json.dumps({'a':1})

headers = {'Content-Type':'application/json; charset=utf-8'}

req = urllib2.Request ('http://localhost:6543/"', Jjson_payload, headers)
resp = urllib2.urlopen (req)

If you are doing Cross-origin resource sharing (CORS), then the standard requires the browser to do a
pre-flight HTTP OPTIONS request. The easiest way to handle this is to add an extra view_config for
the same route, with request_method set to OPTIONS, and set the desired response header before
returning. You can find examples of response headers Access control CORS, Preflighted requests.

169

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS#Preflighted_requests

14. REQUEST AND RESPONSE OBJECTS

14.1.7 Cleaning up after a Request

Sometimes it’s required to perform some cleanup at the end of a request when a database connection is
involved.

For example, let’s say you have a mypackage Pyramid application package that uses SQLAlchemy, and
you’d like the current SQLAlchemy database session to be removed after each request. Put the following
in the mypackage._ _init__ module:

from mypackage.models import DBSession

from pyramid.events import subscriber
from pyramid.events import NewRequest

def cleanup_callback (request) :
DBSession.remove ()

@subscriber (NewRequest)
10 |def add_cleanup_callback (event) :
1 event .request.add_finished_callback (cleanup_callback)

Registering the cleanup_callback finished callback at the start of a request (by causing the
add_cleanup_callback to receive a pyramid.events.NewRequest event at the start of
each request) will cause the DBSession to be removed whenever request processing has ended.
Note that in the example above, for the pyramid.events. subscriber decorator to work, the
pyramid.config.Configurator.scan () method must be called against your mypackage
package during application initialization.

O This is only an example. In particular, it is not necessary to cause DBSession.remove to be
called in an application generated from any Pyramid scaffold, because these all use the pyramid_tm
package. The cleanup done by DBSession.remove is unnecessary when pyramid_tm middle-
ware is configured into the application.

14.1.8 More Details

More detail about the request object API is available as follows.
e pyramid. request.Request API documentation

¢ WebOb documentation. All methods and attributes of a webob . Reque st documented within the
WebOb documentation will work with request objects created by Pyramid.

170

http://docs.webob.org/en/latest/index.html

14.2. RESPONSE

14.2 Response

The Pyramid response object can be imported as pyramid. response.Response. This class is a
subclass of the webob . Response class. The subclass does not add or change any functionality, so the
WebOb Response documentation will be completely relevant for this class as well.

A response object has three fundamental parts:

response.status The response code plus reason message, like 200 OK. To set the code without a
message, use status_int,i.e., response.status_int = 200.

response.headerlist A listofall the headers,like [(' Content-Type’, 'text/html’)].
There’s a case-insensitive multidict in response . headers that also allows you to access these
same headers.

response.app_iter An iterable (such as a list or generator) that will produce the content of the
response. This is also accessible as response.body (a string), response.text (a unicode
object, informed by response.charset), and response.body_file (a file-like object;
writing to it appends to app_iter).

Everything else in the object typically derives from this underlying state. Here are some highlights:
response.content_type The content type not including the charset parameter.

Typical use: response.content_type = ’text/html’.

Default value: response.content_type = ’text/html’.

response.charset The charset parameter of the content-type, it also informs encoding in
response.text. response.content_type_params is a dictionary of all the parame-
ters.

response.charset: The charset parameter of the content-type, it also informs encoding in
response.text. response.content_type_params is a dictionary of all the parame-
ters.

response.set_cookie (key, value, max_age=None, path=’'/’, ...) Set a cookie.
The keyword arguments control the various cookie parameters. The max_age argument is the
length for the cookie to live in seconds (you may also use a timedelta object). The Expires key
will also be set based on the value of max_age.

response.delete_cookie (key, path=’/’, domain=None) Delete a cookie from the
client. This sets max_age to 0 and the cookie value to " ’ .

response.cache_expires (seconds=0) This makes the response cacheable for the given num-
ber of seconds, or if seconds is 0 then the response is uncacheable (this also sets the Expires
header).

response (environ, start_response) The response object is a WSGI application. As an
application, it acts according to how you create it. It can do conditional responses if you pass
conditional_response=True when instantiating (or set that attribute later). It can also do
HEAD and Range requests.

171

14. REQUEST AND RESPONSE OBJECTS

14.2.1 Headers

Like the request, most HTTP response headers are available as properties. These are parsed, so you can
do things like response.last_modified = os.path.getmtime (filename).

The details are available in the webob . response API documentation.

14.2.2 Instantiating the Response

Of course most of the time you just want to make a response. Generally any attribute of the response can
be passed in as a keyword argument to the class, e.g.:

from pyramid.response import Response
response = Response (body='hello world!', content_type='text/plain')

S

The status defaults to 200 OK’.

The value of content_type defaults to webob . response.Response.default_content_type,
which is text/html. You can subclass pyramid.response.Response and set
default_content_type to override this behavior. The status defaults to 200 OK’. The
content_type does not default to anything, though if you subclass pyramid. response.Response
and set default_content_type you can override this behavior.

14.2.3 Exception Responses

To facilitate error responses like 404 Not Found, the module pyramid. httpexceptions con-
tains classes for each kind of error response. These include boring but appropriate error bodies.
The exceptions exposed by this module, when used under Pyramid, should be imported from the
pyramid.httpexceptions module. This import location contains subclasses and replacements that
mirror those in the webob . exc module.

Each class is named pyramid.httpexceptions.HTTP*, where = is the reason for
the error. For instance, pyramid.httpexceptions.HTTPNotFound subclasses
pyramid.response.Response, so you can manipulate the instances in the same way. A
typical example is:

1 | from pyramid.httpexceptions import HTTPNotFound
2 | from pyramid.httpexceptions import HTTPMovedPermanently

4| response = HTTPNotFound('There is no such resource')
s|# or:
6 | response = HTTPMovedPermanently (location=new_url)

172

http://docs.webob.org/en/latest/api/response.html#module-webob.response

14.2. RESPONSE

14.2.4 More Details

More details about the response object API are available in the pyramid. response documentation.
More details about exception responses are in the pyramid. ht tpexceptions API documentation.
The WebOb documentation is also useful.

173

http://docs.webob.org/en/latest/index.html

14. REQUEST AND RESPONSE OBJECTS

174

CHAPTER 15

Sessions

A session is a namespace which is valid for some period of continual activity that can be used to represent
a user’s interaction with a web application.

This chapter describes how to configure sessions, what session implementations Pyramid provides out of

the box, how to store and retrieve data from sessions, and two session-specific features: flash messages,
and cross-site request forgery attack prevention.

15.1 Using the Default Session Factory

In order to use sessions, you must set up a session factory during your Pyramid configuration.

A very basic, insecure sample session factory implementation is provided in the Pyramid core. It uses a
cookie to store session information. This implementation has the following limitations:

* The session information in the cookies used by this implementation is not encrypted, so it can be
viewed by anyone with access to the cookie storage of the user’s browser or anyone with access to

the network along which the cookie travels.

* The maximum number of bytes that are storable in a serialized representation of the session is fewer
than 4000. This is suitable only for very small data sets.

It is digitally signed, however, and thus its data cannot easily be tampered with.
You can configure this session factory in your Pyramid application by using the

pyramid.config.Configurator.set_session_ factory () method.

175

15. SESSIONS

1 | from pyramid.session import SignedCookieSessionFactory
2 |my_session_factory = SignedCookieSessionFactory ('itsaseekreet')

4+ | from pyramid.config import Configurator
s|config = Configurator ()
¢ |config.set_session_factory (my_session_factory)

L By default the SignedCookieSessionFactory () implementation is unencrypted. You
should not use it when you keep sensitive information in the session object, as the information can be
easily read by both users of your application and third parties who have access to your users’ network
traffic. And, if you use this sessioning implementation, and you inadvertently create a cross-site
scripting vulnerability in your application, because the session data is stored unencrypted in a cookie,
it will also be easier for evildoers to obtain the current user’s cross-site scripting token. In short, use
a different session factory implementation (preferably one which keeps session data on the server) for
anything but the most basic of applications where “session security doesn’t matter”, and you are sure
your application has no cross-site scripting vulnerabilities.

15.2 Using a Session Object

Once a session factory has been configured for your application, you can access session objects provided
by the session factory via the session attribute of any request object. For example:

from pyramid.response import Response

w

def myview (request) :

4 session = request.session

5 if 'abc' in session:

6 session['fred'] = 'yes'

7 session['abc'] = '"123"

8 if '"fred' in session:

9 return Response ('Fred was in the session')
10 else:

1 return Response ('Fred was not in the session')

The first time this view is invoked produces Fred was not in the session. Subsequent invo-
cations produce Fred was in the session, assuming of course that the client side maintains the
session’s identity across multiple requests.

176

15.3. USING ALTERNATE SESSION FACTORIES

You can use a session much like a Python dictionary. It supports all dictionary methods, along with some
extra attributes and methods.

Extra attributes:
created An integer timestamp indicating the time that this session was created.

new A boolean. If new is True, this session is new. Otherwise, it has been constituted from data that was
already serialized.

Extra methods:

changed () Call this when you mutate a mutable value in the session namespace. See the gotchas
below for details on when and why you should call this.

invalidate () Call this when you want to invalidate the session (dump all data, and perhaps set a
clearing cookie).

The formal definition of the methods and attributes supported by the session object are in the
pyramid.interfaces.ISession documentation.

Some gotchas:

» Keys and values of session data must be pickleable. This means, typically, that they are instances
of basic types of objects, such as strings, lists, dictionaries, tuples, integers, etc. If you place an
object in a session data key or value that is not pickleable, an error will be raised when the session
is serialized.

 If you place a mutable value (for example, a list or a dictionary) in a session object, and you
subsequently mutate that value, you must call the changed () method of the session object. In
this case, the session has no way to know that it was modified. However, when you modify a session
object directly, such as setting a value (i.e., __setitem__), or removing a key (e.g., del or pop),
the session will automatically know that it needs to re-serialize its data, thus calling changed ()
is unnecessary. There is no harm in calling changed () in either case, so when in doubt, call it
after you’ve changed sessioning data.

15.3 Using Alternate Session Factories

The following session factories exist at the time of this writing.

Session Factory Back- Description
end
pyra- Redis Server-side session library for Pyramid, using Redis for storage.
mid_redis_sessions
pyramid_beaker Beaker Session factory for Pyramid backed by the Beaker sessioning
system.

177

https://pypi.python.org/pypi/pyramid_redis_sessions
https://pypi.python.org/pypi/pyramid_redis_sessions
http://redis.io/
https://pypi.python.org/pypi/pyramid_beaker
http://beaker.readthedocs.org/en/latest/

15. SESSIONS

15.4 Creating Your Own Session Factory

If none of the default or otherwise available sessioning implementations for Pyramid suit you, you may
create your own session object by implementing a session factory. Your session factory should return a
session. The interfaces for both types are available in pyramid. interfaces.ISessionFactory
and pyramid.interfaces.ISession. You might use the cookie implementation in the
pyramid.session module as inspiration.

15.5 Flash Messages

“Flash messages” are simply a queue of message strings stored in the session. To use flash messaging,
you must enable a session factory as described in Using the Default Session Factory or Using Alternate
Session Factories.

Flash messaging has two main uses: to display a status message only once to the user after performing an
internal redirect, and to allow generic code to log messages for single-time display without having direct
access to an HTML template. The user interface consists of a number of methods of the session object.

15.5.1 Using the session. flash Method

To add a message to a flash message queue, use a session object’s £1ash () method:

request.session.flash ('mymessage')

The £1ash () method appends a message to a flash queue, creating the queue if necessary.
flash () accepts three arguments:
flash (message, queue="", allow_duplicate=True)

The message argument is required. It represents a message you wish to later display to a user. It is
usually a string but the me ssage you provide is not modified in any way.

The queue argument allows you to choose a queue to which to append the message you provide. This
can be used to push different kinds of messages into flash storage for later display in different places on
a page. You can pass any name for your queue, but it must be a string. Each queue is independent, and
can be popped by pop_flash () or examined via peek_flash () separately. queue defaults to the
empty string. The empty string represents the default flash message queue.

178

15.5. FLASH MESSAGES

request.session.flash (msg, 'myappsqueue')

The allow_duplicate argument defaults to True. If this is False, and you attempt to add a

message value which is already present in the queue, it will not be added.

15.5.2 Using the session.pop_flash Method

Once one or more messages have been added to a flash queue by the session.flash () API, the

session.pop_£flash () APIcan be used to pop an entire queue and return it for use.

To pop a particular queue of messages from the flash object, use the session object’s pop_flash ()

method. This returns a list of the messages that were added to the flash queue, and empties the queue.

pop_£flash (queue="")

>>> request.session.flash('info message')
>>> request.session.pop_flash()
["info message']

Calling session.pop_flash() again like above without a corresponding call
session.flash () will return an empty list, because the queue has already been popped.

to

>>> request.session.flash('info message')
>>> request.session.pop_flash()

["info message']

>>> request.session.pop_flash()

[]

15.5.3 Using the session.peek_flash Method

Once one or more messages have been added to a flash queue by the session.flash/()
API, the session.peek_flash() API can be used to “peek” at that queue. Unlike

session.pop_=flash (), the queue is not popped from flash storage.

peek_flash (queue="")

179

15. SESSIONS

>>> request.session.flash('info message')
>>> request.session.peek_flash()

["info message']

>>> request.session.peek_flash()

["info message']

>>> request.session.pop_flash()

['"info message']

>>> request.session.peek_flash()

(]

15.6 Preventing Cross-Site Request Forgery Attacks

Cross-site request forgery attacks are a phenomenon whereby a user who is logged in to your website
might inadvertantly load a URL because it is linked from, or embedded in, an attacker’s website. If the
URL is one that may modify or delete data, the consequences can be dire.

You can avoid most of these attacks by issuing a unique token to the browser and then requiring that it be
present in all potentially unsafe requests. Pyramid sessions provide facilities to create and check CSRF
tokens.

To use CSRF tokens, you must first enable a session factory as described in Using the Default Session
Factory or Using Alternate Session Factories.

15.6.1 Using the session.get_csrf_token Method

To get the current CSRF token from the session, use the session.get_csrf_token () method.

token = request.session.get_csrf_token()

The session.get_csrf_token () method accepts no arguments. It returns a CSRF foken string.
If session.get_csrf_token() orsession.new_csrf_token () wasinvoked previously for
this session, then the existing token will be returned. If no CSRF token previously existed for this session,
then a new token will be set into the session and returned. The newly created token will be opaque and
randomized.

You can use the returned token as the value of a hidden field in a form that posts to a method that requires
elevated privileges, or supply it as a request header in AJAX requests.

For example, include the CSRF token as a hidden field:

180

http://en.wikipedia.org/wiki/Cross-site_request_forgery

15.6. PREVENTING CROSS-SITE REQUEST FORGERY ATTACKS

<form method="post" action="/myview">
<input type="hidden" name="csrf_token" value="${request.session.get_csrf_
<input type="submit" value="Delete Everything">

</form>

roken () }">

Or include it as a header in a jQuery AJAX request:

var csrfToken = ${request.session.get_csrf_token()};
S.ajax ({
type: "POST",
url: "/myview",
headers: { '"X-CSRF-Token': csrfToken }
}) .done (function () {
alert ("Deleted");
1) i

The handler for the URL that receives the request should then require that the correct CSRF token is
supplied.

15.6.2 Checking CSRF Tokens Manually

In request handling code, you can check the presence and validity of a CSRF token with
pyramid.session.check_csrf_token (). If the token is valid, it will return True, otherwise it
will raise HTTPBadRequest. Optionally, you can specify raises=False to have the check return
False instead of raising an exception.

By default, it checks for a GET or POST parameter named csrf_token or a header named
X-CSRF-Token.

from pyramid.session import check_csrf_token
def myview (request) :
Require CSRF Token

check_csrf_token (request)

oo

181

15. SESSIONS

15.6.3 Checking CSRF Tokens with a View Predicate

A convenient way to require a valid CSRF token for a particular view is to include check_csrf=True
as a view predicate. See pyramid.config.Configurator.add_view().

@view_config(request_method='POST', check_csrf=True, ...)
def myview (request) :

O A mismatch of a CSRF token is treated like any other predicate miss,
and the predicate system, when it doesn’t find a view, raises HTTPNotFound in-
stead of HTTPBadRequest, so check_csrf=True behavior is different from calling
pyramid.session.check csrf_token().

15.6.4 Using the session.new_csrf_token Method

To explicitly create a new CSRF token, use the session.new_csrf_token () method. This differs
only from session.get_csrf_token () inasmuch as it clears any existing CSRF token, creates a
new CSREF token, sets the token into the session, and returns the token.

token = request.session.new_csrf_token()

182

CHAPTER 16

Using Events

An event is an object broadcast by the Pyramid framework at interesting points during the lifetime of an
application. You don’t need to use events in order to create most Pyramid applications, but they can be
useful when you want to perform slightly advanced operations. For example, subscribing to an event can
allow you to run some code as the result of every new request.

Events in Pyramid are always broadcast by the framework. However, they only become useful when you
register a subscriber. A subscriber is a function that accepts a single argument named event:

def mysubscriber (event) :
2 print (event)

The above is a subscriber that simply prints the event to the console when it’s called.
The mere existence of a subscriber function, however, is not sufficient to arrange for
it to be called. To arrange for the subscriber to be called, you’ll need to use the

pyramid.config.Configurator.add subscriber () method or you’ll need to use the
pyramid.events.subscriber () decorator to decorate a function found via a scan.

16.1 Configuring an Event Listener Imperatively

You can imperatively configure a subscriber function to be called for some event type via the
add_subscriber () method:

183

16. USING EVENTS

from pyramid.events import NewRequest
3 | from subscribers import mysubscriber

s|# "config" below is assumed to be an instance of a
6 | # pyramid.config.Configurator object

=3

config.add_subscriber (mysubscriber, NewRequest)

The first argument to add_subscriber () is the subscriber function (or a dotted Python name which
refers to a subscriber callable); the second argument is the event type.

See also:

See also Configurator.

16.2 Configuring an Event Listener Using a Decorator

You can configure a subscriber function to be called for some event type via the
pyramid.events.subscriber () function.

i1 | from pyramid.events import NewRequest
2 | from pyramid.events import subscriber

4 | @subscriber (NewRequest)
s |def mysubscriber (event) :

6 event .request. foo 1

When the subscriber () decorator is used, a scan must be performed against the package containing
the decorated function for the decorator to have any effect.

Either of the above registration examples implies that every time the Pyramid framework emits an event
object that supplies an pyramid.events.NewRequest interface, the mysubscriber function
will be called with an event object.

As you can see, a subscription is made in terms of a class (such as
pyramid.events.NewResponse). The event object sent to a subscriber will always be an
object that possesses an interface. For pyramid.events.NewResponse, that interface is
pyramid.interfaces.INewResponse. The interface documentation provides information about
available attributes and methods of the event objects.

The return value of a subscriber function is ignored. Subscribers to the same event type are not guaranteed
to be called in any particular order relative to each other.

All the concrete Pyramid event types are documented in the pyramid.events API documentation.

184

16.3. AN EXAMPLE

16.3 An Example

If you create event listener functions in a subscribers. py file in your application like so:

def handle_new_request (event) :
2 print ('request', event.request)

~

def handle_new_response (event) :
5 print ('response', event.response)

You may configure these functions to be called at the appropriate times by adding the following code to
your application’s configuration startup:

config is an instance of pyramid.config.Configurator

w

config.add_subscriber ('myproject.subscribers.handle_new_request',

4 'pyramid.events.NewRequest"')
s|config.add_subscriber ('myproject.subscribers.handle_new_response',
6 'pyramid.events.NewResponse')

Either mechanism causes the functions in subscribers. py to be registered as event subscribers. Un-
der this configuration, when the application is run, each time a new request or response is detected, a
message will be printed to the console.

Each of our subscriber functions accepts an event object and prints an attribute of the event object. This
begs the question: how can we know which attributes a particular event has?

We know that pyramid.events.NewRequest event objects have a request attribute, which is
a request object, because the interface defined at pyramid. interfaces. INewRequest says it
must. Likewise, we know that pyramid.interfaces.NewResponse events have a response
attribute, which is a response object constructed by your application, because the interface defined at
pyramid.interfaces.INewResponse says it must (pyramid.events.NewResponse ob-
jects also have a request).

16.4 Creating Your Own Events

In addition to using the events that the Pyramid framework creates, you can create your own events for
use in your application. This can be useful to decouple parts of your application.

185

16. USING EVENTS

For example, suppose your application has to do many things when a new document is created. Rather
than putting all this logic in the view that creates the document, you can create the document in your view
and then fire a custom event. Subscribers to the custom event can take other actions, such as indexing the
document, sending email, or sending a message to a remote system.

An event is simply an object. There are no required attributes or method for your custom events. In
general, your events should keep track of the information that subscribers will need. Here are some
example custom event classes:

class DocCreated (object) :

2 def __ _init__ (self, doc, request):
3 self.doc = doc
4 self.request = request

¢ | class UserEvent (object) :
7 def _ init_ (self, user):
8 self.user = user

10 | class UserLoggedIn (UserEvent) :
11 pass

Some Pyramid applications choose to define custom events classes in an event s module.

You can subscribe to custom events in the same way that you subscribe to Pyramid events—either impera-
tively or with a decorator. You can also use custom events with subscriber predicates. Here’s an example
of subscribing to a custom event with a decorator:

1 | from pyramid.events import subscriber
2| from .events import DocCreated
3| from .index import index_doc

5 | @subscriber (DocCreated)

¢ |def index_doc (event) :

7 # index the document using our application's index_doc function
8 index_doc (event.doc, event.request)

The above example assumes that the application defines a DocCreated event class and an index_doc
function.

To fire your custom events use the pyramid. registry.Registry.notify () method, which is
most often accessed as request.registry.notify. For example:

186

16.4. CREATING YOUR OWN EVENTS

w

6

from .events import DocCreated

def new_doc_view (request) :
doc = MyDoc ()

event = DocCreated(doc, request)
request.registry.notify (event)
return {'document': doc}

This example view will notify all subscribers to the custom DocCreated event.

Note that when you fire an event, all subscribers are run synchronously so it’s generally not a good idea to
create event handlers that may take a long time to run. Although event handlers could be used as a central
place to spawn tasks on your own message queues.

187

16. USING EVENTS

188

CHAPTER 17

Environment Variables and . ini File Settings

Pyramid behavior can be configured through a combination of operating system environment variables
and .ini configuration file application section settings. The meaning of the environment variables and
the configuration file settings overlap.

U Wherea configuration file setting exists with the same meaning as an environment variable, and
both are present at application startup time, the environment variable setting takes precedence.

The term “configuration file setting name” refers to a key in the . ini configuration for your application.
The configuration file setting names documented in this chapter are reserved for Pyramid use. You should
not use them to indicate application-specific configuration settings.

17.1 Reloading Templates

When this value is true, templates are automatically reloaded whenever they are modified without restart-
ing the application, so you can see changes to templates take effect immediately during development.
This flag is meaningful to Chameleon and Mako templates, as well as most third-party template rendering
extensions.

Environment Variable Name Config File Setting Name

PYRAMID_RELOAD_TEMPLATES .
pyramid.reload_templates or

reload_templates

189

17. ENVIRONMENT VARIABLES AND . INT FILE SETTINGS

17.2 Reloading Assets

Don’t cache any asset file data when this value is true.
See also:

See also Overriding Assets.

Environment Variable Name | Config File Setting Name
PYRAMID_RELOAD_ASSETS | pyramid.reload_assetsor reload_assets

@ For backwards compatibility purposes, aliases can be used for configuring asset reloading:
PYRAMID_RELOAD_RESOURCES (envvar) and pyramid.reload_resources (config file).

17.3 Debugging Authorization

Print view authorization failure and success information to stderr when this value is true.

See also:

See also Debugging View Authorization Failures.

Environment Variable Name Config File Setting Name

PYRAMID_DEBUG_AUTHORIZATIOMNyramid.debug_authorization or
debug_authorization

17.4 Debugging Not Found Errors

Print view-related Not Found debug messages to stderr when this value is true.
See also:

See also NotFound Errors.

Environment Variable Name Config File Setting Name
PYRAMID_DEBUG_NOTFOUND | pyramid.debug_notfound or debug_notfound

190

17.5. DEBUGGING ROUTE MATCHING

17.5 Debugging Route Matching

Print debugging messages related to url dispatch route matching when this value is true.
See also:

See also Debugging Route Matching.

Environment Variable Name Config File Setting Name
PYRAMID_DEBUG_ROUTEMATCH | pyramid.debug_routematch or
debug_routematch

17.6 Preventing HTTP Caching

Prevent the http_cache view configuration argument from having any effect globally in this pro-
cess when this value is true. No HTTP caching-related response headers will be set by the Pyramid
http_cache view configuration feature when this is true.

See also:

See also Influencing HTTP Caching.

Environment Variable Name Config File Setting Name
PYRAMID_PREVENT_HTTP_CACHEpyramid.prevent_http_cache or
prevent_http_cache

17.7 Debugging All

Turns on all debugx settings.

Environment Variable Name | Config File Setting Name
PYRAMID_DEBUG_ALL pyramid.debug_all ordebug_all

191

17. ENVIRONMENT VARIABLES AND . INT FILE SETTINGS

17.8 Reloading All

Turns on all reload~ settings.

Environment Variable Name | Config File Setting Name
PYRAMID_ RELOAD_ALL pyramid.reload_allorreload_all

17.9 Default Locale Name

The value supplied here is used as the default locale name when a locale negotiator is not registered.
See also:

See also Localization-Related Deployment Settings.

Environment Variable Name Config File Setting Name
PYRAMID_DEFAULT_LOCALE_NAMbyramid.default_locale_name or
default_locale_name

17.10 Including Packages

pyramid.includes instructs your application to include other packages. Using the setting is equiva-
lent to using the pyramid. config.Configurator.include () method.

Config File Setting Name
pyramid.includes

The value assigned to pyramid.includes should be a sequence. The sequence can take several
different forms.

1. It can be a string.

If it is a string, the package names can be separated by spaces:

packagel package2 package3

The package names can also be separated by carriage returns:

192

17.10. INCLUDING PACKAGES

packagel
package2
package3

2. It can be a Python list, where the values are strings:

['packagel', 'package2', 'package3']

Each value in the sequence should be a dotted Python name.

17.10.1 pyramid.includes VS. pyramid.config.Configurator.include ()

Two methods exist for including packages: pyramid.includes and
pyramid.config.Configurator.include (). This section explains their equivalence.

Using PasteDeploy

Using the following pyramid.includes setting in the PasteDeploy . ini file in your application:

[app:main]
pyramid.includes = pyramid_debugtoolbar
pyramid_tm

Is equivalent to using the following statements in your configuration code:

from pyramid.config import Configurator

w

def main(global_config, =**settings):

4 config = Configurator (settings=settings)
5 # ...

6 config.include ('pyramid_debugtoolbar')

7 config.include ('pyramid_tm")

8 # ...

It is fine to use both or either form.

Plain Python

Using the following pyramid. includes setting in your plain-Python Pyramid application:

193

17. ENVIRONMENT VARIABLES AND . INT FILE SETTINGS

1 | from pyramid.config import Configurator

3|if _ name_ == '_ _main_ ':
4 settings = {'pyramid.includes':'pyramid_debugtoolbar pyramid_tm'}
5 config Configurator (settings=settings)

Is equivalent to using the following statements in your configuration code:

1 | from pyramid.config import Configurator

2

3|if _ name_ == '__ _main__ ':

4 settings = {}

5 config = Configurator (settings=settings)
6 config.include ('pyramid_debugtoolbar')

7 config.include ('pyramid_tm')

It is fine to use both or either form.

17.11 Explicit Tween Configuration

This value allows you to perform explicit rween ordering in your configuration. Tweens are bits of code
used by add-on authors to extend Pyramid. They form a chain, and require ordering.

Ideally you won’t need to use the pyramid.tweens setting at all. Tweens are generally ordered
and included “implicitly” when an add-on package which registers a tween is “included”. Packages
are included when you name a pyramid. includes setting in your configuration or when you call
pyramid.config.Configurator.include().

Authors of included add-ons provide “implicit” tween configuration ordering hints to Pyramid when their
packages are included. However, the implicit tween ordering is only best-effort. Pyramid will attempt
to provide an implicit order of tweens as best it can using hints provided by add-on authors, but because
it’s only best-effort, if very precise tween ordering is required, the only surefire way to get it is to use an
explicit tween order. You may be required to inspect your tween ordering (see Displaying “Tweens”) and
add a pyramid.tweens configuration value at the behest of an add-on author.

Config File Setting Name

pyramid.tweens

The value assigned to pyramid. tweens should be a sequence. The sequence can take several different
forms.

194

17.11. EXPLICIT TWEEN CONFIGURATION

1. It can be a string.

If it is a string, the tween names can be separated by spaces:

pkg.tween_factoryl pkg.tween_factory2 pkg.tween_factory3

The tween names can also be separated by carriage returns:

pkg.tween_factoryl
pkg.tween_factory2
pkg.tween_factory3

2. It can be a Python list, where the values are strings:

['pkg.tween_factoryl', 'pkg.tween_factory2', 'pkg.tween_factory3']

Each value in the sequence should be a dotted Python name.

17.11.1 PasteDeploy Configuration vs. Plain-Python Configuration

Using the following pyramid. tweens setting in the PasteDeploy . ini file in your application:

[app:main]

pyramid.tweens = pyramid_debugtoolbar.toolbar.tween_factory
pyramid.tweens.excview_tween_factory
pyramid_tm.tm_tween_factory

Is equivalent to using the following statements in your configuration code:

1 | from pyramid.config import Configurator

2

3 |def main(global_config, =**settings):

4 settings|['pyramid.tweens'] = [

5 'pyramid_debugtoolbar.toolbar.tween_factory',
6 'pyramid.tweebs.excview_tween_factory',

7 'pyramid_tm.tm_tween_factory',

8]

9 config = Configurator (settings=settings)

It is fine to use both or either form.

195

17. ENVIRONMENT VARIABLES AND . INT FILE SETTINGS

17.12 Examples

Let’s presume your configuration file is named MyProject.ini, and there is a section representing
your application named [app:main] within the file that represents your Pyramid application. The
configuration file settings documented in the above “Config File Setting Name” column would go in the
[app:main] section. Here’s an example of such a section:

1| [app:main]
2 |use = egg:MyProject
3 |pyramid.reload_templates = true

4 |pyramid.debug_authorization = true

You can also use environment variables to accomplish the same purpose for settings documented as such.
For example, you might start your Pyramid application using the following command line:

$ PYRAMID_DEBUG_AUTHORIZATION=1 PYRAMID_RELOAD_TEMPLATES=1 \
SVENV/bin/pserve MyProject.ini

If you started your application this way, your Pyramid application would behave in the same manner as if
you had placed the respective settings in the [app:main] section of your application’s . ini file.

If you want to turn all debug settings (every setting that starts with pyramid.debug_) on in one
fell swoop, you can use PYRAMID_DEBUG_ALL=1 as an environment variable setting or you may use
pyramid.debug_all=true in the config file. Note that this does not affect settings that do not start
with pyramid.debug_~* such as pyramid.reload_templates.

If you want to turn all pyramid. reload settings (every setting that starts with pyramid.reload_)
on in one fell swoop, you can use PYRAMID_RELOAD_ALL=1 as an environment variable setting or you
may use pyramid.reload_all=true in the config file. Note that this does not affect settings that
do not start with pyramid.reload_»* such as pyramid.debug_notfound.

O Specifying configuration settings via environment variables is generally most useful during
development, where you may wish to augment or override the more permanent settings in the config-
uration file. This is useful because many of the reload and debug settings may have performance or
security (i.e., disclosure) implications that make them undesirable in a production environment.

196

17.13. UNDERSTANDING THE DISTINCTION BETWEEN RELOAD_TEMPLATES AND
RELOAD_ASSETS

17.13 Understanding the Distinction Between
reload_templates and reload_assets

The difference between pyramid.reload_assets and pyramid.reload_templates is a bit
subtle. Templates are themselves also treated by Pyramid as asset files (along with other static files), so
the distinction can be confusing. It’s helpful to read Overriding Assets for some context about assets in
general.

When pyramid.reload_templates is true, Pyramid takes advantage of the underlying tem-
plating system’s ability to check for file modifications to an individual template file. When
pyramid.reload_templates is true, but pyramid.reload_assets is nof true, the template
filename returned by the pkg_resources package (used under the hood by asset resolution) is cached
by Pyramid on the first request. Subsequent requests for the same template file will return a cached tem-
plate filename. The underlying templating system checks for modifications to this particular file for every
request. Setting pyramid.reload_templates to True doesn’t affect performance dramatically
(although it should still not be used in production because it has some effect).

However, when pyramid.reload_assets is true, Pyramid will not cache the template filename,
meaning you can see the effect of changing the content of an overridden asset directory for tem-
plates without restarting the server after every change. Subsequent requests for the same template
file may return different filenames based on the current state of overridden asset directories. Setting
pyramid.reload_assets to True affects performance dramatically, slowing things down by an
order of magnitude for each template rendering. However, it’s convenient to enable when moving files
around in overridden asset directories. pyramid.reload_assets makes the system very slow when
templates are in use. Never set pyramid.reload_assets to True on a production system.

17.14 Adding a Custom Setting

From time to time, you may need to add a custom setting to your application. Here’s how:

 If you're using an . ini file, change the . ini file, adding the setting to the [app: foo] section
representing your Pyramid application. For example:

[app:main]
.. other settings
debug_frobnosticator = True

197

17. ENVIRONMENT VARIABLES AND . INTI FILE SETTINGS

e In the main () function that represents the place that your Pyramid WSGI application is created,
anticipate that you’ll be getting this key/value pair as a setting and do any type conversion necessary.

If you’ve done any type conversion of your custom value, reset the converted values into the
settings dictionary before you pass the dictionary as settings to the Configurator. For
example:

def main(global_config, =xxsettings):
#
from pyramid.settings import asbool
debug_frobnosticator = asbool (settings.get (
'debug_frobnosticator', 'false'))
settings|['debug_ frobnosticator'] = debug_frobnosticator
config = Configurator (settings=settings)

O It’s especially important that you mutate the settings dictionary with the converted
version of the variable before passing it to the Configurator: the configurator makes a copy of
settings, it doesn’t use the one you pass directly.

* When creating an includeme function that will be later added to your application’s configuration
you may access the settings dictionary through the instance of the Configurator that is passed
into the function as its only argument. For Example:

def includeme (config) :
settings = config.registry.settings
debug_frobnosticator = settings|['debug frobnosticator']

* In the runtime code from where you need to access the new settings value, find the value in the
registry.settings dictionary and use it. In view code (or any other code that has access to
the request), the easiest way to do this is via request . registry.settings. For example:

settings = request.registry.settings
debug_frobnosticator = settings|['debug_frobnosticator']

If you wish to use the value in code that does not have access to the request and you wish to use the
value, you’ll need to use the pyramid. threadlocal.get_current_registry () APlto
obtain the current registry, then ask for its settings attribute. For example:

registry = pyramid.threadlocal.get_current_registry ()
settings = registry.settings
debug_frobnosticator = settings|['debug_frobnosticator']

198

CHAPTER 18

Logging

Pyramid allows you to make use of the Python standard library 1 0gging module. This chapter describes
how to configure logging and how to send log messages to loggers that you’ve configured.

! This chapter assumes you’ve used a scaffold to create a project which contains

development.ini and production.ini files which help configure logging. All of the scaf-
folds which ship with Pyramid do this. If you’re not using a scaffold, or if you’ve used a third-party
scaffold which does not create these files, the configuration information in this chapter may not be
applicable.

18.1 Logging Configuration

A Pyramid project created from a scaffold is configured to allow you to send messages to Python
standard library logging package loggers from within your application. In particular, the
PasteDeploy development.ini and production.ini files created when you use a scaffold in-
clude a basic configuration for the Python 10gging package.

PasteDeploy . ini files use the Python standard library ConfigParser format. This is the same
format used as the Python logging module’s Configuration file format. The application-related and
logging-related sections in the configuration file can coexist peacefully, and the logging-related sections
in the file are used from when you run pserve.

The pserve command calls the pyramid.paster.setup_logging () function, a thin wrap-
per around the logging.config.fileConfig () using the specified .ini file, if it contains a

199

http://docs.python.org/3/library/logging.html#module-logging
http://docs.python.org/3/library/logging.html#module-logging
http://docs.python.org/3/library/logging.html#module-logging
http://docs.python.org/3/library/logging.html#module-logging
http://docs.python.org/library/configparser.html#module-ConfigParser
http://docs.python.org/3/library/logging.config.html#logging-config-fileformat
http://docs.python.org/3/library/logging.config.html#logging.config.fileConfig

18. LOGGING

[loggers] section (all of the scaffold-generated . ini files do). setup_logging reads the logging
configuration from the ini file upon which pserve was invoked.

Default logging configuration is provided in both the default development.ini and the
production.ini file. The logging configuration in the development . ini file is as follows:

Begin logging configuration

3| [loggers]
4 |keys = root, {{package_logger}}

¢ | [handlers]
7| keys = console

9 | [formatters]
10 | keys = generic

12 | [logger_root]
13|level = INFO
14 |handlers = console

16 | [Logger_{{package_logger}}]
17 | level = DEBUG

18 | handlers =

19 |qualname = {{package}}

20
21 | [handler console]

» |class = StreamHandler
13 |args = (sys.stderr,)
x| level = NOTSET

»s | formatter = generic

26
27 | [formatter_generic]
% | format = % (asctime)s % (levelname)-5.5s [%(name)s] [%(threadName)s] % (message

29

3 | # End logging configuration

The production.ini file uses the WARN level in its logger configuration, but it is otherwise identical.

The name { {package_logger}} above will be replaced with the name of your project’s package,
which is derived from the name you provide to your project. For instance, if you do:

| |pcreate —s starter MyApp

The logging configuration will literally be:

200

18.1. LOGGING CONFIGURATION

1| # Begin logging configuration

3| [loggers]
4| keys = root, myapp

¢ | [handlers]
7|keys = console

9| [formatters]
0 | keys = generic

12 | [Llogger_root]
13| level = INFO
14 |handlers = console

16 | [Llogger_myapp]

17 | level = DEBUG

18 | handlers =

19 | qualname = myapp
20
21 | [handler_console]

» |class = StreamHandler
s |args = (sys.stderr,)
2% | level = NOTSET

»5 | formatter = generic

26
7 | [formatter_ generic]

% | format = % (asctime)s % (levelname)-5.5s [%(name)s][%(threadName)s] % (message
29
% | # End logging configuration

In this logging configuration:

* alogger named root is created that logs messages at a level above or equal to the INFO level to
stderr, with the following format:

2007-08-17 15:04:08,704 INFO [packagename] Loading resource, id: 86

* alogger named myapp is configured that logs messages sent at a level above or equal to DEBUG to
stderr in the same format as the root logger.

The root logger will be used by all applications in the Pyramid process that ask for a logger (via

logging.getLogger) that has a name which begins with anything except your project’s package
name (e.g., myapp). The logger with the same name as your package name is reserved for your own

201

18. LOGGING

usage in your Pyramid application. Its existence means that you can log to a known logging location from
any Pyramid application generated via a scaffold.

Pyramid and many other libraries (such as Beaker, SQLAlchemy, Paste) log a number of messages to the
root logger for debugging purposes. Switching the root logger level to DEBUG reveals them:

[logger_root]
#level = INFO
level = DEBUG
handlers = console

Some scaffolds configure additional loggers for additional subsystems they use (such as SQLALchemy).
Take a look at the production.ini and development.ini files rendered when you create a
project from a scaffold.

18.2 Sending Logging Messages

Python’s special __name___ variable refers to the current module’s fully qualified name. From any mod-
ule in a package named myapp, the __name___builtin variable will always be something like myapp, or
myapp . subpackage ormyapp . package. subpackage if your project is named myapp. Sending
a message to this logger will send it to the myapp logger.

To log messages to the package-specific logger configured in your . ini file, simply create a logger object
using the __name___ builtin and call methods on it.

import logging
log = logging.getLogger (__name__)

def myview (request) :

content_type = 'text/plain'

content = 'Hello World!'

log.debug ('Returning: (content-type:) ', content, content_type)
request.response.content_type = content_type

© ® N9 o ;A W —

return request.response

This will result in the following printed to the console, on stderr:

16:20:20,440 DEBUG [myapp.views] Returning: Hello World!
(content-type: text/plain)

202

18.3. FILTERING LOG MESSAGES

18.3 Filtering log messages

Often there’s too much log output to sift through, such as when switching the root logger’s level to DEBUG.

For example, you’re diagnosing database connection issues in your application and only want to see
SQLAIchemy’s DEBUG messages in relation to database connection pooling. You can leave the root
logger’s level at the less verbose INFO level and set that particular SQLAlIchemy logger to DEBUG on its
own, apart from the root logger:

[logger_sqglalchemy.pool]
level = DEBUG

handlers =

qualname = sglalchemy.pool

then add it to the list of loggers:

[loggers]
keys = root, myapp, sglalchemy.pool

No handlers need to be configured for this logger as by default non-root loggers will propagate their log
records up to their parent logger’s handlers. The root logger is the top level parent of all loggers.

This technique is used in the default development.ini. The root logger’s level is set to INFO,
whereas the application’s log level is set to DEBUG:

Begin logging configuration

[loggers]
keys = root, myapp

[logger_myapp]
level = DEBUG
handlers =
qualname = myapp

All of the child loggers of the myapp logger will inherit the DEBUG level unless they’re explicitly set
differently. Meaning the myapp.views, myapp.models, and all your app’s modules’ loggers by
default have an effective level of DEBUG too.

For more advanced filtering, the logging module provides a 1logging.Filter object; however it can-
not be used directly from the configuration file.

203

http://docs.python.org/3/library/logging.html#logging.Filter

18. LOGGING

18.4 Advanced Configuration

To capture log output to a separate file, use
logging.handlers.RotatingFileHandler):

logging.FileHandler (or

[handler_ filelog]
class = FileHandler

args = ('%(here)s/myapp.log','a'")
level = INFO
formatter = generic

Before it’s recognized, it needs to be added to the list of handlers:

[handlers]

keys = console, myapp, filelog
and finally utilized by a logger.

[logger_root]

level = INFO

handlers = console, filelog

These final three lines of configuration direct all of the root logger’s output to the myapp . Log as well as

the console.

18.5 Logging Exceptions

To log or email exceptions generated by your Pyramid application, use the pyramid_exclog package.

Details about its configuration are in its documentation.

18.6 Request Logging with Paste’s TransLogger

The WSGI design is modular. Waitress logs error conditions, debugging output, etc., but not web traffic.
For web traffic logging, Paste provides the TransLogger middleware. TransLogger produces logs in the
Apache Combined Log Format. But TransLogger does not write to files; the Python logging system must

204

http://docs.python.org/3/library/logging.handlers.html#logging.FileHandler
http://docs.python.org/3/library/logging.handlers.html#logging.handlers.RotatingFileHandler
http://docs.pylonsproject.org/projects/pyramid_exclog/dev/
http://pythonpaste.org/modules/translogger.html
http://httpd.apache.org/docs/2.2/logs.html#combined

18.6. REQUEST LOGGING WITH PASTE’S TRANSLOGGER

be configured to do this. The Python logging.FileHandler logging handler can be used alongside
TransLogger to create an access . 1og file similar to Apache’s.

Like any standard middleware with a Paste entry point, TransLogger can be configured to wrap
your application using .ini file syntax. First rename your Pyramid .ini file’s [app:main]
section to [app:mypyramidapp], then add a [filter:translogger] section, then use a
[pipeline:main] section file to form a WSGI pipeline with both the translogger and your appli-
cation in it. For instance, change from this:

[app:main]
use = egg:MyProject

To this:

[app :mypyramidapp]
use = egg:MyProject

[filter:translogger]
use = egg:Pastef#ftranslogger
setup_console_handler = False

[pipeline:main]
pipeline = translogger
mypyramidapp

Using PasteDeploy this way to form and serve a pipeline is equivalent to wrapping your app in a TransLog-
ger instance via the bottom of the main function of your project’s __init__file:

app = config.make_wsgi_app ()

from paste.translogger import TransLogger

app = TransLogger (app, setup_console_handler=False)
return app

O TransLogger will automatically setup a logging handler to the console when called with no
arguments, so it “just works” in environments that don’t configure logging. Since our logging handlers
are configured, we disable the automation via setup_console_handler = False.

With the filter in place, TransLogger’s logger (named the wsgi logger) will propagate its log messages
to the parent logger (the root logger), sending its output to the console when we request a page:

205

http://docs.python.org/3/library/logging.handlers.html#logging.FileHandler

18. LOGGING

00:50:53,694 INFO [myapp.views] Returning: Hello World!
(content-type: text/plain)

HTTP/1.1"™ 404 — "-"
"Mozilla/5.0 (Macintosh; U; Intel Mac 0OS X; en-US; rv:1.8.1.6) Gecko/200707R5

Firefox/2.0.0.6"

To direct TransLogger to an access. log FileHandler, we need the following to add a FileHandler
(named accessloq) to the list of handlers, and ensure that the wsgi logger is configured and uses this
handler accordingly:

Begin logging configuration

[loggers]

keys = root, myapp, wsgi
[handlers]

keys = console, accesslog

[logger_wsgi]

level = INFO
handlers = accesslog
qualname = wsgi
propagate = 0

[handler_ accesslog]

class = FileHandler

args = ('%(here)s/access.log','a')
level = INFO

formatter = generic

As mentioned above, non-root loggers by default propagate their log records to the root logger’s handlers
(currently the console handler). Setting propagate to 0 (False) here disables this; so the wsgi logger
directs its records only to the accesslog handler.

Finally, there’s no need to use the generic formatter with TransLogger as TransLogger itself provides
all the information we need. We’ll use a formatter that passes through the log messages as is. Add a new
formatter called accesslog by including the following in your configuration file:

[formatters]
keys = generic, accesslog

[formatter_accesslog]
format = % (message)s

206

00:50:53,695 INFO [wsgi] 192.168.1.111 - - [11/Aug/2011:20:09:33 -0700] "GET /hello

18.6. REQUEST LOGGING WITH PASTE’S TRANSLOGGER

Finally alter the existing configuration to wire this new accesslog formatter into the FileHandler:

[handler_ accesslog]

class = FileHandler

args = ('%(here)s/access.log','a')
level = INFO

formatter = accesslog

207

18. LOGGING

208

CHAPTER 19

PasteDeploy Configuration Files

Packages generated via a scaffold make use of a system created by Ian Bicking named PasteDeploy.
PasteDeploy defines a way to declare WSGI application configuration in an . ini file.

Pyramid uses this configuration file format as input to its WSGI server runner pserve, as well as other
commands such as pviews, pshell, proutes, and ptweens.

PasteDeploy is not a particularly integral part of Pyramid. It’s possible to create a Pyramid application
which does not use PasteDeploy at all. We show a Pyramid application that doesn’t use PasteDeploy in
Creating Your First Pyramid Application. However, all Pyramid scaffolds render PasteDeploy configura-
tion files, to provide new developers with a standardized way of setting deployment values, and to provide
new users with a standardized way of starting, stopping, and debugging an application.

This chapter is not a replacement for documentation about PasteDeploy; it only contextualizes the use of
PasteDeploy within Pyramid. For detailed documentation, see http://pythonpaste.org/deploy/.

19.1 PasteDeploy

PasteDeploy is the system that Pyramid uses to allow deployment settings to be specified using an . ini
configuration file format. It also allows the pserve command to work. Its configuration format provides
a convenient place to define application deployment settings and WSGI server settings, and its server
runner allows you to stop and start a Pyramid application easily.

209

http://pythonpaste.org/deploy/

19. PASTEDEPLOY CONFIGURATION FILES

19.1.1 Entry Points and PasteDeploy . ini Files

In the Creating a Pyramid Project chapter, we breezed over the meaning of a configuration line in the
deployment.ini file. This was the use = egg:MyProject line in the [app:main] section.
We breezed over it because it’s pretty confusing and “too much information” for an introduction to the
system. We’ll try to give it a bit of attention here. Let’s see the config file again:

V| ###

2 | # app configuration

3| # http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/environment
o | ###

¢ | [app:main]
7|use = egg:MyProject

9 |pyramid.reload_templates = true

10 |pyramid.debug_authorization = false
u |pyramid.debug_notfound = false

12 |pyramid.debug_routematch = false

13 |pyramid.default_locale_name = en

4 |pyramid.includes =

15 pyramid_debugtoolbar

7 |# By default, the toolbar only appears for clients from IP addresses
s |# '127.0.0.1" and '::1"'.

v | # debugtoolbar.hosts = 127.0.0.1 ::1

20
o | ###

» | # wsgl server configuration
3 | #H#H#

24
25 | [server:main]

% |use = egg:waltress#main
27 |host = 0.0.0.0

% |port = 6543

29
0 | ###

s1 | # logging configuration

» | # http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/logging.htm
3| ###

34
35 | [loggers]

36 | keys = root, myproject
37

33 | [handlers]

. html

9 | keys = console

210

19.1. PASTEDEPLOY

40
41 | [formatters]

2 |keys = generic
43
4 | [logger_root]

45 | level = INFO

4 | handlers = console
47
4 | [logger_myproject]
4 | level = DEBUG

50 | handlers =

51 |qualname = myproject
52
53 | [handler_ console]

4 |class = StreamHandler
ss |args = (sys.stderr,)
s6 | level = NOTSET

57| formatter = generic

58
59 | [formatter_generic]
6o | format = % (asctime)s % (levelname)-5.5s [%(name)s][%(threadName)s] % (message

The line in [app:main] above that says use = egg:MyProject is actually shorthand for a longer
spelling: use = egg:MyProject#main. The #main part is omitted for brevity, as #main is a
default defined by PasteDeploy. egg:MyProject#main is a string which has meaning to PasteDeploy.
It points at a setuptools entry point named main defined in the MyPro ject project.

Take a look at the generated setup . py file for this project.

import os
3 | from setuptools import setup, find_packages

s |here = os.path.abspath(os.path.dirname(__file_))
¢ |with open (os.path.join (here, 'README.txt')) as f:

7 README = f.read()

s |with open(os.path.join(here, 'CHANGES.txt')) as f:
9 CHANGES = f.read()

10

11 |requires = [

12 'pyramid',

13 'pyramid_chameleon',

14 'pyramid_debugtoolbar',

15 'waitress',

16]

211

19. PASTEDEPLOY CONFIGURATION FILES

17

18 | setup (name="MyProject"',

19 version='0.0",

20 description='MyProject',

21 long_description=README + '\n\n' + CHANGES,
2 classifiers=[

23 "Programming Language :: Python",
24 "Framework :: Pyramid",

2 "Topic :: Internet :: WWW/HTTP",
26 "Topic :: Internet :: WWW/HTTP :: WSGI :: Application",
27 1y

28 author="",

29 author_email="",

30 url="",

31 keywords="'web pyramid pylons',

32 packages=find_packages(),

33 include_package_data=True,

34 zip_safe=False,

35 install_requires=requires,

36 tests_require=requires,

37 test_suite="myproject",

33 entry_points="""\

39 [paste.app_factory]

40 main = myproject:main

41 mwn ’

42)

Note that ent ry_points is assigned a string which looks a lot like an . ini file. This string represen-
tation of an . ini file has a section named [paste.app_factory]. Within this section, there is a
key named main (the entry point name) which has a value myproject :main. The key main is what
our egg:MyProject#main value of the use section in our config file is pointing at, although it is
actually shortened to egg:MyProject there. The value represents a dotted Python name path, which
refers to a callable in our myproject package’s __init__ .py module.

The egg: prefix in egg:MyProject indicates that this is an entry point URI specifier, where the
“scheme” is “egg”. An “egg” is created when yourun setup.py install orsetup.py develop
within your project.

In English, this entry point can thus be referred to as a “PasteDeploy application factory in the
MyProject project which has the entry point named main where the entry point refers to a main
function in the mypackage module”. Indeed, if you open up the __init__.py module generated
within any scaffold-generated package, you’ll see a main function. This is the function called by Past-
eDeploy when the pserve command is invoked against our application. It accepts a global configuration
object and returns an instance of our application.

212

19.1. PASTEDEPLOY

19.1.2 [DEFAULT] Section of a PasteDeploy . ini File

You can add a [DEFAULT] section to your PasteDeploy .1ini file. Such a section should consist of
global parameters that are shared by all the applications, servers, and middleware defined within the con-
figuration file. The values in a [DEFAULT] section will be passed to your application’s main function
as global_config (see the reference to the main function in __init__.py).

213

19. PASTEDEPLOY CONFIGURATION FILES

214

CHAPTER 20

Command-Line Pyramid

Your Pyramid application can be controlled and inspected using a variety of command-line utilities. These
utilities are documented in this chapter.

20.1 Displaying Matching Views for a Given URL

See also:
See also the output of pviews —help.

For a big application with several views, it can be hard to keep the view configuration details in your head,
even if you defined all the views yourself. You can use the pviews command in a terminal window
to print a summary of matching routes and views for a given URL in your application. The pviews
command accepts two arguments. The first argument to pviews is the path to your application’s . ini
file and section name inside the . ini file which points to your application. This should be of the format
config_file#section_name. The second argument is the URL to test for matching views. The
section_name may be omitted; if it is, it’s considered to be main.

Here is an example for a simple view configuration using traversal:

215

20. COMMAND-LINE PYRAMID

$ SVENV/bin/pviews development.ini#tutorial /FrontPage

URL

= /FrontPage

context: <tutorial.models.Page object at 0xal2536c>
view name:

tutorial.views.view_page
required permission = view

The output always has the requested URL at the top and below that all the views that matched with their
view configuration details. In this example only one view matches, so there is just a single View section.
For each matching view, the full code path to the associated view callable is shown, along with any
permissions and predicates that are part of that view configuration.

A more complex configuration might generate something like this:

w

20

21

22

23

24

25

26

$ SVENV/bin/pviews development.ini#shootout /about

URL

= /about

context: <shootout.models.RootFactory object at 0xab56668c>
view name: about

route name: about

route pattern: /about

route path: /about

subpath:

route predicates (request method = GET)

shootout .views.about_view
required permission = view
view predicates (request_param testing, header X/header)

route name: about_post
route pattern: /about
route path: /about

216

20.2. THE INTERACTIVE SHELL

27 subpath:

28 route predicates (request method = POST)
29

30 View:

2

k) shootout.views.about_view_post

3 required permission = view

34 view predicates (request_param test)
35

36 View:

7y T

38 shootout.views.about_view_post2

39 required permission = view

40 view predicates (request_param test2)

In this case, we are dealing with a URL dispatch application. This specific URL has two matching routes.
The matching route information is displayed first, followed by any views that are associated with that
route. As you can see from the second matching route output, a route can be associated with more than
one view.

For a URL that doesn’t match any views, pviews will simply print out a Not found message.

20.2 The Interactive Shell

See also:
See also the output of pshell —help.

Once you’ve installed your program for development using setup.py develop, you can use an inter-
active Python shell to execute expressions in a Python environment exactly like the one that will be used
when your application runs “for real”. To do so, use the pshell command line utility.

The argument to pshe 11 follows the format config_filefsection_name where config_file
is the path to your application’s .ini file and section_name is the app section name inside the
.ini file which points to your application. For example, your application .ini file might have an
[app:main] section that looks like so:

217

20. COMMAND-LINE PYRAMID

1| [app:main]

2 |use = egg:MyProject

3 |pyramid.reload_templates = true

4 |pyramid.debug_authorization = false
s |pyramid.debug_notfound = false

6 |pyramid.debug_templates = true

7 |pyramid.default_locale_name = en

If so, you can use the following command to invoke a debug shell using the name main as a section
name:

$ SVENV/bin/pshell starter/development.ini#main
Python 2.6.5 (r265:79063, Apr 29 2010, 00:31:32)
[GCC 4.4.3] on linux2

Type "help" for more information.

Environment:
app The WSGI application.
registry Active Pyramid registry.
request Active request object.
root Root of the default resource tree.

root_factory Default root factory used to create “root’

>>> root

<myproject.resources.MyResource object at 0x445270>
>>> registry

<Registry myproject>

>>> registry.settings|['pyramid.debug_notfound']
False

>>> from myproject.views import my_view

>>> from pyramid.request import Request

>>> r = Request.blank('/")

>>> my_view (r)

{'project': 'myproject'}

The WSGI application that is loaded will be available in the shell as the app global. Also, if the applica-
tion that is loaded is the Pyramid app with no surrounding middleware, the root object returned by the
default root factory, registry, and request will be available.

You can also simply rely on the main default section name by omitting any hash after the filename:

$ SVENV/bin/pshell starter/development.ini

Press Ct r1-D to exit the interactive shell (or Ct r1-Z on Windows).

218

20.2. THE INTERACTIVE SHELL

20.2.1 Extending the Shell

It is convenient when using the interactive shell often to have some variables significant to your application
already loaded as globals when you start the pshell. To facilitate this, pshell will look for a special
[pshell] section in your INI file and expose the subsequent key/value pairs to the shell. Each key
is a variable name that will be global within the pshell session; each value is a dotted Python name. If
specified, the special key setup should be a dotted Python name pointing to a callable that accepts the
dictionary of globals that will be loaded into the shell. This allows for some custom initializing code to be
executed each time the pshell is run. The setup callable can also be specified from the commandline
using the ——setup option which will override the key in the INI file.

For example, you want to expose your model to the shell along with the database session so that you can
mutate the model on an actual database. Here, we’ll assume your model is stored in the myapp .models
package.

[pshell]

setup = myapp.lib.pshell.setup

m = myapp.models

session = myapp.models.DBSession

[ST

t = transaction

By defining the setup callable, we will create the module myapp.lib.pshell containing a callable
named setup that will receive the global environment before it is exposed to the shell. Here we mutate
the environment’s request as well as add a new value containing a WebTest version of the application to
which we can easily submit requests.

myapp/lib/pshell.py
from webtest import TestApp

def setup(env):
env(['request'].host = 'www.example.com'
env|'request'].scheme = 'https'
env['testapp']l = TestApp (env['app'l])

B N N S R S

When this INI file is loaded, the extra variables m, session and t will be available for use immediately.
Since a setup callable was also specified, it is executed and a new variable testapp is exposed, and
the request is configured to generate urls from the host http://www.example.com. For example:

$ SVENV/bin/pshell starter/development.ini
Python 2.6.5 (r265:79063, Apr 29 2010, 00:31:32)
[GCC 4.4.3] on linux?2

Type "help" for more information.

219

20. COMMAND-LINE PYRAMID

Environment:
app The WSGI application.
registry Active Pyramid registry.
request Active request object.
root Root of the default resource tree.
root_factory Default root factory used to create “root' .
testapp <webtest.TestApp object at ...>

Custom Variables:

m myapp.models
session myapp.models.DBSession
t transaction

>>> testapp.get ('/")

<200 OK text/html body='<!DOCTYPE...1>\n'/3337>
>>> request.route_url ('home')
'https://www.example.com/"'

20.2.2 IPython or bpython

If you have IPython and/or bpython in the interpreter you use to invoke the pshell command, pshell
will autodiscover and use the first one found, in this order: IPython, bpython, standard Python inter-
preter. However you could specifically invoke your choice with the -p choice or ——python-shell
choice option.

’$ SVENV/bin/pshell -p ipython | bpython | python development.ini#MyProject

20.3 Displaying All Application Routes

See also:
See also the output of proutes —help.

You can use the proutes command in a terminal window to print a summary of routes related to your
application. Much like the pshell command (see The Interactive Shell), the proutes command ac-
cepts one argument with the format config_file#section_name. The config_file isthe path
to your application’s .ini file, and section_name is the app section name inside the .ini file
which points to your application. By default, the section_name is main and can be omitted.

For example:

220

http://en.wikipedia.org/wiki/IPython
http://bpython-interpreter.org/

20.3. DISPLAYING ALL APPLICATION ROUTES

2 | Name

N

4 | debugtoolbar

s |__static/
6|___static2/

7| __pdt_images/

s |a

9 |no_view_attached
10 | route_and_view_attached
11 |method_conflicts
2 |multiview

13 | not_post

$ SVENV/bin/proutes development.ini

Pattern
/_debug_toolbar/*subpath
/static/+subpath
/static2/+subpath
/pdt_images/*subpath
/

/

/

/conflicts
/multiview

/not_post

View

<wsgiapp>
dummy_starter:static
/var/www/static/
pyramid_debugtoolbar
<unknown>

<unknown>
appl.standard_views.
appl.standard_confli
appl.standard_views.]
appl.standard_views.1

tstatic/ime

route_and_:
cts
multiview
ultview

proutes generates a table with four columns: Name, Pattern, View, and Method. The items listed in the
Name column are route names, the items listed in the Pattern column are route patterns, the items listed
in the View column are representations of the view callable that will be invoked when a request matches
the associated route pattern, and the items listed in the Method column are the request methods that are
associated with the route name. The View column may show <unknown> if no associated view callable
could be found. The Method column, for the route name, may show either <route mismatch> if the
view callable does not accept any of the route’s request methods, or * if the view callable will accept any
of the route’s request methods. If no routes are configured within your application, nothing will be printed
to the console when proutes is executed.

It is convenient when using the proutes command often to configure which columns and the order you
would like to view them. To facilitate this, proutes will look for a special [proutes] section in your

.ini file and use those as defaults.

For example you may remove the request method and place the view first:

1 [proutes]

2 format = view

3 name

4 pattern

You can also separate the formats with commas or spaces:

1 [proutes]

2 format = view name pattern

3

4 [proutes]

5 format = view, name, pattern

221

20. COMMAND-LINE PYRAMID

If you want to temporarily configure the columns and order, there is the argument ——format, which
is a comma separated list of columns you want to include. The current available formats are name,
pattern, view, and method.

20.4 Displaying “Tweens”

See also:
See also the output of ptweens —help.

A tween is a bit of code that sits between the main Pyramid application request handler and the WSGI
application which calls it. A user can get a representation of both the implicit tween ordering (the ordering
specified by calls to pyramid.config.Configurator.add_tween ()) and the explicit tween
ordering (specified by the pyramid.tweens configuration setting) using the ptweens command.
Tween factories will show up represented by their standard Python dotted name in the pt weens output.

For example, here’s the pt weens command run against a system configured without any explicit tweens:

$ SVENV/bin/ptweens development.ini
2 | "pyramid.tweens" config value NOT set (implicitly ordered tweens used)

4| Implicit Tween Chain

6 |Position Name Alias
P L
8 | — - INGRESS
9|0 pyramid_debugtoolbar.toolbar.toolbar_tween_factory pdbt
0|1 pyramid.tweens.excview_tween_factory excview
|- - MAIN

Here’s the ptweens command run against a system configured with explicit tweens defined in its
development.ini file:

$ ptweens development.ini
2 | "pyramid.tweens" config value set (explicitly ordered tweens used)

4 |Explicit Tween Chain (used)
6 |Position Name

7| ————==— _—

8 | — INGRESS

222

20.5. INVOKING A REQUEST

starter.tween_factory?2
starter.tween_factoryl
pyramid.tweens.excview_tween_factory
- MAIN

N PO

Implicit Tween Chain (not used)

Position Name

- INGRESS

0 pyramid_debugtoolbar.toolbar.toolbar_tween_factory
1 pyramid.tweens.excview_tween_factory

- MAIN

Here’s the application configuration section of the development . ini used by the above ptweens
command which reports that the explicit tween chain is used:

[app:main]

use = egg:starter

reload_templates = true

debug_authorization = false

debug_notfound = false

debug_routematch = false

debug_templates = true

default_locale_name = en

pyramid.include = pyramid_debugtoolbar

pyramid.tweens = starter.tween_factory?2
starter.tween_factoryl
pyramid.tweens.excview_tween_factory

See Registering Tweens for more information about tweens.

20.5 Invoking a Request

See also:

See also the output of prequest —help.

You can use the prequest command-line utility to send a request to your application and see the re-
sponse body without starting a server.

There are two required arguments to prequest:

223

20. COMMAND-LINE PYRAMID

* The config file/section: follows the format config_file#section_name, where
config_file is the path to your application’s .ini file and section_name is the app
section name inside the .ini file. The section_name is optional; it defaults to main. For
example: development .ini.

* The path: this should be the non-URL-quoted path element of the URL to the resource you’d like
to be rendered on the server. For example, /.

For example:

$ SVENV/bin/prequest development.ini /

This will print the body of the response to the console on which it was invoked.
Several options are supported by prequest. These should precede any config file name or URL.

prequest hasa—d (i.e., ——display-headers) option which prints the status and headers returned
by the server before the output:

$ SVENV/bin/prequest -d development.ini /

This will print the status, headers, and the body of the response to the console.

You can add request header values by using the ——header option:

$ SVENV/bin/prequest --header=Host:example.com development.ini /

Headers are added to the WSGI environment by converting them to their CGI/WSGI equivalents (e.g.,
Host=example.com will insert the HTTP_HOST header variable as the value example.com).
Multiple ——header options can be supplied. The special header value content-type sets the
CONTENT_TYPE in the WSGI environment.

By default, prequest sends a GET request. You can change this by using the -m (aka ——method)
option. GET, HEAD, POST, and DELETE are currently supported. When you use POST, the standard
input of the prequest process is used as the POST body:

$ SVENV/bin/prequest -mPOST development.ini / < somefile

224

20.6. USING CUSTOM ARGUMENTS TO PYTHON WHEN RUNNING P « SCRIPTS

20.6 Using Custom Arguments to Python when Running p*
Scripts

New in version 1.5.

Each of Pyramid’s console scripts (pserve, pviews, etc.) can be run directly using python -m,
allowing custom arguments to be sent to the Python interpreter at runtime. For example:

’python -3 -m pyramid.scripts.pserve development.ini

20.7 Showing All Installed Distributions and Their Versions

New in version 1.5.
See also:
See also the output of pdistreport —help.

You can use the pdistreport command to show the Pyramid version in use, the Python version in
use, and all installed versions of Python distributions in your Python environment:

$ SVENV/bin/pdistreport
Pyramid version: 1.5dev
Platform Linux-3.2.0-51-generic-x86_64-with-debian-wheezy-sid
Packages:
authapp 0.0
/home/chrism/projects/foo/src/authapp
beautifulsoupd4d 4.1.3
/home/chrism/projects/foo/lib/python2.7/site-packages/beautifulsoupd-4.
. more output

pdistreport takes no options. Its output is useful to paste into a pastebin when you are having
problems and need someone with more familiarity with Python packaging and distribution than you have
to look at your environment.

225

L.3-py2.7.¢

20. COMMAND-LINE PYRAMID

20.8 Writing a Script

All web applications are, at their hearts, systems which accept a request and return a response. When
a request is accepted by a Pyramid application, the system receives state from the request which is later
relied on by your application code. For example, one view callable may assume it’s working against a
request that has a request .matchdict of a particular composition, while another assumes a different
composition of the matchdict.

In the meantime, it’s convenient to be able to write a Python script that can work “in a Pyramid environ-
ment”, for instance to update database tables used by your Pyramid application. But a “real” Pyramid
environment doesn’t have a completely static state independent of a request; your application (and Pyra-
mid itself) is almost always reliant on being able to obtain information from a request. When you run
a Python script that simply imports code from your application and tries to run it, there just is no re-
quest data, because there isn’t any real web request. Therefore some parts of your application and some
Pyramid APIs will not work.

For this reason, Pyramid makes it possible to run a script in an environment much like the environment
produced when a particular request reaches your Pyramid application. This is achieved by using the
pyramid.paster.bootstrap () command in the body of your script.

New in version 1.1: pyramid.paster.bootstrap ()
In the simplest case, pyramid.paster.bootstrap () can be used with a single argument, which

accepts the PasteDeploy .1ini file representing your Pyramid application’s configuration as a single
argument:

from pyramid.paster import bootstrap
env = bootstrap('/path/to/my/development.ini'")
print (env['request'].route_url ('home'))

pyramid.paster.bootstrap () returns a dictionary containing framework-related information.
This dictionary will always contain a request object as its request key.

The following keys are available in the env dictionary returned by
pyramid.paster.bootstrap():

request
A pyramid. request.Request object implying the current request state for your script.
app

226

20.8. WRITING A SCRIPT

The WSGI application object generated by bootstrapping.
root

The resource root of your Pyramid application. This is an object generated by the root factory
configured in your application.

registry
The application registry of your Pyramid application.

closer
A parameterless callable that can be used to pop an internal Pyramid thread-
local stack (used by pyramid.threadlocal.get_current_registry() and

pyramid.threadlocal.get_current_request ())when your scripting job is fin-
ished.

Let’s assume that the /path/to/my/development.ini file used in the example above looks like
s0:

[pipeline:main]
pipeline = translogger
another

[filter:translogger]

filter_app_factory = egg:Paste#translogger
setup_console_handler = False

logger_name = wsgi

[app:another]
use = egg:MyProject

The configuration loaded by the above bootstrap example will use the configura-
tion implied by the [pipeline:main] section of your configuration file by default.
Specifying /path/to/my/development.ini is logically equivalent to specifying
/path/to/my/development .inifmain. In this case, we’ll be using a configuration that
includes an app object which is wrapped in the Paste “translogger” middleware (which logs requests to
the console).

You can also specify a particular section of the PasteDeploy . ini file to load instead of main:

227

20. COMMAND-LINE PYRAMID

from pyramid.paster import bootstrap
env = bootstrap('/path/to/my/development.inifanother’)
print (env['request'].route_url ('home'))

The above example specifies the another app, pipeline, or composite section of your
PasteDeploy configuration file. The app object present in the env dictionary returned by
pyramid.paster.bootstrap () will be a Pyramid router.

20.8.1 Changing the Request

By default, Pyramid will generate a request object in the env dictionary for the URL
http://localhost:80/. This means that any URLs generated by Pyramid during the execution
of your script will be anchored here. This is generally not what you want.

So how do we make Pyramid generate the correct URLs?

Assuming that you have a route configured in your application like so:

config.add_route('verify', '/verify/{code}")

You need to inform the Pyramid environment that the WSGI application is handling requests from a
certain base. For example, we want to simulate mounting our application at https.//example.com/prefix,
to ensure that the generated URLs are correct for our deployment. This can be done by either mutat-
ing the resulting request object, or more simply by constructing the desired request and passing it into
bootstrap():

from pyramid.paster import bootstrap
from pyramid.request import Request

request = Request.blank('/', base_url='https://example.com/prefix')

env = bootstrap('/path/to/my/development.inifanother', request=request)
print (env(['request'].application_url)

will print 'https://example.com/prefix’'

Now you can readily use Pyramid’s APIs for generating URLSs:

env|'request'].route_url('verify', code='1337")
will return 'https://example.com/prefix/verify/1337"'

228

20.9. MAKING YOUR SCRIPT INTO A CONSOLE SCRIPT

20.8.2 Cleanup

When your scripting logic finishes, it’s good manners to call the closer callback:

from pyramid.paster import bootstrap
env = bootstrap('/path/to/my/development.ini'")

.. do stuff ...

env['closer'] ()

20.8.3 Setting Up Logging

By default, pyramid.paster.bootstrap () does not configure logging parameters present in the
configuration file. If you’d like to configure logging based on [logger] and related sections in the
configuration file, use the following command:

import pyramid.paster
pyramid.paster.setup_logging ('/path/to/my/development.ini")

See Logging for more information on logging within Pyramid.

20.9 Making Your Script into a Console Script

A “console script” is setuptools terminology for a script that gets installed into the bin directory of a
Python virtualenv (or “base” Python environment) when a distribution which houses that script is in-
stalled. Because it’s installed into the bin directory of a virtualenv when the distribution is installed, it’s
a convenient way to package and distribute functionality that you can call from the command-line. It’s
often more convenient to create a console script than it is to create a . py script and instruct people to call
it with the “right” Python interpreter. A console script generates a file that lives in bin, and when it’s
invoked it will always use the “right” Python environment, which means it will always be invoked in an
environment where all the libraries it needs (such as Pyramid) are available.

In general, you can make your script into a console script by doing the following:

» Use an existing distribution (such as one you’ve already created via pcreate) or create a new
distribution that possesses at least one package or module. It should, within any module within the
distribution, house a callable (usually a function) that takes no arguments and which runs any of the
code you wish to run.

229

20. COMMAND-LINE PYRAMID

* Adda [console_scripts] sectiontothe entry_points argument of the distribution which
creates a mapping between a script name and a dotted name representing the callable you added to
your distribution.

* Runsetup.py develop, setup.py install,oreasy_install to getyour distribution
reinstalled. When you reinstall your distribution, a file representing the script that you named in
the last step will be in the bin directory of the virtualenv in which you installed the distribution. It
will be executable. Invoking it from a terminal will execute your callable.

As an example, let’s create some code that can be invoked by a console script that prints the deployment
settings of a Pyramid application. To do so, we’ll pretend you have a distribution with a package in it
named myproject. Within this package, we’ll pretend you’ve added a scripts.py module which
contains the following code:

1 | # myproject.scripts module

2

3 | import optparse

4 | import sys

5 | import textwrap

6

7| from pyramid.paster import bootstrap

8

9 |def settings_show() :

10 description = """\

1 Print the deployment settings for a Pyramid application. Example:
12 'show_settings deployment.ini'

13 e

14 usage = "usage: %$prog config_uri"

15 parser = optparse.OptionParser (

16 usage=usage,

17 description=textwrap.dedent (description)

18)

19 parser.add_option (

20 '-o', '—--omit',

21 dest="omit',

2 metavar='PREFIX',

23 type='string',

2 action="append',

25 help=("Omit settings which start with PREFIX (you can use this "
26 "option multiple times)")

27)

28

29 options, args = parser.parse_args(sys.argv([l:])
30 if not len(args) >= 1:

31 print ('You must provide at least one argument')
32 return 2

230

20.9. MAKING YOUR SCRIPT INTO A CONSOLE SCRIPT

33

34

35

36

37

38

39

40

41

42

43

44

45

This script uses the Python optparse module to allow us to make sense out of extra arguments passed
to the script. It uses the pyramid.paster.bootstrap () function to get information about the
application defined by a config file, and prints the deployment settings defined in that config file.

After adding this script to the package, you’ll need to tell your distribution’s setup . py about its exis-
tence. Within your distribution’s top-level directory, your setup . py file will look something like this:

20

21

22

23

24

config _uri = args[0]
omit = options.omit
if omit is None:
omit = []
env = bootstrap(config_uri)
settings, closer = env|['registry'].settings, env|['closer']
try:
for k, v in settings.items{():
if any([k.startswith(x) for x in omit]):
continue
print ('%-40s s-20s" % (k, Wv))
finally:
closer ()

import os
from setuptools import setup, find_packages

here = os.path.abspath(os.path.dirname (__file_))

with open (os.path. join (here, 'README.txt')) as f:
README = f.read()

with open(os.path.join (here, 'CHANGES.txt')) as f:
CHANGES = f.read()

requires = ['pyramid', 'pyramid_debugtoolbar']

setup (name='"'MyProject',
version='0.0",
description='My project',
long_description=README + '\n\n' + CHANGES,
classifiers=][

"Programming Language :: Python",
"Framework :: Pylons",
"Topic :: Internet :: WWW/HTTP",
"Topic :: Internet :: WWW/HTTP :: WSGI :: Application",
]l
author="'",
author_email="",

231

20. COMMAND-LINE PYRAMID

25 url="",

26 keywords="'web pyramid pylons',
27 packages=find_packages (),
28 include_package_data=True,
29 zip_safe=False,

30 install_requires=requires,
31 tests_require=requires,

3 test_suite="myproject",

3 entry_points = """\

34 [paste.app_factory]

35 main = myproject:main

36 s

37)

We’re going to change the setup.py file to add a [console_scripts] section within
the entry points string. Within this section, you should specify a scriptname =
dotted.path.to:yourfunction line. For example:

[console_scripts]
show_settings = myproject.scripts:settings_show

The show_settings name will be the name of the script that is installed into bin. The colon (:)
between myproject.scripts and settings_show above indicates that myproject.scripts
is a Python module, and settings_show is the function in that module which contains the code you’d
like to run as the result of someone invoking the show_settings script from their command line.

The result will be something like:

| | import os
3 | from setuptools import setup, find_packages

s |here = os.path.abspath(os.path.dirname(__file_))
¢ |with open (os.path.join (here, 'README.txt')) as f:

7 README = f.read()

s |with open(os.path.join(here, 'CHANGES.txt')) as f:
9 CHANGES = f.read()

10

1 |requires = ['pyramid', 'pyramid_debugtoolbar']

13 | setup (name="'MyProject',

14 version='0.0",
15 description='My project',
16 long_description=README + '\n\n' + CHANGES,

232

20.9. MAKING YOUR SCRIPT INTO A CONSOLE SCRIPT

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

classifiers=][

"Programming Language Python",
"Framework Pylons",
"Topic Internet WWW/HTTP",
"Topic Internet WWW/HTTP WSGI Application",
]I
author="",
author_email="",
url="",

keywords='web pyramid pylons',
packages=find_packages(),
include_package_data=True,

zip_safe=False,

install_requires=requires,

tests_require=requires,
test_suite="myproject",
entry_points = """\
[paste.app_factory]
main = myproject:main
[console_scripts]
show_settings =

nwn
I4

)

myproject.scripts:settings_show

Once you’ve done this, invoking $$SVENV/bin/python setup.py develop will install a file
named show_settings into the $somevirtualenv/bin directory with a small bit of Python code
that points to your entry point. It will be executable. Running it without any arguments will print an error
and exit. Running it with a single argument that is the path of a config file will print the settings. Running
it with an ——omit=foo argument will omit the settings that have keys that start with foo. Running it
with two “omit” options (e.g., ——omit=foo -—omit=bar) will omit all settings that have keys that
start with either foo or bar:

$ SVENV/bin/show_settings development.ini —--omit=pyramid —--omit=debugtoolba

debug_routematch
debug_templates
reload_templates
mako.directories
debug_not found
default_locale_name
reload_resources
debug_authorization
reload_assets
prevent_http_cache

False
True
True
[]

False
en
False
False
False
False

233

20. COMMAND-LINE PYRAMID

Pyramid’s pserve, pcreate, pshell, prequest, ptweens, and other p« scripts are implemented
as console scripts. When you invoke one of those, you are using a console script.

234

CHAPTER 21

Internationalization and Localization

Internationalization (118n) is the act of creating software with a user interface that can potentially be
displayed in more than one language or cultural context. Localization (110n) is the process of displaying
the user interface of an internationalized application in a particular language or cultural context.

Pyramid offers internationalization and localization subsystems that can be used to translate the text of
buttons, error messages, and other software- and template-defined values into the native language of a
user of your application.

21.1 Creating a Translation String

While you write your software, you can insert specialized markup into your Python code that makes it
possible for the system to translate text values into the languages used by your application’s users. This
markup creates a translation string. A translation string is an object that behaves mostly like a normal
Unicode object, except that it also carries around extra information related to its job as part of the Pyramid
translation machinery.

21.1.1 Using the TranslationString Class

The most primitive way to create a translation string is to use the
pyramid.il8n.TranslationString callable:

235

21. INTERNATIONALIZATION AND LOCALIZATION

from pyramid.il8n import TranslationString
2 |ts = TranslationString('Add")

This creates a Unicode-like object that is a TranslationString.

O For people more familiar with Zope i18n, a TranslationString is a lot like a
zope.il8nmessageid.Message object. It is not a subclass, however. For people more fa-
miliar with Pylons or Django 118n, using a TranslationString is a lot like using “lazy” versions of
related gettext APIs.

The first argument to TranslationString is the msgid; it is required. It represents the key into
the translation mappings provided by a particular localization. The msgid argument must be a Unicode
object or an ASCII string. The msgid may optionally contain replacement markers. For instance:

from pyramid.il8n import TranslationString
2|ts = TranslationString('Add ${number}")

Within the string above, ${number} is a replacement marker. It will be replaced by whatever is in
the mapping for a translation string. The mapping may be supplied at the same time as the replacement
marker itself:

from pyramid.il8n import TranslationString
> |ts = TranslationString('Add ${number}', mapping={'number':1})

Any number of replacement markers can be present in the msgid value, any number of times. Only
markers which can be replaced by the values in the mapping will be replaced at translation time. The
others will not be interpolated and will be output literally.

A translation string should also usually carry a domain. The domain represents a translation category to
disambiguate it from other translations of the same msgid, in case they conflict.

from pyramid.il8n import TranslationString
2|ts = TranslationString('Add ${number}', mapping={'number':1},
3 domain="'"form'")

The above translation string named a domain of form. A franslator function will often use the domain
to locate the right translator file on the filesystem which contains translations for a given domain. In this
case, if it were trying to translate our msgid to German, it might try to find a translation from a gettext file
within a translation directory like this one:

236

21.1. CREATING A TRANSLATION STRING

locale/de/LC_MESSAGES/form.mo

In other words, it would want to take translations from the form.mo translation file in the German
language.

Finally, the TranslationString constructor accepts a default argument. If a default argument is
supplied, it replaces usages of the msgid as the default value for the translation string. When default
is None, the msgid value passed to a TranslationString is used as an implicit message identifier. Message
identifiers are matched with translations in translation files, so it is often useful to create translation strings
with “opaque” message identifiers unrelated to their default text:

from pyramid.il8n import TranslationString
2 |ts = TranslationString('add-number', default='Add S${number}',
3 domain="'form', mapping={'number':1})

When default text is used, Default text objects may contain replacement values.

21.1.2 Using the TranslationStringFactory Class

Another way to generate a translation string is to use the TranslationStringFactory object. This
object is a translation string factory. Basically a translation string factory presets the domain value of
any translation string generated by using it. For example:

from pyramid.il8n import TranslationStringFactory
2 |_ = TranslationStringFactory ('pyramid")
3|lts = _('add-number', default='Add ${number}', mapping={'number':1})

O We assigned the translation string factory to the name _. This is a convention which will be
supported by translation file generation tools.

After assigning _totheresultof a TranslationStringFactory (), the subsequent result of calling
_will be a TranslationString instance. Even though a domain value was not passed to _ (as
would have been necessary if the TranslationString constructor were used instead of a translation
string factory), the domain attribute of the resulting translation string will be pyramid. As a result, the
previous code example is completely equivalent (except for spelling) to:

237

21. INTERNATIONALIZATION AND LOCALIZATION

from pyramid.il8n import TranslationString as _
ts = _('add-number', default='Add ${number}', mapping={'number':1},
domain="'pyramid")

[P R

You can set up your own translation string factory much like the one provided above by using the
TranslationStringFactory class. For example, if you’d like to create a translation string fac-
tory which presets the domain value of generated translation strings to form, you’d do something like
this:

from pyramid.il8n import TranslationStringFactory
_ = TranslationStringFactory ('form")
3|ts = _('add-number', default='Add ${number}', mapping={'number':1})

)

Creating a unique domain for your application via a translation string factory is best practice. Using your
own unique translation domain allows another person to reuse your application without needing to merge
your translation files with their own. Instead they can just include your package’s translation directory
via the pyramid.config.Configurator.add_translation dirs () method.

O For people familiar with Zope internationalization, a TranslationStringFactory is a lot like a
zope.il8nmessageid.MessageFactory object. It is not a subclass, however.

21.2 Working with gettext Translation Files

The basis of Pyramid translation services is GNU gettext. Once your application source code files and
templates are marked up with translation markers, you can work on translations by creating various kinds
of gettext files.

O The steps a developer must take to work with gettext message catalog files within a Pyramid
application are very similar to the steps a Pylons developer must take to do the same. See the Pylons
Internationalization and Localization documentation for more information.

GNU gettext uses three types of files in the translation framework, . pot files, . po files, and . mo files.

.pot (Portable Object Template) files

238

http://docs.pylonsproject.org/projects/pylons-webframework/en/latest/i18n.html#i18n
http://docs.pylonsproject.org/projects/pylons-webframework/en/latest/i18n.html#i18n

21.2. WORKING WITH GETTEXT TRANSLATION FILES

A .pot file is created by a program which searches through your project’s source code and
which picks out every message identifier passed to one of the _ () functions (e.g., translation
string constructions). The list of all message identifiers is placed into a .pot file, which
serves as a template for creating . po files.

.po (Portable Object) files

The list of messages in a . pot file are translated by a human to a particular language; the
result is saved as a . po file.

.mo (Machine Object) files

A .po file is turned into a machine-readable binary file, which is the .mo file. Compiling
the translations to machine code makes the localized program start faster.

The tools for working with gettext translation files related to a Pyramid application are Lingua and Gettext.
Lingua can scrape i18n references out of Python and Chameleon files and create the . pot file. Gettext
includes msgme rge tool to update a . po file from an updated .pot file and msgfmt to compile .po
files to . mo files.

21.2.1 Installing Lingua and Gettext

In order for the commands related to working with gettext translation files to work properly, you will
need to have Lingua and Gettext installed into the same environment in which Pyramid is installed.

Installation on UNIX

Gettext is often already installed on UNIX systems. You can check if it is installed by testing if the
msgfmt command is available. If it is not available you can install it through the packaging system from
your OS; the package name is almost always gettext. For example on a Debian or Ubuntu system run
this command:

$ sudo apt-get install gettext

Installing Lingua is done with the Python packaging tools. If the virtualenv into which you’ve installed
your Pyramid application lives in /my/virtualenv, you can install Lingua like so:

239

21. INTERNATIONALIZATION AND LOCALIZATION

$ cd /my/virtualenv
$ S$VENV/bin/easy_install lingua

Installation on Windows

There are several ways to install Gettext on Windows: it is included in the Cygwin collection, or you can
use the installer from the GnuWin32, or compile it yourself. Make sure the installation path is added to
your $PATH.

Installing Lingua is done with the Python packaging tools. If the virtualenv into which you’ve installed
your Pyramid application lives in C: \my\virtualenwv, you can install Lingua like so:

C> S$VENVS%\Scripts\easy_install lingua

21.2.2 Extracting Messages from Code and Templates

Once Lingua is installed, you may extract a message catalog template from the code and Chameleon
templates which reside in your Pyramid application. You run a pot-create command to extract the
messages:

$ cd /place/where/myapplication/setup.py/lives
$ mkdir -p myapplication/locale
$ SVENV/bin/pot-create —-o myapplication/locale/myapplication.pot src

The message catalog . pot template willend up inmyapplication/locale/myapplication.pot.

21.2.3 Initializing a Message Catalog File

Once you’ve extracted messages into a . pot file (see Extracting Messages from Code and Templates), to
begin localizing the messages present in the . pot file, you need to generate at least one . po file. A .po
file represents translations of a particular set of messages to a particular locale. Initialize a . po file for a
specific locale from a pre-generated . pot template by using the msginit command from Gettext:

240

http://www.cygwin.com/
http://gnuwin32.sourceforge.net/packages/gettext.htm

21.2. WORKING WITH GETTEXT TRANSLATION FILES

cd /place/where/myapplication/setup.py/lives

cd myapplication/locale

mkdir -p es/LC_MESSAGES

msginit -1 es -o es/LC_MESSAGES/myapplication.po

Uy Ur U nr

This will create a new message catalog . po fileinmyapplication/locale/es/LC_MESSAGES/myapplicat

Once the file is there, it can be worked on by a human translator. One tool which may help with this is
Poedit.

Note that Pyramid itself ignores the existence of all . po files. For a running application to have transla-
tions available, a . mo file must exist. See Compiling a Message Catalog File.

21.2.4 Updating a Catalog File

If more translation strings are added to your application, or translation strings change, you will need to
update existing . po files based on changes to the . pot file, so that the new and changed messages can
also be translated or re-translated.

First, regenerate the .pot file as per Extracting Messages from Code and Templates. Then use the
msgmerge command from Gettext.

$ cd /place/where/myapplication/setup.py/lives
$ cd myapplication/locale
$ msgmerge —--update es/LC_MESSAGES/myapplication.po myapplication.pot

21.2.5 Compiling a Message Catalog File

Finally, to prepare an application for performing actual runtime translations, compile . po files to .mo
files using the msgfmt command from Gettext:

$ cd /place/where/myapplication/setup.py/lives
$ msgfmt -o myapplication/locale/es/LC_MESSAGES/myapplication.mo \
myapplication/locale/es/LC_MESSAGES/myapplication.po

This will create a . mo file for each . po file in your application. As long as the translation directory in
which the .mo file ends up in is configured into your application (see Adding a Translation Directory),
these translations will be available to Pyramid.

241

http://www.poedit.net/

21. INTERNATIONALIZATION AND LOCALIZATION

21.3 Using a Localizer

A localizer is an object that allows you to perform translation or pluralization “by hand” in an application.
You may use the pyramid. request.Request.localizer attribute to obtain a localizer. The
localizer object will be configured to produce translations implied by the active locale negotiator, or a
default localizer object if no explicit locale negotiator is registered.

2 localizer = request.localizer

def aview(request):

ﬁ If you need to create a localizer for a locale, use the pyramid.i18n.make_localizer ()
function.

21.3.1 Performing a Translation

A localizer has a t ranslate method which accepts either a translation string or a Unicode string and
which returns a Unicode object representing the translation. Generating a translation in a view component
of an application might look like so:

[P SR

from pyramid.il8n import TranslationString

ts = TranslationString('Add ${number}', mapping={'number':1},
domain='"pyramid")

def aview(request):

localizer = request.localizer
translated = localizer.translate(ts) # translation string
... use translated ...

The request.localizer attribute will be a pyramid.il8n.Localizer object
bound to the locale name represented by the request. The translation returned from its
pyramid.il8n.Localizer.translate () method will depend on the domain attribute
of the provided translation string as well as the locale of the localizer.

O If you’re using Chameleon templates, you don’t need to pre-translate translation strings this
way. See Chameleon Template Support for Translation Strings.

242

21.3. USING A LOCALIZER

21.3.2 Performing a Pluralization

A localizer has a pluralize method with the following signature:

def pluralize(singular, plural, n, domain=None, mapping=None) :

The simplest case is the singular and plural arguments being passed as Unicode literals. This
returns the appropriate literal according to the locale pluralization rules for the number n, and interpolates

mapping.

1 |def aview (request) :

2 localizer = request.localizer
3 translated = localizer.pluralize('Item', 'Items', 1, 'mydomain')
4 # ... use translated

However, for support of other languages, the singular argument should be a Unicode value represent-
ing a message identifier. In this case the plural value is ignored. domain should be a translation
domain, and mapping should be a dictionary that is used for replacement value interpolation of the
translated string.

The value of n will be used to find the appropriate plural form for the current language, and pluralize
will return a Unicode translation for the message id singular. The message file must have defined
singular as a translation with plural forms.

The argument provided as singular may be a translation string object, but the domain and mapping
information attached is ignored.

1 |def aview (request) :

2 localizer = request.localizer

3 num = 1

4 translated = localizer.pluralize('item_plural', 'S${number} items',
5 num, 'mydomain', mapping={'number':num})

The corresponding message catalog must have language plural definitions and plural alternatives set.

"Plural-Forms: nplurals=3; plural=n==0 ? 0 : n==1 2 1 : 2;"

3 |msgid "item_plural"

4 |msgid_plural ""

s |msgstr[0] "No items"

6 |lmsgstr[1l] "${number} item"
7 |msgstr[2] "${number} items"

More information on complex plurals can be found in the gettext documentation.

243

https://www.gnu.org/savannah-checkouts/gnu/gettext/manual/html_node/Plural-forms.html

21. INTERNATIONALIZATION AND LOCALIZATION

21.4 Obtaining the Locale Name for a Request

You can obtain the locale name related to a request by using the
pyramid.request.Request.locale_name () attribute of the request.

def aview (request) :
2 locale_name = request.locale_name

The locale name of a request is dynamically computed; it will be the locale name negotiated by the
currently active locale negotiator, or the default locale name if the locale negotiator returns None. You
can change the default locale name by changing the pyramid.default_locale_name setting. See
Default Locale Name.

Once locale_name () is first run, the locale name is stored on the request object. Subsequent calls to
locale_name () will return the stored locale name without invoking the locale negotiator. To avoid
this caching, you can use the pyramid. i18n.negotiate_locale_name () function:

from pyramid.il8n import negotiate_locale_name

def aview (request) :
locale_name = negotiate_locale_name (request)

B oW o =

You can also obtain the locale name related to a request using the 1locale_name attribute of a localizer.

def aview (request) :
2 localizer = request.localizer
3 locale_name = localizer.locale_name

Obtaining the locale name as an attribute of a localizer is equivalent to obtaining a locale name by asking
for the Jocale name () attribute.

21.5 Performing Date Formatting and Currency Formatting

Pyramid does not itself perform date and currency formatting for different locales. However, Babel can
help you do this via the babel.core.Locale class. The Babel documentation for this class provides
minimal information about how to perform date and currency related locale operations. See Installing
Lingua and Gettext for information about how to install Babel.

The babel.core.Locale class requires a locale name as an argument to its constructor. You can use
Pyramid APIs to obtain the locale name for a request to pass to the babel.core.Locale constructor.
See Obtaining the Locale Name for a Request. For example:

244

http://babel.pocoo.org/en/latest/api/core.html#basic-interface

21.6. CHAMELEON TEMPLATE SUPPORT FOR TRANSLATION STRINGS

from babel.core import Locale

locale_name = request.locale_name
locale = Locale(locale_name)

1
3 |def aview (request) :
4
5

21.6 Chameleon Template Support for Translation Strings

When a translation string is used as the subject of textual rendering by a Chameleon template renderer,
it will automatically be translated to the requesting user’s language if a suitable translation exists. This is
true of both the ZPT and text variants of the Chameleon template renderers.

For example, in a Chameleon ZPT template, the translation string represented by
“some_translation_string” in each example below will go through translation before being rendered:

1’ ‘

1’ ‘

1 ’${some_translation_string} ‘

1’<a tal:attributes="href some_translation_string">Click here ‘

The features represented by attributes of the i1 8n namespace of Chameleon will also consult the Pyramid
translations. See http://chameleon.readthedocs.org/en/latest/reference.html#id50.

ﬁ Unlike when Chameleon is used outside of Pyramid, when it is used within Pyramid, it does not
support use of the zope . 118n translation framework. Applications which use Pyramid should use
the features documented in this chapter rather than zope . 118n.

Third party Pyramid template renderers might not provide this support out of the box and may need special
code to do an equivalent. For those, you can always use the more manual translation facility described in
Performing a Translation.

245

http://chameleon.readthedocs.org/en/latest/reference.html#id50

21. INTERNATIONALIZATION AND LOCALIZATION

21.7 Mako Pyramid i18n Support

There exists a recipe within the Pyramid Community Cookbook named Mako Internationalization which
explains how to add idiomatic i18n support to Mako templates.

21.8 Jinja2 Pyramid i18n Support

The add-on pyramid_jinja2 provides a scaffold with an example of how to use internationalization with
Jinja2 in Pyramid. See the documentation sections Internalization (i18n) and Paster Template I18N.

21.9 Localization-Related Deployment Settings

A Pyramid application will have a pyramid.default_locale_name setting. This value represents
the default locale name used when the locale negotiator returns None. Pass it to the Configurator

constructor at startup time:

from pyramid.config import Configurator
config = Configurator (settings={'pyramid.default_locale name':'de'})

)

You may alternately supply a pyramid.default_locale_name via an application’s . ini file:

[app:main]

use = egg:MyProject
pyramid.reload_templates = true
pyramid.debug_authorization = false
pyramid.debug_notfound = false
pyramid.default_locale_name = de

= T R S TR S,

If this value is not supplied via the Configurator constructor or via a config file, it will default to en.

If this setting is supplied within the Pyramid application . in1i file, it will be available as a settings key:

from pyramid.threadlocal import get_current_registry
settings = get_current_registry () .settings
default_locale_name = settings|'pyramid.default_locale_name']

[P SR

246

http://docs.pylonsproject.org/projects/pyramid-cookbook/en/latest/templates/mako_i18n.html#mako-i18n
https://github.com/Pylons/pyramid_jinja2
http://docs.pylonsproject.org/projects/pyramid-jinja2/en/latest/#internalization-i18n
http://docs.pylonsproject.org/projects/pyramid-jinja2/en/latest/#paster-template-i18n

21.10. “DETECTING” AVAILABLE LANGUAGES

21.10 “Detecting” Available Languages

Other systems provide an API that returns the set of “available languages” as indicated by the union of all
languages in all translation directories on disk at the time of the call to the APL

It is by design that Pyramid doesn’t supply such an API. Instead the application itself is responsible for
knowing the “available languages”. The rationale is this: any particular application deployment must
always know which languages it should be translatable to anyway, regardless of which translation files
are on disk.

Here’s why: it’s not a given that because translations exist in a particular language within the registered
set of translation directories that this particular deployment wants to allow translation to that language.
For example, some translations may exist but they may be incomplete or incorrect. Or there may be
translations to a language but not for all translation domains.

Any nontrivial application deployment will always need to be able to selectively choose to allow only
some languages even if that set of languages is smaller than all those detected within registered trans-
lation directories. The easiest way to allow for this is to make the application entirely responsible for
knowing which languages are allowed to be translated to instead of relying on the framework to divine
this information from translation directory file info.

You can set up a system to allow a deployer to select available languages based on convention by using
the pyramid. settings mechanism.

Allow a deployer to modify your application’s . ini file:

[app:main]

use = egg:MyProject

oL

available_languages = fr de en ru

B oW o =

Then as a part of the code of a custom locale negotiator:

from pyramid.threadlocal import get_current_registry
settings = get_current_registry () .settings
languages = settings['available_languages'].split ()

S

w

This is only a suggestion. You can create your own “available languages” configuration scheme as neces-
sary.

247

21. INTERNATIONALIZATION AND LOCALIZATION

21.11 Activating Translation

By default, a Pyramid application performs no translation. To turn translation on you must:
* add at least one translation directory to your application.

* ensure that your application sets the locale name correctly.

21.11.1 Adding a Translation Directory

gettext is the underlying machinery behind the Pyramid translation machinery. A translation directory is
a directory organized to be useful to gettext. A translation directory usually includes a listing of language
directories, each of which itself includes an LC_MESSAGES directory. Each LC_MESSAGES directory
should contain one or more .mo files. Each .mo file represents a message catalog, which is used to
provide translations to your application.

Adding a translation directory registers all of its constituent message catalog files within your Pyramid
application to be available to use for translation services. This includes all of the .mo files found within
all LC_MESSAGES directories within each locale directory in the translation directory.

You can add a translation directory imperatively by using the
pyramid.config.Configurator.add translation_dirs () during application startup.
For example:

from pyramid.config import Configurator
config.add_translation_dirs('my.application:locale/",
3 'another.application:locale/")

)

A message catalog in a translation directory added via add_translation_dirs () will be merged
into translations from a message catalog added earlier if both translation directories contain translations
for the same locale and translation domain.

248

21.12. LOCALE NEGOTIATORS

21.11.2 Setting the Locale

When the default locale negotiator (see The Default Locale Negotiator) is in use, you can inform Pyramid
of the current locale name by doing any of these things before any translations need to be performed:

» Set the _LOCALE__ attribute of the request to a valid locale name (usually directly within view
code), e.g., request . _LOCALE_ = ’'de’.

e Ensure that a valid locale name value is in the request.params dictionary under the
key named _LOCALE_. This is usually the result of passing a _LOCALE_ value in the
query string or in the body of a form post associated with a request. For example, visiting
http://my.application?_LOCALE_=de.

e Ensure that a valid locale name value is in the request .cookies dictionary under the key
named _LOCALE_. This is usually the result of setting a _ LOCALE_ cookie in a prior response,
e.g., response.set_cookie (' _LOCALE_’, ’de’).

O If this locale negotiation scheme is inappropriate for a particular application, you can configure
a custom locale negotiator function into that application as required. See Using a Custom Locale
Negotiator.

21.12 Locale Negotiators

A locale negotiator informs the operation of a localizer by telling it what locale name is re-
lated to a particular request. A locale negotiator is a bit of code which accepts a request and
which returns a locale name. 1t is consulted when pyramid.i18n.Localizer.translate ()
or pyramid.il8n.Localizer.pluralize() is invoked. It is also consulted when
locale_name () is accessed or when negotiate_locale name () isinvoked.

21.12.1 The Default Locale Negotiator

Most applications can make use of the default locale negotiator, which requires no additional coding or
configuration.

The default locale negotiator implementation named default_locale negotiator uses the fol-
lowing set of steps to determine the locale name.

249

21. INTERNATIONALIZATION AND LOCALIZATION

* First the negotiator looks for the _ LOCALE_ attribute of the request object (possibly set directly by
view code or by a listener for an evenr).

¢ Then it looks for the request .params [’ _LOCALE_’] value.
¢ Then it looks for the request.cookies [’ _LOCALE_'] value.

* If no locale can be found via the request, it falls back to using the default locale name (see
Localization-Related Deployment Settings).

* Finally if the default locale name is not explicitly set, it uses the locale name en.

21.12.2 Using a Custom Locale Negotiator

Locale negotiation is sometimes policy-laden and complex. If the (simple) default locale negotiation
scheme described in Activating Translation is inappropriate for your application, you may create a special
locale negotiator. Subsequently you may override the default locale negotiator by adding your newly
created locale negotiator to your application’s configuration.

A locale negotiator is simply a callable which accepts a request and returns a single locale name or None
if no locale can be determined.

Here’s an implementation of a simple locale negotiator:

def my_locale_negotiator (request) :
2 locale_name = request.params.get ('my_locale')
return locale_name

w

If a locale negotiator returns None, it signifies to Pyramid that the default application locale name should
be used.

You may add your newly created locale negotiator to your application’s configuration by passing
an object which can act as the negotiator (or a dotted Python name referring to the object) as the
locale_negotiator argument of the Configurator instance during application startup. For ex-
ample:

from pyramid.config import Configurator
config = Configurator (locale_negotiator=my_locale_negotiator)

©

Alternatively, use the pyramid.config.Configurator.set_locale negotiator ()
method.

For example:

250

21.12. LOCALE NEGOTIATORS

5}

w

from pyramid.config import Configurator
config = Configurator ()
config.set_locale_negotiator (my_locale_negotiator)

251

21. INTERNATIONALIZATION AND LOCALIZATION

252

CHAPTER 22

Virtual Hosting

“Virtual hosting” is, loosely, the act of serving a Pyramid application or a portion of a Pyramid application
under a URL space that it does not “naturally” inhabit.

Pyramid provides facilities for serving an application under a URL “prefix”, as well as serving a portion
of a traversal based application under a root URL.

22.1 Hosting an Application Under a URL Prefix

Pyramid supports a common form of virtual hosting whereby you can host a Pyramid application as a
“subset” of some other site (e.g., under http://example.com/mypyramidapplication/ as
opposed to under http://example.com/).

If you use a “pure Python” environment, this functionality can be provided by Paste’s urlmap “composite”
WSGTI application. Alternatively, you can use mod_wsgi to serve your application, which handles this
virtual hosting translation for you “under the hood”.

If you use the ur 1map composite application “in front” of a Pyramid application or if you use mod_wsgi
to serve up a Pyramid application, nothing special needs to be done within the application for URLs to
be generated that contain a prefix. paste.urlmap and mod_wsgi manipulate the WSGI environment

in such a way that the PATH_INFO and SCRIPT_NAME variables are correct for some given prefix.

Here’s an example of a PasteDeploy configuration snippet that includes a ur lmap composite.

253

http://pythonpaste.org/modules/urlmap.html

22. VIRTUAL HOSTING

[app:mypyramidapp]
use = egg:mypyramidapp

[P R

=

[composite:main]
s |use = egg:Paste#urlmap
6 | /pyramidapp = mypyramidapp

This “roots” the Pyramid application at the prefix /pyramidapp and serves up the composite as the
“main” application in the file.

O If you’re using an Apache server to proxy to a Paste ur lmap composite, you may have to use
the ProxyPreserveHost directive to pass the original HTTP_HOST header along to the application, so
URLSs get generated properly. As of this writing the urlmap composite does not seem to respect
the HTTP_X_FORWARDED_HOST parameter, which will contain the original host header even if
HTTP_HOST is incorrect.

If you use mod_wsgi, you do not need to use a composite application in your .ini file. The
WSGIScriptAlias configuration setting in a mod_wsgi configuration does the work for you:

1 |WSGIScriptAlias /pyramidapp /Users/chrism/projects/modwsgi/env/pyramid.wsgil

In the above configuration, we root a Pyramid application at /pyramidapp within the Apache configu-
ration.

22.2 Virtual Root Support

Pyramid also supports “virtual roots”, which can be used in traversal-based (but not URL dispatch-based)
applications.

Virtual root support is useful when you’d like to host some resource in a Pyramid resource tree as an appli-
cation under a URL pathname that does not include the resource path itself. For example, you might want
to serve the object at the traversal path /cms as an application reachable viahttp://example.com/
(as opposed to http://example.com/cms).

To specify a virtual root, cause an environment variable to be inserted into the WSGI environ named
HTTP_X_VHM_ROOT with a value that is the absolute pathname to the resource object in the re-
source tree that should behave as the “root” resource. As a result, the traversal machinery will re-
spect this value during traversal (prepending it to the PATH_INFO before traversal starts), and the

254

http://httpd.apache.org/docs/2.2/mod/mod_proxy.html#proxypreservehost

22.3. FURTHER DOCUMENTATION AND EXAMPLES

pyramid.request.Request.resource_url () APl will generate the “correct” virtually-rooted
URLs.

An example of an Apache mod_proxy configuration that will host the /cms subobject as
http://www.example.com/ using this facility is below:

NameVirtualHost *:80

<VirtualHost +:80>
ServerName www.example.com
RewriteEngine On
RewriteRule "/ (.%) http://127.0.0.1:6543/51 [L,P]
ProxyPreserveHost on
RequestHeader add X-Vhm-Root /cms
</VirtualHost>

L T - NV S SO OO U

O Use of the RequestHeader directive requires that the Apache mod_headers module be
available in the Apache environment you’re using.

For a Pyramid application running under mod_wsgi, the same can be achieved using SetEnv:

<Location />
SetEnv HTTP_X_VHM_ROOT /cms
</Location>

[N}

w

Setting a virtual root has no effect when using an application based on URL dispatch.

22.3 Further Documentation and Examples

The API documentation in pyramid.traversal documents a pyramid. traversal.virtual_ root ()
API. When called, it returns the virtual root object (or the physical root object if no virtual root has been
specified).

Running a Pyramid Application under mod_wsgi has detailed information about using mod_wsgi to serve
Pyramid applications.

255

http://httpd.apache.org/docs/2.2/mod/mod_headers.html

22. VIRTUAL HOSTING

256

CHAPTER 23

Unit, Integration, and Functional Testing

Unit testing is, not surprisingly, the act of testing a “unit” in your application. In this context, a “unit” is
often a function or a method of a class instance. The unit is also referred to as a “unit under test”.

The goal of a single unit test is to test only some permutation of the “unit under test”. If you write a unit
test that aims to verify the result of a particular codepath through a Python function, you need only be
concerned about testing the code that lives in the function body itself. If the function accepts a parameter
that represents a complex application “domain object” (such as a resource, a database connection, or an
SMTP server), the argument provided to this function during a unit test need not be and likely should
not be a “real” implementation object. For example, although a particular function implementation may
accept an argument that represents an SMTP server object, and the function may call a method of this
object when the system is operating normally that would result in an email being sent, a unit test of this
codepath of the function does not need to test that an email is actually sent. It just needs to make sure
that the function calls the method of the object provided as an argument that would send an email if the
argument happened to be the “real” implementation of an SMTP server object.

An integration test, on the other hand, is a different form of testing in which the interaction between two
or more “units” is explicitly tested. Integration tests verify that the components of your application work
together. You might make sure that an email was actually sent in an integration test.

A functional test is a form of integration test in which the application is run “literally”’. You would have
to make sure that an email was actually sent in a functional test, because it tests your code end to end.

It is often considered best practice to write each type of tests for any given codebase. Unit testing often
provides the opportunity to obtain better “coverage”: it’s usually possible to supply a unit under test
with arguments and/or an environment which causes all of its potential codepaths to be executed. This is
usually not as easy to do with a set of integration or functional tests, but integration and functional testing

257

23. UNIT, INTEGRATION, AND FUNCTIONAL TESTING

provides a measure of assurance that your “units” work together, as they will be expected to when your
application is run in production.

The suggested mechanism for unit and integration testing of a Pyramid application is the Python
unittest module. Although this module is named unittest, it is actually capable of driving both
unit and integration tests. A good unittest tutorial is available within Dive Into Python by Mark
Pilgrim.

Pyramid provides a number of facilities that make unit, integration, and functional tests easier to write.
The facilities become particularly useful when your code calls into Pyramid-related framework functions.

23.1 Test Set Up and Tear Down

Pyramid wuses a “global” (actually thread local) data structure to hold two items:
the current request and the current application registry. These data structures
are available via the pyramid.threadlocal.get_current_request () and
pyramid.threadlocal.get_current_registry () functions, respectively. See Thread
Locals for information about these functions and the data structures they return.

If your code uses these get_current_x functions or calls Pyramid code which uses
get_current_« functions, you will need to call pyramid. testing.setUp () in your test setup
and you will need to call pyramid. testing.tearDown () in your test teardown. setUp () pushes
a registry onto the thread local stack, which makes the get_current_ * functions work. It returns a
Configurator object which can be used to perform extra configuration required by the code under test.
tearDown () pops the thread local stack.

Normally when a Configurator is used directly with the main block of a Pyramid application, it
defers performing any “real work” until its .commit method is called (often implicitly by the
pyramid.config.Configurator.make_wsgi_app () method). The Configurator returned by
setUp () is an autocommitting Configurator, however, which performs all actions implied by meth-
ods called on it immediately. This is more convenient for unit testing purposes than needing to call
pyramid.config.Configurator.commit () in each test after adding extra configuration state-
ments.

The use of the setUp () and tearDown () functions allows you to supply each unit test method in a

test case with an environment that has an isolated registry and an isolated request for the duration of a
single test. Here’s an example of using this feature:

258

http://docs.python.org/3/library/unittest.html#module-unittest
http://docs.python.org/3/library/unittest.html#module-unittest
http://docs.python.org/3/library/unittest.html#module-unittest
http://www.diveintopython.net/unit_testing/index.html

23.1. TEST SET UP AND TEAR DOWN

import unittest
from pyramid import testing

5}

4+ |class MyTest (unittest.TestCase) :

5 def setUp(self):

6 self.config = testing.setUp()
7

8 def tearDown (self):

9 testing.tearDown ()

The above will make sure that get_current_registry () called within a test case method of
MyTest will return the application registry associated with the config Configurator instance. Each
test case method attached to My Test will use an isolated registry.

The setUp () and tearDown () functions accept various arguments that influence the environment
of the test. See the pyramid.testing API for information about the extra arguments supported by these
functions.

If you also want to make get_current_request () return something other than None during the
course of a single test, you can pass a request object into the pyramid. testing. setUp () within
the setUp method of your test:

import unittest
from pyramid import testing

[N}

4+ |class MyTest (unittest.TestCase) :

s def setUp(self):

6 request = testing.DummyRequest ()

7 self.config = testing.setUp (request=request)
8

9 def tearDown (self):

10 testing.tearDown ()

If you pass a request object into pyramid.testing.setUp () within your test case’s
setUp, any test method attached to the MyTest test case that directly or indirectly calls
get_current_request () will receive the request object. Otherwise, during testing,
get_current_request () will return None. We use a “dummy” request implementation supplied
by pyramid. testing.DummyRequest because it’s easier to construct than a “real” Pyramid request
object.

259

23. UNIT, INTEGRATION, AND FUNCTIONAL TESTING

23.1.1 Test setup using a context manager

An alternative style of setting up a test configuration is to use the with statement and
pyramid.testing.testConfig() to create a context manager. The context manager will call
pyramid.testing.setUp () before the code under test and pyramid. testing.tearDown ()
afterwards.

This style is useful for small self-contained tests. For example:

import unittest
class MyTest (unittest.TestCase):

def test_my_function(self):
from pyramid import testing
with testing.testConfig() as config:
config.add_route('bar', '/bar/{id}"')
my_function_which_needs_route_bar ()

© ® N9 o wm A W —

23.1.2 What?

Thread local data structures are always a bit confusing, especially when they’re used by frameworks.
Sorry. So here’s a rule of thumb: if you don’t know whether you’re calling code that uses the
get_current_registry() or get_current_request () functions, or you don’t care about
any of this, but you still want to write test code, just always call pyramid. testing.setUp () in
your test’s setUp method and pyramid. testing. tearDown () inyour tests’ tearDown method.
This won’t really hurt anything if the application you’re testing does not call any get_current * func-
tion.

23.2 Using the Configurator and pyramid.testing APIsin
Unit Tests

The Configurator API and the pyramid. testing module provide a number of functions which
can be used during unit testing. These functions make configuration declaration calls to the current
application registry, but typically register a “stub” or “dummy” feature in place of the “real” feature that
the code would call if it was being run normally.

For example, let’s imagine you want to unit test a Pyramid view function.

260

23.2. USING THE CONFIGURATOR AND PYRAMID.TESTING APIS IN UNIT TESTS

from pyramid.httpexceptions import HTTPForbidden

def view_fn (request):

w

4 if request.has_permission('edit'):
5 raise HTTPForbidden
6 return {'greeting':'hello'}

O This code implies that you have defined a renderer imperatively in a relevant
pyramid.config.Configurator instance, otherwise it would fail when run normally.

Without doing anything special during a unit test, the call to has _permission () in this view func-
tion will always return a True value. When a Pyramid application starts normally, it will populate an
application registry using configuration declaration calls made against a Configurator. But if this appli-
cation registry is not created and populated (e.g., by initializing the configurator with an authorization
policy), like when you invoke application code via a unit test, Pyramid API functions will tend to either
fail or return default results. So how do you test the branch of the code in this view function that raises
HTTPForbidden?

The testing API provided by Pyramid allows you to simulate various application registry registrations for
use under a unit testing framework without needing to invoke the actual application configuration implied
by its main function. For example, if you wanted to test the above view_fn (assuming it lived in the
package named my . package), you could write a unittest . TestCase that used the testing APL

import unittest
from pyramid import testing

)

class MyTest (unittest.TestCase):

I

5 def setUp(self):

6 self.config = testing.setUp()
7

8 def tearDown (self):

9 testing.tearDown ()

11 def test_view_fn_forbidden (self):

12 from pyramid.httpexceptions import HTTPForbidden

13 from my.package import view_fn

14 self.config.testing_securitypolicy (userid="hank',

15 permissive=False)
16 request = testing.DummyRequest ()

17 request.context = testing.DummyResource ()

18 self.assertRaises (HTTPForbidden, view_fn, request)

261

http://docs.python.org/3/library/unittest.html#unittest.TestCase

23. UNIT, INTEGRATION, AND FUNCTIONAL TESTING

20 def test_view_fn_allowed(self) :

21 from my.package import view_fn

2 self.config.testing_securitypolicy (userid="'hank",

3 permissive=True)
2 request = testing.DummyRequest ()

25 request.context = testing.DummyResource ()

2 response = view_fn (request)

27 self.assertEqual (response, {'greeting':'hello'})

In the above example, we create a MyTest test case that inherits from unittest.TestCase. Ifit’s
in our Pyramid application, it will be found when setup.py test isrun. It has two test methods.

The first test method, test_view_fn_forbidden tests the view_fn when the authentication policy
forbids the current user the edit permission. Its third line registers a “dummy” “non-permissive” autho-
rization policy using the testing securitypolicy () method, which is a special helper method
for unit testing.

We then create a pyramid. testing.DummyRequest object which simulates a WebOb request ob-
ject APL. A pyramid. testing.DummyRequest is a request object that requires less setup than a
“real” Pyramid request. We call the function being tested with the manufactured request. When the
function is called, pyramid. request . Request . has_permission () will call the “dummy” au-
thentication policy we’ve registered through testing securitypolicy (), which denies access.
We check that the view function raises a HTTPForbidden error.

The second test method, named test_view_fn_allowed, tests the alternate case, where the authen-
tication policy allows access. Notice that we pass different values to testing_securitypolicy ()
to obtain this result. We assert at the end of this that the view function returns a value.

Note that the test calls the pyramid. testing.setUp () function in its setUp method and the
pyramid.testing.tearDown () function in its tearDown method. We assign the result of
pyramid.testing.setUp () as config on the unittest class. This is a Configurator object and all
methods of the configurator can be called as necessary within tests. If you use any of the Configurator
APIs during testing, be sure to use this pattern in your test case’s setUp and tearDown; these methods
make sure you’re using a “fresh” application registry per test run.

See the pyramid.testing chapter for the entire Pyramid-specific testing API. This chapter describes APIs
for registering a security policy, registering resources at paths, registering event listeners, registering views
and view permissions, and classes representing “dummy”” implementations of a request and a resource.

See also:

See also the various methods of the Configurator documented in pyramid.config that begin with the
testing_ prefix.

262

http://docs.python.org/3/library/unittest.html#unittest.TestCase

23.3. CREATING INTEGRATION TESTS

23.3 Creating Integration Tests

In Pyramid, a unit test typically relies on “mock” or “dummy” implementations to give the code under
test enough context to run.

“Integration testing” implies another sort of testing. In the context of a Pyramid integration test, the test
logic exercises the functionality of the code under test and its integration with the rest of the Pyramid
framework.

Creating an integration test for a Pyramid application usually means invoking the application’s
includeme function via pyramid. config.Configurator.include () within the test’s setup
code. This causes the entire Pyramid environment to be set up, simulating what happens when your appli-
cation is run “for real”. This is a heavy-hammer way of making sure that your tests have enough context
to run properly, and tests your code’s integration with the rest of Pyramid.

See also:
See also Including Configuration from External Sources
Writing unit tests that use the Configurator API to set up the right “mock” registrations is often

preferred to creating integration tests. Unit tests will run faster (because they do less for each test) and
are usually easier to reason about.

23.4 Creating Functional Tests

Functional tests test your literal application.

In Pyramid, functional tests are typically written using the WebTest package, which provides APIs for
invoking HTTP(S) requests to your application.

Regardless of which testing package you use, ensure to add a tests_require dependency on that
package to your application’s setup.py file. Using the project MyProject generated by the starter
scaffold as described in Creating a Pyramid Project, we would insert the following code immediately
following the requires block in the file MyProject/setup.py.

263

23. UNIT, INTEGRATION, AND FUNCTIONAL TESTING

requires = [
'pyramid’',
'pyramid_chameleon',
'pyramid_debugtoolbar',
'waitress',

]

test_requires = [
'webtest',

]

Remember to change the dependency.

39
40

41

As always, whenever you change your dependencies, make sure to run the following command.

In your MyPackage project, your package is named myproject which contains a views module,
which in turn contains a view function my_view that returns an HTML body when the root URL is

invoked:
1 | from pyramid.view import view_config
2
3
4| @view_config(route_name='home', renderer='templates/mytemplate.pt')
s |def my_view (request) :
6 return {'project': 'MyProject'}

The following example functional test demonstrates invoking the above view:

install_requires=requires,
tests_require=test_requires,
test_suite="myproject",

SVENV/bin/python setup.py develop

1 | class FunctionalTests (unittest.TestCase) :
2 def setUp(self):

3 from myproject import main

4 app = main({})

5 from webtest import TestApp

6 self.testapp = TestApp (app)

;

264

23.4. CREATING FUNCTIONAL TESTS

8 def test_root (self):
9 res = self.testapp.get('/', status=200)
10 self.assertTrue('Pyramid' in res.body)

When this test is run, each test method creates a “real” WSGI application using the main function in your
myproject.__init___ module, using WebTest to wrap that WSGI application. It assigns the result
to self.testapp. In the test named test_root, the TestApp‘s GET method is used to invoke the
root URL. Finally, an assertion is made that the returned HTML contains the text Pyramid.

See the WebTest documentation for further information about the methods available to a
webtest .app.TestApp instance.

265

http://webtest.pythonpaste.org/en/latest/api.html#webtest.app.TestApp

23. UNIT, INTEGRATION, AND FUNCTIONAL TESTING

266

CHAPTER 24

Resources

A resource is an object that represents a “place” in a tree related to your application. Every Pyramid
application has at least one resource object: the root resource. Even if you don’t define a root resource
manually, a default one is created for you. The root resource is the root of a resource tree. A resource tree
is a set of nested dictionary-like objects which you can use to represent your website’s structure.

In an application which uses traversal to map URLSs to code, the resource tree structure is used heavily to
map each URL to a view callable. When traversal is used, Pyramid will walk through the resource tree
by traversing through its nested dictionary structure in order to find a confext resource. Once a context
resource is found, the context resource and data in the request will be used to find a view callable.

In an application which uses URL dispatch, the resource tree is only used indirectly, and is often “invis-
ible” to the developer. In URL dispatch applications, the resource “tree” is often composed of only the
root resource by itself. This root resource sometimes has security declarations attached to it, but is not
required to have any. In general, the resource tree is much less important in applications that use URL
dispatch than applications that use traversal.

In “Zope-like” Pyramid applications, resource objects also often store data persistently, and offer methods
related to mutating that persistent data. In these kinds of applications, resources not only represent the
site structure of your website, but they become the domain model of the application.

Also:

e The context and containment predicate arguments to add view() (or a
view_config () decorator) reference a resource class or resource interface.

* A root factory returns a resource.
* A resource is exposed to view code as the context of a view.

* Various helpful Pyramid API methods expect a resource as an argument (e.g., resource_url ()
and others).

267

24. RESOURCES

24.1 Defining a Resource Tree

When traversal is used (as opposed to a purely URL dispatch based application), Pyramid expects to be
able to traverse a tree composed of resources (the resource tree). Traversal begins at a root resource,
and descends into the tree recursively, trying each resource’s ___getitem__ method to resolve a path
segment to another resource object. Pyramid imposes the following policy on resource instances in the
tree:

* A container resource (a resource which contains other resources) must supply a __getitem___
method which is willing to resolve a Unicode name to a sub-resource. If a sub-resource by a
particular name does not exist in a container resource, the __ _getitem__ method of the con-
tainer resource must raise a KeyError. If a sub-resource by that name does exist, the container’s
__getitem__ should return the sub-resource.

* Leaf resources, which do not contain other resources, must not implement a __getitem__, orif
they do, their __getitem__ method must always raise a KeyError.

See Traversal for more information about how traversal works against resource instances.

Here’s a sample resource tree, represented by a variable named root:

class Resource (dict) :

2 pass

root = Resource ({'a':Resource({'b':Resource ({'c':Resource()})})})

IS

The resource tree we’ve created above is represented by a dictionary-like root object which has a single
child named " a’. " a’ has a single child named ' b’ , and ' b’ has a single child named ’ ¢’ , which has
no children. It is therefore possible to access the ’ ¢’ leaf resource like so:

i lroot['a'l['D']I['c"]

If you returned the above root object from a root factory, the path /a/b/c would find the ’ ¢’ object
in the resource tree as the result of traversal.

In this example, each of the resources in the tree is of the same class. This is not a requirement. Resource
elements in the tree can be of any type. We used a single class to represent all resources in the tree for the
sake of simplicity, but in a “real” app, the resources in the tree can be arbitrary.

Although the example tree above can service a traversal, the resource instances in the above example
are not aware of location, so their utility in a “real” application is limited. To make best use of built-in
Pyramid API facilities, your resources should be “location-aware”. The next section details how to make
resources location-aware.

268

http://docs.python.org/3/library/exceptions.html#KeyError
http://docs.python.org/3/library/exceptions.html#KeyError

24.2. LOCATION-AWARE RESOURCES

24.2 Location-Aware Resources

In order for certain Pyramid location, security, URL-generation, and traversal APIs to work properly
against the resources in a resource tree, all resources in the tree must be location-aware. This means they
must have two attributes: __parent___and __ _name__ .

The __parent___ attribute of a location-aware resource should be a reference to the resource’s parent
resource instance in the tree. The ___name___ attribute should be the name with which a resource’s parent
refers to the resource via ___getitem__ .

The __parent__ of the root resource should be None and its __name___ should be the empty string.
For instance:

class MyRootResource (object) :

2 name =
3 parent = None

A resource returned from the root resource’s ___getitem__ method should have a __parent_ at-
tribute that is a reference to the root resource, and its __name___ attribute should match the name by
which it is reachable via the root resource’s __getitem_ . A container resource within the root re-
source should have a __getitem___ that returns resources with a__parent___ attribute that points at
the container, and these sub-objects should have a ___name___ attribute that matches the name by which
they are retrieved from the container via___getitem__. This pattern continues recursively “up” the tree
from the root.

The __parent___ attributes of each resource form a linked list that points “downwards” toward the root.
This is analogous to the . . entry in filesystem directories. If you follow the ___parent___ values from
any resource in the resource tree, you will eventually come to the root resource, just like if you keep
executing the cd . . filesystem command, eventually you will reach the filesystem root directory.

Lo your root resource has a ___name___ argument that is not None or the empty string, URLs
returned by the resource_url () function, and paths generated by the resource_path () and
resource_path_tuple () APIs, will be generated improperly. The value of __name___ will
be prepended to every path and URL generated (as opposed to a single leading slash or empty tuple
element).

269

24. RESOURCES

For your convenience

If you’d rather not manage the _ _name___ and __parent___ attributes of your resources “by
hand”, an add-on package named pyramid_traversalwrapper can help.

In order to use this helper feature, you must first install the pyramid_traversalwrapper
package (available via PyPI), then register its ModelGraphTraverser as the traversal policy,
rather than the default Pyramid traverser. The package contains instructions for doing so.

Once Pyramid is configured with this feature, you will no longer need to manage the __parent___
and __name___ attributes on resource objects “by hand”. Instead, as necessary during traversal,
Pyramid will wrap each resource (even the root resource) in a LocationProxy, which will dy-
namically assigna __name___anda__parent__ to the traversed resource, based on the last tra-
versed resource and the name suppliedto___getitem__. The rootresource willhavea ___ name_
attribute of None and a __parent___ attribute of None.

Applications which use tree-walking Pyramid APIs require location-aware resources.
These APIs include (but are not limited to) resource_url (), find resource(),
find _root (), find _interface(), resource_path(), resource_path_tuple(),
traverse (), virtual_root (), and (usually) has_permission () and
principals_allowed by _permission().

In general, since so much Pyramid infrastructure depends on location-aware resources, it’s a good idea to
make each resource in your tree location-aware.

24.3 Generating the URL of a Resource

If your resources are location-aware, you can use the pyramid. request . Request . resource_url ()
API to generate a URL for the resource. This URL will use the resource’s position in the parent tree to
create a resource path, and it will prefix the path with the current application URL to form a fully-qualified
URL with the scheme, host, port, and path. You can also pass extra arguments to resource_url () to
influence the generated URL.

The simplest call to resource_url () looks like this:

1 |lurl = request.resource_url (resource)

The request in the above example is an instance of a Pyramid request object.

If the resource referred to as resource in the above example was the root resource, and the
host that was used to contact the server was example.com, the URL generated would be

270

24.3. GENERATING THE URL OF A RESOURCE

http://example.com/. However, if the resource was a child of the root resource named a, the
generated URL would be http://example.com/a/.

A slash is appended to all resource URLs when resource_url () is used to generate them in this
simple manner, because resources are “places” in the hierarchy, and URLs are meant to be clicked on to
be visited. Relative URLs that you include on HTML pages rendered as the result of the default view of
a resource are more apt to be relative to these resources than relative to their parent.

You can also pass extra elements to resource_url ():

1 |url = request.resource_url (resource, 'foo', 'bar'")

If the resource referred to as resource in the above example was the root resource, and
the host that was used to contact the server was example.com, the URL generated would
be http://example.com/foo/bar. Any number of extra elements can be passed to
resource_url () as extra positional arguments. When extra elements are passed, they are appended
to the resource’s URL. A slash is not appended to the final segment when elements are passed.

You can also pass a query string:

1 |url = request.resource_url (resource, query={'a':'"'1"})

If the resource referred to as resource in the above example was the root resource, and the
host that was used to contact the server was example.com, the URL generated would be
http://example.com/?a=1.

When a virtual root is active, the URL generated by resource_url () for a resource may be “shorter”
than its physical tree path. See Virtual Root Support for more information about virtually rooting a

resource.

For more information about generating resource URLs, see the documentation for
pyramid.request.Request.resource_url ().

24.3.1 Overriding Resource URL Generation

If a resource object implements a __resource_url__ method, this method will be called when
resource_url () is called to generate a URL for the resource, overriding the default URL returned
for the resource by resource_url ().

The __resource_url__ hook is passed two arguments: request and info. request is the
request object passed to resource_url (). info is a dictionary with the following keys:

271

24. RESOURCES

physical_path A string representing the “physical path” computed for the resource, as defined by
pyramid.traversal.resource_path (resource). It will begin and end with a slash.

virtual path A string representing the “virtual path” computed for the resource, as defined by Vir-
tual Root Support. This will be identical to the physical path if virtual rooting is not enabled. It will
begin and end with a slash.

app_url A string representing the application URL generated during request .resource_url. It
will not end with a slash. It represents a potentially customized URL prefix, containing potentially
custom scheme, host and port information passed by the user to request .resource_url. It
should be preferred over use of request .application_url.

The __resource_url__ method of a resource should return a string representing a URL. If it cannot
override the default, it should return None. If it returns None, the default URL will be returned.

Here’s an example ___resource_url__ method.

class Resource (object) :
2 def __ _resource_url__(self, request, info):
3 return info['app_url'] + info['virtual path']

The above example actually just generates and returns the default URL, which would have been what
was generated by the default resource_url machinery, but your code can perform arbitrary logic as
necessary. For example, your code may wish to override the hostname or port number of the generated
URL.

Note that the URL generated by __resource_url__ should be fully qualified, should end in a
slash, and should not contain any query string or anchor elements (only path elements) to work with
resource_url ().

24.4 Generating the Path To a Resource

pyramid.traversal.resource_path () returns a string object representing the absolute phys-
ical path of the resource object based on its position in the resource tree. Each segment of the path is
separated with a slash character.

from pyramid.traversal import resource_path
url = resource_path (resource)

S}

272

24.5. FINDING A RESOURCE BY PATH

If resource in the example above was accessible in the tree as root [" a’] [b’], the above example
would generate the string /a/b.

Any positional arguments passed in to resource_path () will be appended as path segments to the
end of the resource path.

from pyramid.traversal import resource_path
2 |url = resource_path(resource, 'foo', 'bar')

If resource in the example above was accessible in the tree as root [a’] [’ b’], the above example
would generate the string /a/b/foo/bar.

The resource passed in must be location-aware.

The presence or absence of a virtual root has no impact on the behavior of resource_path ().

24.5 Finding a Resource by Path

If you have a string path to a resource, you can grab the resource from that place in the application’s
resource tree using pyramid.traversal. find_resource ().

You can resolve an absolute path by passing a string prefixed with a / as the path argument:

from pyramid.traversal import find_ resource
url = find_resource (anyresource, '/path')

)

Or you «can resolve a path relative to the resource that you pass in to
pyramid.traversal.find_resource () by passing a string that isn’t prefixed by /:

from pyramid.traversal import find_resource
url = find_resource (anyresource, 'path')

)

Often the paths you pass to find_resource () are generated by the resource_path () APL These
APIs are “mirrors” of each other.

If the path cannot be resolved when calling find_resource () (if the respective resource in the tree
does not exist), a KeyError will be raised.

See the pyramid. traversal.find_resource () documentation for more information about re-
solving a path to a resource.

273

http://docs.python.org/3/library/exceptions.html#KeyError

24. RESOURCES

24.6 Obtaining the Lineage of a Resource

pyramid.location.lineage () returns a generator representing the lineage of the location-aware
resource object.

The 1ineage () function returns the resource that is passed into it, then each parent of the resource in
order. For example, if the resource tree is composed like so:

1 |class Thing(object) : pass

3|thingl = Thing()
4|thing2 = Thing()
s |thing2.__parent___ = thingl

Calling 1ineage (thing2) will return a generator. When we turn it into a list, we will get:

list (lineage (thing2))
[<Thing object at thing2>, <Thing object at thingl>]

)

The generator returned by Iineage () first returns unconditionally the resource that was passed into
it. Then, if the resource supplied a __parent___ attribute, it returns the resource represented by
resource.__parent__ . If that resource has a __parent___ attribute, it will return that resource’s
parent, and so on, until the resource being inspected either has no __parent___ attribute or has a
__parent___ attribute of None.

See the documentation for pyramid. location.lineage () for more information.

24.7 Determining if a Resource is in the Lineage of Another
Resource

Use the pyramid. location.inside () function to determine if one resource is in the lineage of
another resource.

For example, if the resource tree is:

1 |class Thing(object) : pass

3la = Thing()
4|b = Thing()
5|b.__parent___ = a

274

24.8. FINDING THE ROOT RESOURCE

Calling inside (b, a) will return True, because b has a lineage that includes a. However, calling
inside (a, b) will return False because a does not have a lineage that includes b.

The argument list for inside () is (resourcel, resource2). resourcel is “inside”
resource?2 if resource? is a lineage ancestor of resourcel. It is a lineage ancestor if its par-
ent (or one of its parent’s parents, etc.) is an ancestor.

See pyramid.location.inside () for more information.

24.8 Finding the Root Resource

Use the pyramid.traversal.find _root () API to find the roof resource. The root resource is
the resource at the root of the resource tree. The API accepts a single argument: resource. This is a
resource that is location-aware. It can be any resource in the tree for which you want to find the root.

For example, if the resource tree is:

1 |class Thing(object): pass

3la = Thing()
4|b = Thing()
s5|b.__parent___ = a

Calling £ind_root (b) will return a.
The root resource is also available as request . root within view callable code.

The presence or absence of a virtual root has no impact on the behavior of find_root (). The root
object returned is always the physical root object.

24.9 Resources Which Implement Interfaces

Resources can optionally be made to implement an inferface. ~An interface is used to tag a
resource object with a “type” that later can be referred to within view configuration and by
pyramid.traversal.find interface().

Specifying an interface instead of a class as the context or containment predicate arguments within
view configuration statements makes it possible to use a single view callable for more than one class of
resource objects. If your application is simple enough that you see no reason to want to do this, you can
skip reading this section of the chapter.

For example, here’s some code which describes a blog entry which also declares that the blog entry
implements an inferface.

275

24. RESOURCES

1 | import datetime
> | from zope.interface import implementer
3 | from zope.interface import Interface

s |class IBlogEntry (Interface):
6 pass

s | @implementer (IBlogEntry)
9 |class BlogEntry (object):

10 def _ _init__ (self, title, body, author):

1 self.title = title

12 self.body = body

13 self.author = author

14 self.created = datetime.datetime.now ()

This resource consists of two things: the class which defines the resource constructor as the class
BlogEntry, and an interface attached to the class via an implementer class decorator using the
IBlogEntry interface as its sole argument.

The interface object used must be an instance of a class that inherits from
zope.interface.Interface

A resource class may implement zero or more interfaces. You specify that a resource implements an
interface by using the zope.interface.implementer () function as a class decorator. The above
BlogEntry resource implements the IR1ogEnt ry interface.

You can also specify that a particular resource instance provides an interface as opposed to its class.
When you declare that a class implements an interface, all instances of that class will also provide that
interface. However, you can also just say that a single object provides the interface. To do so, use the
zope.interface.directlyProvides () function:

| | import datetime
2 | from zope.interface import directlyProvides
3 | from zope.interface import Interface

5 |class IBlogEntry (Interface):
6 pass

s |class BlogEntry (object):

9 def _ init__ (self, title, body, author):
10 self.title = title

1 self.body = body

12 self.author = author

13 self.created = datetime.datetime.now ()

276

24.10. FINDING A RESOURCE WITH A CLASS OR INTERFACE IN LINEAGE

14
15 |entry = BlogEntry('title', 'body', 'author')
16 |directlyProvides (entry, IBlogEntry)

zope.interface.directlyProvides () will replace any existing interface that was previously
provided by an instance. If a resource object already has instance-level interface declarations that you
don’t want to replace, use the zope .interface.alsoProvides () function:

| | import datetime

2 | from zope.interface import alsoProvides

3 | from zope.interface import directlyProvides
4 | from zope.interface import Interface

¢ |class IBlogEntryl (Interface):
7 pass

9 |class IBlogEntry2 (Interface):
10 pass

12 |class BlogEntry (object) :

13 def _ _init__ (self, title, body, author):
14 self.title = title

15 self.body = body

16 self.author = author

17 self.created = datetime.datetime.now ()

9 |entry = BlogEntry('title', 'body', 'author')
20 |directlyProvides (entry, IBlogEntryl)
21 |alsoProvides (entry, IBlogEntry2)

zope.interface.alsoProvides () will augment the set of interfaces directly provided by an
instance instead of overwriting them like zope.interface.directlyProvides () does.

For more information about how resource interfaces can be used by view configuration, see Using Re-
source Interfaces in View Configuration.

24.10 Finding a Resource with a Class or Interface in Lineage
Use the find interface () API to locate a parent that is of a particular Python class, or which

implements some interface.

For example, if your resource tree is composed as follows:

277

24. RESOURCES

class Thingl (object): pass
class Thing2 (object): pass

[P R

4|a = Thingl ()
s|b = Thing2 ()
6 |b.__parent___ = a

Calling find_interface (a, Thingl) will return the a resource because a is of class Thingl
(the resource passed as the first argument is considered first, and is returned if the class or interface
specification matches).

Calling find_interface (b, Thingl) will return the a resource because a is of class Thingl
and a is the first resource in b‘s lineage of this class.

Calling find_interface (b, Thing2) will return the b resource.

The second argument to find_interface may also be a inferface instead of a class. If it is an in-
terface, each resource in the lineage is checked to see if the resource implements the specificed interface
(instead of seeing if the resource is of a class).

See also:

See also Resources Which Implement Interfaces.

24.11 Pyramid API Functions That Act Against Resources

A resource object is used as the context provided to a view. See Traversal and URL Dispatch for more
information about how a resource object becomes the context.

The APIs provided by pyramid.traversal are used against resource objects. These functions can be used
to find the “path” of a resource, the root resource in a resource tree, or to generate a URL for a resource.

The APIs provided by pyramid.location are used against resources. These can be used to walk down a
resource tree, or conveniently locate one resource “inside” another.

Some APIs on the pyramid.request.Request accept a resource object as a parameter. For
example, the has_permission () API accepts a resource object as one of its arguments; the
ACL is obtained from this resource or one of its ancestors. Other security related APIs on the
pyramid.request.Request class also accept context as an argument, and a context is always a
resource.

278

CHAPTER 25

Hello Traversal World

Traversal is an alternative to URL dispatch which allows Pyramid applications to map URLs to code.

If code speaks louder than words, maybe this will help. Here is a single-file Pyramid application that uses
traversal:

from wsgiref.simple_server import make_server
from pyramid.config import Configurator
from pyramid.response import Response

class Resource (dict) :
pass

def get_root (request) :
return Resource({'a': Resource({'b': Resource({'c': Resource()})})})

def hello_world_of_resources (context, request):
output = "Here's a resource and its children: %s" % context
return Response (output)
if _ name_ == '__ _main__ ':
config = Configurator (root_factory=get_root)
config.add_view(hello_world_of_resources, context=Resource)
app = config.make_wsgi_app ()
server = make_server ('0.0.0.0', 8080, app)
server.serve_forever ()

279

25. HELLO TRAVERSAL WORLD

You may notice that this application is intentionally very similar to the “hello world” application from
Creating Your First Pyramid Application.

On lines 5-6, we create a trivial resource class that’s just a dictionary subclass.
On lines 8-9, we hard-code a resource tree in our root factory function.

On lines 11-13, we define a single view callable that can display a single instance of our Resource
class, passed as the context argument.

The rest of the file sets up and serves our Pyramid WSGI app. Line 18 is where our view gets configured
for use whenever the traversal ends with an instance of our Resource class.

Interestingly, there are no URLs explicitly configured in this application. Instead, the URL space is
defined entirely by the keys in the resource tree.

25.1 Example requests

If this example is running on http://localhost:8080, and the user browses to http://localhost:8080/a/b,
Pyramid will call get_root (request) to get the root resource, then traverse the tree from there by
key; starting from the root, it will find the child with key "a", then its child with key "b"; then use that
as the context argument for calling hello_world_of_resources.

Or, if the user browses to http://localhost:8080/, Pyramid will stop at the root—the outermost Resource
instance, in this case—and use that as the context argument to the same view.

Or, if the user browses to a key that doesn’t exist in this resource tree, like http://localhost:8080/xyz or
http://localhost:8080/a/b/c/d, the traversal will end by raising a KeyError, and Pyramid will turn that into
a 404 HTTP response.

A more complicated application could have many types of resources, with different view callables defined
for each type, and even multiple views for each type.

See also:
Full technical details may be found in Traversal.

For more about why you might use traversal, see Much Ado About Traversal.

280

http://localhost:8080
http://localhost:8080/a/b
http://localhost:8080/
http://localhost:8080/xyz
http://localhost:8080/a/b/c/d

CHAPTER 26

Much Ado About Traversal

(Or, why you should care about it.)

O This chapter was adapted, with permission, from a blog post by Rob Miller, originally published
at http://blog.nonsequitarian.org/2010/much-ado-about-traversal/.

Traversal is an alternative to URL dispatch which allows Pyramid applications to map URLS to code.

O Ex-Zope users who are already familiar with traversal and view lookup conceptually may want
to skip directly to the Traversal chapter, which discusses technical details. This chapter is mostly
aimed at people who have previous Pylons experience or experience in another framework which does
not provide traversal, and need an introduction to the “why” of traversal.

Some folks who have been using Pylons and its Routes-based URL matching for a long time are being
exposed for the first time, via Pyramid, to new ideas such as “traversal” and “view lookup” as a way to
route incoming HTTP requests to callable code. Some of the same folks believe that traversal is hard to
understand. Others question its usefulness; URL matching has worked for them so far, so why should
they even consider dealing with another approach, one which doesn’t fit their brain and which doesn’t
provide any immediately obvious value?

You can be assured that if you don’t want to understand traversal, you don’t have to. You can happily
build Pyramid applications with only URL dispatch. However, there are some straightforward, real-world
use cases that are much more easily served by a traversal-based approach than by a pattern-matching
mechanism. Even if you haven’t yet hit one of these use cases yourself, understanding these new ideas
is worth the effort for any web developer so you know when you might want to use them. Traversal is
actually a straightforward metaphor easily comprehended by anyone who’s ever used a run-of-the-mill
file system with folders and files.

281

http://blog.nonsequitarian.org/
http://blog.nonsequitarian.org/2010/much-ado-about-traversal/

26. MUCH ADO ABOUT TRAVERSAL

26.1 URL Dispatch

Let’s step back and consider the problem we’re trying to solve. An HTTP request for a particular path
has been routed to our web application. The requested path will possibly invoke a specific view callable
function defined somewhere in our app. We’re trying to determine which callable function, if any, should
be invoked for a given requested URL.

Many systems, including Pyramid, offer a simple solution. They offer the concept of “URL matching”.
URL matching approaches this problem by parsing the URL path and comparing the results to a set of
registered “patterns”, defined by a set of regular expressions or some other URL path templating syntax.
Each pattern is mapped to a callable function somewhere; if the request path matches a specific pattern, the
associated function is called. If the request path matches more than one pattern, some conflict resolution
scheme is used, usually a simple order precedence so that the first match will take priority over any
subsequent matches. If a request path doesn’t match any of the defined patterns, a “404 Not Found”
response is returned.

In Pyramid, we offer an implementation of URL matching which we call URL dispatch. Using Pyra-
mid syntax, we might have a match pattern such as /{userid}/photos/{photoid}, mapped
to a photo_view () function defined somewhere in our code. Then a request for a path such as
/ joeschmoe/photos/photol would be a match, and the photo_view () function would be in-
voked to handle the request. Similarly, /{userid}/blog/{year}/{month}/{postid} might
maptoablog_post_view () function, so / joeschmoe/blog/2010/12/urlmatching would
trigger the function, which presumably would know how to find and render the ur 1mat ching blog post.

26.2 Historical Refresher

Now that we’ve refreshed our understanding of URL dispatch, we’ll dig in to the idea of traversal. Before
we do, though, let’s take a trip down memory lane. If you’ve been doing web work for a while, you
may remember a time when we didn’t have fancy web frameworks like Pylons and Pyramid. Instead, we
had general purpose HTTP servers that primarily served files off of a file system. The “root” of a given
site mapped to a particular folder somewhere on the file system. Each segment of the request URL path
represented a subdirectory. The final path segment would be either a directory or a file, and once the
server found the right file it would package it up in an HTTP response and send it back to the client. So
serving up a request for / joeschmoe/photos/photol literally meant that there was a joeschmoe
folder somewhere, which contained a photos folder, which in turn contained a photol file. If at any
point along the way we find that there is not a folder or file matching the requested path, we return a 404
response.

As the web grew more dynamic, however, a little bit of extra complexity was added. Technologies such
as CGI and HTTP server modules were developed. Files were still looked up on the file system, but if the

282

26.3. TRAVERSAL (A.K.A., RESOURCE LOCATION)

file ended with (for example) . cgi or . php, or if it lived in a special folder, instead of simply sending
the file to the client the server would read the file, execute it using an interpreter of some sort, and then
send the output from this process to the client as the final result. The server configuration specified which
files would trigger some dynamic code, with the default case being to just serve the static file.

26.3 Traversal (a.k.a., Resource Location)

Believe it or not, if you understand how serving files from a file system works, you understand traversal.
And if you understand that a server might do something different based on what type of file a given request
specifies, then you understand view lookup.

The major difference between file system lookup and traversal is that a file system lookup steps through
nested directories and files in a file system tree, while traversal steps through nested dictionary-type
objects in a resource tree. Let’s take a detailed look at one of our example paths, so we can see what |
mean.

The path /joeschmoe/photos/photol, has four segments: /, joeschmoe, photos and
photol. With file system lookup we might have a root folder (/) containing a nested folder
(joeschmoe), which contains another nested folder (photos), which finally contains a JPG file
(photol). With traversal, we instead have a dictionary-like root object. Asking for the joeschmoe key
gives us another dictionary-like object. Asking in turn for the phot os key gives us yet another mapping
object, which finally (hopefully) contains the resource that we’re looking for within its values, referenced
by the photol key.

In pure Python terms, then, the traversal or ‘“resource location” portion of satisfying the
/joeschmoe/photos/photol request will look something like this pseudocode:

get_root () ['joeschmoe'] ["photos'] ["'photol']

get_root () is some function that returns a root traversal resource. If all of the specified keys exist,
then the returned object will be the resource that is being requested, analogous to the JPG file that was
retrieved in the file system example. If a KeyError is generated anywhere along the way, Pyramid will
return 404. (This isn’t precisely true, as you’ll see when we learn about view lookup below, but the basic
idea holds.)

283

http://docs.python.org/3/library/exceptions.html#KeyError

26. MUCH ADO ABOUT TRAVERSAL

26.4 What Is a “Resource”?

“Files on a file system I understand”, you might say. “But what are these nested dictionary things? Where
do these objects, these ‘resources’, live? What are they?”

Since Pyramid is not a highly opinionated framework, it makes no restriction on how a resource is im-
plemented; a developer can implement them as they wish. One common pattern used is to persist all of
the resources, including the root, in a database as a graph. The root object is a dictionary-like object.
Dictionary-like objects in Python supply a __getitem__ method which is called when key lookup
is done. Under the hood, when adict is a dictionary-like object, Python translates adict [’ a’] to
adict.__getitem__ ("a’). Try doing this in a Python interpreter prompt if you don’t believe us:

>>> adict =
>>> adict(['a
>>> adict(['a

>>> adict._ _getitem__ ('a'")

The dictionary-like root object stores the ids of all of its subresources as keys, and provides a
__getitem__ implementation that fetches them. So get_root () fetches the unique root object,
while get_root () [’ joeschmoe’] returns a different object, also stored in the database, which in
turn has its own subresources and ___getitem__ implementation, and so on. These resources might be
persisted in a relational database, one of the many “NoSQL” solutions that are becoming popular these
days, or anywhere else; it doesn’t matter. As long as the returned objects provide the dictionary-like API
(i.e., as long as they have an appropriately implemented ___getitem__ method), then traversal will
work.

In fact, you don’t need a “database” at all. You could use plain dictionaries, with your site’s URL struc-
ture hard-coded directly in the Python source. Or you could trivially implement a set of objects with
__getitem__ methods that search for files in specific directories, and thus precisely recreate the tra-
ditional mechanism of having the URL path mapped directly to a folder structure on the file system.
Traversal is in fact a superset of file system lookup.

O See the chapter entitled Resources for a more technical overview of resources.

284

26.5. VIEW LOOKUP

26.5 View Lookup

At this point we’re nearly there. We’ve covered traversal, which is the process by which a specific resource
is retrieved according to a specific URL path. But what is “view lookup™?

The need for view lookup is simple: there is more than one possible action that you might want to take
after finding a resource. With our photo example, for instance, you might want to view the photo in a
page, but you might also want to provide a way for the user to edit the photo and any associated metadata.
We’ll call the former the view view, and the latter will be the edit view. (Original, I know.) Pyramid
has a centralized view application registry where named views can be associated with specific resource
types. So in our example, we’ll assume that we’ve registered view and edit views for photo objects,
and that we’ve specified the view view as the default, so that / joeschmoe/photos/photol/view
and /joeschmoe/photos/photol are equivalent. The edit view would sensibly be provided by a
request for / joeschmoe/photos/photol/edit.

Hopefully it’s clear that the first portion of the edit view’s URL path is going to re-
solve to the same resource as the non-edit version, specifically the resource returned by
get_root () [’ joeschmoe’] ['photos’] ['photol’]. But traversal ends there; the photol
resource doesn’t have an edit key. In fact, it might not even be a dictionary-like object, in which case
photol[’edit’] would be meaningless. When the Pyramid resource location has been resolved to a
leaf resource, but the entire request path has not yet been expended, the very next path segment is treated
as a view name. The registry is then checked to see if a view of the given name has been specified for
a resource of the given type. If so, the view callable is invoked, with the resource passed in as the re-
lated context object (also available as request . context). If a view callable could not be found,
Pyramid will return a “404 Not Found” response.

You might conceptualize a request for / joeschmoe/photos/photol/edit asultimately converted
into the following piece of Pythonic pseudocode:

context = get_root () ['joeschmoe']['photos']["'photol']
view_callable = get_view(context, 'edit')
request.context = context

view_callable (request)

The get_root and get_view functions don’t really exist. Internally, Pyramid does something more
complicated. But the example above is a reasonable approximation of the view lookup algorithm in
pseudocode.

285

26. MUCH ADO ABOUT TRAVERSAL

26.6 Use Cases

Why should we care about traversal? URL matching is easier to explain, and it’s good enough, right?

In some cases, yes, but certainly not in all cases. So far we’ve had very structured URLSs, where our paths
have had a specific, small number of pieces, like this:

/{userid}/{typename}/{objectid} [/{view_name}]

In all of the examples thus far, we’ve hard coded the typename value, assuming that we’d know at de-
velopment time what names were going to be used (“photos”, “blog”, etc.). But what if we don’t know
what these names will be? Or, worse yet, what if we don’t know anything about the structure of the URLs
inside a user’s folder? We could be writing a CMS where we want the end user to be able to arbitrarily
add content and other folders inside his folder. He might decide to nest folders dozens of layers deep.
How will you construct matching patterns that could account for every possible combination of paths that
might develop?

It might be possible, but it certainly won’t be easy. The matching patterns are going to become complex
quickly as you try to handle all of the edge cases.

With traversal, however, it’s straightforward. Twenty layers of nesting would be no problem. Pyramid
will happily call __getitem___ as many times as it needs to, until it runs out of path segments or until
a resource raises a KeyError. Each resource only needs to know how to fetch its immediate children,
and the traversal algorithm takes care of the rest. Also, since the structure of the resource tree can live
in the database and not in the code, it’s simple to let users modify the tree at runtime to set up their own
personalized “directory” structures.

Another use case in which traversal shines is when there is a need to support a context-dependent secu-
rity policy. One example might be a document management infrastructure for a large corporation, where
members of different departments have varying access levels to the various other departments’ files. Rea-
sonably, even specific files might need to be made available to specific individuals. Traversal does well
here if your resources actually represent the data objects related to your documents, because the idea of
a resource authorization is baked right into the code resolution and calling process. Resource objects can
store ACLs, which can be inherited and/or overridden by the subresources.

If each resource can thus generate a context-based ACL, then whenever view code is attempting to perform
a sensitive action, it can check against that ACL to see whether the current user should be allowed to
perform the action. In this way you achieve so called “instance based” or “row level” security which
is considerably harder to model using a traditional tabular approach. Pyramid actively supports such a
scheme, and in fact if you register your views with guarded permissions and use an authorization policy,
Pyramid can check against a resource’s ACL when deciding whether or not the view itself is available to
the current user.

286

http://docs.python.org/3/library/exceptions.html#KeyError

26.6. USE CASES

In summary, there are entire classes of problems that are more easily served by traversal and view lookup
than by URL dispatch. If your problems don’t require it, great, stick with URL dispatch. But if you’re
using Pyramid and you ever find that you do need to support one of these use cases, you’ll be glad you
have traversal in your toolkit.

O It is even possible to mix and match traversal with URL dispatch in the same Pyramid applica-
tion. See the Combining Traversal and URL Dispatch chapter for details.

287

26. MUCH ADO ABOUT TRAVERSAL

288

CHAPTER 27

Traversal

This chapter explains the technical details of how traversal works in Pyramid.
For a quick example, see Hello Traversal World.
For more about why you might use traversal, see Much Ado About Traversal.

A traversal uses the URL (Universal Resource Locator) to find a resource located in a resource tree,
which is a set of nested dictionary-like objects. Traversal is done by using each segment of the path
portion of the URL to navigate through the resource tree. You might think of this as looking up files and
directories in a file system. Traversal walks down the path until it finds a published resource, analogous
to a file system “directory” or “file”. The resource found as the result of a traversal becomes the context
of the request. Then, the view lookup subsystem is used to find some view code willing to “publish” this
resource by generating a response.

O Using Traversal to map a URL to code is optional. If you’re creating your first Pyramid
application, it probably makes more sense to use URL dispatch to map URLs to code instead of
traversal, as new Pyramid developers tend to find URL dispatch slightly easier to understand. If you
use URL dispatch, you needn’t read this chapter.

289

27. TRAVERSAL

27.1 Traversal Details

Traversal is dependent on information in a request object. Every request object contains URL
path information in the PATH_INFO portion of the WSGI environment. The PATH_INFO string
is the portion of a request’s URL following the hostname and port number, but before any
query string elements or fragment element. For example the PATH INFO portion of the URL
http://example.com:8080/a/b/c?foo=11is /a/b/c.

Traversal treats the PATH_INFO segment of a URL as a sequence of path segments. For example, the
PATH_INFO string /a/b/c is converted to the sequence ["a’, 'b’, 'c’].

This path sequence is then used to descend through the resource tree, looking up a resource for each path
segment. Each lookup uses the __getitem__ method of a resource in the tree.

For example, if the path info sequenceis ["a’, ’'b’, ’'c’]:

* Traversal starts by acquiring the root resource of the application by calling the root factory. The
root factory can be configured to return whatever object is appropriate as the traversal root of your
application.

» Next, the first element (* a’) is popped from the path segment sequence and is used as a key to
lookup the corresponding resource in the root. This invokes the root resource’s ___getitem_
method using that value (* a’) as an argument.

« If the root resource “contains” a resource with key " a’, its __getitem__ method will return it.
The context temporarily becomes the “A” resource.

* The next segment (* b’) is popped from the path sequence, and the “A” resource’s __getitem___
is called with that value (" b’) as an argument; we’ll presume it succeeds.

e The “A” resource’s __getitem__ returns another resource, which we’ll call “B”. The context
temporarily becomes the “B” resource.

Traversal continues until the path segment sequence is exhausted or a path element cannot be resolved to
a resource. In either case, the context resource is the last object that the traversal successfully resolved.
If any resource found during traversal lacks a ___getitem__ method, orifits __getitem__ method
raises a KeyError, traversal ends immediately, and that resource becomes the context.

The results of a traversal also include a view name. If traversal ends before the path segment sequence is
exhausted, the view name is the next remaining path segment element. If the traversal expends all of the
path segments, then the view name is the empty string (*).

The combination of the context resource and the view name found via traversal is used later in the same
request by the view lookup subsystem to find a view callable. How Pyramid performs view lookup is
explained within the View Configuration chapter.

290

http://docs.python.org/3/library/exceptions.html#KeyError

27.2. THE RESOURCE TREE

27.2 The Resource Tree

The resource tree is a set of nested dictionary-like resource objects that begins with a root resource. In
order to use traversal to resolve URLS to code, your application must supply a resource tree to Pyramid.

In order to supply a root resource for an application the Pyramid Router is configured with a call-
back known as a root factory. The root factory is supplied by the application at startup time as the
root_factory argument to the Configurator.

The root factory is a Python callable that accepts a request object, and returns the root object of the
resource tree. A function or class is typically used as an application’s root factory. Here’s an example of
a simple root factory class:

class Root (dict):
2 def __init__ (self, request):
3 pass

Here’s an example of using this root factory within startup configuration, by passing it to an instance of a
Configurator named config:

1 |config = Configurator (root_factory=Root)

The root_factory argument to the Configurator constructor registers this root factory to be
called to generate a root resource whenever a request enters the application. The root factory registered
this way is also known as the global root factory. A root factory can alternatively be passed to the
Configurator as adotted Python name which can refer to a root factory defined in a different module.

If no root factory is passed to the Pyramid Configurator constructor, or if the root__factory value
specified is None, a default root factory is used. The default root factory always returns a resource that
has no child resources; it is effectively empty.

Usually a root factory for a traversal-based application will be more complicated than the above Root
class. In particular it may be associated with a database connection or another persistence mechanism.
The above Root class is analogous to the default root factory present in Pyramid. The default root factory
is very simple and not very useful.

O If the items contained within the resource tree are “persistent” (they have state that lasts longer
than the execution of a single process), they become analogous to the concept of domain model objects
used by many other frameworks.

291

27. TRAVERSAL

The resource tree consists of container resources and leaf resources. There is only one difference between
a container resource and a leaf resource: container resources possess a___getitem__ method (making
it “dictionary-like”) while leaf resources do not. The __getitem__ method was chosen as the signify-
ing difference between the two types of resources because the presence of this method is how Python itself
typically determines whether an object is “containerish” or not (dictionary objects are “containerish”).

Each container resource is presumed to be willing to return a child resource or raise a KeyError based
on a name passed toits __getitem_ .

Leaf-level instances must not have a __getitem__. If instances that you’d like to be leaves already
happen to have a __getitem___ through some historical inequity, you should subclass these resource
types and cause their __getitem__ methods to simply raise a KeyError. Or just disuse them and
think up another strategy.

Usually the traversal root is a container resource, and as such it contains other resources. However, it
doesn’t need to be a container. Your resource tree can be as shallow or as deep as you require.

In general, the resource tree is traversed beginning at its root resource using a sequence of path elements
described by the PATH_INFO of the current request. If there are path segments, the root resource’s
__getitem__ is called with the next path segment, and it is expected to return another resource. The
resulting resource’s ___getitem__ is called with the very next path segment, and it is expected to return
another resource. This happens ad infinitum until all path segments are exhausted.

27.3 The Traversal Algorithm

This section will attempt to explain the Pyramid traversal algorithm. We’ll provide a description of the
algorithm, a diagram of how the algorithm works, and some example traversal scenarios that might help
you understand how the algorithm operates against a specific resource tree.

We’ll also talk a bit about view lookup. The View Configuration chapter discusses view lookup in detail,
and it is the canonical source for information about views. Technically, view lookup is a Pyramid subsys-
tem that is separated from traversal entirely. However, we’ll describe the fundamental behavior of view
lookup in the examples in the next few sections to give you an idea of how traversal and view lookup
cooperate, because they are almost always used together.

292

27.3. THE TRAVERSAL ALGORITHM

27.3.1 A Description of the Traversal Algorithm

When a user requests a page from your traversal-powered application, the system uses this algorithm to
find a context resource and a view name.

1. The request for the page is presented to the Pyramid router in terms of a standard WSGI request,
which is represented by a WSGI environment and a WSGI start_response callable.

2. The router creates a request object based on the WSGI environment.
3. The root factory is called with the request. It returns a root resource.

4. The router uses the WSGI environment’s PATH_ INFO information to determine the path segments
to traverse. The leading slash is stripped off PATH_INFO, and the remaining path segments are
split on the slash character to form a traversal sequence.

The traversal algorithm by default attempts to first URL-unquote and then Unicode-decode each
path segment derived from PATH_INFO from its natural byte string (str type) representation.
URL unquoting is performed using the Python standard library urllib.unquote function.
Conversion from a URL-decoded string into Unicode is attempted using the UTF-8 encoding. If
any URL-unquoted path segment in PATH_INFO is not decodeable using the UTF-8 decoding,
a TypeError is raised. A segment will be fully URL-unquoted and UTF8-decoded before it is
passed in to the ___getitem__ of any resource during traversal.

Thus a request with a PATH_INFO variable of /a/b/c maps to the traversal sequence [u’a’,
u’b’, u'c’l].

5. Traversal begins at the root resource returned by the root factory. For the traversal sequence
[u"a’, u’'b’, u’c’], the root resource’s __ getitem___ is called with the name ’"a’.
Traversal continues through the sequence. In our example, if the root resource’s __getitem_
called with the name a returns a resource (a.k.a. resource “A”), that resource’s ___getitem__ is
called with the name ' b’ . If resource “A” returns a resource “B” when asked for ' b’ , resource
B’s __getitem___ isthen asked for the name ’ ¢’ , and may return resource “C”.

6. Traversal ends when either (a) the entire path is exhausted, (b) when any resource raises a
KeyError fromits __getitem__, (c) when any non-final path element traversal does not have
a__getitem__ method (resulting in an AttributeError), or (d) when any path element is
prefixed with the set of characters @@ (indicating that the characters following the @@ token should
be treated as a view name).

7. When traversal ends for any of the reasons in the previous step, the last resource found during
traversal is deemed to be the context. If the path has been exhausted when traversal ends, the view
name is deemed to be the empty string (* 7). However, if the path was not exhausted before traversal
terminated, the first remaining path segment is treated as the view name.

293

http://docs.python.org/3/library/exceptions.html#TypeError
http://docs.python.org/3/library/exceptions.html#KeyError
http://docs.python.org/3/library/exceptions.html#AttributeError

27. TRAVERSAL

8. Any subsequent path elements after the view name is found are deemed the subpath. The subpath is
always a sequence of path segments that come from PATH_ INFO that are “left over” after traversal
has completed.

Once the context resource, the view name, and associated attributes such as the subpath are located, the
job of traversal is finished. It passes back the information it obtained to its caller, the Pyramid Router,
which subsequently invokes view lookup with the context and view name information.

The traversal algorithm exposes two special cases:

* You will often end up with a view name that is the empty string as the result of a particular traversal.
This indicates that the view lookup machinery should lookup the default view. The default view
is a view that is registered with no name or a view which is registered with a name that equals the
empty string.

* If any path segment element begins with the special characters @@ (think of them as goggles), the
value of that segment minus the goggle characters is considered the view name immediately and
traversal stops there. This allows you to address views that may have the same names as resource
names in the tree unambiguously.

Finally, traversal is responsible for locating a virtual root. A virtual root is used during “virtual hosting”.
See the Virtual Hosting chapter for information. We won’t speak more about it in this chapter.

294

27.3. THE TRAVERSAL ALGORITHM

Pyra m |d ’ Model Graph Traversal

Split
PATH_INFO on
slashes to obtain
traversal stack

Any path
elements in
in traversal

stack?

Current object has a
__getitem__
method?

KeyError?

295

27. TRAVERSAL

27.3.2 Traversal Algorithm Examples

No one can be expected to understand the traversal algorithm by analogy and description alone, so let’s
examine some traversal scenarios that use concrete URLs and resource tree compositions.

Let’s pretend the user asks for http://example.com/foo/bar/baz/biz/buz.txt. The re-
quest’s PATH_INFO in that case is /foo/bar/baz/biz/buz.txt. Let’s further pretend that when
this request comes in, we’re traversing the following resource tree:

Here’s what happens:
* traversal traverses the root, and attempts to find “foo”, which it finds.
* traversal traverses ‘“foo”, and attempts to find “bar”, which it finds.

* traversal traverses “bar”, and attempts to find “baz”, which it does not find (the “bar” resource
raises a KeyError when asked for “baz”).

The fact that it does not find “baz” at this point does not signify an error condition. It signifies the
following:

* The context is the “bar” resource (the context is the last resource found during traversal).
e The view name is baz.
e The subpathis ('biz’, ’'buz.txt’).

At this point, traversal has ended, and view lookup begins.

Because it’s the “context” resource, the view lookup machinery examines “bar” to find out what “type” it
is. Let’s say it finds that the context is a Bar type (because “bar” happens to be an instance of the class
Bar). Using the view name (baz) and the type, view lookup asks the application registry this question:

* Please find me a view callable registered using a view configuration with the name “baz” that can
be used for the class Bar.

Let’s say that view lookup finds no matching view type. In this circumstance, the Pyramid router returns
the result of the Not Found View and the request ends.

However, for this tree:

296

http://docs.python.org/3/library/exceptions.html#KeyError

27.3. THE TRAVERSAL ALGORITHM

|-— foo

————bar

-——-baz

biz

The user asks for http://example.com/foo/bar/baz/biz/buz.txt
* traversal traverses “foo”, and attempts to find “bar”, which it finds.
* traversal traverses “bar”, and attempts to find “baz”, which it finds.
* traversal traverses ‘“baz”, and attempts to find “biz”, which it finds.
* traversal traverses “biz”, and attempts to find “buz.txt”, which it does not find.

The fact that it does not find a resource related to “buz.txt” at this point does not signify an error condition.
It signifies the following:

* The context is the “biz” resource (the context is the last resource found during traversal).

* The view name is “buz.txt”.

» The subpath is an empty sequence (()).
At this point, traversal has ended, and view lookup begins.
Because it’s the “context” resource, the view lookup machinery examines the “biz” resource to find out
what “type” it is. Let’s say it finds that the resource is a Biz type (because “biz” is an instance of the
Python class Biz). Using the view name (buz.txt) and the type, view lookup asks the application

registry this question:

* Please find me a view callable registered with a view configuration with the name buz . txt that
can be used for class Biz.

Let’s say that question is answered by the application registry. In such a situation, the application registry
returns a view callable. The view callable is then called with the current WebOb request as the sole

argument, request. It is expected to return a response.

297

27. TRAVERSAL

The Example View Callables Accept Only a Request; How Do I Access the Context Resource?

Most of the examples in this documentation assume that a view callable is typically passed only
a request object. Sometimes your view callables need access to the context resource, especially
when you use traversal. You might use a supported alternative view callable argument list in
your view callables such as the (context, request) calling convention described in Alter-
nate View Callable Argument/Calling Conventions. But you don’t need to if you don’t want to. In
view callables that accept only a request, the confext resource found by traversal is available as the
context attribute of the request object, e.g., request .context. The view name is available
as the view_name attribute of the request object, e.g., request .view_name. Other Pyramid-
specific request attributes are also available as described in Special Attributes Added to the Request
by Pyramid.

27.3.3 Using Resource Interfaces in View Configuration

Instead of registering your views with a context that names a Python resource class, you can optionally
register a view callable with a context which is an interface. An interface can be attached arbitrarily
to any resource object. View lookup treats context interfaces specially, and therefore the identity of a
resource can be divorced from that of the class which implements it. As a result, associating a view
with an interface can provide more flexibility for sharing a single view between two or more different
implementations of a resource type. For example, if two resource objects of different Python class types
share the same interface, you can use the same view configuration to specify both of them as a context.

In order to make use of interfaces in your application during view dispatch, you must create an interface
and mark up your resource classes or instances with interface declarations that refer to this interface.

To attach an interface to a resource class, you define the interface and use the
zope.interface.implementer () class decorator to associate the interface with the class.

1 | from zope.interface import Interface
2 | from zope.interface import implementer

4+ |class IHello (Interface):
5 """ A marker interface """

7 | @implementer (IHello)
8 |class Hello (object):
9 pass

298

27.3. THE TRAVERSAL ALGORITHM

To attach an interface to a resource instance, you define the interface and use the
zope.interface.alsoProvides () function to associate the interface with the instance.
This function mutates the instance in such a way that the interface is attached to it.

1 | from zope.interface import Interface
2 | from zope.interface import alsoProvides

4+ |class IHello (Interface):

5 """ A marker interface """
7| class Hello (object):

8 pass

10 |def make_hello():

1 hello = Hello()

12 alsoProvides (hello, IHello)
13 return hello

Regardless of how you associate an interface—with either a resource instance or a resource class—the
resulting code to associate that interface with a view callable is the same. Assuming the above code that
defines an IHel 1o interface lives in the root of your application, and its module is named “resources.py”,
the interface declaration below will associate the mypackage.views.hello_world view with re-
sources that implement, or provide, this interface.

config is an instance of pyramid.config.Configurator

©

config.add_view('mypackage.views.hello_world', name='hello.html',
4 context="mypackage.resources.IHello")

w

Any time a resource that is determined to be the context provides this interface, and a view named
hello.html is looked up against it as per the URL, the mypackage.views.hello_world view
callable will be invoked.

Note, in cases where a view is registered against a resource class, and a view is also registered against an
interface that the resource class implements, an ambiguity arises. Views registered for the resource class
take precedence over any views registered for any interface the resource class implements. Thus, if one
view configuration names a context of both the class type of a resource, and another view configuration
names a context of interface implemented by the resource’s class, and both view configurations are
otherwise identical, the view registered for the context’s class will “win”.

For more information about defining resources with interfaces for use within view configuration, see
Resources Which Implement Interfaces.

299

27. TRAVERSAL

27.4 References

A tutorial showing how traversal can be used within a Pyramid application exists in ZODB + Traversal
Wiki Tutorial.

See the View Configuration chapter for detailed information about view lookup.

The pyramid.traversal module contains API functions that deal with traversal, such as traversal
invocation from within application code.

The pyramid. request.Request.resource_url () method generates a URL when given a re-
source retrieved from a resource tree.

300

CHAPTER 28

Security

Pyramid provides an optional, declarative, security system. Security in Pyramid is separated into au-
thentication and authorization. The two systems communicate via principal identifiers. Authentication
is merely the mechanism by which credentials provided in the request are resolved to one or more prin-
cipal identifiers. These identifiers represent the users and groups that are in effect during the request.
Authorization then determines access based on the principal identifiers, the requested permission, and a
context.

The Pyramid authorization system can prevent a view from being invoked based on an authorization
policy. Before a view is invoked, the authorization system can use the credentials in the request along
with the context resource to determine if access will be allowed. Here’s how it works at a high level:

e A user may or may not have previously visited the application and supplied au-
thentication credentials, including a userid. If so, the application may have -called
pyramid.security.remember () to remember these.

* A request is generated when a user visits the application.

* Based on the request, a context resource is located through resource location. A context is located
differently depending on whether the application uses traversal or URL dispatch, but a context is
ultimately found in either case. See the URL Dispatch chapter for more information.

* Aview callable is located by view lookup using the context as well as other attributes of the request.

 If an authentication policy is in effect, it is passed the request. It will return some number of

principal identifiers. To do this, the policy would need to determine the authenticated userid present
in the request.

301

28. SECURITY

* If an authorization policy is in effect and the view configuration associated with the view callable
that was found has a permission associated with it, the authorization policy is passed the context,
some number of principal identifiers returned by the authentication policy, and the permission
associated with the view; it will allow or deny access.

* If the authorization policy allows access, the view callable is invoked.

» If the authorization policy denies access, the view callable is not invoked. Instead the forbidden
view is invoked.

Authorization is enabled by modifying your application to include an authentication policy and autho-

rization policy. Pyramid comes with a variety of implementations of these policies. To provide maximal
flexibility, Pyramid also allows you to create custom authentication policies and authorization policies.

28.1 Enabling an Authorization Policy

Pyramid does not enable any authorization policy by default. All views are accessible by completely
anonymous users. In order to begin protecting views from execution based on security settings, you need
to enable an authorization policy.

28.1.1 Enabling an Authorization Policy Imperatively

Use the set_authorization_policy () method of the Configurator to enable an authoriza-
tion policy.

You must also enable an authentication policy in order to enable the authorization policy. This is because
authorization, in general, depends upon authentication. Use the set_authentication_policy ()

method during application setup to specify the authentication policy.

For example:

1 | from pyramid.config import Configurator

2 | from pyramid.authentication import AuthTktAuthenticationPolicy

3 | from pyramid.authorization import ACLAuthorizationPolicy

4 |authn_policy = AuthTktAuthenticationPolicy('seekrit', hashalg='shabl2")
s |authz_policy = ACLAuthorizationPolicy ()

6 |config = Configurator ()

7| config.set_authentication_policy (authn_policy)

s |config.set_authorization_policy (authz_policy)

302

28.2. PROTECTING VIEWS WITH PERMISSIONS

O The authentication_policy and authorization_policy arguments may also be
passed to their respective methods mentioned above as dotted Python name values, each representing
the dotted name path to a suitable implementation global defined at Python module scope.

The above configuration enables a policy which compares the value of an “auth ticket” cookie passed in
the request’s environment which contains a reference to a single principal against the principals present
in any ACL found in the resource tree when attempting to call some view.

While it is possible to mix and match different authentication and authorization policies, it is an error to
configure a Pyramid application with an authentication policy but without the authorization policy or vice
versa. If you do this, you’ll receive an error at application startup time.

See also:

See also the pyramid. authorizationand pyramid.authentication modules for alternative
implementations of authorization and authentication policies.

28.2 Protecting Views with Permissions

To protect a view callable from invocation based on a user’s security settings when a particular type of
resource becomes the context, you must pass a permission to view configuration. Permissions are usually
just strings, and they have no required composition: you can name permissions whatever you like.

For example, the following view declaration protects the view named add_entry.html
when the context resource is of type Blog with the add permission using the
pyramid.config.Configurator.add view () API:

config is an instance of pyramid.config.Configurator

config.add_view ('mypackage.views.blog_entry_add_view',

w

4 name="'add_entry.html',
5 context="mypackage.resources.Blog',
6 permission="add")

The equivalent view registration including the add permission name may be performed via the
@view_config decorator:

303

28. SECURITY

1 | from pyramid.view import view_config
> | from resources import Blog

4| @view_config(context=Blog, name='add_entry.html', permission='add')
s |def blog_entry_add_view(request) :

6 "mmoAdd blog entry code goes here """

7 pass

As a result of any of these various view configuration statements, if an authorization policy is in
place when the view callable is found during normal application operations, the requesting user will
need to possess the add permission against the context resource in order to be able to invoke the
blog_entry_add_view view. If they do not, the Forbidden view will be invoked.

28.2.1 Setting a Default Permission

If a permission is not supplied to a view configuration, the registered view will always be executable by
entirely anonymous users: any authorization policy in effect is ignored.

In support of making it easier to configure applications which are “secure by default”, Pyramid allows
you to configure a default permission. If supplied, the default permission is used as the permission string
to all view registrations which don’t otherwise name a permission argument.

The pyramid.config.Configurator.set_default_permission () method supports con-
figuring a default permission for an application.

When a default permission is registered:

* If a view configuration names an explicit permission, the default permission is ignored for that
view registration, and the view-configuration-named permission is used.

« If a view configuration names the permission pyramid. security.NO_PERMISSION_REQUIRED,
the default permission is ignored, and the view is registered without a permission (making it avail-
able to all callers regardless of their credentials).

% When you register a default permission, all views (even exception view views) are protected
by a permission. For all views which are truly meant to be anonymously accessible, you will need to
associate the view’s configuration with the pyramid. security.NO_PERMISSION_REQUIRED
permission.

304

28.3. ASSIGNING ACLS TO YOUR RESOURCE OBJECTS

28.3 Assigning ACLs to Your Resource Objects

When the default Pyramid authorization policy determines whether a user possesses a particular permis-
sion with respect to a resource, it examines the ACL associated with the resource. An ACL is associated
with a resource by adding an __ac1___ attribute to the resource object. This attribute can be defined on
the resource instance if you need instance-level security, or it can be defined on the resource class if you
just need type-level security.

For example, an ACL might be attached to the resource for a blog via its class:

from pyramid.security import Allow
from pyramid.security import Everyone

)

class Blog(object):

5 _acl__ = [
(Allow, Everyone, 'view'),

7 (Allow, 'group:editors', 'add'),
(

Allow, 'group:editors', 'edit'),

IS

9]

Or, if your resources are persistent, an ACL might be specified via the __acl___ attribute of an instance
of a resource:

from pyramid.security import Allow
2 | from pyramid.security import Everyone

4 |class Blog(object):
5 pass

7 |blog = Blog()

9 |blog.__acl__ = [
(Allow, Everyone, 'view'),

1 (Allow, 'group:editors', 'add'),
(

Allow, 'group:editors', 'edit'),

13]

Whether an ACL is attached to a resource’s class or an instance of the resource itself, the effect is the
same. It is useful to decorate individual resource instances with an ACL (as opposed to just decorating
their class) in applications such as content management systems where fine-grained access is required on
an object-by-object basis.

Dynamic ACLs are also possible by turning the ACL into a callable on the resource. This may allow the
ACL to dynamically generate rules based on properties of the instance.

305

28. SECURITY

1 | from pyramid.security import Allow

> | from pyramid.security import Everyone

3

4 |class Blog(object):

5 def = acl__ (self):

6 return |

7 (Allow, Everyone, 'view'),

8 (Allow, self.owner, 'edit'),
9 (Allow, 'group:editors', 'edit'),
10]

11

12 def _ init_ (self, owner):

13 self.owner = owner

28.4 Elements of an ACL

Here’s an example ACL:

from pyramid.security import Allow
from pyramid.security import Everyone

[N}

4|__acl__ = [
(Allow, Everyone, 'view'),
6 (Allow, 'group:editors', 'add'),
(Allow, 'group:editors', 'edit'),

8]

The example ACL indicates that the pyramid. security.Everyone principal—a special system-
defined principal indicating, literally, everyone—is allowed to view the blog, and the group:editors
principal is allowed to add to and edit the blog.

Each element of an ACL is an ACE, or access control entry. For example, in the above code block, there
are three ACEs: (Allow, Everyone, ’'view’), (Allow, ’'group:editors’, ’add’),
and (Allow, ’'group:editors’, ’'edit’).

The first element of any ACE is either pyramid.security.Allow, or
pyramid.security.Deny, representing the action to take when the ACE matches. The sec-
ond element is a principal. The third argument is a permission or sequence of permission names.

A principal is usually a user id, however it also may be a group id if your authentication system provides
group information and the effective authentication policy policy is written to respect group information.
See Extending Default Authentication Policies.

306

28.4. ELEMENTS OF AN ACL

Each ACE in an ACL is processed by an authorization policy in the order dictated by the ACL. So if you
have an ACL like this:

from pyramid.security import Allow
from pyramid.security import Deny
from pyramid.security import Everyone

[S)

w

s|__acl__ = [
6 (Allow, Everyone, 'view'),
7 (Deny, Everyone, 'view'),

8]

The default authorization policy will allow everyone the view permission, even though later in the ACL

you have an ACE that denies everyone the view permission. On the other hand, if you have an ACL like
this:

from pyramid.security import Everyone
from pyramid.security import Allow
from pyramid.security import Deny

[N}

w

s|__acl__ = [
6 (Deny, Everyone, 'view'),
7 (Allow, Everyone, 'view'),

8]

The authorization policy will deny everyone the view permission, even though later in the ACL, there is
an ACE that allows everyone.

The third argument in an ACE can also be a sequence of permission names instead of a single permission
name. So instead of creating multiple ACEs representing a number of different permission grants to a
single group:editors group, we can collapse this into a single ACE, as below.

from pyramid.security import Allow
from pyramid.security import Everyone

)

4|__acl__ = [
5 (Allow, Everyone, 'view'),
6 (Allow, 'group:editors', ('add', 'edit'")),

7]

307

28. SECURITY

28.5 Special Principal Names

Special principal names exist in the pyramid. security module. They can be imported for use in
your own code to populate ACLs, e.g., pyramid. security.Everyone.

pyramid.security.Everyone

Literally, everyone, no matter what. This object is actually a string under the hood
(system.Everyone). Every user is the principal named “Everyone” during every request,
even if a security policy is not in use.

pyramid.security.Authenticated

Any user with credentials as determined by the current security policy. You might think
of it as any user that is “logged in”. This object is actually a string under the hood
(system.Authenticated).

28.6 Special Permissions

Special permission names exist in the pyramid. security module. These can be imported for use in
ACLs. pyramid.security.ALIL PERMISSIONS

An object representing, literally, all permissions. Useful in an ACL like so: (Allow,
"fred’, ALL_PERMISSIONS).The ALL_PERMISSIONS object is actually a stand-in
object that has a __contains__ method that always returns True, which, for all known
authorization policies, has the effect of indicating that a given principal has any permission
asked for by the system.

28.7 Special ACEs

A convenience ACE is defined representing a deny to everyone of all permissions in
pyramid.security.DENY_ALL. This ACE is often used as the last ACE of an ACL to explicitly
cause inheriting authorization policies to “stop looking up the traversal tree” (effectively breaking any in-
heritance). For example, an ACL which allows only fred the view permission for a particular resource,
despite what inherited ACLs may say when the default authorization policy is in effect, might look like
s0:

308

28.8. ACL INHERITANCE AND LOCATION-AWARENESS

from pyramid.security import Allow
from pyramid.security import DENY_ALL

S

4 acl___ = [(Allow, 'fred', 'view'), DENY_ALL]

Under the hood, the pyramid. security.DENY_ALL ACE equals the following:

from pyramid.security import ALL_PERMISSIONS
2 acl__ = [(Deny, Everyone, ALL_PERMISSIONS)]

28.8 ACL Inheritance and Location-Awareness

While the default authorization policy is in place, if a resource object does not have an ACL when it is
the context, its parent is consulted for an ACL. If that object does not have an ACL, its parent is consulted
for an ACL, ad infinitum, until we’ve reached the root and there are no more parents left.

In order to allow the security machinery to perform ACL inheritance, resource objects must provide
location-awareness. Providing location-awareness means two things: the root object in the resource tree
must have a ___name___ attribute and a__parent___ attribute.

class Blog(object) :
__name__ = "'
3 __parent___ = None

©

An object with a __parent__ attribute and a __name___ attribute is said to be location-aware.
Location-aware objects define a __parent___ attribute which points at their parent object. The root
object’s __parent__ is None.

See also:

See also pyramid.location for documentations of functions which use location-awareness.

See also:

See also Location-Aware Resources.

309

28. SECURITY

28.9 Changing the Forbidden View

When Pyramid denies a view invocation due to an authorization denial, the special forbidden view
is invoked. Out of the box, this forbidden view is very plain. See Changing the Forbidden View within
Using Hooks for instructions on how to create a custom forbidden view and arrange for it to be called
when view authorization is denied.

28.10 Debugging View Authorization Failures

If your application in your judgment is allowing or denying view access inappropriately, start your appli-
cation under a shell using the PYRAMID_DEBUG_AUTHORIZATION environment variable set to 1. For
example:

$ PYRAMID_DEBUG_AUTHORIZATION=1 $VENV/bin/pserve myproject.ini

When any authorization takes place during a top-level view rendering, a message will be logged to the
console (to stderr) about what ACE in which ACL permitted or denied the authorization based on authen-
tication information.

This behavior can also be turned on in the application .ini file by setting the
pyramid.debug_authorization key to t rue within the application’s configuration section, e.g.:

[app:main]
use = egg:MyProject
pyramid.debug_authorization = true

S

w

With this debug flag turned on, the response sent to the browser will also contain security debugging
information in its body.

28.11 Debugging Imperative Authorization Failures

The pyramid.request.Request.has_permission() API is used to check security

within view functions imperatively. It returns instances of objects that are -effectively
booleans. But these objects are not raw True or False objects, and have infor-
mation attached to them about why the permission was allowed or denied. The ob-

ject will be one of pyramid.security.ACLAllowed, pyramid.security.ACLDenied,
pyramid.security.Allowed, or pyramid.security.Denied, as documented in pyra-
mid.security. At the very minimum, these objects will have a msg attribute, which is a string indicating
why the permission was denied or allowed. Introspecting this information in the debugger or via print
statements when a call to has_permission () fails is often useful.

310

28.12. EXTENDING DEFAULT AUTHENTICATION POLICIES

28.12 Extending Default Authentication Policies

Pyramid ships with some built in authentication policies for use in your applications. See
pyramid.authentication for the available policies. They differ on their mechanisms for tracking
authentication credentials between requests, however they all interface with your application in mostly
the same way.

Above you learned about Assigning ACLs to Your Resource Objects. Each
principal used in the ACL is matched against the list returned from
pyramid.interfaces.IAuthenticationPolicy.effective principals().
Similarly, pyramid.request.Request.authenticated userid/() maps to
pyramid.interfaces.IAuthenticationPolicy.authenticated userid().

You may control these values by subclassing the default authentication policies. For example, below we
subclass the pyramid.authentication.AuthTktAuthenticationPolicy and define extra
functionality to query our database before confirming that the userid is valid in order to avoid blindly
trusting the value in the cookie (what if the cookie is still valid, but the user has deleted their account?).
We then use that userid to augment the ef fective_principals with information about groups and
other state for that user.

1 | from pyramid.authentication import AuthTktAuthenticationPolicy
2

3 | class MyAuthenticationPolicy (AuthTktAuthenticationPolicy) :

4 def authenticated_userid(self, request):

5 userid = self.unauthenticated_userid(request)

6 if userid:

7 if request.verify_ userid_is_still_valid(userid):
8 return userid

9

10 def effective_principals(self, request):

1 principals = [Everyone]

12 userid = self.authenticated_userid(request)

13 if userid:

14 principals += [Authenticated, str(userid)]

15 return principals

In most instances authenticated_userid and effective_principals are application-
specific, whereas unauthenticated_userid, remember, and forget are generic and focused
on transport and serialization of data between consecutive requests.

311

28. SECURITY

28.13 Creating Your Own Authentication Policy

Pyramid ships with a number of wuseful out-of-the-box security policies (see
pyramid.authentication). However, creating your own authentication policy is often nec-
essary when you want to control the “horizontal and vertical” of how your users authenticate. Doing so
is a matter of creating an instance of something that implements the following interface:

class IAuthenticationPolicy (object) :

2 "mroAn object representing a Pyramid authentication policy. """
3

4 def authenticated_userid(self, request):

5 """ Return the authenticated :term: userid’ or "~ "None ' 1if

6 no authenticated userid can be found. This method of the

7 policy should ensure that a record exists in whatever

8 persistent store is used related to the user (the user

9 should not have been deleted); 1f a record associated with

10 the current id does not exist in a persistent store, it

1 should return ° "None' '

mmn

15 def unauthenticated_userid(self, request):

16 """ Return the *unauthenticated+ userid. This method

17 performs the same duty as ~ “authenticated userid’ ' but is

18 permitted to return the userid based only on data present

19 in the request; it needn't (and shouldn't) check any

20 persistent store to ensure that the user record related to

21 the request userid exists.

22

23 This method is intended primarily a helper to assist the

24 ‘tauthenticated _userid’ ' method in pulling credentials out

25 of the request data, abstracting away the specific headers,

26 query strings, etc that are used to authenticate the request.
27

28 e

29

30 def effective_principals(self, request):

31 """ Return a sequence representing the effective principals
32 typically including the :term: userid’ and any groups belonged
33 to by the current user, always including 'system' groups such
34 as ' ‘pyramid.security.Everyone’ and

35 ‘pyramid.security.Authenticated’ .

36

mmon
37

38

312

28.14. CREATING YOUR OWN AUTHORIZATION POLICY

39 def remember (self, request, userid, *x*kw):

40 """ Return a set of headers suitable for 'remembering' the
41 :term: userid’ named " userid '~ when set in a response. An
£ individual authentication policy and its consumers can

3 decide on the composition and meaning of x*xkw.

44

45 e

46

47 def forget (self, request):

48 """ Return a set of headers suitable for 'forgetting' the
49 current user on subsequent requests.

50

51 e

After you do so, you can pass an instance of such a class into the set_authentication_policy
method at configuration time to use it.

28.14 Creating Your Own Authorization Policy

An authorization policy is a policy that allows or denies access after a
user has been authenticated. Most Pyramid applications will wuse the default
pyramid.authorization.ACLAuthorizationPolicy.

However, in some cases, it’s useful to be able to use a different authorization policy than the default
ACLAuthorizationPolicy. For example, it might be desirable to construct an alternate authoriza-
tion policy which allows the application to use an authorization mechanism that does not involve ACL
objects.

Pyramid ships with only a single default authorization policy, so you’ll need to create your own if you’d
like to use a different one. Creating and using your own authorization policy is a matter of creating an
instance of an object that implements the following interface:

1 |class IAuthorizationPolicy (object):

2 """ An object representing a Pyramid authorization policy. """

3 def permits(self, context, principals, permission):

4 "mm Return " 'True' ' 1f any of the "~ “principals’' is allowed the
5 ‘‘permission’’ in the current |~ “context' ', else return ' False
p won

7

8 def principals_allowed_by_permission(self, context, permission):

9 """ Return a set of principal identifiers allowed by the

313

28. SECURITY

10 ‘‘permission’’ in " “context . This behavior is optional; if you
1" choose to not implement it you should define this method as

12 something which raises a ~ NotImplementedError . This method

13 will only be called when the

14 ‘‘pyramid.security.principals_allowed by _permission’ API 1is

15 used. """

After you do so, you can pass an instance of such a class into the set_authorization _policy
method at configuration time to use it.

28.15 Admonishment Against Secret-Sharing

A “secret” is required by various components of Pyramid. For example, the authentication policy below
uses a secret value seekrit:

’authn_policy = AuthTktAuthenticationPolicy ('seekrit', hashalg='shab1l2")

A session factory also requires a secret:

’my_session_factory = SignedCookieSessionFactory ('itsaseekreet') ‘

It is tempting to use the same secret for multiple Pyramid subsystems. For example, you might be tempted
to use the value seekrit as the secret for both the authentication policy and the session factory defined
above. This is a bad idea, because in both cases, these secrets are used to sign the payload of the data.

If you use the same secret for two different parts of your application for signing purposes, it may allow
an attacker to get his chosen plaintext signed, which would allow the attacker to control the content of
the payload. Re-using a secret across two different subsystems might drop the security of signing to zero.
Keys should not be re-used across different contexts where an attacker has the possibility of providing a
chosen plaintext.

314

CHAPTER 29

Combining Traversal and URL Dispatch

When you write most Pyramid applications, you’ll be using one or the other of two available resource
location subsystems: traversal or URL dispatch. However, to solve a limited set of problems, it’s useful
to use both traversal and URL dispatch together within the same application. Pyramid makes this possible
via hybrid applications.

! Reasoning about the behavior of a “hybrid” URL dispatch + traversal application can be chal-
lenging. To successfully reason about using URL dispatch and traversal together, you need to under-
stand URL pattern matching, root factories, and the fraversal algorithm, and the potential interactions
between them. Therefore, we don’t recommend creating an application that relies on hybrid behavior
unless you must.

29.1 A Review of Non-Hybrid Applications

When used according to the tutorials in its documentation, Pyramid is a “dual-mode” framework: the
tutorials explain how to create an application in terms of using either URL dispatch or traversal. This
chapter details how you might combine these two dispatch mechanisms, but we’ll review how they work
in isolation before trying to combine them.

29.1.1 URL Dispatch Only

An application that uses URL dispatch exclusively to map URLs to code will often have statements like
this within its application startup configuration:

315

29. COMBINING TRAVERSAL AND URL DISPATCH

config is an instance of pyramid.config.Configurator

config.add_route('foobar', '{foo}/{bar}'")
4 |config.add_route ('bazbuz', '{baz}/{buz}')

¢ |config.add_view ('myproject.views.foobar', route_name='foobar")
7| config.add_view('myproject.views.bazbuz', route_name='bazbuz')

Each route corresponds to one or more view callables. Each view callable is associated with a route by
passing a route_name parameter that matches its name during a call to add_view (). When a route
is matched during a request, view lookup is used to match the request to its associated view callable. The
presence of calls to add_route () signify that an application is using URL dispatch.

29.1.2 Traversal Only

An application that uses only traversal will have view configuration declarations that look like this:

config is an instance of pyramid.config.Configurator

w

config.add_view ('mypackage.views.foobar', name='foobar')

=

config.add_view ('mypackage.views.bazbuz', name='bazbuz')

When the above configuration is applied to an application, the mypackage.views.foobar
view callable above will be called when the URL /foobar is visited. Likewise, the view
mypackage.views.bazbuz will be called when the URL /bazbuz is visited.

Typically, an application that wuses traversal exclusively won’t perform any calls to
pyramid.config.Configurator.add_route () inits startup code.

29.2 Hybrid Applications

Either traversal or URL dispatch alone can be used to create a Pyramid application. However, it is also
possible to combine the concepts of traversal and URL dispatch when building an application, the result
of which is a hybrid application. In a hybrid application, traversal is performed after a particular route
has matched.

A hybrid application is a lot more like a “pure” traversal-based application than it is like a “pure” URL-
dispatch based application. But unlike in a “pure” traversal-based application, in a hybrid application

316

29.2. HYBRID APPLICATIONS

traversal is performed during a request after a route has already matched. This means that the URL
pattern that represents the pattern argument of a route must match the PATH_INFO of a request,
and after the route pattern has matched, most of the “normal” rules of traversal with respect to resource
location and view lookup apply.

There are only four real differences between a purely traversal-based application and a hybrid application:

¢ In a purely traversal-based application, no routes are defined. In a hybrid application, at least one
route will be defined.

* In a purely traversal-based application, the root object used is global, implied by the root factory
provided at startup time. In a hybrid application, the root object at which traversal begins may be
varied on a per-route basis.

* In a purely traversal-based application, the PATH_INFO of the underlying WSGI environment is
used wholesale as a traversal path. In a hybrid application, the traversal path is not the entire
PATH_INFO string, but a portion of the URL determined by a matching pattern in the matched
route configuration’s pattern.

* In a purely traversal-based application, view configurations which do not mention a route_name
argument are considered during view lookup. In a hybrid application, when a route is matched, only
view configurations which mention that route’s name as a route_name are considered during
view lookup.

More generally, a hybrid application is a traversal-based application except:

* the traversal root is chosen based on the route configuration of the route that matched, instead of
from the root_factory supplied during application startup configuration.

* the traversal path is chosen based on the route configuration of the route that matched, rather than
from the PATH__INFO of a request.

* the set of views that may be chosen during view lookup when a route matches are limited to those
which specifically name a route_name in their configuration that is the same as the matched
route’s name.

To create a hybrid mode application, use a route configuration that implies a particular root factory and

which also includes a pattern argument that contains a special dynamic part: either xtraverse or
*subpath.

317

29. COMBINING TRAVERSAL AND URL DISPATCH

29.2.1 The Root Object for a Route Match

A hybrid application implies that traversal is performed during a request after a route has matched. Traver-
sal, by definition, must always begin at a root object. Therefore it’s important to know which root object
will be traversed after a route has matched.

Figuring out which root object results from a particular route match is straightforward. When a route is
matched:

« If the route’s configuration has a factory argument which points to a root factory callable, that
callable will be called to generate a root object.

* If the route’s configuration does not have a factory argument, the global root factory will
be called to generate a root object. The global root factory is the callable implied by the
root_factory argument passed to the Configurator at application startup time.

e If a root_factory argument is not provided to the Configurator at startup time, a default
root factory is used. The default root factory is used to generate a root object.

O Root factories related to a route were explained previously within Route Factories. Both the
global root factory and default root factory were explained previously within The Resource Tree.

29.2.2 Using *traverse in a Route Pattern

A hybrid application most often implies the inclusion of a route configuration that contains the special
token xtraverse at the end of a route’s pattern:

1 |config.add_route ('home', '{foo}/{bar}/+«traverse')

A xtraverse token at the end of the pattern in a route’s configuration implies a “remainder” capture
value. When it is used, it will match the remainder of the path segments of the URL. This remainder
becomes the path used to perform traversal.

O The xremainder route pattern syntax is explained in more detail within Route Pattern Syntax.

A hybrid mode application relies more heavily on traversal to do resource location and view lookup than
most examples indicate within URL Dispatch.

318

29.2. HYBRID APPLICATIONS

Because the pattern of the above route ends with «*t raverse, when this route configuration is matched
during a request, Pyramid will attempt to use traversal against the root object implied by the root factory
that is implied by the route’s configuration. Since no root_factory argument is explicitly specified
for this route, this will either be the global root factory for the application, or the default root factory.
Once traversal has found a context resource, view lookup will be invoked in almost exactly the same way
it would have been invoked in a “pure” traversal-based application.

Let’s assume there is no global root factory configured in this application. The default root factory cannot
be traversed; it has no useful __getitem__ method. So we’ll need to associate this route configuration
with a custom root factory in order to create a useful hybrid application. To that end, let’s imagine that
we’ve created a root factory that looks like so in a module named routes.py:

class Resource (object) :
2 def _ _init__ (self, subobijects):
3 self.subobjects = subobjects

5 def _ _getitem__ (self, name):

6 return self.subobjects[name]

7

8 | root = Resource (

9 {'"a': Resource({'b': Resource({'c': Resource({})})})}

10)

12 |def root_factory(request):
13 return root

Above we’ve defined a (bogus) resource tree that can be traversed, and a root_factory function that
can be used as part of a particular route configuration statement:

config.add_route('home', '{foo}/{bar}/+traverse',
2 factory="mypackage.routes.root_factory')

The factory above points at the function we’ve defined. It will return an instance of the Resource
class as a root object whenever this route is matched. Instances of the Resource class can be used for
tree traversal because they have a ___getitem__ method that does something nominally useful. Since
traversal uses __getitem___ to walk the resources of a resource tree, using traversal against the root
resource implied by our route statement is a reasonable thing to do.

ﬁ We could have also used our root_factory function as the root_factory argument of
the Configurator constructor, instead of associating it with a particular route inside the route’s
configuration. Every hybrid route configuration that is matched, but which does nof name a factory
attribute, will use the global root_factory function to generate a root object.

319

29. COMBINING TRAVERSAL AND URL DISPATCH

When the route configuration named home above is matched during a request, the matchdict gener-
ated will be based on its pattern: {foo}/{bar}/+traverse. The “capture value” implied by the
xtraverse element in the pattern will be used to traverse the resource tree in order to find a context
resource, starting from the root object returned from the root factory. In the above example, the root
object found will be the instance named root in routes.py.

If the URL that matched a route with the pattern {foo}/{bar}/+traverse is
http://example.com/one/two/a/b/c, the traversal path used against the root object will
be a/b/c. As a result, Pyramid will attempt to traverse through the edges 'a’, 'b’, and ’'c’,
beginning at the root object.

In our above example, this particular set of traversal steps will mean that the context resource of the view
would be the Resource object we’ve named ’ ¢’ in our bogus resource tree, and the view name resulting
from traversal will be the empty string. If you need a refresher about why this outcome is presumed, see
The Traversal Algorithm.

At this point, a suitable view callable will be found and invoked using view lookup as described in View
Configuration, but with a caveat: in order for view lookup to work, we need to define a view configuration
that will match when view lookup is invoked after a route matches:

config.add_route('home', '{foo}/{bar}/+traverse',
2 factory="mypackage.routes.root_factory')

w

config.add_view ('mypackage.views.myview', route_name='home')

Note that the above call to add_view () includes a route_name argument. View configurations that
include a route_name argument are meant to associate a particular view declaration with a route, using
the route’s name, in order to indicate that the view should only be invoked when the route matches.

Calls to add_view () may pass a route_name attribute, which refers to the value of an existing
route’s name argument. In the above example, the route name is home, referring to the name of the route

defined above it.

The above mypackage.views.myview view callable will be invoked when the following conditions
are met:

¢ The route named “home” is matched.
* The view name resulting from traversal is the empty string.
* The context resource is any object.

It is also possible to declare alternative views that may be invoked when a hybrid route is matched:

320

29.2. HYBRID APPLICATIONS

config.add_route ('home', '{foo}/{bar}/+«traverse',

factory="'mypackage.routes.root_factory")
config.add_view ('mypackage.views.myview', route_name='home')
config.add_view ('mypackage.views.another_view', route_name='home',
5 name="'another")

S

w

~

The add_view call for mypackage.views.another_view above names a different view and,
more importantly, a different view name. The above mypackage.views.another_view view will
be invoked when the following conditions are met:

* The route named “home” is matched.

* The view name resulting from traversal is another.

* The context resource is any object.
For instance, if the URL http://example.com/one/two/a/another is provided to an applica-
tion that uses the previously mentioned resource tree, the mypackage.views.another_view view
callable will be called instead of the mypackage.views.myview view callable because the view

name will be another instead of the empty string.

More complicated matching can be composed. All arguments to route configuration statements and view
configuration statements are supported in hybrid applications (such as predicate arguments).

29.2.3 Using the traverse Argument in a Route Definition

Rather than using the ~t raverse remainder marker in a pattern, you can use the t raverse argument
to the add_route () method.

When you use the »t raverse remainder marker, the traversal path is limited to being the remainder
segments of a request URL when a route matches. However, when you use the t raverse argument or

attribute, you have more control over how to compose a traver