
Wing IDE Reference Manual

Wingware, the feather logo, Wing IDE, Wing IDE 101, Wing IDE Personal, Wing
IDE Professional, and "The Intelligent Development Environment" are trademarks
or registered trademarks of Wingware in the United States and other countries.

Disclaimers: The information contained in this document is subject to change
without notice. Wingware shall not be liable for technical or editorial errors or
omissions contained in this document; nor for incidental or consequential damages
resulting from furnishing, performance, or use of this material.

Hardware and software products mentioned herein are named for identification
purposes only and may be trademarks of their respective owners.

Copyright (c) 1999-2015 by Wingware. All rights reserved.

Wingware
P.O. Box 400527
Cambridge, MA 02140-0006
United States of America

Contents
Wing IDE Reference Manual 1

Introduction 1

1.1. Product Levels 1

1.2. Licenses 1

1.3. Supported Platforms 2

1.4. Supported Python versions 2

1.5. Technical Support 3

1.6. Prerequisites for Installation 3

1.7. Installing Wing IDE 3

1.8. Running Wing IDE 4

1.9. Installing your License 4

1.10. User Settings Directory 6

1.11. Upgrading 7

Compatibility Notes 7

1.11.1. Migrating from older versions of Wing 8

Licensing 8

Converting Projects 8

Changes in Wing 5 8

1.11.2. Fixing a Failed Upgrade 9

1.12. Installation Details and Options 10

1.12.1. Linux Installation Notes 10

1.12.2. Remote Display on Linux 11

1.12.3. Installing Extra Documentation 12

1.12.4. Source Code Installation 12

1.13. Backing Up and Sharing Settings 12

1.14. Removing Wing IDE 13

1.15. Command Line Usage 14

Customization 15

2.1. Keyboard Personalities 16

2.1.1. Key Equivalents 16

2.1.2. Key Maps 17

2.1.3. Key Names 19

2.2. User Interface Options 20

2.2.1. Display Style and Colors 20

Color Configuration 20

Add Color Palettes 21

2.2.2. Windowing Policies 21

2.2.3. User Interface Layout 21

2.2.4. Altering Text Display 23

2.3. Preferences 23

2.3.1. Preferences File Layers 23

2.3.2. Preferences File Format 24

2.4. Syntax Coloring 24

Minor Adjustments 25

Comprehensive Changes 25

Automatic Color Adjustment 25

2.5. Perspectives 25

2.6. File Filters 28

Project Manager 28

3.1. Creating a Project 29

3.2. Removing Files and Directories 29

3.3. Saving the Project 29

3.4. Sorting the View 30

3.5. Navigating to Files 30

3.5.1. Keyboard Navigation 31

3.6. Sharing Projects 31

3.7. Project-wide Properties 33

Environment 33

Debug 34

Options 34

Extensions 35

Testing 36

3.7.1. Environment Variable Expansion 36

3.8. Per-file Properties 37

File Attributes 37

Editor 38

Debug/Execute 38

Testing 38

3.9. Launch Configurations 38

Shared Launch Configurations 40

Working on Different Machines or OSes 40

Source Code Editor 40

4.1. Syntax Colorization 41

4.2. Right-click Editor Menu 41

4.3. Navigating Source 41

4.4. File status and read-only files 42

4.5. Transient, Sticky, and Locked Editors 42

4.6. Auto-completion 43

4.7. Source Assistant 46

4.7.1. Docstring Type and Validity 46

4.7.2. Python Documentation Links 47

4.7.3. Working with Runtime Type Information 47

4.7.4. Source Assistant Options 47

4.8. Auto-editing 48

4.9. Bookmarks 50

4.10. File Sets 51

Binding File Sets to Keys 51

Shared File Sets 51

4.11. Code Snippets 52

User Interface 52

Contexts 52

Key Bindings 53

Execution and Data Entry 53

Auto-completion 54

Snippet Syntax 54

Indentation and Line Endings 55

Cursor Placement 55

Snippet Directory Layout 56

File Types 56

Contexts 56

Configuration 56

Commands 56

Scripting Snippets 57

4.12. Indentation 57

4.12.1. How Indent Style is Determined 57

4.12.2. Indentation Preferences 57

4.12.3. Indentation Policy 58

4.12.4. Auto-Indent 58

4.12.5. The Tab Key 59

4.12.6. Checking Indentation 60

4.12.7. Changing Block Indentation 61

4.12.8. Indentation Manager 61

4.13. Folding 62

4.14. Brace Matching 63

4.15. Support for files in .zip or .egg files 63

4.16. Keyboard Macros 63

4.17. Notes on Copy/Paste 63

Smart Copy 64

4.18. Auto-reloading Changed Files 64

4.19. Auto-save 65

Search/Replace 65

5.1. Toolbar Quick Search 65

5.2. Keyboard-driven Mini-Search/Replace 65

5.3. Search Tool 67

5.4. Search in Files Tool 68

5.4.1. Replace in Multiple Files 68

5.5. Find Points of Use 69

5.6. Wildcard Search Syntax 69

Refactoring 70

6.1. Rename Symbol 70

6.2. Move Symbol 71

6.3. Extract Function / Method 71

6.4. Introduce Variable 71

Diff/Merge Tool 72

Diff/Merge Options 73

Source Code Browser 73

8.1. Display Choices 73

8.1.1. Browse Project Modules 74

8.1.2. Browsing Project Classes 74

8.1.3. Viewing Current Module 74

8.2. Display Filters 75

8.2.1. Filtering Scope and Source 75

8.2.2. Filtering Construct Type 75

8.3. Sorting the Browser Display 76

8.4. Navigating the Views 76

8.5. Browser Keyboard Navigation 76

Interactive Python Shell 76

9.1. Python Shell Auto-completion 77

9.2. Python Shell Options 78

OS Commands Tool 78

10.1. OS Command Properties 79

Unit Testing 81

11.1. Project Test Files 82

11.2. Running Tests 82

11.3. Running unittest Tests From the Command Line 83

Debugger 83

12.1. Quick Start 84

12.2. Specifying Main Entry Point 85

12.2.1. Named Entry Points 85

12.3. Debug Properties 86

12.4. Setting Breakpoints 86

Breakpoint Types 86

Breakpoint Attributes 86

Breakpoints Tool 87

Keyboard Modifiers for Breakpoint Margin 87

12.5. Starting Debug 87

12.6. Debugger Status 89

12.7. Flow Control 89

12.8. Viewing the Stack 90

12.9. Viewing Debug Data 91

12.9.1. Stack Data View 91

12.9.1.1. Popup Menu Options 92

12.9.1.2. Filtering Value Display 93

12.9.2. Watching Values 94

12.9.3. Evaluating Expressions 95

12.9.4. Problems Handling Values 95

12.10. Debug Process I/O 96

12.10.1. External I/O Consoles 97

12.10.2. Disabling Debug Process I/O Multiplexing 97

12.11. Interactive Debug Probe 98

12.11.1. Managing Program State 99

12.11.2. Debug Probe Options 99

12.12. Multi-Process Debugging 100

12.13. Debugging Multi-threaded Code 103

12.14. Managing Exceptions 103

Exception Reporting Mode 104

Reporting Logged Exceptions 105

Exception Type Filters 105

12.15. Running Without Debug 106

Advanced Debugging Topics 106

13.1. Debugging Externally Launched Code 106

13.1.1. Importing the Debugger 106

13.1.2. Debug Server Configuration 108

13.1.3. Debugger API 109

13.1.4. Debugging Embedded Python Code 111

13.2. Remote Debugging 111

13.2.1. SSH Tunneling 113

13.2.2. File Location Maps 114

13.2.2.1. File Location Map Examples 115

13.2.3. Remote Debugging Example 117

13.2.4. Installing the Debugger Core 118

13.3. Using wingdb to Initiate Debug 118

13.4. Attaching and Detaching 120

13.4.1. Access Control 120

13.4.2. Detaching 121

13.4.3. Attaching 121

13.4.4. Identifying Foreign Processes 121

13.4.5. Constraints 122

13.5. OS X Debugging Notes 122

System-Provided Python 122

MacPorts Python 122

Debugging 32-bit Python on a 64-bit System 122

13.6. Debugger Limitations 123

Integrated Version Control 126

14.1. Setting Up Version Control in Wing 126

14.2. Version Control Tool Panel 127

14.3. Common Version Control Operations 128

14.4. Bazaar 129

14.5. CVS 129

14.6. Git 130

14.7. Mercurial 130

14.8. Perforce 131

14.9. Subversion 131

14.10. Version Control Configuration 132

14.10.1. Configuring SSH 132

14.10.2. Configuring Subversion 133

14.10.3. Configuring CVS 134

Source Code Analysis 135

15.1. How Analysis Works 135

15.2. Static Analysis Limitations 136

15.3. Helping Wing Analyze Code 136

Using Live Runtime State 137

Using isinstance() to Assist Analysis 137

Using *.pi Files to Assist Analysis 137

Naming and Placing *.pi Files 138

Merging *.pi Name Spaces 138

Creating Variants by Python Version 139

15.4. Analysis Disk Cache 139

PyLint Integration 139

Scripting and Extending Wing IDE 141

17.1. Scripting Example 141

17.2. Getting Started 142

Naming Commands 143

Reloading Scripts 143

Overriding Internal Commands 143

17.3. Script Syntax 144

Script Attributes 144

ArgInfo 145

Commonly Used Types 145

Commonly Used Formlets 145

Magic Default Argument Values 147

GUI Contexts 147

Top-level Attributes 148

Importing Other Modules 148

Internationalization and Localization 148

Plugins 149

17.4. Scripting API 150

17.5. Advanced Scripting 150

Example 151

How Script Reloading Works 151

Trouble-shooting Guide 152

18.1. Trouble-shooting Failure to Start 152

18.2. Speeding up Wing 153

18.3. Trouble-shooting Failure to Debug 153

18.3.1. Failure to Start Debug 154

18.3.2. Failure to Stop on Breakpoints or Show Source
Code

155

18.3.3. Failure to Stop on Exceptions 156

18.3.4. Extra Debugger Exceptions 157

18.4. Trouble-shooting Other Known Problems 157

18.5. Obtaining Diagnostic Output 158

Preferences Reference 159

User Interface 159

Projects 168

Files 169

Editor 174

Debugger 192

Source Analysis 204

Version Control 206

IDE Extension Scripting 210

Network 211

Internal Preferences 211

Core Preferences 211

User Interface Preferences 214

Editor Preferences 216

Project Manager Preferences 218

Debugger Preferences 219

Source Analysis Preferences 222

Command Reference 223

20.1. Top-level Commands 223

Application Control Commands 223

Dock Window Commands 235

Document Viewer Commands 236

Global Documentation Commands 238

Window Commands 238

Wing Tips Commands 239

Subversion Commands 239

Git Commands 240

Bazaar Commands 241

C V S Commands 242

Mercurial Commands 243

Perforce Commands 244

20.2. Project Manager Commands 246

Project Manager Commands 246

Project View Commands 248

Subversion Commands 249

Git Commands 250

Bazaar Commands 251

C V S Commands 252

Mercurial Commands 253

Perforce Commands 254

20.3. Editor Commands 255

Editor Browse Mode Commands 255

Editor Insert Mode Commands 256

Editor Non Modal Commands 256

Editor Panel Commands 257

Editor Replace Mode Commands 257

Editor Split Commands 258

Editor Visual Mode Commands 258

Active Editor Commands 259

General Editor Commands 277

Shell Or Editor Commands 289

Bookmark View Commands 290

Snippet Commands 290

Snippet View Commands 290

Subversion Commands 292

Git Commands 293

Bazaar Commands 294

C V S Commands 295

Mercurial Commands 296

Perforce Commands 297

20.4. Search Manager Commands 298

Toolbar Search Commands 298

Search Manager Commands 300

Search Manager Instance Commands 302

Subversion Commands 302

Git Commands 303

Bazaar Commands 304

C V S Commands 305

Mercurial Commands 306

Perforce Commands 307

20.5. Unit Testing Commands 308

Unit Testing Commands 308

Subversion Commands 311

Git Commands 312

Bazaar Commands 313

C V S Commands 314

Mercurial Commands 315

Perforce Commands 316

20.6. Version Control Commands 317

Subversion Commands 317

Git Commands 318

Bazaar Commands 319

C V S Commands 320

Mercurial Commands 321

Perforce Commands 322

20.7. Debugger Commands 323

Debugger Commands 323

Debugger Watch Commands 330

Call Stack View Commands 330

Exceptions Commands 330

Breakpoint View Commands 331

Subversion Commands 331

Git Commands 332

Bazaar Commands 333

C V S Commands 334

Mercurial Commands 335

Perforce Commands 336

20.8. Script-provided Add-on Commands 337

Subversion Commands 337

Git Commands 338

Bazaar Commands 339

C V S Commands 340

Mercurial Commands 341

Perforce Commands 342

Debugger Extensions Script 343

Django Script 344

Django Script 345

Editor Extensions Script 345

Emacs Extensions Script 349

Pylintpanel Script 349

Testapi Script 350

Key Binding Reference 350

21.1. Wing IDE Personality 350

21.2. Emacs Personality 365

21.3. VI/VIM Personality 384

21.4. Visual Studio Personality 411

21.5. OS X Personality 426

21.6. Eclipse Personality 440

21.7. Brief Personality 470

License Information 484

22.1. Wing IDE Software License 485

22.2. Open Source License Information 491

Introduction
Thanks for choosing Wingware's Wing IDE! This manual will help you get started
and serves as a reference for the entire feature set.

The manual is organized by major functional area of Wing IDE, including
customization, project manager, source code editor, search/replace features,
refactoring, diff/merge, source code browser, python shell, OS commands tool, unit
testing, debugger, version control, source code analysis, PyLint integration, ad
scripting and extending Wing IDE. Several appendices provide trouble-shooting
assistance, document the key bindings & command set, provide pointers to
resources and tips for Wing and Python users, and list the full software license.

The rest of this chapter describes how to install and start using Wing IDE. See also
the quick start guide and tutorial.

1.1. Product Levels
This manual is for the Wing IDE Professional product level of the Wing IDE product
line, which currently includes Wing IDE Professional, Wing IDE Personal, and Wing
IDE 101.

Wing IDE Professional is the full-featured Wing IDE product, and may be licensed
for commercial or non-commercial uses. Wing IDE Personal is for non-commercial
use only and contains a subset of the features found in Wing IDE Professional.
Both products are commercial products for sale from our website; Wing IDE
Personal is not a free download.

Wing IDE 101 is a heavily scaled back IDE that was designed for teaching entry
level computer science courses. It is free to download and use for educational and
personal use.

Wing IDE Professional, Wing IDE Personal, and Wing IDE 101 are independent
products and may be installed at the same time on your system without interfering
with each other.

For a list of features in each product level, please refer to
http://wingware.com/wingide/features.

1.2. Licenses
Wing IDE requires a separate license for each developer working with the product.
For the full license text, see the Software License.

License Activation

To run for more than 10 minutes, Wing IDE requires activation of a time-limited trial
or permanent purchased license. Time-limited trials last for 10 days and can be
renewed two times, for a total or 30 days.

Introduction

1

http://wingware.com/doc/howtos/quickstart
http://wingware.com/doc/intro/tutorial
http://wingware.com/wingide/features
http://wingware.com/doc/legal/software-license

An activation ties the license to the machine through a series of checks of the
hardware connected to the system. This information is never transmitted over the
internet. Instead an SHA hash of some of the values is passed back and forth so
that the machine will be identifiable without us knowing anything specific about it.

The machine identity metrics used for activation are designed to be forgiving so
that replacing parts of your machine's hardware or upgrading the machine will
usually not require another activation. By the same token, activating multiple times
on the same machine (for example if the activation file is lost) usually does not
increase your activation count.

Licenses come with ten activations per year by default and additional activations
can be obtained from the self-serve license manager or by emailing sales at
wingware.com. As a fall-back in cases of emergency where we cannot be
contacted and you don't have an activation, Wing IDE will run for 10 minutes at a
time without any license at all, or a trial license can be used until any license
problem is resolved.

See Installing Your License for more information on obtaining and activating
licenses.

1.3. Supported Platforms
This version of Wing IDE is available for Microsoft Windows, Linux, and Mac OS X.

Microsoft Windows

Wing IDE supports Windows XP, 2003 Server, Vista, Windows 7, and Windows 8
for Intel processors. Earlier versions of Windows are not supported and will not
work.

Linux/Intel

Wing IDE runs on Linux versions with glibc version 2.6 or later (such as Ubuntu
10+, RHEL 6.4+, and Debian 5.0+).

Mac OS X

Wing IDE runs on Mac OS X 10.6+ as a native application.

1.4. Supported Python versions
Wing supports CPython 2.5 through 3.5, Stackless Python 2.5 through 3.3, and
cygwin Python 2.5 through 2.7. Wing can also be used with PyPy, IronPython, and
Jython, but the debugger will not work with these implementations of Python.

Wing's debugger is pre-built for each of these versions of Python with and without
--with-pydebug. Both 32-bit and 64-bit compilations are supported. CPython
--with-framework builds are also supported on OS X. If necessary, it is possible
for customers to compile Wing's debugger against other custom versions of
Python.

Introduction

2

http://wingware.com/license
mailto:sales@wingware.com
mailto:sales@wingware.com
http://wingware.com/doc/install/installing-your-license

Before installing Wing, you may need to download Python and install it if you do
not already have it on your machine.

On Windows, Python must be installed using one of the installers from the
python.org (or by building from source if desired).

On Linux, most distributions come with Python. Installing Python is usually only
necessary on a custom-built Linux installation.

On OS X, an Python built by Apple is installed by default. Other Python versions
are available from python.org and from MacPorts, Fink, or Homebrew

1.5. Technical Support
If you have problems installing or using Wing IDE, please submit a bug report or
feedback using the Submit Bug Report or Submit Feedback items in Wing IDE's
Help menu.

Wingware Technical Support can also be contacted by email at support at
wingware.com, or online at http://wingware.com/support.

Bug reports can also be sent by email to bugs at wingware.com. Please include
your OS and product version number and details of the problem with each report.

If you are submitting a bug report via email, see Obtaining Diagnostic Output for
more information on how to capture a log of Wing IDE and debug process
internals. Whenever possible, these should be included with email-based bug
reports.

1.6. Prerequisites for Installation
To run Wing IDE, you will need to obtain and install the following, if not already on
your system:

• A downloaded copy of Wing IDE
• A supported version of Python
• A working TCP/IP network configuration (for the debugger; no outside access

to the internet is required)

1.7. Installing Wing IDE
Before installing Wing IDE, be sure that you have installed the necessary
prerequisites. If you are upgrading from a previous version, see Upgrading first.

Note: The installation location for Wing IDE is referred to as WINGHOME. On OS
X this is the name of Wing's .app folder.

Windows

Introduction

3

http://python.org/download
http://python.org/download
mailto:support@wingware.com
mailto:support@wingware.com
http://wingware.com/support
mailto:bugs@wingware.com
http://wingware.com/doc/install/trouble-diagnostic
http://wingware.com/downloads
http://wingware.com/doc/install/supported-python-versions
http://wingware.com/doc/install/prerequisites-for-installation
http://wingware.com/doc/install/prerequisites-for-installation
http://wingware.com/doc/install/upgrading

Install Wing IDE by running the downloaded executable. Wing's files are installed
by default in C:\Program Files\Wing IDE 5.1, but this location may be modified
during installation. Wing will also create a User Settings Directory in the location
appropriate for your version of Windows. This is used to store preferences and
other settings.

The Windows installer supports a /silent command line option that uses the default
options, including removing any prior install of version 5.1 of Wing IDE. If a prior
install is removed, a dialog with a progress bar will appear. You can also use a
/dir=<dir name> option to specify an alternate installation directory.

Linux

Use the RPM, Debian package, or tar file installer as appropriate for your system
type. Installation from packages is at /usr/lib/wingide5 or at the selected location
when installing from the tar file. Wing will also create a User Settings Directory in
~/.wingide5, which is used to store preferences and other settings.

For more information, see the Linux installation details.

Mac OS X

On OS X, Wing is installed simply by opening the distributed disk image and
dragging to the Applications folder, and optionally from there to the task bar.

1.8. Running Wing IDE
For a quick introduction to Wing's features, refer to the Wing IDE Quickstart Guide.
For a more gentle in-depth start, see the Wing IDE Tutorial.

On Windows, start Wing IDE from the Program group of the Start menu. You can
also start Wing from the command line with wing.exe (located inside the Wing IDE
installation directory).

On Linux/Unix, just execute wing5.1 (or wing located inside the Wing IDE
installation directory).

On Mac OS X, start Wing IDE by double clicking on the app folder or from the
command line using wing command inside the Wing IDE .app folder.

1.9. Installing your License
Wing IDE requires a time-limited trial or permanent license and the license needs
to be activated on each machine (see the Licenses section for general
information). When Wing IDE is first started, you can obtain a trial licence,
purchase a permanent license, install & activate a permanent license, or use Wing
for up to 10 minutes without any license:

Introduction

4

http://wingware.com/doc/install/user-settings-dir
http://wingware.com/doc/install/user-settings-dir
http://wingware.com/doc/install/linux-installation-detail
http://wingware.com/doc/howtos/quickstart
http://wingware.com/doc/intro/tutorial
http://wingware.com/doc/install/licenses

Trial Licenses

Trial licenses allow evaluation of Wing IDE for 10 days, with an option to extend
the evaluation twice for up to 30 days total (or more on request). The most
convenient way to obtain a trial license is to ask Wing IDE to connect directly to
wingware.com (via http, TCP/IP port 80). After the trial license is obtained, Wing
will not attempt to connect to wingware.com (or any other site) unless you submit
feedback or a bug report through the Help menu.

If you're unable or unwilling to connect Wing IDE directly to wingware.com, you
can go to http://wingware.com/activate and enter the license id and activation
request number obtained from Wing. After entering this information, you will be
given an activation key which you can enter into Wing's dialog box to complete the
activation. This is exactly the same exchange of information that occurs when Wing
IDE connects directly to wingware.com to obtain a trial license.

If activation fails, Wing will provide a way to configure an http proxy. Wing tries to
detect and use proxies by default but in some cases they will need to be manually
configured. Please ask your network administrator if you do not know what proxy
settings to use. See also how to determine proxy settings.

Introduction

5

http://wingware.com/activate
http://superuser.com/questions/346372/how-do-i-know-what-proxy-server-im-using

If you run into problems or need additional evaluation time, please email us at
sales at wingware.com.

Permanent Licenses

Permanent licenses and upgrades may be purchased in the online store at
http://wingware.com/store. Permanent licenses include free upgrades through the
5.* version series. Wing IDE Professional licenses also allow access to the product
source code via http://wingware.com/downloads (requires signed non-disclosure
agreement).

Activating on Shared Drives

When Wing is installed on a shared drive (for example a USB keydrive, or on a file
server), the User Settings Directory where the license activation is stored may be
accessed from several different computers.

In this case, Wing must be activated once on each computer. The resulting extra
activations will be stored as license.act1, license.act2, and so forth, and Wing will
automatically select the appropriate activation depending on where it is running.

Obtaining Additional Activations

If you run out of activations, you can use the self-serve license manager or email
us at sales at wingware.com to obtain additional activations on any legitimately
purchased license.

Deactivating a License

If you wish to deactivate and remove your license number from a machine, click
License in Wing IDE's About dialog box and then Deactivate. This will remove
the license activation and quit Wing.

Note that this just removes your license number from the machine. If you are out of
activations you will still need to follow the instructions in
Obtaining Additional Activations above.

1.10. User Settings Directory
The first time you run Wing, it will create your User Settings Directory
automatically. This directory is used to store your license, preferences, default
project, history, and other files used internally by Wing. It also contains any
user-defined snippets, scripts, color palettes, syntax colors, file sets, and shared
perspectives.

Wing cannot run without this directory. If it cannot be created, Wing will exit.

The settings directory is created in a location appropriate to your operating system.
That location is listed as your Settings Directory in the About Box accessible
from the Help menu.

Introduction

6

mailto:sales@wingware.com
http://wingware.com/store
http://wingware.com/downloads
http://wingware.com/pub/wingide/support/source-non-discl.pdf
http://wingware.com/pub/wingide/support/source-non-discl.pdf
http://wingware.com/doc/install/user-settings-dir
http://wingware.com/license
mailto:sales@wingware.com

On Windows the settings directory is called Wing IDE 5 and is placed within the
per-user application data directory. The location varies by version of Windows. For
Vista and later versions of Windows running on c: with an English localization the
location is:

c:\Users\${username}\AppData\Roaming\Wing IDE 5

For Windows XP running on c: with an English localization the location is:

c:\Documents and Settings\${username}\Application Data\Wing IDE 5

On Linux and OS X the settings directory is a sub-directory of your home directory:

~/.wingide5

Cache Directory

Wing also creates a Cache Directory that contains the source analysis caches,
auto-save directory, and a few other things. This directory is also listed in Wing's
About box, accessed from the Help menu.

On Windows Vista and later, the cache directory is located in the AppData\Local
area. On Windows XP, the cache it is usually in the Local Settings area. On
Linux, it is ~/.cache/wingide5 and on OS X, it can be found with the symbolic link
~/.wingide5/cache-dir-symlink.

1.11. Upgrading
If you are upgrading within the same minor version number of Wing (for example
from 5.0 to 5.0.x) this will replace your previous installation. Once you have
upgraded, your previous preferences and settings should remain and you should
immediately be able to start using Wing.

If you are upgrading across major releases (for example from 4.1 to 5.0), this will
install the new version along side your old version of Wing.

New major releases of Wing will read and convert any existing Wing preferences,
settings, and projects. Projects should be saved to a new name for use with the
new major release since they cannot be read by earlier versions.

To install an upgrade, follow the steps described in Installing

Compatibility Notes

The following compatibility notes may be useful to users of earlier versions of Wing
IDE:

• File Sets from Wing IDE 4 are now called File Filters. File Sets in Wing 5 are
a new feature for creating named sets of files.

Introduction

7

http://wingware.com/doc/install/installing

• Auto-editing is on by default except for auto-entering spaces and block
management with the colon key

• Preferences and some menus have been reorganized
• File Properties have changed to make use of Launch Configurations
• OS Commands has been redesigned to use Named Entry Points and

Launch Configurations.
• The Python Shell now starts with current directory set according to the project

or main debug file configuration
• A few key bindings have changed
• Accelerators may have changed from Wing 4 and are no longer available on

OS X because Qt follows Mac user interface guidelines, except when the
Display Style preference is used to select non-native display

• More project data is stored in the shared branch of two-file projects (such as
Python Path and OS Commands settings)

• Support for Python < 2.5 has been dropped
• New projects created with Wing Pro are always shared (two file) projects. Only

the .wpr file should be checked into revision control.
• For other compatibility details, see the Changes sections of the Change Log

on the downloads page.

1.11.1. Migrating from older versions of Wing

Moving to Wing IDE 5 from earlier versions should be easy. The first time you start
Wing IDE 5, it will automatically convert your preferences from any older version of
Wing IDE and place them into your User Settings Directory.

Wing IDE 5 can be installed and used side by side with older versions of Wing and
operates completely independently.

Licensing

Licenses for Wing IDE 4 and earlier must be upgraded before they can be
activated for Wing IDE 5. This can be done in the online store.

Converting Projects

Wing IDE 4 and earlier project files will be converted as they are opened and
marked untitled so they can be saved under a new name. You should not overwrite
your old project files if you plan to continue using an earlier version of Wing IDE
with them. Wing IDE 5 project files cannot be read by earlier versions of Wing.

Changes in Wing 5

Wing 5 changes some features and defaults found in earlier versions of Wing:

Introduction

8

http://wingware.com/downloads/
http://wingware.com/doc/install/user-settings-dir
http://wingware.com/store/upgrade

• Auto-editing is on by default except for auto-entering spaces and block
management with repeated presses of the colon key

• Preferences and some menus have been reorganized
• File Sets from Wing IDE 4 are now called File Filters. File Sets in Wing 5 are a

new feature for creating named sets of files.
• File Properties have changed to make use of Launch Configurations
• OS Commands has been redesigned to use Launch Configurations and

Named Entry Points
• The Python Shell starts with current directory set according to the project or

main debug file configuration
• A few key bindings have changed
• Accelerators may have changed from Wing 4 and are no longer available on

OS X because Qt follows Mac user interface guidelines, except when the
Display Style preference is used to select non-native display

• More project data is stored in the shared branch of two-file projects (Python
Path, OS Commands)

• Support for Python <= 2.2 has been dropped on Windows and support for
Python <= 2.5 has been dropped on OS X

• New projects created with Wing Pro are always Shared (Two File) projects

1.11.2. Fixing a Failed Upgrade

In rare cases upgrading may fail to overwrite old files, resulting in random or
bizarre behaviors and crashing. The fix for this problem is to completely uninstall
and manually remove remaining files before installing the upgrade again.

Windows

To uninstall on Windows, run the Add/Remove Programs control panel to uninstall
Wing IDE. Then go into the directory where Wing was located and manually
remove any remaining folders and files.

Mac OS X

On Mac OS X, just drag the entire Wing IDE application folder to the trash.

Linux Debian

If you installed Wing IDE for Linux from Debian package, issue the command
dpkg -r wingide5. Then go into /usr/lib/wingide5 and remove any remaining files
and directories.

Linux RPM

If you installed Wing IDE for Linux from RPM, issue the command rpm -e
wingide5. Then go into /usr/lib/wingide5 and remove any remaining files and
directories.

Linux Tar

Introduction

9

If you installed Wing IDE for Linux from the tar distribution, run the wing-uninstall
script located in the install directory listed in Wing's About box. Once done,
manually remove any remaining files and directories.

If this procedure does not solve the problem, try moving aside the User Settings
Directory and then starting Wing. If this works, try restoring files from the old user
settings directory one by one to find the problem. Key files to try are license.act*,
preferences and recent*. Then submit a bug report to support@wingware.com
with the offending file.

1.12. Installation Details and Options
This section provides some additional detail for installing Wing and describes
installation options for advanced users.

1.12.1. Linux Installation Notes

On Linux, Wing can be installed from RPM, Debian package, or from tar archive.
Use the latter if you do not have root access on your machine or wish to install
Wing somewhere other than /usr/lib/wingide5. Be sure to use the 64-bit packages
if you are on a 64-bit system.

Installing from RPM:

Wing can be installed from an RPM package on RPM-based systems, such as
RedHat and Mandriva. To install, run rpm -i wingide5-5.1.6-1.i386.rpm as root or
use your favorite RPM administration tool to install the RPM. Most files for Wing
are placed under the /usr/lib/wingide5 directory and the wing5.1 command is
placed in the /usr/bin directory.

Installing from Debian package:

Wing can be installed from a Debian package on Debian, Ubuntu, and other
Debian-based systems.

To install, run dpkg -i wingide5_5.1.6-1_i386.deb

as root or use your favorite package administration tool to install. Most files for
Wing are placed under the /usr/lib/wingide5 directory and the wing5.1 command
is placed in the /usr/bin directory.

It may be necessary to install some dependencies before the installation will
complete, as requested by dpkg. The easiest way to do this is
sudo apt-get -f install -- this installs the missing dependencies and completes the
configuration step for Wing's package.

Installing from Tar Archive:

Wing may also be installed from a tar archive. This can be used on systems that do
not use RPM or Debian packages, or if you wish to install Wing into a directory
other than /usr/lib/wingide5. Unpacking this archive with

Introduction

10

http://wingware.com/doc/install/user-settings-dir
http://wingware.com/doc/install/user-settings-dir

tar -zxvf wingide-5.1.6-1-i386-linux.tar.gz will create a
wingide-5.1.6-1-i386-linux directory that contains the wing-install.py script and a
binary-package.tar file.

Running the wing-install.py script will prompt for the location to install Wing, and
the location in which to place the executable wing5.1. These locations default to
/usr/local/lib/wingide and /usr/local/bin, respectively. The install program must
have read/write access to both of these directories, and all users running Wing
must have read access to both.

Debugging 32-bit Python on 64-bit Systems

On a 64-bit system where you need to debug 32-bit Python, you will need to install
the 32-bit version of Wing. This version can also debug 64-bit Python.

Installing the 32-bit version of Wing may require installing some compatibility
packages as follows:

On 64-bit Ubuntu and Debian systems, you need to first install the 32 bit
compatibility libraries. This is the ia32-libs package on Ubuntu. Then install the
32-bit Wing with the command dpkg -i --force-architecture --force-depends
wingide5_5.1.6-1_.i386.deb The package contains what you need to run your
debug process with 64-bit Python but Wing itself runs as a 32-bit application.

On CentOS 64-bit systems, installing the libXtst.i386 package with yum provides
the necessary 32 bit support.

On Arch linux, the necessary package is instead named lib32-glibc.

1.12.2. Remote Display on Linux

Wing for Linux can be displayed remotely by enabling X11 forwarding in ssh as
described here.

In summary: You need to send the -X option to ssh when you connect from the
machine where you want windows to display to the machine where Wing will be
running, and you need to add X11Forwarding yes to your ssh configuration
(usually in ~/.ssh/config) on the machine where Wing will be running.

Speeding up the Connection

To improve performance, in most cases you should leave off the -C option for ssh,
even though it is often mentioned in instructions for setting up X11 forwarding. The
compression that is enabled with -C is only useful over extremely slow connections
and otherwise increases latency and reduces responsiveness of the GUI.

Another option to try is -Y (trusted X11 port forwarding) instead of -X (untrusted
X11 port forwarding) as this may reduce overhead as well. However, this disabled
security options so it's a good idea to understand what it does before using it.

Introduction

11

http://unix.stackexchange.com/questions/12755/how-to-forward-x-over-ssh-from-ubuntu-machine

If you are displaying to Windows, the choice of X11 server software running on
Windows can make a huge difference in performance. If the GUI seems very slow,
try a different X11 server.

Other Options

Other options for displaying Wing remotely from Linux include:

• XRDP -- implements the protocol for Windows Remote Desktop.
• NoMachine -- Another free remote desktop toolkit.

1.12.3. Installing Extra Documentation

On Windows, Wing looks for local copies of Python documentation in the Doc
directory of the Python installation(s), either in CHM or HTML format.

If you are using Linux or OS X, the Python manual is not included in most Python
installations, so you may wish to download and install local copies.

To do this, place the top-level of the HTML formatted Python manual (where
index.html is found) into python-manual/#.# within your Wing IDE installation.
Replace #.# with the major and minor version of the corresponding Python
interpreter (for example, for the Python 2.7.x manual, use python-manual/2.7).

Once this is done, Wing will use the local disk copy rather than going to the web
when the Python Manual item is selected from the Help menu.

1.12.4. Source Code Installation

Source code is available to licensed users of Wing IDE Professional
(non-evaluation licenses only) who have completed a non-disclosure agreement.
Upon receipt of this agreement, you will be provided with instructions for obtaining
and working with the product source code.

1.13. Backing Up and Sharing Settings
To back up your license, preferences, and other settings, you only need to back up
the Settings Directory, which is listed in Wing IDE's About box, accessed from the
Help menu.

The process of restoring Wing or moving to a new machine consists simply of
installing Wing again, restoring the above directory, and reactivating your license if
moving to a new machine.

The only other Wing-specific data that the IDE will write to your disk is in your
project files (*.wpr and *.wpu if you are using the Shared style of project; see
Project Types for details). We recommend using the default Shared project type
and checking the *.wpr into revision control.

Introduction

12

http://www.xrdp.org/
https://www.nomachine.com/
http://docs.python.org/download.html
http://wingware.com/pub/wingide/support/source-non-discl.pdf
http://wingware.com/doc/install/user-settings-dir
http://wingware.com/doc/proj/project-types

The *.wpu contains user-specific and machine-specific data such as environment,
path, window position, list of open files, and other GUI state. The file is worth
backing up, but usually not hard to recreate if lost.

Wing also writes to a cache directory (also listed in the About box) and your
OS-provided temporary directory, but those can be recreated from scratch if it is
lost. The only possible exception to this is autosave in the cache directory, which
contains unsaved files open in the IDE.

For more information on the location of these directories, see User Settings
Directory.

Sharing Settings

Many of the settings found in the User Settings Directory can be shared to other
machines or with other users of Wing IDE. This includes the following files and
directories:

• filesets -- shared file sets used for selecting files to search or include in the
project.

• launch -- shared launch configurations used for defining environment for
debugging and executing code.

• palettes -- any user-defined color palettes used for configuring the user
interface.

• perspectives -- shared perspectives which store particular configurations of
tools and editors.

• preferences -- Wing IDE's preferences, as configured in the
Preferences dialog.

• pylintpanel.cfg -- the configuration for the PyLint tool.
• recent* -- lists of recent files, projects, commands, and so forth.
• scripts -- scripts that extend IDE functionality.
• snippets -- user-defined code snippets for quick entry of predefined blocks of

code.
• syntax -- user-defined syntax colors for file types available in the editor.

Follow the links above to find details on the file formats involved. Most are simple
textual formats that are easy to generate or modify if necessary. Wing does need
to be restarted when replacing these files, and may overwrite changes made while
it is running.

1.14. Removing Wing IDE
Windows

On Windows, use the Add/Remove Programs control panel, select Wing IDE 5 and
remove it.

Linux/Unix

Introduction

13

http://wingware.com/doc/install/user-settings-dir
http://wingware.com/doc/install/user-settings-dir
http://wingware.com/doc/install/user-settings-directory
http://wingware.com/doc/edit/file-sets
http://wingware.com/doc/proj/launch-configs
http://wingware.com/doc/custom/qt-styles
http://wingware.com/doc/custom/perspectives
http://wingware.com/doc/custom/preferences
http://wingware.com/doc/edit/pylint
http://wingware.com/doc/scripting/index
http://wingware.com/doc/edit/snippets
http://wingware.com/doc/custom/syntax

To remove an RPM installation on Linux, type rpm -e wingide5.

To remove an Debian package installation on Linux, type dpkg -r wingide5.

To remove a tar archive installation on Linux/Unix, invoke the wing-uninstall script
in the install directory listed in Wing's About box. This will automatically remove all
files that appear not to have been changed since installation, It will ask whether it
should remove any files that appear to be changed.

Mac OS X

To remove Wing from Mac OS X, just drag its application folder to the trash.

1.15. Command Line Usage
Whenever you run wing5.1 from the command line, you may specify a list of files
to open. These can be arbitrary text files and a project file. For example, the
following will open project file myproject.wpr and also the three source files
mysource.py, README, and Makefile:

wing5.1 mysource.py README Makefile myproject.wpr

(on Windows, the executable is called wing.exe)

Wing determines file type by extension, so position of the project file name (if any)
on the command line is not important. A line number may be specified for the first
file on the command line by appending :<line-number> to the file name (for
example, README:100 will position the cursor at the start of the README file).

The following valid options may be specified anywhere on the command line:

--prefs-file -- Add the file name following this argument to the list of preferences
files that are opened by the IDE. These files are opened after the system-wide and
default user preferences files, so values in them override those given in other
preferences files.

--new -- By default Wing will reuse an existing running instance of Wing IDE to
open files specified on the command line. This option turns off this behavior and
forces creation of a new instance of Wing IDE. Note that a new instance is always
created if no files are given on the command line.

--reuse -- Force Wing to reuse an existing running instance of Wing IDE even if
there are no file names given on the command line. This just brings Wing to the
front.

--system-qt -- (Posix only) This option causes Wing to try to use the system-wide
install of Qt rather than its own version of Qt. Running in this mode will cause Wing
to pick up on system-wide theme defaults, but may result in crashing or display
problems due to incompatibilities in Qt and related libraries.

Introduction

14

--private-qt -- (Posix only) This option causes Wing to use its private install of Qt
rather than any system-provided Qt.

--verbose -- (Posix only) This option causes Wing to print verbose error reporting
output to stderr. On Windows, run console_wing.exe instead for the same result.

--use-winghome -- (For developers only) This option sets WINGHOME to be used
during this run. It is used internally and by developers contributing to Wing IDE.
The directory to use follows this argument.

--use-src -- (For developers only) This option is used to force Wing to run from
Python source files even if compiled files are present in the bin directory, as is the
case after a distribution has been built.

--orig-python-path -- (For developers only) This option is used internally to
indicate the original Python path in use by the user before Wing was launched. The
path follows this argument.

--squelch-output -- (For developers only) This option prevents any output of any
kind to stdout and stderr. Used on Windows to avoid console creation.

Customization
There are many ways to customize Wing IDE in order to adapt it to your needs or
preferences. This chapter describes the options that are available to you.

Note

These are some of the areas of customization that are available:

• The editor can run with different personalities such as VI/Vim, Emacs,
Visual Studio, Eclipse, and Brief emulation

• The action of the tab key can be configured
• The auto-completer's completion key(s) can be altered
• The layout, look, color, and content of the IDE windows can be

configured
• Editor syntax colors can be configured
• Keyboard shortcuts can be added, removed, or altered for any Wing

command
• File filters can be defined to control some of the IDE features
• Code snippets can be defined and bound to keys
• Perspectives can be used to save and restore user interface state
• Scripts can be written in Python to extend the IDE's functionality
• Many other options are available through preferences

Customization

15

2.1. Keyboard Personalities
The default keyboard personality for Wing implements most common keyboard
equivalents found in a simple graphical text editor. This uses primarily the graphical
user interface for interacting with the editor and limits use of complex
keyboard-driven command interaction.

Note

Emulation of Other Editors

The first thing most users will want to do is to set the keyboard personality to
emulate their editor of choice. This is done with the
Edit > Keyboard Personality menu or with the
User Interface > Keyboard > Personality preference.

Under the VI/Vim and Emacs personalities, key strokes can be used to control
most of the editor's functionality, using a textual interaction 'mini-buffer' at the
bottom of the IDE window where the current line number and other informational
messages are normally displayed.

Related preferences that alter keyboard behaviors include Tab Key Action and
Completion Keys for the auto-completer.

It is also possible to add, alter, or remove individual keyboard command mappings
within each of these personalities. See the following sub-sections for details.

2.1.1. Key Equivalents

The command a key will invoke may be modified by specifying a custom key
binding. A custom key binding will override any binding for a particular key found in
the keymap. Custom key bindings are set via the Custom Key Bindings
preference.

To add a binding, click the insert button, then press the key to be bound in the Key
field, and enter the name of the command to invoke in the Command field.
Commands are documented in the Command Reference.

Key bindings may consist of multiple key strokes in a row, such as Ctrl-X Ctrl-U or
Esc X Y Z.

If multiple comma-separated commands are specified, the key binding will execute
the first available command in the listed. For example, specifying
debug-restart, debug-continue as the command will first try to restart an existing
debug session, and if no debug session exists it will start a new one.

Customization

16

http://wingware.com/doc/commands/index

To disable a key binding, leave the command field blank.

Some commands take arguments, which can be specified in the binding, for
example by using show-panel(panel_type="debug-probe") or
enclose(start="(", end=")")``in the ``Command field. Any unspecified arguments
that do not have a default defined by the command will be collected from the user,
either in a dialog or in the data entry area at the bottom of the IDE window.

Key bindings defined by default or overridden by this preference will be shown in
any menu items that implement the same command. In cases where a command is
given more than one key equivalent, only the last equivalent found will be
displayed (although both bindings will work from the keyboard).

The Alt Key on OS X

On OS X, the Alt Key preference allows selecting one or both of the Option keys
or the Command keys to act as the Alt key modifier for keyboard bindings.

This preference should be set by the user according to keyboard type, so that key
bindings in Wing do not prevent entering characters with one or both of the Option
keys.

For example, on German keyboards, [,], and other common symbols are entered
with the Option key. In those cases, setting the preference to "Left Option key"
frees up the right Option key for entering characters and dedicates the left Option
key to triggering key bindings.

When Command is used for Alt, the binding for Alt-<key> takes precedence over
any binding for Command-<key> for the same key.

2.1.2. Key Maps

Wing ships with several key equivalency maps found at the top level of the Wing
IDE installation, including keymap.normal, keymap.emacs, keymap.vi, and
others. These are used as default key maps for the corresponding editor
personalities, as set with the User Interface > Keyboard > Keyboard Personality
preference.

For developing entirely new key bindings, or in other cases where the Custom
Key Bindings preference is not sufficient, it is possible to create a custom key
equivalency map and use it as your default map through the Key Map File
preference.

In a key map file, each key equivalent is built from names listed in the Key Names
section. These names can be combined as follows:

1. A single unmodified key is specified by its name alone, for example 'Down' for
the down arrow key.

Customization

17

http://wingware.com/doc/custom/key-names

2. Modified keys are specified by hyphenating the key names, for example
'Shift-Down' for the down arrow key pushed while shift is held down. Multiple
modifiers may also be specified, as in 'Ctrl-Shift-Down'.

3. Special modifiers are defined for Vim mode: Visual, Browse, Insert, and
Replace. These correspond with the different editor modes, and will only work
if the Keyboard Personality preference has been set to VI/Vim.

4. Multi-key combinations can be specified by listing multiple key names
separated by a space. For example, to define a key equivalent that consists of
first pushing ctrl-x and then pushing the a key by itself, use 'ctrl-x a' as the
key sequence.

The command portion of the key equivalency definition may be any of the
commands listed in section Command Reference. See the examples below for
usage options.

Examples

Here is an example of adding a key binding for a command. If the command
already has a default key binding, both bindings will work:

'Ctrl-X P': 'debug-attach'

This example removes a key equivalent entirely:

'Ctrl-C Ctrl-C': None

These can be combined to changes the key binding for a command without
retaining its default key binding:

'Ctrl-C Ctrl-C': None
'Ctrl-G': 'debug-continue'

Wing always retains only the last key binding for a given key combination. This
example binds Ctrl-X to 'quit' and no other command:

'Ctrl-X': 'debug-stop'
'Ctrl-X': 'quit'

If multiple commands are specified separated by commas, Wing executes the first
command that is available. For example, the following will either restart the debug
process whether or not one is currently running:

'Ctrl-X': 'debug-restart, debug-continue'

Customization

18

http://wingware.com/doc/commands/index

Command arguments can be specified as part of the binding. Any unspecified
arguments that do not have a default will be collected from the user in a dialog or
in the data entry area at the bottom of the IDE window:

'Ctrl-X P': 'show-panel(panel_type="debug-probe")'

If Keyboard Personality is set to VI/Vim, modifiers corresponding to the editor
modes restrict availability of the binding to only that mode:

'Visual-Ctrl-X': 'cut'

2.1.3. Key Names

Key modifiers supported by Wing IDE for key bindings are:

• Ctrl -- Either Control key.
• Shift -- Either Shift key. This modifier is ignored with some key names, as

indicated below.
• Alt -- Either Alt key. Not recommended for general use since these bindings

tend to conflict with accelerators and operating system or window manager
operations. On OS X, the Alt Key preference is used to configure which keys
invoke Alt-key bindings.

• Command -- Macintosh Command/Apple key. This may be mapped to other
keys on other systems, but is intended for use on the Macintosh.

On Linux it is possible to remap the function of the Control, Alt, command, and
windows keys. In those cases, the Ctrl and Alt modifiers will refer to the keys
specified in that mapping.

Basic Keys such as the digit keys and core western alphabet keys are specified
as follows:

0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Most punctuation can be specified but any Shift modifier will be ignored since
these keys can vary in location on different international keyboards. Allowed
punctuation includes:

` ~ ! @ # $ % ^ & * () - _ + = [] { } \ | ; : ' " / ? . > , <

Special Keys can also be used:

Escape, Space, BackSpace, Tab, Linefeed, Clear, Return, Pause, Scroll_Lock,
Sys_Req, Delete, Home, Left, Up, Right, Down, Prior, Page_Up, Next,
Page_Down, End, Begin, Select, Print, Execute, Insert, Undo, Redo, Menu, Find,
Cancel, Help, Break, Mode_switch, script_switch, Num_Lock,

F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, L1, F12, L2, F13, L3, F14, L4, F15,
L5, F16, L6, F17, L7, F18, L8, F19, L9, F20, L10, F21, R1, F22, R2, F23, R3, F24,

Customization

19

R4, F25, R5, F26, R6, F27, R7, F28, R8, F29, R9, F30, R10, F31, R11, F32, R12,
F33, R13, F34, R14, F35, R15,

Additional Key Names that also work but ignore the Shift modifier since they tend
to appear in different locations on international keyboards:

AE, Aacute, Acircumflex, Adiaeresis, Agrave, Ampersand, Any, Apostrophe, Aring,
AsciiCircum, AsciiTilde, Asterisk, At, Atilde, Backslash, Bar, BraceLeft, BraceRight,
BracketLeft, BracketRight, Ccedilla, Colon, Comma, Dollar, ETH, Eacute,
Ecircumflex, Ediaeresis, Egrave, Equal, Exclam, Greater, Iacute, Icircumflex,
Idiaeresis, Igrave, Less, Minus, Ntilde, NumberSign, Oacute, Ocircumflex,
Odiaeresis, Ograve, Ooblique, Otilde, ParenLeft, ParenRight, Percent, Period,
Plus, Question, QuoteDbl, QuoteLeft, Semicolon, Slash, Space, THORN, Uacute,
Ucircumflex, Udiaeresis, Ugrave, Underscore, Yacute, acute, brokenbar, cedilla,
cent, copyright, currency, degree, diaeresis, division, exclamdown, guillemotleft,
guillemotright, hyphen, macron, masculine, mu, multiply, nobreakspace, notsign,
onehalf, onequarter, onesuperior, ordfeminine, paragraph, periodcentered,
plusminus, questiondown, registered, section, ssharp, sterling, threequarters,
threesuperior, twosuperior, ydiaeresis, yen

2.2. User Interface Options
Wing provides many options for customizing the user interface to your needs.
Preferences can be set to control the number and type of windows, layout of tools
and editors, text fonts and colors, type of toolbar, and the overall display style
(including ability to select background color).

2.2.1. Display Style and Colors

By default Wing runs with native look and feel for each OS. It is possible to
override this using Display Style preference. The options include using the native
style, using a selected style (for example Windows while running on OS X), or
using a style where foreground and background color can be selected.

Color Configuration

The colors used in the user interface are selected with the Color Palette
preference. This affects editor background color and the color of markers on text
such as the selection, debug run marker, caret line highlight, bookmarks,
diff/merge annotations, and other configurable colors. Palettes also define 20
additional colors that appear in preferences menus that are used for selecting
colors.

The defaults set by the color palette preference can be overridden on a value by
value basis in preferences. For example, the Text Selection Color preference is
used to change the text selection color to a value other than the one specified in

Customization

20

the selected color palette. Each such preference allows selection of a color from
the current color palette, or selection of any color from a color chooser dialog.

To set also the background color of areas other than the editor, first select a
Color Palette and then set the Display Style preference to Match Palette. The
foreground and background colors for the GUI will be set by the current color
palette.

The colors used for syntax highlighting code in the editor are configured
separately, as described in Syntax Coloring.

Add Color Palettes

Additional color palettes can be defined and stored in the palettes sub-directory of
the user settings directory. This directory must be created if it does not already
exist. Example palettes are included in your Wing IDE installation in
resources/palettes. After adding a palette in this way, Wing must be restarted
before it is available for use.

2.2.2. Windowing Policies

Wing IDE can run in a variety of windowing modes. This is controlled by the
Windowing Policy preference, which provides the following options:

• Combined Toolbox and Editor Windows -- This is the default, in which Wing
opens a single window that combines the editor area with two toolbox panels.

• Separate Toolbox Windows -- In this mode, Wing IDE moves all the tools out
to a separate shared window.

• One Window Per Editor -- In this mode, Wing IDE creates one top-level
window for each editor that is opened. Additionally, all tools are moved out to a
separate shared toolbox window and the toolbar and menu are moved out to a
shared toolbar/menu window.

The windowing policy is used to describe the initial configuration and basic action
of windows in the IDE. When it is changed, Wing will reconfigure your projects to
match the windowing policy the first time they are used with the new setting.

However, it is possible to create additional IDE windows and to move editors and
tools out to another window or among existing windows without changing from the
default windowing policy. This is described below.

2.2.3. User Interface Layout

When working in the default windowing policy, Wing's main user interface area
consists of two toolboxes (by default at bottom and right) and an area for source
editors and integrated help.

Clicking on an already-active toolbox tab will cause Wing to minimize the entire
panel so that only the toolbox tabs are visible. Clicking again will return the toolbox

Customization

21

http://wingware.com/doc/custom/syntax
http://wingware.com/doc/install/user-settings-dir

to its former size. The F1 and F2 keys toggle between these modes. The command
Maximize Editor Area in the Tools menu (Shift-F2) can also be used to quickly
hide both tool areas and toolbar.

In other windowing modes, the toolboxes and editor area are presented in
separate windows but share many of the configuration options described below.

Configuring the Toolbar

Wing's toolbar can be configured by altering the size and style of the toolbar icons
in the toolbar, and whether or not text is shown in addition to or instead of icons.
This is controlled with the Toolbar Icon Size and Toolbar Icon Style preferences.

Alternatively, the toolbar can be hidden completely with the Show Toolbar
preference.

Configuring the Editor Area

The options drop down menu in the top right of the editor area allows for splitting
and joining the editor into multiple independent panels. These can be arranged
horizontally, vertically, or any combination thereof. When multiple splits are shown,
all the open files within the window are available within each split, allowing work on
any combination of files and/or different parts of the same file.

The options drop down menu can also be used to change between tabbed editors
and editors that show a popup menu for selecting among files (the latter can be
easier to manage with large number of files) and to move editors out to a separate
window or among existing windows when multiple windows are open.

Configuring Toolboxes

The number of tool box splits Wing shows by default depends on your monitor size.
Each of the toolboxes can be split or joined into any number of splits along the long
axis of the toolbox by clicking on the options drop down icon in the tab area of the
toolbox and selecting Add Toolbox Split or Remove Toolbox Split. This menu is
also accessible by right-clicking on the tool tabs.

Toolbox splits can also be added or removed by dragging tools around by their
tabs, either within each toolbox, to a different toolbox, or out to a new window. The
size of splits is changed by dragging the divider between them.

The options drop down or right-click menu can also be used to insert or duplicate
tools, and to move them around among splits or out to separate windows.

The toolboxes as a whole (including all their tools) can be moved to the left or top
of the IDE window with Move to Left or Move to Top in the options dropdown or
right click menu. Individual splits or the whole toolbox can also be moved out to a
new window from here.

Customization

22

All the available tools are enumerated in the Tools menu, which will display the
most recently used tool of that type or will add one to your window at its default
location, if none is already present.

Creating Additional Windows

In addition to moving existing editors or tools to new windows, it is also possible to
create new tool windows (initially with a single tool) and new document windows
(with editor and toolbars if applicable to the selected windowing policy) from the
Windows menu.

Wing IDE will remember the state of windows as part of your project file, so the
same window layout and contents will be restored in subsequent work sessions.

2.2.4. Altering Text Display

Wing tries to find display fonts appropriate for each system on which it runs, but
many users will want to customize the font style and size used in the editor and
other user interface areas. This can be done with the Source Code Font/Size and
Display Font/Size preferences.

For information on altering colors used for syntax highlighting in the editor, see
Syntax Coloring.

2.3. Preferences
Wing has many preferences that control features of the editor, unit tester,
debugger, source browser, project manager, and other tools.

To alter these, use the Preferences item in the Edit menu (or Wing IDE menu on
OS X). This organizes all available preferences by category and provides access to
documentation in tooltips that are displayed when mousing over the label area to
the left of each preference. Any non-default values that are selected through the
Preferences Dialog are stored in the user's preferences file, which is located in
the User Settings Directory.

All preferences are documented in the Preferences Reference.

2.3.1. Preferences File Layers

Wing's preferences manager runs on a layered set of preferences files, as follows:

1. For each preference, Wing defines a hardwired default internally.
2. An installation-wide preferences file may be placed inside the install directory

listed in Wing's About box.
3. An individual user preferences file is stored in the User Settings Directory.
4. Additional preferences files may be specified on the command line with one or

more --prefs-file options. For example:

wing5.1 --prefs-file /path/to/myprefs

Customization

23

http://wingware.com/doc/custom/syntax
http://wingware.com/doc/install/user-settings-dir
http://wingware.com/doc/preferences/index
http://wingware.com/doc/install/user-settings-dir

The values given in later files in this list override values found in earlier ones. For
example, the user-specific preferences file take precedence over any values in the
WINGHOME/preferences file, and a file specified with --prefs-file would override
values in the user-specific preferences file.

When preferences are changed, Wing writes the changes to the lowest file present
on the above list, either the last file specified with --prefs-file or the preferences file
in the User Settings Directory. Wing will never modify the installation-wide
preferences file.

If a preference is set to a default value, as obtained from the preceding files in the
above list, then Wing removes the value from the writeable preferences file. This
means that the effective value of a preference can change in later IDE sessions
even if the last file on the list above is unchanged. This is by design to allow
inheriting centrally managed default values.

2.3.2. Preferences File Format

While we recommend using the preferences GUI to alter preferences, some users
may wish to edit the underlying text files manually.

The preferences file format consists of a series of sections separated by bracketed
headers such as [user-preferences]. These headers are used internally to identify
from which file a value was read, when there are multiple preferences files active.

The body of each section is a sequence of lines, each of which is a name=value
pair. All of these are read in from each preferences file, with later like-named
settings overwriting earlier ones.

Each preference name is in domain.preference form, where domain is the IDE
subsystem affected and preference is the name of the specific preference (for
example, edit.tab-size defines the source editor's tab size).

Preference values can be any Python expression that will evaluate to a number,
string, tuple, list, or dictionary (the data type is defined by each preference and will
be verified as the file is read into Wing). Long lines may be continued by placing a
backslash (\\) at the end of a line and comments may be placed anywhere on a line
by starting them with #.

If you wish to write preferences files by hand, refer to the Preferences Reference
for documentation of all available preferences.

2.4. Syntax Coloring
There are two ways to configure syntax highlighting in Wing: Minor adjustments
can be made in preferences, and comprehensive configuration can be achieved by
creating a syntax color specification file.

Customization

24

http://wingware.com/doc/install/user-settings-dir
http://wingware.com/doc/preferences/index

Minor Adjustments

For minor tweaks to syntax coloring in the editor, use Syntax Formatting in the
Edit > Syntax Coloring preference group. For each supported file type, and each
lexical state for the file type, it is possible to set the foreground and background
colors, to use bold or italic font, and to fill the end of line character so it appears as
a solid block of color.

Comprehensive Changes

For more comprehensive changes to syntax coloring, textual syntax coloring
specifications can be placed into the syntax directory within the User Settings
Directory. This directory must be created if it is not already present.

To override syntax colors only for a particular Color Palette, place the syntax file in
a sub-directory of the syntax directory whose name matches the palette
specification file name. For example, use syntax/black-background/python.stx
to specify colors to use in Python files only with the Black Background color
palette.

The syntax coloring configuration files can be modeled on the system-wide
defaults, which are stored in resources/syntax within install directory listed in
Wing's About box. Any values missing from these files cause Wing to fall back to
the system-wide defaults. Wing must be restarted to pick up changes made in
these files.

Note that any non-default syntax coloring preferences will take precedence over
syntax files found in the user settings directory or system-wide.

Automatic Color Adjustment

If the currently selected Color Palette uses a non-white background for the editor,
or if the Background Color in the Editor > Syntax Coloring preference group is
set to a color other than white, then Wing will automatically adjust all configured
foreground colors when necessary to ensure that the text remains visible. This
avoids the need to create completely new color configurations for different editor
background colors.

This feature is disabled when using a palette-specific syntax configuration file, as
describe above, since in that case the colors are being designed for a specific
background color.

2.5. Perspectives
Wing IDE Professional allows you to create and switch between subsets of the
IDE's tools, as appropriate for particular kinds of work, such as editing, testing,
debugging, working on documentation, and so forth.

Customization

25

http://wingware.com/doc/install/user-settings-dir
http://wingware.com/doc/install/user-settings-dir

These subsets, or perspectives, are named and then accessed from the Tools
menu, which provides a sub-menu for switching between them. The current
perspective is shown in brackets in the lower left of Wing's window.

Perspective Manager

The Tools menu also contains an item for displaying the Perspective Manager.
The Perspective Manager shows the name of each perspective, whether or not the
perspective is shared, whether or not the perspective is auto-saved, the
perspective style, and the key binding (if any) that is assigned to it.

The name of a perspective can be changed by clicking on the name within the list
and editing it in place.

When perspectives are shared, they are stored in the shared perspectives file,
which is configured with the Shared Perspective File preference, instead of in the
project file. This makes the shared perspectives available across all projects, or
potentially to multiple users. When multiple instances of Wing share this file, Wing
will watch for changes and auto-reload the set of perspectives into each instance
of Wing, as another instance makes changes. Note that when a shared
perspective is un-shared, it is moved into the project currently open in the instance
of Wing that un-shared it.

When the Auto-save Perspectives is set to Configured by Perspective, the
Perspective Manager will include a column to specify whether the perspective
should be auto-saved before transitioning to another perspective. This is described
in more detail below.

The perspective style can be used to control how much state is stored in the
perspective: By default Wing stores only the overall layout of the GUI and set of
tools present. Setting this to "Tools and Editors" will cause the perspective to
control also which editors are open. Setting it to "All Visual State" will store also the
detailed state of the tools and editors, including scroll position, selection, search
strings, tree expansion states, and so forth.

When a key binding is defined, that key sequence will cause Wing to switch to the
associated perspective.

Perspective Manager Context Menu

The Perspective Manager provides the following functionality in its context
(right-click) menu:

• New creates a new untitled perspective with the current state of the
application.

• Duplicate makes a copy of the selected perspective, including its stored
application state.

• Delete removes the selected perspective.

Customization

26

• Set Key Binding displays a dialog in which the key binding desired for the
perspective can be typed. This key sequence will cause Wing to switch to that
perspective.

• Update with Current State replaces the stored state for the selected
perspective with the current application state.

• Restore Saved State loads the state stored in the selected perspective
without making that perspective current.

Preferences

The Perspective Manager's Configure button displays the preferences that control
how perspectives work. These include:

• Auto-save Perspectives -- Selects when the current GUI state should be
auto-saved into a perspective before switching to another perspective. Always
will always auto-save all perspectives, Never disables auto-save entirely,
Prompt causes Wing to prompt each time when leaving a perspective, and
Configured by Perspective allows the behavior to be controlled for each
perspective, in the Manage Perspectives dialog. The default is Always so that
the last application state is always restored when returning to the perspective.
Disabling auto-save can be useful for perspectives that should always start
with a previously stored fixed state.

• Shared Perspective File -- This is used to specify where shared perspectives
are stored on disk. The default is a file perspectives in the User Settings
Directory.

Auto-Perspectives

Auto-perspectives can be used to automatically switch between the built-in
perspectives edit and debug when debugging is started and stopped. When this is
enabled, Wing by default will show fewer tools when editing and most of the
debugging tools only while debugging. If the user alters which tools are shown from
the defaults, this will be remembered the next time debug is started or stopped.

Auto-perspectives are off by default and can be turned on with the Automatic
Perspectives attribute under the Debug tab in Project Properties.

Once this is enabled, Wing will save the unnamed pre-existing perspective as user
and will display the appropriate perspective edit or debug with its default tool set.
Note that the perspectives edit and debug are not created until the first time
debugging is started. After that, they appear in the Goto Perspective sub-menu in
the Tools menu and in the perspective manager.

Restoring Default Toolset

In Wing IDE Pro, the Tools menu item Restore Default Toolset will restore the
tools appropriate for the current perspective. If this is any of the built-in
perspectives edit, debug, or diff and the Automatic Perspectives preference is

Customization

27

http://wingware.com/doc/install/user-settings-dir
http://wingware.com/doc/install/user-settings-dir

turned on, then the tool set will differ from that which is used for user-defined
perspectives or when automatic perspectives are disabled.

2.6. File Filters
Wing allows you to define file filters that can be used in various ways within the
IDE, such as for searching particular batches of files and adding only certain kinds
of files to a project.

To view or alter the defined file filters, use File Filters in the Files > File Types
preferences group.

When adding or editing a filter, the following information may be entered:

• Name -- The name of the filter
• Includes -- A list of inclusion criteria, each of which contains a type and a

specification. A file will be included by the filter if any one of these include
criteria matches the file.

• Excludes -- A list of exclusion criteria, any of which can match to cause a file
to be excluded by the filter even if one or more includes also matched.

The following types of include and exclude criteria are supported:

• Wildcard on Filename -- The specification in this case is a wildcard that must
match the file name. The wildcards supported are those provided by Python's
fnmatch module.

• Wildcard on Directory Name -- The specification in this case is a wildcard
that must match the directory name.

• Mime Type -- The specification in this case names a MIME type supported by
Wing IDE. If additional file extensions need to be mapped to a MIME type, use
the Extra File Types preference to define them.

Once defined, filters are presented by name in the Search in Files tool's Filter
menu, and in the Project tool's Directory Properties.

Any problems encountered in using the file filters are reported in the Messages
area.

Project Manager
The Project manager provides a convenient index of the files in your software
project and collects information needed by Wing's debugger, source code analysis
tools, version control integration, and other facilities.

To get the most out of Wing's debugger and source analysis engine, you may in
some cases need to set up Python Executable, Python Path, and other values in
Project-Wide Properties and/or Per-File Properties.

Project Manager

28

http://wingware.com/psupport/python-manual/2.5/lib/module-fnmatch.html
http://wingware.com/doc/edit/search-in-files
http://wingware.com/doc/proj/creating-a-project
http://wingware.com/doc/proj/project-wide-properties
http://wingware.com/doc/proj/per-file-properties

3.1. Creating a Project
To create a new project, use the New Project item in the Project menu. This will
prompt you to save any changes to your currently open project and will create a
new untitled project.

When you create a new project, you will often want to alter some of the Project
Properties to point Wing at the version of Python you want to use, set
PYTHONPATH so Wing's source analyzer and debugger can find your files, and
set any other necessary runtime environment for your code.

To add files to your project, use the following items in the Project menu:

• Add Existing Directory allows you to specify a directory to include in the
project. In many cases, this is the only operation needed to set up a new
project, and it is the recommended approach. You will be able to specify a filter
of which files to include, whether to include hidden & temporary files, and
whether to include subdirectories. The list of files in the project will be updated
as files matching the criteria are added and removed from the disk.

• Add Current File will add the current editor file to the project if it is not already
there.

• Add Existing File will prompt you to select a single file to add to the project
view. This may also result in adding a new directory to the project manager
window, if that file is the first to be added for a directory.

• Add New File is used to create a new file and simultaneously add it to your
project.

A subset of these options can be accessed from the context menu that appears
when right-clicking your mouse on the surface of the project manager window.

3.2. Removing Files and Directories
To remove a specific file or directory, select it and use the Remove From Project
menu item in the right-click context menu from the surface of the Project Manager
window, or by selecting an item on the project and using Remove Selected Entry in
the Project menu.

If the removed file or directory is part of another directory that has been added to
the project, the removal is remembered as an exclusion that can be cleared from
Directory Properties, which are accessed by right clicking on the parent directory
in the Project tool.

3.3. Saving the Project
To save a new project, use Save Project As in the Project menu. Once a project
file has been saved the first time, it will be auto-saved whenever you close the
project, start a debug session, or exit Wing.

Project Manager

29

http://wingware.com/doc/proj/project-wide-properties
http://wingware.com/doc/proj/project-wide-properties

You can also save a copy of your project to another location or name with Save
Project As... in the Project menu.

Note

Moving Project Files

When moving a project file on disk, doing so in a file browser or from the
command line may partially break the project if it is moved relative to the
position of files that it includes. Using Save Project As... in Wing instead will
properly update the relative paths that the project manager uses to locate
files in the project.

3.4. Sorting the View
The project can be set to show your files in one of several modes, using the
Options menu in the top right of the project view:

• View As Tree -- This displays the project files in true tree form. The tree
structure is based on the partial relative path from the project file.

• View As Flattened Tree -- This view (the default) shows files organized
according to their location on disk. Each directory is shown at the top level with
path names shown as partial relative paths based on the location of the project
file. If you alter the location of the project file with Save Project As..., these
paths will be updated accordingly.

Several sorting options are available to sort items within their directory by name,
mime type, or extension. The List Files Before Directories option may be used to
control whether files or directories are shown first in the tree view.

3.5. Navigating to Files
Files can be opened from the project manager window by double clicking or middle
clicking on the file name, or right-clicking and using the Open in Wing IDE menu
item.

Files may also be opened using an external viewer or editor by right-clicking on the
file and using the Open in External Viewer item. On Windows and Mac OS X, this
opens the file as if you had double clicked on it. On Linux, the preferences
File Display Commands and Extra Mime Types can be used to configure how
files are opened.

You can also execute Makefiles, Python source code, and any executable files by
selecting the Execute Selected item from the popup menu. This executes outside

Project Manager

30

of the debugger with any input/output occurring in the OS Commands tool. Doing
so also adds the command to the OS Commands tool, where its runtime
environment can be configured.

3.5.1. Keyboard Navigation

Once it has the focus, the project manager tree view is navigable with the
keyboard, using the up/down arrow keys, page up and page down, and home/end.

Use the right arrow key on a parent to display its children, or the left arrow key to
hide them.

Whenever a file is selected, pressing enter will open that item into an editor in Wing
IDE.

3.6. Sharing Projects
The default Project Type, accessed from Project Properties > Options in the
Project menu, is Shared (Two Files). This stores sharable project data in a file
with extension .wpr and user-specific project data in a file with extension .wpu.
Only the .wpr file should be checked into revision control or shared with other
users or machines. This file is designed to work across all supported OSes and
avoids storing values that are likely to be user-specific.

If the project type is changed to Single User (One File) only a single .wpr file will
be written, with all project data, and the .wpu file will be removed from disk.

Only Single User (One File) projects can be read by Wing IDE Personal.

Making Project Files More Sharable

In most cases sharing the *.wpr file will just work. File paths are stored relative to
the project's location on disk, so they will work in different configurations.

If revision control conflicts do arise among different users of a .wpr file,
environment variables can be used to make the project work for all users and on all
machines. The environment variable values can either be inherited from outside of
Wing or set using Environment in Project Properties. The values for the
Environment property are stored in the .wpu file and thus may vary by user.

File Format

Both the .wpr and .wpu files use the same textual file format that is used for the
preferences file. See section Preferences File Format for more information on the
format itself.

Changing Which Attributes are Shared

Which project properties are stored in the main project file may be set by modifying
the .wpr file with a text editor and setting the proj.shared-attribute-names
attribute to a list of attribute names to add or remove from the default set. Each

Project Manager

31

http://wingware.com/doc/oscommands/index
http://wingware.com/doc/proj/variable-expansion
http://wingware.com/doc/custom/preferences-file-format

entry in this list is an attribute name preceded by - to move a shared attribute to the
non-shared file, or + to move a non-shared attribute to the shared file. This
specification is applied to the default set of shared attributes in order to determine
which attributes to share in this project.

The following example would move the commands defined in the OS Commands
tool into the user-specific file and would share the Python Executable and Python
defined in Project Properties in the .wpr file:

proj.shared-attribute-names = [
 '-console.toolbox',
 '+proj.pyexec',
 '+proj.pypath',
]

Note that sharing the Python Executable and Python Path works only if the value
are valid on all the machines where the project is used. This can be easier to
achieve if the values use environment variable references such as
${WING:PROJECT_DIR}/a/b/c for a path entry.

The default set of shared attributes is:

proj.shared-attribute-names
proj.directory-list
proj.file-list
proj.file-type
proj.main-file
proj.home-dir
testing.test-file-list
testing.auto-test-file-specs
testing.test-framework
debug.named-entry-points
proj.launch-config
debug.launch-configs
console.toolbox

Note that only non-empty and non-default values are stored in the project file. For
example, proj.file-list will be missing if no files are individually added to the
project.

The names of other potentially sharable attributes can be found in the .wpu file.

Project Manager

32

http://wingware.com/doc/proj/variable-expansion

3.7. Project-wide Properties
Each project has a set of top-level properties that can be accessed and edited via
the Properties item in the Project menu. These can be used to configure the
Python environment used when debugging, executing, or testing code, and for the
source code analysis engine, which drives Wing's auto completion, source index,
and other capabilities. Project properties are also provided to set options for the
project and to enable and configure extensions for revision control, Zope, and
other tools.

Any string value for a property may contain environment and special variable
references, as described in Environment Variable Expansion.

Environment

To get the most out of Wing, it is important to set these values in the Environment
tab correctly for your project:

Python Executable -- When the Custom radio button is checked and the entered
field is non-blank, this can be used to set the full path to the Python executable that
should be used when debugging source code in this project. When Use default is
selected, Wing tries to use the default Python obtained by typing python on the
command line. On OS X, Wing prefers the latest Apple-provided Python. If this
fails, Wing will search for Python in /usr/local and /usr (on Linux and OS X) or in
the registry (on Windows). To use Wing with virtualenv just set this property to the
Python executable provided by virtualenv. An easy way to get the full path to use
here is to type the following in the Python that you wish to use:
import sys; print(sys.executable). This can also be typed into the IDLE that is
associated with the Python installation.

Python Path -- The PYTHONPATH is used by Python to locate modules that are
imported at runtime with the import statement. When the Use default checkbox in
this area is checked, the inherited PYTHONPATH environment variable is used for
debug sessions. Otherwise, when Custom is selected, the specified
PYTHONPATH is used.

Environment -- This is used to specify values that should be added, modified, or
removed from the environment that is inherited by debug processes started from
Wing IDE and is used to expand environment variable references used in other
properties. Each entry is in var=value form and must be specified one per line in
the provided entry area. An entry in the form var= (without a value) will remove the
given variable so it is undefined. Note that you are operating on the environment
inherited by the IDE when it started and not modifying an empty environment.
When the Use inherited environment choice is set, any entered values are ignored
and the inherited environment is used without changes.

Project Manager

33

http://wingware.com/doc/edit/source-code-analysis
http://wingware.com/doc/proj/variable-expansion

Debug

The following properties are defined in the Debug tab:

Main Entry Point -- This defines where execution starts when the debugger is
launched from the IDE. The default is to start debugging in the current editor file.
Alternatively, use this property to define a project-wide main entry point so that
debug always started in that file regardless of which file is current in the editor. The
entry point can either be a selected file in order to debug that files with the
environment specified in its File Properties, or a named entry point to select a file
and use a different environment to debug it.

Initial Directory -- When the Use default radio button is checked, the initial
working directory set for each debug session will be the directory where the
debugged file is located. When Custom is selected, the specified directory is used
instead (use $(WING:PROJECT_DIR) for the project's directory). This property
also sets the initial directory for the Python Shell, determines how Wing resolves
partial paths on the Python Path for the purposes of static analysis, and is used for
other features in the IDE that require a starting directory for a sub-process. For
these, Wing will use the directory of the main debug file in the project as the default
initial directory, or the directory of the project file if there is no main debug file
defined.

Build Command -- This command will be executed before starting debug on any
source in this project. This is useful to make sure that C/C++ extension modules
are built, for example in conjunction with an external Makefile or distutils script,
before execution is started. The build is configured through and takes place in the
OS Commands tool.

Python Options -- This is used to select the command line options sent to the
Python interpreter while debugging. The default of -u sets Python into unbuffered
I/O mode, which ensures that the debug process output, including prompts shown
for keyboard input, will appear in a timely fashion.

Debug Server Port -- This can be used to alter the TCP/IP port on which the
debugger listens, on a per-project basis. In this way, multiple instances of Wing
using different projects can concurrently accept externally initiated debug
connections. See Advanced Debugging Topics for details.

Automatic Perspectives -- When enabled, Wing will create and automatically
switch between Edit and Debug perspectives when debugging is stopped and
started. See Perspectives for details.

Options

These project options are provided:

Project Type -- This can be used to select whether or not the project will be
shared among several developers. When shared, the project will be written to two

Project Manager

34

http://wingware.com/doc/debug/named-entry-points
http://wingware.com/doc/oscommands/index
http://wingware.com/doc/debug/advanced
http://wingware.com/doc/custom/perspectives

files, one of which can be shared with other developers. See Project Types for
details.

Default Encoding sets the default text encoding to use for files when the encoding
cannot be determined from the contents of the file. This applies to all files opened
when the project is open, whether or not they are part of the project. By default,
this falls back to the value set by the Default Encoding preference.

Project Home Directory sets the base directory for the project. This overrides the
project file location as the directory on which to base relative paths shown in the
Project view and elsewhere. It is also used as the directory in which the Python
Shell subprocess is launched and for the starting directory when the
Default Directory Policy preference is set to Current Project.

Preferred Line Ending and Line Ending Policy control whether or not the project
prefers a particular line ending style (line feed, carriage return, or carriage return +
line feed), and how to enforce that style, if at all. By default, projects do not enforce
a line ending style but rather insert new lines to match any existing line endings in
the file.

Preferred Indent Style and Indent Style Policy control whether or not the project
prefers a particular type of indentation style for files (spaces only, tabs only, or
mixed tabs and spaces), and how to enforce that style, if at all. By default, projects
do not enforce an indent style but rather insert new lines to match any existing
indentation in the file.

Strip Trailing Whitespace controls whether or not to automatically remove
whitespace at the ends of lines when saving a file to disk.

Extensions

The Extensions tab of Project Properties is used to control add-ons on a
per-project basis:

Enable Django Template Debugging enables Django-specific functionality that
makes it possible for Wing's debugger to stop at breakpoints and step through
Django template files.

Matplotlib Event Loop Support enabled Matplotlib-specific functionality that
updates plots continuously when working interactively in the Python Shell.

Enable Zope2/Plone Support, Zope2 Instance Home, and Zope2 Host enable
legacy support for older Zope installations. They are needed because Zope 2.x
implements import magic that works differently from Python's default import and
thus adding the instance home directory to PYTHONPATH is not sufficient. Wing's
source analyzer needs this extra clue to properly find and process the Zope
instance-specific sources.

Project Manager

35

http://wingware.com/doc/proj/project-types

When this option is activated, Wing will also offer to add the relevant Zope2/Plone
files to the project, and to install the control panel for configuring and initiating
debug in Zope2/Plone. See the Zope How-To for details.

Testing

Test File Pattern can be used to specify which files in the project should be shown
in the Testing tool. See the Testing chapter for details.

Default Test Framework defines the testing framework to use by default, unless
another is chosen using File Properties on the test file.

Environment can be used to select environment for running unit tests that differs
from the Project-wide settings, and for setting any command line arguments to
send to unit tests.

3.7.1. Environment Variable Expansion

Any string value for a property may contain environment variable references using
the $(name) or $ {name} notation. These will be replaced with the value of the
environment variable when used by the IDE. If the environment variable is not set,
the reference will be replaced by an empty string. The system environment, as
modified by the project-wide or per-file environment property (if defined), is used to
expand variable references.

Special Environment Variables

The following special variable names are defined by Wing IDE for use in the
$(name) or ${name} form:

• WING:FILENAME -- full path of current file
• WING:FILENAME_DIR -- full path of the directory containing the current file
• WING:LINENO -- current line number in the current file
• WING:SCOPE -- x.y.z-formatted name of the current scope in the current file

(if Python)
• WING:PROJECT full path of current project (including the project file name)
• WING:PROJECT_DIR -- full path of the directory containing the current project
• WING:PROJECT_HOME -- full path of the Project Home directory, as set in

Project Properties (by default this is the same as WING:PROJECT_DIR)
• WING:SELECTION -- the text selected on the current editor, if any

These may evaluate to an empty string when there is no current file name.

Project Manager

36

http://wingware.com/doc/howtos/zope
http://wingware.com/doc/testing/index
http://wingware.com/doc/proj/per-file-properties

3.8. Per-file Properties
Per-file properties can be set by right-clicking on a source file and selecting the
Properties menu item in the popup, by right-clicking on a file in the project view
and selecting File Properties, or by opening a file and using the
Current File Properties... item in the Source menu. For Debug and Python
Settings, values entered here will override any corresponding project-wide values
when the selected file is the current file or the main entry point for debugging.

Any string value for a property may contain environment and special variable
references, as described in Environment Variable Expansion.

File Attributes

File Type -- This property specifies the file type for a given file, overriding the type
determined automatically from its file extension and/or content. This property is
recommended only when the Extra File Types preference cannot be used to
specify encoding based on filename extension.

Encoding -- This can be used to specify the encoding with which a file will be
saved. When it is altered for an already-open file, Wing will offer to reload the file
using the new encoding, to only save subsequently using the new encoding, or to
cancel the change. Choose to reload if the file was opened with the wrong
encoding. For already-open files, the encoding attribute change is only saved if the
file is saved. If it is closed without saving, the encoding attribute will revert to its
previous setting. The encoding cannot be altered with this property if it is being
defined by an encoding comment in a Python, HTML, XML, or gettext PO file. In
this case, the file should be opened and the encoding comment changed. Wing will
save the file under the newly specified encoding.

Important: Files saved under a different encoding without an encoding comment
may not be readable by other editors because there is no way for them to
determine the file's encoding if it differs from the system or disk default. Wing
stores the selected encoding in the project file, but no mark is written in the file
except for those encodings that naturally use a Byte Order Mark (BOM), such as
utf_16_le, utf_16_be, utf_32_le, or utf_32_be. Note that standard builds of
CPython cannot read source files encoded in utf16 or utf32.

Line Ending Style -- Specifies which type of line ending (line feed, carriage return,
or carriage return and line feed) is used in the file. When altered, the file will be
opened and changed in an editor. The change does not take effect until the file is
saved to disk.

Indent Style -- This property can be used in non-Python files to change the type of
indent entered into the file for newly added lines. For Python files, the only way to
alter indentation in a file is with the Indentation manager.

Project Manager

37

http://wingware.com/doc/proj/variable-expansion

Read-only on Disk -- This property reflects whether or not the file is marked
read-only on disk. Altering it will change the file's disk protections for the owner of
the file (on Posix, group/world permissions are never altered).

Editor

These properties define how the file is displayed in the editor:

Show Whitespace -- This allows overriding the Show White Space preference on
a per-file basis.

Show EOL -- This allows overriding the Show EOL preference on a per-file basis.

Show Indent Guides -- This allows overriding the Show Indent Guides
preference on a per-file basis.

Ignore Indent Errors -- Wing normally reports potentially serious indentation
inconsistency in Python files. This property can be used to disable this check on a
per-file basis (it is also available in the warning dialog).

Ignore EOL Errors -- When the project's Line Ending Policy is set to warn about
line ending mismatches, this property can be used to disable warnings for a
particular file.

Debug/Execute

This tab is used to select the environment used when debugging or executing the
file, and to set run arguments. By default, the project-wide environment will be
used with the specified run arguments. Alternatively, use the Environment
property to select a different environment defined by a launch configuration.

Testing

The testing tab contains a subset of the fields described in Project-Wide
Properties.

3.9. Launch Configurations
Most users of Wing IDE will use the project-wide environment for debugging,
executing, and testing code.

In some cases, multiple environments are needed in the same project, for example
to run unit tests in different environments, or to set a different environment for
specific entry points. To support this, launch configurations can be managed from
the Project > Launch Configurations menu item. This manager is initially empty.
Right click to create, edit, duplicate, or delete launch configurations.

Once defined, launch configurations can be referenced from per-file properties
under the Debug/Execute and Testing tabs, and in the creation of named entry
points.

Project Manager

38

http://wingware.com/doc/proj/launch-configs
http://wingware.com/doc/proj/project-wide-properties
http://wingware.com/doc/proj/project-wide-properties
http://wingware.com/doc/proj/project-wide-properties
http://wingware.com/doc/proj/per-file-properties
http://wingware.com/doc/debug/named-entry-points
http://wingware.com/doc/debug/named-entry-points

Launch configurations contain the following properties, as organized under the
Environment and Python tabs in the launch configuration properties dialog:

Run Arguments -- Enter any run arguments here. Wing does not interpret
backslashes ('') on the command line and passes them unchanged to the
sub-process. The only exceptions to this rule are \' and \" (backslash followed by
single or double quote), which allow inclusion of quotes inside quoted multi-word
arguments.

Initial Directory -- Specifies the initial working directory. By default this uses the
initial directory specified by the project-wide environment. When the Use default
radio button is checked, the initial working directory will instead be the directory
where the launched file is located. When Custom is selected, the specified
directory is used instead (use $(WING:PROJECT_DIR) for the project's directory).

Environment -- This is used to specify values that should be added, modified, or
removed from the environment. Each entry is in var=value form and must be
specified one per line in the provided entry area. An entry in the form var= (without
a value) will remove the given variable so it is undefined. The popup selector is
used to choose the environment to modify: Either the startup environment seen
when Wing IDE was first started, or the Project-defined environment. When Use
project values or Use inherited environment is chosen, any entered values are
ignored and the selected environment is used without changes.

Build Command -- This command will be executed before launching a subprocess
with this launch configurations. This is useful to make sure that C/C++ extension
modules are built, for example in conjunction with an external Makefile or distutils
script, before execution is started. The build is configured through and takes place
in the OS Commands tool.

Python Executable -- When the Custom radio button is checked and the entered
field is non-blank, this can be used to set the full path to the Python executable that
should be used when debugging source code in this project. When Use default is
selected, Wing uses the project configuration.

Python Path -- The PYTHONPATH is used by Python to locate modules that are
imported at runtime with the import statement. By default this uses the project
setting. When the Use default checkbox selected, the inherited PYTHONPATH
environment variable is used. Otherwise, when Custom is selected, the specified
PYTHONPATH is used.

Python Options -- This is used to select the command line options sent to the
Python interpreter while debugging. The default of -u sets Python into unbuffered
I/O mode, which ensures that the debug process output, including prompts shown
for keyboard input, will appear in a timely fashion.

For all of these, environment variable references may be used, as described in
Environment Variable Expansion.

Project Manager

39

http://wingware.com/doc/proj/project-wide-properties
http://wingware.com/doc/oscommands/index
http://wingware.com/doc/proj/variable-expansion

Shared Launch Configurations

By default each launch configuration is stored in the project file. In the launch
configuration manager dialog, the Shared checkbox can be selected to cause
Wing to store that launch configuration in the User Settings Directory instead, in a
file named launch. Those launch configurations are then accessible from all
projects.

Working on Different Machines or OSes

When the Shared checkbox is selected for a launch configuration, or when shared
projects are used, it is necessary to design launch configurations carefully so that
they will work across projects, machines, or operating systems.

For example, specifying a full path in the Python Path may not work on a different
OS. The key to making this work is to use environment variable references in the
form ${VARNAME} as described in Environment Variable Expansion. The
referenced environment variables can be special environment variables defined by
Wing, such as WING:PROJECT_DIR, or user-defined values that are set either
system-wide, or in Project Properties. Note that values set in Environment in
Project Properties are by default not stored in the shared project file, so those may
vary on each development machine if desired.

A common example in configuring Python Path is to replace a full path like
/Users/myname/src/project/src with ${WING:PROJECT_DIR}/src (this assumes
you store the project in /Users/myname/src/project). In general, working of the
project's location is a good approach to maintaining some independence from
differences on different development machines and OSes.

To make file paths work across OSes, use forward slashes instead of back
slashes. The character sequence .. can be used to move up a directory on all
OSes, as for example in {WING:PROJECT_DIR}/../libs/src.

Source Code Editor
Wing IDE's source code editor is designed to make it easier to adopt the IDE even
if you are used to other editors.

Note

Key things to know about the editor

• The editor has personalities that emulate other commonly used editors
such as Visual Studio, VI/Vim, Emacs, and Brief.

Source Code Editor

40

http://wingware.com/doc/install/user-settings-dir
http://wingware.com/doc/proj/project-types
http://wingware.com/doc/proj/project-types
http://wingware.com/doc/proj/variable-expansion
http://wingware.com/doc/proj/project-wide-properties

• Context-appropriate auto-completion, goto-definition, and code index
menus are available when working in Python code

• The editor supports a wide variety of file types for syntax colorization.
• Key mappings and many other behaviors are configurable.
• The editor supports folding for some file types

4.1. Syntax Colorization
The editor will attempt to colorize documents according to their MIME type, which
is determined by the file extension, or content. For example, any file ending in .py
will be colorized as a Python source code document. Any file whose MIME type
cannot be determined will display all text in black normal font by default.

All the available colorization document types are listed in the File Properties
dialog's File Attributes tab. If you have a file that is not being recognized
automatically, you can use the File Type menu found there to alter the way the file
is being displayed. Your selections from this menu are stored in your project file, so
changes made are permanent in the context of that project.

If you have many files with an unrecognized extension, use the Extra File Types
preference to add your extension.

Syntax coloring can be configured as described in the section Syntax Coloring.

4.2. Right-click Editor Menu
Right-clicking on the surface of the editor will display a context menu with
commonly used commands such as Copy, Paste, Goto Definition, and commenting
and indentation operations.

When revision control is enabled in Project Properties under the Extensions tab,
the menu is populated with additional items for the selected revision control
system.

User-defined scripts may also add items here, as described in the Scripting
chapter.

4.3. Navigating Source
The set of menus at the top of the editor can be used to navigate through your
source code. Each menu indicates the scope of the current cursor selection in the
file and may be used to navigate within the top-level scope, or within sub-scopes
when they exist.

When editor tabs are hidden by clicking on the options drop down in the top right of
the editor area, the left-most of these menus lists the currently open files by name.

Source Code Editor

41

http://wingware.com/doc/proj/per-file-properties
http://wingware.com/doc/custom/syntax

You can use the Goto Definition menu item in the editor context menu to click on
a construct in your source and zoom to its point of definition. Alternatively, place
the cursor or selection on a symbol and use the Goto Selected Symbol Defn item
in the Source menu, or its keyboard equivalent. Control-Click (and Command-Click
on OS X) also jumps to the point of definition unless the Editor > Advanced
preference for this feature is disabled.

To visit all points of use of a symbol, right click on it and select Find Points of Use
or use the item of the same name in the Source menu. The points of use are
shown in the Uses tool. Clicking on items in the list visits that use. Alt-Clicking (and
Meta-Clicking on Linux) on a symbol also displays points of use unless the
Editor > Advanced preference for this feature is disabled.

When moving around source, the history buttons in the top left of the editor area
can be used to move forward and backward through visited files and locations
within a file in a manner similar to the forward and back buttons in a web browser.

Other commonly used ways to navigate to files that are open include the Window
menu, which lists all open files; the Open Files tool which also supports defining
named file sets; the Recent sub-menu in the File menu; Open From Project in the
File menu, which finds project files quickly by typing a fragment of the file name;
and Open From Keyboard in the File menu, which operates in a temporary input
area at the bottom of the IDE window and offers auto-completion of file names as
you type.

Find Symbol in the Source menu provides a way to find a symbol defined in the
current Python scope by typing a fragment of its name. Find Symbol in Project
works the same way but searches all files in the project.

See also the Find Uses tool and Source Browser.

4.4. File status and read-only files
The editor tabs, or editor selection menu when the tabs are hidden, indicate the
status of the file by appending * when the file has been edited or (r/o) when the file
is read-only. This information is mirrored for the current file in the status area at the
bottom left of each editor window. Edited status is also shown in the Window
menu by appending * to the file names found there.

Files that are read-only on disk are initially opened within a read-only editor. Use
the file's context menu (right-click) to toggle between read-only and writable state.
This alters both the editability of the editor and the writability of the disk file so may
fail if you do not have the necessary access permissions to make this change.

4.5. Transient, Sticky, and Locked Editors
Wing can open files in several modes that control how and when files are closed:

Source Code Editor

42

http://wingware.com/doc/edit/points-of-use
http://wingware.com/doc/browser/index

Transient Mode -- Files opened when searching, debugging, navigating to point of
definition or point of use, and using the Project or Source Browser tools with the
Follow Selection checkbox enabled are opened in transient mode and will be
automatically closed when hidden.

The maximum number of non-visible transient files to keep open at any given time
can be set with the Editor / Advanced / Maximum Non-Sticky Editors
preference.

Sticky Mode -- Files opened from the File menu, from the keyboard file selector, or
by double clicking on items in the Project or Source Browser tools will be opened in
sticky mode, and are kept open until they are explicitly closed.

Locked Mode -- When multiple splits are visible, a third mode is available where
the file is locked into the editor. In this case, the editor split is not reused to display
any newly opened or visited files unless no unlocked splits are present.

A file can be switched between these modes by clicking on the stick pin icon in the
upper right of the editor area.

Right-click on the stick pin icon to navigate to files that were recently visited in the
associated editor or editor split. Blue items in the menu were visited in transient
state and black items were sticky. Note that this differs from the Recent area in the
File menu, which lists only sticky file visits and includes visits for all editors and
editor splits.

Transient files that are edited are also automatically converted to sticky mode.

4.6. Auto-completion
Wing Personal and Professional display an auto-completer in the editor and shells.
When the completer appears, type until the correct symbol is highlighted in the list,
or use the up/down arrow keys, and then press the Tab key or double click on an
item. Wing will fill in the remaining characters for the source symbol, correcting any
spelling errors you might have made in the name.

To alter which keys cause auto-completion to occur, use the Auto-completion
Keys preference. Ctrl-click on the list to select multiple keys. For printable keys
such as '.', '(', '[', and ':' the key will be added to the editor and any relevant
auto-editing operations will be applied. For '.' the completer will be shown again for
the attributes of the completed symbol.

To cancel out of the auto-completion popup, press the Esc key or Ctrl-G. The
auto-completer will also disappear when you exit the source symbol (for example,
by pushing space or any other character that isn't a completion key and can't be
contained in a source symbol), if you click elsewhere on the surface of the source
code, or if you issue other keyboard-bound commands that are not accepted by
the auto-completer (for example, save through keyboard equivalent).

Source Code Editor

43

http://wingware.com/doc/edit/auto-editing

The completer can be configured to display immediately, only after a specified
number of characters, or after a time delay. Completion may be case sensitive or
insensitive and the completer may be auto-hidden after a specified timeout. These
and other configuration options are in the Auto-completion preferences group.

Auto-Completer Icons

The auto-completer contains two columns of icons that indicate the type and origin
of the symbol. The first column may contain one of the following icons:

A Python builtin

A snippet defined in the Snippets tool

An argument for the current function or method scope

The symbol was found by introspecting the live runtime state

The second column of icons may contain one of the following icons:

A Python keyword

A module name

A class name

A Python package (a directory with __init__.py in it)

A method name

A function name

An object instance (other than the basic types below)

A dictionary

A tuple

A list

A string

An integer

A float

An exception

A Python stack frame

Additionally, icons in the second column may be annotated as in the following
examples (the annotation may be applied to any of the above):

An upward pointing arrow indicates that the symbol was inherited
from a superclass

Source Code Editor

44

A leftward pointing arrow indicates that the symbol was imported
with "from x import" style import statement

Turbo Completion Mode for Python (Experimental)

When the Python Turbo Mode preference is enabled, Wing will use a different
completion mode for Python files and in the shells. This treats any non-word key as
being a completion key, in a context appropriate way. Ctrl, Alt, and Command act
as cancel keys, in addition to Esc.

This mode can be considerably faster to use when the completer contains the
desired text. Once the correct completion is selected in the completer, the next
source code character can immediately be typed. The completion will be placed,
the next key will be entered into the editor, any relevant auto-editing operations will
be applied, and the completer shown again if appropriate.

In contexts where a new symbol is being defined, Wing disables Turbo mode
depending on the character being pressed. For example, pressing = after a name
at the start of a line, entering an argument name in a def, and entering a symbol
after for all define a new symbol in most cases. In these contexts, Tab must be
pressed to cause completion to occur.

The draw-back of operating in this mode is that Wing may fail to recognize some
contexts where a new symbol is being defined, or may enter undesired
completions when code is being typed before a referenced symbol has been
defined. To make canceling from the completer more convenient in this case, Ctrl,
Alt``, and Command are also treated as cancel keys, in addition to Esc.

For the same reason, snippets do not participate in Turbo mode. To enter snippets
found in the auto-completer, press Tab.

This mode is experimental. Please email feedback and suggestions to
support@wingware.com.

How Auto-completion Works

The information shown in Wing's auto-completer comes from several sources: (1)
Static analysis of Python code, (2) introspection of extension module contents, (3)
inspection of keywords and builtins in the active Python version, (4) introspection of
the runtime application state when the debugger is active or when working in the
shells, (5) enumeration of relevant code snippets, and in some cases (6)
user-provided interface description files. See Source Code Analysis for more
information on how static analysis works and how you can help Wing determine the
types of values.

Because static analysis can be defeated by Python's dynamic nature, it is
sometimes more effective to work from live runtime state. This can be done by
placing a breakpoint in the source code, running to it, and then working in the
editor or (in Wing IDE Pro) in the Debug Probe.

Source Code Editor

45

http://wingware.com/doc/edit/auto-editing
mailto:support@wingware.com
http://wingware.com/doc/edit/source-code-analysis

In non-Python files, the auto-completer is limited to words found within similar
contexts in the file, keywords defined for syntax highlighting that file type, and any
snippets relevant to the editing context.

4.7. Source Assistant
The Source Assistant tool (in Wing IDE Personal and higher) can be used to
display additional information about source symbols in the editor, auto-completer,
and tools such as the Project, Search in Files, Python Shell, Debug Probe, and
Source Browser.

The display will include links to the point of definition of the selected symbol, the
symbol's type (when available) and a link to the type's point of definition.
Depending on context and symbol type, the Source Assistant will also display
relevant docstrings, call signature, return type, super-classes, overridden methods.

When invoking a function or method, the Source Assistant will display information
both for the callable being invoked and the current argument or item in the
auto-completer.

4.7.1. Docstring Type and Validity

By default the Source Assistant displays a type and validity indicator for docstrings,
showing whether the docstring was successfully parsed or reformatted. The
following messages may be displayed:

â■■ PEP287 -- The docstring parses successfully using PEP 287
reStructuredText Docstring Format and is being rendered accordingly. This only
occurs when the Use PEP 287 for docstrings option is enabled.

â■■ PEP287 -- The docstring does not parse successfully as reStructuredText
and is showing inline parse errors. This only occurs when the Show
PEP 287 parse errors option is enabled.

Rewrapped -- The docstring is being shown as plain text but Wing has heuristically
rewrapped paragraphs. This only occurs when the Rewrap plain text docstrings
option is enabled.

Plain Text -- The docstring is being shown as plain text, exactly as it appears in
the source code.

See Source Assistant Options for a list of the available display options.

Source Code Editor

46

http://legacy.python.org/dev/peps/pep-0287/
http://wingware.com/doc/edit/source-assistant-options

4.7.2. Python Documentation Links

For symbols in the Python standard library, Wing will attempt to compute a
documentation URL whenever possible. These point to http://docs.Python.org/ but
can be redirected to another server with the Source Analysis > Advanced >
Python Docs URL Prefix preference. To access locally stored documentation, a
local http server must be used because # bookmark references do not work with
file: URLs.

4.7.3. Working with Runtime Type Information

When working in the editor, auto-completer, project view, or source browser, the
Source Assistant is fueled by Wing's Python source code analysis engine.
Because of Python's dynamic nature, Wing cannot always determine the types of
all values, but presents as much information as it can glean from the source code.

When a debug process is active, or when working in the Python Shell, Wing also
extracts relevant information from the live runtime state. Since this yields complete
and correct type information even for code that Wing's static analysis engine
cannot understand, it is often useful to run to a breakpoint before designing new
code that is intended to work in that context.

For more hints on helping Wing understand your source code, see Source Code
Analysis and Helping Wing Analyze Code.

4.7.4. Source Assistant Options

There are several options available to control docstring rendering. These accessed
by right clicking on the Source Assistant:

Use PEP 287 docstrings -- By default Wing tries to render docstrings by treating
them as PEP 287 reStructuredText Docstring Format. This option can be used to
disable PEP 287 rendering so they are always shown as plain text instead.

Show PEP 287 parse errors -- By default Wing falls back to displaying docstrings
that cannot be parsed as reStructuredText as plain text. Enable this option to
instead render them with reStructuredText parse errors.

Show docstring type and validity -- This enables or disables the floating
docstring type and validity indicator in the top right of the docstring area.

Rewrap plain text docstrings -- By default Wing employs a heuristic to rewrap
paragraphs in docstrings, in order to make better use of available display space.
This option can be disabled to show the docstring exactly as it appears in the
source code.

Always show docstrings -- By default Wing shows the docstring only of the last
symbol being displayed in the Source Assistant, in order to save on display space.
Enable this option to always show the docstring for all symbols.

Source Code Editor

47

http://docs.Python.org/
http://wingware.com/doc/edit/source-code-analysis
http://wingware.com/doc/edit/source-code-analysis
http://wingware.com/doc/edit/helping-wing-analyze-code
http://legacy.python.org/dev/peps/pep-0287/

The Source Assistant context menu can also be used to copy text or HTML to the
clipboard, change the display font size, and access this documentation.

4.8. Auto-editing
Wing IDE Professional provides some optional auto-editing features, where the
IDE tries to reduce typing by auto-entering expected text. The following operations
are available:

• Auto-Close Characters -- Wing enters matching quotes, parentheses,
brackets, braces, and comment closing characters. When this is enabled Wing
skips over existing closing characters if they are typed anyway. Wing also
auto-enters opening parentheses, brackets, and braces when an unmatched
closing character is typed in Python code. This operation is disabled
selectively when working within strings, comments, and in other contexts
where the auto-edit is more likely to interfere than assist with editing. For
example, quotes are not auto-closed within strings, most auto-closing is
disabled within single-quoted strings, auto-closing is disabled if there is a
matching unclosed character, auto-closing parentheses is disabled before a
symbol, and some operations are omitted while auto-entering invocation
arguments.

• Auto-Enter Invocation Args -- Wing enters the default arguments for a
function or method invocation. The tab key or ',' can be used to move among
the arguments. Argument entry ends when moving past the last argument, or
pressing ')' at the last argument. Unaltered default arguments are
automatically removed when argument entry ends.

• Apply Quotes to Selection -- Wing will surround a non-empty selection with
quotes when the quote character is typed. In Python code, this will also
convert the type of quote used in a string (either single quote or double quote)
if the string is selected, or the caret is in the triple quote area, or one or more
of the enclosing quotes is selected.

• Apply Comment Key to Selection -- For single-character comment keys,
Wing will comment out or uncomment out the currently selected lines, using
the configured Block Comment Style.

• Apply (), [], and {} to Selection -- When an open parenthesis, bracket, or
brace is typed over a non-empty selection, Wing surrounds the selection with
the matching characters.

• Apply Colon to Selection -- When one or more lines are selected, Wing
creates a new block using those lines and places the caret for immediate entry
of the block type (if, try, for, with, etc). When try is subsequently entered,
Wing auto-enters the matching except block. In this case, except is selected
so it can be changed into finally. Pressing the Tab key moves into the except
or finally block.

Source Code Editor

48

• Auto-Enter Spaces -- In Python code, Wing auto-enters spaces when typing
operators or punctuation. Some associated characters may also be entered,
such as ',' after a dict item when ':' is pressed. When this operation is enabled,
Wing also refuses to enter redundant spaces or commas in contexts where
spacing is being enforced. In non-Python files this operation only enters
spaces after a comma. Note that for some operations such as typing "=="
spacing will be adjusted differently after the first and second keys are pressed.
When this is enabled, the following sub-operations are available:

• Auto-Space After Keywords -- In Python code, Wing also auto-enters
spaces after keyword names. No space is added when the keyword name
matches a snippet in the auto-completer, so that snippets can still be
used.

• Enforce PEP8 Style Spacing -- Wing will enforce PEP8 style spacing.
• Spaces in Argument Lists -- Wing will auto-enter spaces in argument

lists. This option overrides PEP8 style enforcement in that context, if it is
enable.

• Manage Blocks on Repeated Colon Presses -- In Python code, Wing
auto-indents the current line, enters the EOL character(s), and auto-indents
the new line after a new block start is typed and ":" is pressed. In order to allow
for adjustment of indentation before continuing, no EOL will be inserted after
'else', 'elif', 'except', and 'finally' if the indentation position for that statement is
ambigious due to the presence of multiple potentially matching starting blocks.
In that case, pressing ':' repeatedly will toggle the indentation between the
possible positions. When this option is enabled and a new line was entered,
pressing ":" a second time will remove the new line and indent the following
line of code under the new block. Pressing ":" a third time will indent the next
contiguous block of lines, up to any blank line or line that belongs to an
enclosing block.

• Continue Comment or String on New Line -- Wing auto-enters comment or
string delimiters when Enter is pressed within the text of an existing comment
or a string in the form ("") or ('').

• Correct Out-of-Order Typing -- Wing corrects common typos in a way that
can reduce typing. For example, x(.) is replaced with x()., x(:) is replaced with
x():, and Wing will add . when it is missing in x().d.

Each of these operations can be enabled or disabled independently in the
Auto-Editing preferences group.

Where relevant (such as in spacing) Wing's auto-editing modes adhere to the
PEP8 Style Guide for Python Code.

Source Code Editor

49

http://www.python.org/dev/peps/pep-0008/

4.9. Bookmarks
Wing IDE Professional and higher support named bookmarks that can be set and
accessed from the Source menu and the key bindings shown there, and with
Toggle Bookmark in the editor context menu. Defined bookmarks are listed in the
Bookmarks tool and are shown with a background color change or underline on
the editor. The style and color of bookmark indicators can be changed with the
Bookmark Style and Bookmark Color preferences.

Bookmark names are global to the project and refer to a particular position within a
selected file:

• For Python files, bookmarks are defined relative to the enclosing scope
(method, class, or function), so changes before the line where the bookmark is
located will not cause the bookmark's relative position in source code to be
changed, even if those changes are made outside of Wing. Edits made outside
of Wing that affect the code between the anchoring scope and the
bookmarked line will cause a bookmark's position to slip.

• For all other types of files, bookmarks are defined simply by file name and
line number. If the file is edited outside of Wing, the bookmark's position may
appear to slip.

When navigating to a bookmark from the Source menu or key binding, Wing will
present a dialog or entry area at bottom of the screen (depending on editor
personality) into which the bookmark name can be typed. A list of possible
completions will be displayed. Pressing tab will select the currently highlighted
completion.

A list of defined bookmarks is available in the Bookmarks tool, which is available
from the Tools menu. Right click on an entry for a context menu of operations for
the selected bookmark or bookmarks. Multi-selection is possible by holding down
the shift and/or control keys. Double clicking or middle mouse clicking will navigate
to the selected bookmark.

When the Bookmarks tool has focus, keyboard navigation is possible with the
arrow keys and by typing letters to move quickly to a particular bookmark. Enter
can then be pressed to navigate to the selected bookmark.

When bookmarks are defined in the current editor file, then Wing will add a
bookmark icon to the top right of the editor. Clicking on this will pop up a menu of
the bookmarks in the current file.

Traversing bookmarks (within the current file or within all files) is also possible with
the Traverse Bookmarks sub-menu in the Source menu and the key bindings
shown there.

Source Code Editor

50

In VI mode, the standard m and \` plus key bindings are supported, in addition to
the operations in the Source menu, which allow for the definition of bookmarks
with names longer than one character.

Emacs, Brief, and other key bindings also support bookmarks. However, bookmark
functionality for VI, Emacs, and Brief key bindings is omitted in Wing IDE Personal.

4.10. File Sets
File Sets are used create named sets of files that can then be opened as a group
or searched from the Search in Files tool.

File sets can be created in several ways:

• Open the desired files and use the Name Set of Open Files... item in the
Files > File Sets menu.

• Select the desired files in the Project, Open Files, or in other tools and use the
Name Set of Selected Files... item in the Files > File Sets menu.

• Select the desired files in the Project or Open Files tool, right click and select
the Name Selected File Set... menu item.

• Search in the Search in Files tool and when the search is complete use the
Name Result File Set item in the Options menu to name the set of files in
which a search match was found.

Once defined, file sets can be opened from the Files > File Sets menu and they
are included by name in the Search in Files tool's Look in menu.

To view or edit the defined file sets, use the Manage File Sets... item in the
File > File Sets menu. Right click to access the available operations in this dialog.
To rename a file set, click on its name and edit the name in place.

Binding File Sets to Keys

File sets can be bound to a key sequence, so that the pressing that sequence will
open the file set in the editor. This is done in the Manage File Sets dialog, by
selecting the file set, right clicking, and selecting Set Key Binding....

Shared File Sets

File sets can either be stored in the project file (the default) or in a shared file that
is used by all projects. To make a file set into a shared file set, open the
Manage File Sets dialog and check the Shared checkbox.

Source Code Editor

51

http://wingware.com/doc/edit/search-in-files

4.11. Code Snippets
Wing Professional provides support for defining and using code snippets for
commonly reused bits of code and other text. Snippets might be used for standard
file skeletons, comment formats, dividers, class definitions, function definitions,
HTML tables, and much more. Variants of snippets may be defined for different
contexts, for example to include or omit self in a def depending on whether or not
it is a method in a class.

Wing's snippet functionality is implemented in the Snippets tool panel and by
providing the snippets by name in the editor's auto-completer. Key bindings can be
assigned to snippets so that the snippets tool does not have to be visible in order
to use a snippet.

Although Wing comes with a few example snippets, in most cases users will want
to define their own, to match their coding conventions and preferences.

User Interface

The Snippets tool panel provides the means for adding, editing, removing, and
executing snippets, and also assigning key bindings for pasting selected snippets
into the current editor. Most of the functionality is provided by the options menu in
the top right and by right clicking on the snippet list. Note that some of the
operations (those followed by ... in the menus) will prompt for input at the bottom of
Wing IDE's window.

The option menu in the top right of the Snippets tool (also accessible by
right-clicking on the tab area) provides items for adding, removing, and renaming
file types into which to organize snippets. The name of the file type is the file
extension that Wing should use by default when creating a new file based on a
snippet. It is also used to look up the mime type of the file, so that the snippet can
be made available within any file of that type, regardless of its actual name. The *
file type, which is always present, allows defining snippets that can be applied to all
file types.

To add, edit, renamed, copy, and remove snippets, use the items in the context
menu that appears when you right-click on the surface of the snippet list in the
Snippets tool. This menu also provides items for inserting the snippet into the
current file or a new file.

Contexts

It is possible to specify the context within the file for which a snippet is appropriate.
This allows, for example, the definition of a snippet def that varies to include or
omit self depending on whether or not it is within a class. When available, this is
done with items in the snippet list context menu. The snippet defined for context all
will be used when no specific context match is made. The default set of snippets
that ship with Wing illustrate this feature with the def and class snippet variants.

Source Code Editor

52

The set of valid contexts depends on file type. For Python files the valid context
names are module, class, method, function, comment, string. For HTML and
XML, files are divided into content, code (within < and >), comment, and string.
Other files only distinguish code, comment, and string. Additionally, the context
all is used for all file types to indicate any context.

To set the context for a snippet, click on the context name in the snippet lists's
Context column, or use the items in the right-click context menu on the snippet list.

Key Bindings

The snippet list context menu menu also allows assigning key bindings to snippets,
so they can be executed more easily. The key binding entry area is shown at the
bottom of the IDE window, and Enter is pressed to accept the displayed binding.
Note that bindings can be multi-key sequences such as Ctrl-Shift-H Ctrl-A.
Pressing the keys in sufficiently rapid succession creates a sequence. Waiting a
moment will start a new sequence when further keys are pressed. Clicking away
from the entry area will abort the operation without assigning any key binding.

Note that key bindings are assigned to the snippet by name and not to a particular
snippet file. If multiple like-named snippets exists for different file types or contexts,
the appropriate snippet is chosen when the key binding is used.

Execution and Data Entry

When snippets are executed, Wing chooses the snippet by name and places the
correct variant according to the file type and the context within the current editor.
The caret position on the editor is used to determine the context, so altering the
position of the caret within leading indentation may alter which snippet variant Wing
selects.

When a snippet is used, Wing will place default arguments into the snippet, convert
indentation and line endings to match the target file, paste it into the active editor,
and place the editor into inline data entry mode to collect additional arguments for
the snippet.

In data entry mode, Wing will move between the data entry fields in the snippet
when Tab or BackTab are pressed. The position within the snippet's fields will be
displayed in the status area at the bottom of the editor window.

In this mode, the Indent and Outdent commands in the Indentation sub-group of
Wing's Source menu (and their key equivalents) can be used to increase or
decrease the indentation of the whole snippet within the editor. However, the same
snippet variant that was used initially will be used regardless of subsequent
changes in indentation.

To exit data entry mode, press Esc (or Ctrl-G in emacs mode) or move the caret
outside of the pasted snippet. To undo the snippet insertion, use Undo in the Edit
menu or its key binding.

Source Code Editor

53

Auto-completion

Snippets are also listed in the editor's auto-completer and may be activated from
there. To disable this feature, turn off the auto-completer preference
Include Snippets in Completer.

Snippet Syntax

Snippets are text files that contain markers where user-provided values should be
inserted. These markers are similar to Python's %(varname)s string substitution
syntax but instead of containing only a variable name, the body of the marker
contains richer argument collection information in the following format, with vertical
bars dividing each value:

%(varname|type|default)s

Type and default are optional but the vertical bars must be present if omitting type
but including a default. To write a snippet that includes Python style string formats,
escape each % by writing %% instead.

Each part is defined as follows:

varname -- The name of the variable. Since arguments are collected inline, this
name is used internally only. Future extensions may display this name to the user,
by replacing underscores with spaces and capitalizing words (for example
"user_name" would be rendered "User Name"). If a variable name is used multiple
times in a snippet, the same value will be inserted multiple times.

An @ prepended to the variable name indicates that the value should be wrapped
if it exceeds the configured text wrap line column.

A ! prepended to the variable name indicates that the value should also act as a
tab stop even if its value is inserted from another like-named field. This has no
effect if the field name is unique.

type -- The type of data to collect. Currently this is one of:

string(length) -- a string with given maximum length (uses default 80 chars if length
is omitted)

date -- current date in locale's preferred format or in the time.strftime() format
given in the environment variable __DATE_FORMAT__

datetime -- current date+time in locale's preferred format or in the time.strftime()
format given in the environment variable __DATETIME_FORMAT__

If this field is omitted or empty, string is assumed.

default -- The default value to use. This may be the actual value, or may contain
environment variable references in the form $(envname) or ${envname} to

Source Code Editor

54

attempt to read all or part of the value from the named environment variable or one
of the special variables enumerated in Environment Variable Expansion.

Environment variables can be specified either in the Debug tab of Wing's
Project Properties or in the environment that exists before Wing is launched.
Values in the Project Properties override any values set before starting Wing.

When this field is omitted, or when no default environment value can be found, the
field will be left blank .

Indentation and Line Endings

Snippets should always use one tab for each level of indentation. Tabs will be
replaced with the appropriate indentation type and size when the snippet is used in
a new or existing file (either according to content of the target file or using the
configured indent style and indent size for new files). Wing will force tab
indentation in all newly created snippet files.

Similarly, line endings in snippets will be replaced with the appropriate type to
match the file to which the snippet is applied. However, there is no requirement for
snippet files to contain any particular kind of line ending.

If the snippet starts with |x| then x is a specification of how the indents in the
snippet should be converted. It can be one of:

• An integer: Re-indent as a block, like Wing's indent-region command, so the
first line is at the given number of indent levels.

• The character 'm': Re-indent as a block, like Wing's indent-to-match command,
so the first line is at the expected indent level according to context in the
source.

• The character 'm' followed by '+' or '-' and an integer: Re-indent as for 'm' and
then shift left or right by the given number of indents.

Any |x| at the start of a snippet file will be removed before the snippet is inserted
into an editor.

Cursor Placement

Snippets can contain |!| to indicate the final resting position of the cursor after all
other fields have been filled. When this is present, inline data entry mode is
terminated automatically when this position is reached (after all other fields have
been entered). The mark will be removed before snippets are inserted into an
editor.

Source Code Editor

55

http://wingware.com/doc/proj/variable-expansion

Snippet Directory Layout

Snippets are stored in the snippets directory in the user settings directory. The
first time the Snippets tool is used, this directory is populated by making a copy of
the default set of snippets that ship with Wing (these can be found in snippets
within your Wing IDE installation). After that, edits and additions made will appear
here, and these files can be copied to other installations of Wing IDE to share the
snippets with other users or on other machines.

File Types

This directory is organized by the file type to which they apply. Snippets stored at
the top level of this directory can be used with any file in the editor and are shown
in the * tab in the Snippets tool. Those stored in sub-directories are used only for
files of a particular type. The name of the sub-directories is the file extension for
that file type (for example py for Python). This is converted to a mime type so that
the snippets are available for all files of that type, regardless of their naming. The
name of the file type directory also provides the file extension to use for new
untitled files when a snippet is pasted into a new file.

Contexts

When snippets are defined for a particular context within a file, they are stored in a
sub-directory named context.ctx where context is replaced with the context name
(see above). When a snippet is defined as the default, or without a particular
context, it is stored in the top level of the file type directory.

Configuration

Wing also stores a configuration file in the user's snippets directory. This file is
named .config and is used for internal book keeping. It should not be altered or
removed, as this may cause the loss of your snippet files.

Commands

The following commands are available for invoking snippets:

snippet -- This will insert a snippet (selected by name) at the cursor in the current
editor. If there is a non-empty selection on the editor, it will replace the selection.
The editor will be placed into data entry mode for the collection of the snippet
arguments.

snippet-file -- This will create a new file of the type specified by the snippet file's
extension and insert the selected snippet into it before entering data entry mode in
the editor for the collection of the snippet arguments.

In most cases, you will use the Assign Key Binding item in the Snippets tool's
context menu to invoke these commands for a particular snippet.

Source Code Editor

56

http://wingware.com/doc/install/user-settings-dir

Scripting Snippets

Wing's extension scripting API exposes the editor's data entry mode and snippet
processing capabilities. This can be used to write scripts that generate snippets
and paste them into the editor for user data entry. This approach may be
preferable when the snippet markup language described above is not sufficient.

For details, see the PasteSnippet and StartDataEntry methods in wingapi.py
and refer to Scripting and Extending Wing IDE.

4.12. Indentation
Since indentation is syntactically significant in Python, Wing provides a range of
features for inspecting and managing indentation in source code.

4.12.1. How Indent Style is Determined

When an existing file is opened, it is scanned to determine what type of indentation
is used in that file. If the file contains some indentation, this may override the tab
size, indent size, and indent style values given in preferences and the file will be
indented in a way that matches its existing content rather than with your configured
defaults. If mixed forms of indentation are found, the most common form is used.

For non-Python files, you can change indentation style on the fly using the
Indent Style property in the File Properties dialog (accessed by right-clicking on
the editor). This allows creating files that intentionally mix indentation forms in
different parts of the file. To ask Wing to return to the form of indentation it
determines as most prominent in the file, select Match Existing Indents.

For Python files, the Indent Style cannot be altered without converting the whole
file's indent style using the Indentation Manager, which can be accessed from the
button next to the Indent Style property and from the Tools menu.

4.12.2. Indentation Preferences

The following preferences affect how the indentation features behave:

1. The Use Indent Analysis preference is used to control whether analysis of
current file content is used to determine the type of indentation placed during
edits. It can be enabled for all files, only for Python files, or disabled. Note that
disabling this preference for Python files can result in a potentially broken mix
of indentation in the files. In general, indent styles should not be mixed within a
single Python file.

2. The Default Tab Size preference defines the position of tab stops and is used
to determine the rendering of files with tabs only, or non-Python files with
mixed tab and space indentation. In Python files with mixed indents, this value
is ignored and the file is always shown in the way that the Python interpreter
would see it.

Source Code Editor

57

http://wingware.com/doc/scripting/index
http://wingware.com/doc/edit/indentation-manager

3. The Default Indent Size preference defines the default size of each level of
indent, in spaces. This is used in new empty files or when indent analysis has
been disabled. Wing may override this value in files that contain only tabs in
indentation, in order to make it a multiple of the configured tab size.

4. The Default Indent Style preference defines the default indentation style, one
of spaces-only, tabs-only, or mixed. This is used in new empty files or when
indent analysis has been disabled. Mixed indentation replaces each tab-size
spaces with one tab character.

These preferences define how indentation is handled by the editor:

5. The Auto-Indent preference controls whether or not each new line is
automatically indented.

6. The Show Indent Guides preference controls whether or not to show
indentation guides as light vertical lines. This value can be overridden on a
file-by-file basis from Editor tab in File Properties.

7. The Show Python Indent Warnings preference can be used to enable or
disable warnings for Python files that may contain confusing or damaged
indentation.

8. The Show Override Warnings preference controls whether or not Wing
shows a warnings when the user enters indentation that does not match the
form already within a file. This is currently only possible in non-Python files, by
altering the Indent Style attribute in File Properties.

4.12.3. Indentation Policy

The project manager also provides the ability to define the preferred indentation
style (overriding the preference-defined style) and to specify a policy for enforcing
line endings, on a per-project basis. This is accomplished with
Preferred Line Ending and Line Ending Policy under the Options tab in Project
Properties.

4.12.4. Auto-Indent

The IDE ships with auto-indent turned on. This causes leading white space to be
added to each newly created line, as return or enter are pressed. Enough white
space is inserted to match the indentation level of the previous line, possibly
adding or removing a level of indentation if this is indicated by context in the source
(such as if, while, or return).

Note that if preference Auto-indent is turned off, auto-indent does not occur until
the tab key is pressed.

In Python code, Wing also auto-indents after typing a colon after else, elif, except,
and finally. Indentation will go to the closest matching if or try statement. I f there
are multiple possible matching statements, the colon key can be pressed

Source Code Editor

58

http://wingware.com/doc/proj/per-file-properties
http://wingware.com/doc/proj/per-file-properties

repeatedly to toggle through the possible positions for the line. Similarly, when
Smart Tab is selected as the Tab Key Action, then pressing the Tab key
repeatedly will toggle the line through the possible indent positions. This can also
be accomplished with the Indent to Match toolbar and menu items (regardless of
selected tab key action).

When pasting multiple lines into Python code and the caret is in the indent region
or on a blank line, Wing will auto-indent pasted text as follows: (1) If the caret is in
column zero, the text is indented to match the context, (2) If the caret is within the
indent region but not in column zero, the text is indented to that position. If the
auto-indent is incorrect, a single Undo will return the pasted text to its original
indentation level, or the text can be selected and adjusted with the indentation
toolbar or menu items or key equivalents.

4.12.5. The Tab Key

By default, the action of the tab key depends on the selected Keyboard
Personality, file type, and position within the file as described under
Default for Personality below.

To insert a real tab character regardless of the indentation mode or the position of
the cursor on a line, type Ctrl-Tab or Ctrl-T.

The behavior of the tab key can be altered using the Tab Key Action preference,
which provides the following options:

Default for Personality

This selects from the other tab key actions below according to the chosen
keyboard personality, current file type, and in some cases the position of the caret
within the file. In all non-Python files, the default is Move to Next Tab Stop. In
Python files, the defaults are as follows by keyboard personality:

• Normal: Smart Tab
• VI/VIM: Move to Next Tab Stop
• Emacs: Indent to Match
• Brief: Smart Tab
• Visual Studio: Move to Next Tab Stop
• OS X: Smart Tab

Indent to Match

This indents the current line or selected lines to position them at the computed
indent level for their context in the file.

Move to Next Tab Stop

This enters indentation characters matching the current file's style of indentation so
that the caret reaches the next tab stop.

Source Code Editor

59

http://wingware.com/doc/edit/the-tab-key

Indent Region

This enters indentation characters matching the current file's style of indentation to
increase the indentation of the current line or selected lines by one level.

Insert Tab Character

This inserts a Tab character (chr(9)) into the file.

Smart Tab

This option is available for Python files only. It implements the following behavior
for the tab key:

1. When the caret is within a line or there is a non-empty selection, this performs
Indent to Match. When the line or lines are already at the matching position,
indentation is toggled between likely positions as follows:

a. If a comment precedes the current line or selection, then indentation will
match the position of the prior non-comment code line (if any).

b. If multiple nested blocks match an 'else', 'elif', 'except', or 'finally', then
indentation will match the position of the enclosing blocks (traversing each
in outward order).

b. In other cases, indentation is reduced by one level.

2. When the caret is at the end of a non-empty line and there is no selection, one
indent level is inserted. The Smart Tab End of Line Indents preference can
be used to alter the type of indentation used or to disable this aspect of the
Smart Tab feature.

4.12.6. Checking Indentation

Wing IDE analyzes existing indentation whenever it opens a Python source file,
and will indicate a potentially problematic mix of indentation styles, allowing you to
attempt to repair the file. Files can be inspected more closely or repaired at any
time using the Indentation Manager.

To turn off indentation warnings in Python files, use the Show Python
Indent Warnings preference.

Wing also indicates suspiciously mismatched indentation in source code by
underlining the indent area of the relevant lines in red or yellow. In this case, an
error or warning message is displayed when the mouse hovers over the flagged
area of code.

Source Code Editor

60

http://wingware.com/doc/edit/indentation-manager

4.12.7. Changing Block Indentation

Wing provides Indent and Outdent commands in the Indentation portion of the
Source menu, which increase or decrease the level of indentation for selected
blocks of text. All lines that are included in the current text selection are moved,
even if the entire line isn't selected.

Indentation placed by these commands will contain either only spaces, only tabs,
or a mixture of tabs and spaces, as determined by the method described in
Indentation.

Note

Indenting to Match

The command Indent Lines to Match (also in the Indentation sub-menu)
will indent or outdent the current line or selected lines to the level as a unit so
that the first line is positioned as it would have been positioned by Wing's
auto-indentation facility. This is very useful when moving around blocks of
code.

4.12.8. Indentation Manager

The Indentation manager, accessible from the Tools menu, can be used to inspect
and change indentation style in source files. It has two parts: (1) The indentation
report, and (2) the indentation converter.

A report on the nature of existing indentation found in your source file is given
above the horizontal divider. This includes the number of spaces-only, tabs-only,
and mixed tabs-and-space indents found, information about whether indentation in
the file may be problematic to the Python interpreter, and the tab and indent size
computed for that file. The manager also provides information about where the
computed tab and indent size value come from (for example, an empty file results
in use of the defaults configured in preferences).

Conversion options for your file are given below the horizontal divider. The three
tabs are used to select the type of conversion desired, and each tab contains
information about the availability and action of that conversion, and a button to
start the conversion. In some of the conversion options, the indent size field shown
in the indentation report is made editable, to allow specification of the desired
resulting indent size.

Once conversion is complete, the indentation manager updates to display the new
status of the file, and action of any subsequent conversions.

Source Code Editor

61

http://wingware.com/doc/edit/indentation

Conversions can be undone be moving to the converted source file and selecting
Undo from the Edit menu.

4.13. Folding
The editor supports optional folding for Python, C, C++, Java, Javascript, HTML,
Eiffel, Lisp, Ruby, and a number of other file formats. This allows you to visually
collapse logical hierarchical sections of your code while you are working in other
parts of the file.

You can turn folding on and off as a whole with the Enable Folding preference.

The Fold Line Mode preference can be used to determine whether or not a
horizontal line is drawn at fold points, whether it is drawn above or below the fold
point, and whether it is shown when the fold point is collapsed or expanded.
Fold Indicator Style is used to select the look of the fold marks shown at fold
points.

Once folding is turned on, an additional margin appears to the left of source files
that can be folded. Left mouse click on one of the fold marks in this margin to
collapse or expand that fold point. Right mouse clicking anywhere on the fold
margin displays a context menu with the various folding operations.

You can also hold down the following key modifiers while left-clicking to modify the
folding behavior:

• Shift -- Clicking on any fold point while holding down the shift key will expand
that point and all its children recursively so that the maximum level of
expansion is increased by one.

• Ctrl -- Clicking on any fold point while holding down the ctrl key will collapse
that point and all its children recursively so that the maximum level of
expansion is decreased by one.

• Ctrl+Shift -- On a currently expanded fold point, this will collapse all child fold
points recursively to maximum depth, as well as just the outer one. When the
fold point is subsequently re-expanded with a regular click, its children will
appear collapsed. Ctrl-shift-click on a collapsed fold point will force
re-expansion of all children recursively to maximum depth.

Fold commands are also available in the Folding section of the Source menu,
which indicates the key equivalents assigned to the operations:

• Toggle Current Fold -- Like clicking on the fold margin, this operates on the
first fold point found in the current selection or on the current line.

• Collapse Current More -- Like ctrl-clicking, this collapses the current fold
point one more level than it is now.

• Expand Current More -- Like shift-clicking, this expands the current fold point
one more level than it is now.

Source Code Editor

62

• Collapse Current Completely -- Like shift-ctrl-clicking on an expanded node,
this collapses all children recursively to maximum depth.

• Expand Current Completely -- Like shift-ctrl-clicking on a collapsed node,
this ensures that all children are expanded recursively to maximum depth.

• Collapse All -- Unconditionally collapse the entire file recursively.
• Expand All -- Unconditionally expand the entire file recursively.
• Fold Python Methods -- Fold up all methods in all classes in the file.
• Fold Python Classes -- Fold up all classes in the file.
• Fold Python Classes and Defs -- Fold up all classes and any top-level

function definitions in the file.

4.14. Brace Matching
Wing will highlight matching braces in green when the cursor is adjacent to a
brace. Mismatched braces are highlighted in red.

You can cause Wing to select the entire contents of the innermost brace pair from
the current cursor position with the Match Braces item in the Source menu.

Parenthesis, square brackets, and curly braces are matched in all files. Angle
brackets (< and >) are matched also in HTML and XML files.

4.15. Support for files in .zip or .egg files
Source and other text files stored in .zip or .egg files may be loaded into the editor
as readonly files. Wing is unable to write changes to a file within a .zip or .egg file
or otherwise write to or create a .zip or .egg file.

When stepping through code, using goto definition, or using other methods to goto
a line in a file, a file within a .zip or .egg file will be opened automatically. To open a
file through the open file dialog, specify the name of the .zip or .egg file and add a /
followed by the name of the file to open.

4.16. Keyboard Macros
The Edit menu contains items for starting and completing definition of a keyboard
or command sequence macro, and for executing the most recently defined macro.
Once macro recording is started, any keystroke or editor command is recorded as
part of that macro, until macro recording is stopped again. Most commands may be
included in macros, as well as all character insertions and deletions.

Macros can be quite powerful by combining keyboard-driven search (Mini-search
in the Edit menu), cursor movements, and edits.

4.17. Notes on Copy/Paste
There are a number of ways to cut, copy, and paste text in the editor:

Source Code Editor

63

• Use the Edit menu items. This stores the copy/cut text in the system-wide
clipboard and can be pasted into or copied from other applications.

• Use key equivalents as defined in the Edit menu.
• Right-click on the editor surface and use the items in the popup menu that

appears.
• Select a range of text and drag it using the drag and drop feature. This will

move the text from its old location to the new location, either within or between
editors.

• On Linux, select text anywhere on the display and then click with the middle
mouse button to insert it at the point of click.

• On Windows and Mac OS X, click with the middle mouse button to insert the
current emacs private clipboard (if in emacs mode and the buffer is
non-empty) or the contents of the system-wide clipboard (in all other cases).
This behavior may be disabled via the Middle Mouse Paste preference

• In emacs mode, ctrl-k (kill-line) will cut one line at a time into the private
emacs clipboard. This is kept separate from the system-wide clipboard and is
pasted using ctrl-y (yank-line). On Windows and Mac OS X, ctrl-y will paste
the contents of the system-wide clipboard only if the emacs clipboard is empty.

• In VI mode, named text registers are supported.

It is important to note which actions use the system-wide clipboard, which use the
emacs private clipboard or VI registers, and which use the X windows selection (X
Windows only). Otherwise, these commands are interchangeable in their effects.

Smart Copy

Wing can be configured to copy or cut the whole current line when there is no
selection on the editor. This is done with On Empty Selection in the
Editor > Clipboard preference group. The default is to use the whole line on copy
but not cut.

4.18. Auto-reloading Changed Files
Wing's editor detects when files have been changed outside of the IDE and can
reload files automatically, or after prompting for permission. This is useful when
working with an external editor, or when using code generation tools that rewrite
files.

Wing's default behavior is to automatically reload externally changed files that have
not yet been changed within Wing's source editor, and to prompt to reload files that
have also been changed in the IDE.

You can change these behaviors by setting the value of the
Reload when Unchanged and Reload when Changed preferences

Source Code Editor

64

On Windows, Wing uses a signal from the OS to detect changes so notification or
reload is usually instant. On Linux and Unix, Wing polls the disk by default every 3
seconds; this frequency can be changed with the External Check Freq
preference.

4.19. Auto-save
The source code editor auto-saves files to disk every few seconds. The auto-save
files are placed in a subdirectory of your User Settings Directory.

If Wing ever crashes or is killed from the outside, you can use these files to
manually recover any unsaved changes. Copy the auto-save files to overwrite the
older unsaved files, doing a comparison first to verify that the auto-save file is what
you want.

Search/Replace
Wing provides a number of tools for search and replace in your source code.
Which you use depends on the complexity of your search or replace task and what
style of searching you are most familiar with.

5.1. Toolbar Quick Search
One way to do simple searches is to enter text in the search area of the toolbar.
This scrolls as you type to the next match found after the current cursor position.
Pressing Enter will search for each subsequent match, wrapping the search when
the end of the file is reached.

Text matching during toolbar quick search is case-insensitive unless you enter a
capital letter as part of your search string.

If focus is off the toolbar search area and it already contains a search string,
clicking on it will immediately start searching in the current source editor for the
next match. If you wish to search for another string instead, delete the text and
type the desired search string. As you delete, the match position in the editor will
proceed backward until it reaches your original search start position, so that after
typing your new search string you will be presented with the first match after the
original source editor cursor position.

5.2. Keyboard-driven Mini-Search/Replace
The Edit menu contains a Mini-Search sub-menu that enumerates the available
keyboard-driven search options. These are normally initiated with the keyboard
command sequences shown in the menu and can be controlled entirely by using
the keyboard. All interaction with the mini-search manager occurs using data entry
areas displayed on demand at the bottom of the IDE window.

Search/Replace

65

http://wingware.com/doc/install/user-settings-dir

The implementation of the mini-search manager is very close to the most
commonly used search and replace features found in Emacs, but it is available
whether or not the Emacs editor personality is being used.

The following search and replace features are available in this facility:

• Forward and Backward -- These display a search string entry area at the
bottom of the IDE window and interactively search forward or backward in the
current source editor, starting from the current cursor position. The search
takes place as you type and can be aborted with Esc or Ctrl-G, which returns
the editor to its original cursor location and scroll position.

Searching is case-insensitive unless you enter a capital letter as part of your
search string. To search repeatedly, press Ctrl-U (or Ctrl-S in
emacs keyboard mode) to search forward and ``Ctrl-Shift-U (or Ctrl-R in
emacs mode) to search in reverse. The search direction can be changed any
number of times and searching will wrap whenever the top or bottom of the file
is reached. You can also enter Ctrl-U (or Ctrl-S in emacs mode) or
Ctrl-Shift-U (or Ctrl-R in emacs mode) again initially while the search string is
still blank in order to call up the most recently used search string and begin
searching forward or backward with it.

Once the mini-search entry area is visible, Ctrl-W will add the current word in
the editor to the search string. Pressing Ctrl-W more than once while the
mini-search entry is visible adds additional words from the editor to the search
string.

• Selection Forward and Selection Backward -- These work like the above but
start with the selection in the current source editor.

• Regex Forward and Regex Backward -- These work like the above but treat
the search string as a regular expression.

• Query/Replace and Regex Query/Replace -- This prompts for search and
replace strings in an entry area at the bottom of the IDE window and prompts
for replace on each individual match found after the cursor location in the
current source editor. Press y to replace or n to skip a match and move on to
the next one. The interaction can be canceled at any time with Esc or Ctrl-G.
Matching is case insensitive unless a capital letter is entered as part of the
search string. Searching is always forward and stops when the end of the file
is reached, without wrapping to any un-searched parts between the top of the
file and the position from which the search was started.

• Replace String and Replace Regex -- This works like the above command
but immediately replaces all matches without prompting.

Search/Replace

66

5.3. Search Tool
The dockable Search tool can be used for more advanced search and replace
tasks within the current editor. It provides the ability to customize case sensitivity
and whole/part word matching, search in selection, and perform wildcard or regex
search and replace.

The Replace field may be hidden and can be shown from the Options menu in the
bottom right of the tool.

To the right of the Search and Replace fields, Wing makes available a popup that
contains a history of previously used strings, options for inserting special
characters, and an option for expanding the size of the entry area.

The following search options can be selected from the tool:

• Case Sensitive -- Check this option to show only exact matches of upper and
lower case letters in the search string.

• Whole Words -- Check this option to require that matches are surrounded by
white space (spaces, tabs, or line ends) or punctuation other than _
(underscores).

• In Selection -- Search for matches only within the current selection on the
editor.

The following additional options are available from the Options popup menu:

• Show Replace -- Whether or not the Replace field is visible in the tool.
• Text Search -- Select this to do a regular text search without wildcard or

regex.
• Wildcard Search -- Select this to allow use of special characters for

wildcarding in the search string (see Wildcard Search Syntax for details).
• Regex Search -- Select this to use regular expression style searching. This is

a more powerful variant than wildcard search that allows for more complex
specification of search matches and replacement values. For information on
the syntax allowed for the search and replace strings, see Python's Regular
Expression Syntax documentation. In this mode, the replace string can
reference regex match groups with \1, \2, etc, as in the Python re.sub() call.

• Wrap Search -- Uncheck this to avoid wrapping around when the search
reaches the top or bottom of a file.

• Incremental -- Check this to immediately start or restarted searching as you
type or alter search options. When unchecked, use the forward/backward
search buttons to initiate searching.

• Find After Replace -- Select this to automatically find the next search match
after each Replace operation.

Search/Replace

67

http://wingware.com/doc/edit/search-wildcard
http://wingware.com/psupport/python-manual/2.5/lib/re-syntax.html
http://wingware.com/psupport/python-manual/2.5/lib/re-syntax.html

5.4. Search in Files Tool
The dockable Search in Files tool is used to search and replace within sets of
files, or for searching Wing's documentation. It performs searches in batch and
displays a result list for all found matches. This list can then be traversed to view
the matches in the source editor, and is automatically updated as edits alter the
search results. Searching may span the current editor, a single selected file, all
open files, all project files, all of Wing's documentation, or sets of files on disk.

Files in a set may be filtered by file type, for example searching only through
Python files in the project.

In addition the options also available in the search tool, the following choices are
available in the Options popup menu:

• Replace Operates On Disk -- Check this to replace text in un-opened files
directly on disk. Caution: see Replace in Multiple Files for details on this
option.

• Recursive Directory Search -- Check this to search recursively within all
sub-directories of the selected search directory.

• Omit Binary Files -- Check this to omit any file that appears to contain binary
data.

• Auto-restart Searches -- Check this to restart searching immediately if it is
interupted because a search parameter or the set of files being searched is
changed.

• Open First Match -- Check this to automatically open the first batch search
match, even before the result list is clicked upon.

• Show Line Numbers -- Check this to include line numbers in the batch result
area.

• Result File Name -- This is used to select the format of the result file name
shown in the batch result area.

5.4.1. Replace in Multiple Files

For searches that operate on open files, replace always occurs in the open file
editor and can be undone or saved to disk subsequently, as with any other edit
operation.

When replacing text in batch mode, some of the files being searched may not
currently be open in an editor. In this case, Wing will by default open all altered
files and make changes in newly created editors that remain open until the user
saves and closes them explicitly. This is the safest way to undertake multi-file
global replace operations because it clearly shows which files have been altered
and makes it possible to undo changes.

Search/Replace

68

http://wingware.com/doc/edit/search-tool
http://wingware.com/doc/edit/replace-in-files

An alternative approach is available by selecting the Replace Operates on Disk
option from the Options popup. This will cause Wing to change files directly on
disk in cases when there is no currently open editor.

Because global replace operations can be tricky to do correctly, we strongly
recommend using a revision control system or frequent backups and manually
comparing file revisions before accepting files that have been altered.

5.5. Find Points of Use
Wing IDE is able to find the locations where a symbol is used in the current
project's Python files. To start a search, select or place the cursor in a symbol and
then use Find Points of Use in the Source menu or editor's context menu
(right-click) or Alt-click on a symbol. Lines with matching symbols will be displayed
in the Uses tool and clicking on a match will display it in an editor.

Since Python is a dynamic language, it is sometimes impossible to determine for
certain whether a match is the same symbol. Matches are assigned a likelyhood of
being correct, as follows:

• Likely: The original symbol and found symbol resolve to the same definition so
that using Goto Definition on each will end up in the same place.

• Possible: Either the original symbol or the found symbol don't resolve to any
definition.

• Unlikely: The original symbol resolves to a different definition than the found
symbol.

Possible matches are listed with a question mark (?) preceding the filename and
unlikely matches are listed with double question mark (??) preceding the filename.
Only likely and possible matches are displayed by default. The display of possible
and unlikely matches may be toggled via the Options menu on a per-search basis.

When searching for uses of a class __init__ or __new__ methods, the results will
include matches where the class or a derived class is used by their original name
to create new instances.

If Wing is failing to see matches as resolving to the same point of definition, it may
help to add to the Python Path in Project Properties so that the source analysis
engine can resolve module imports.

Completed searches are stored in the Uses tool and can be referenced by clicking
on the drop down menu at the top of the tool and deleted by clicking on the close
icon. Note that searches do not automatically refresh as code is modified, but may
be updated manually with Refresh in the Options menu.

5.6. Wildcard Search Syntax
For wild card searches in the Search tools, the following syntax is used:

Search/Replace

69

* can be used to match any sequence of characters except for line endings. For
example, the search string my*value would match anything within a single line of
text starting with my and ending with value. Note that * is "greedy" in that
myinstancevalue = myothervalue would match as a whole rather than as two
matches. To avoid this, use Regex Search instead with .*? instead of *.

? can be used to match any single character except for line endings. For example,
my???value would match any string starting with my followed by three characters,
and ending with value.

[and] can be used to indicate sets of match characters. For example [abcd]
matches any one of a, b, c, or d. Also, [a-zA-Z] matches any letter in the range
from a to z (inclusive), either lower case or uppercase. Note that case
specifications in character ranges will be ignored unless the Case Sensitive option
is turned on.

Refactoring
Wing IDE includes support for refactoring, which is the process of modifying code
to improve its structure and organization without changing its behavior. For
example, refactoring can be used to rename a symbol wherever it is referenced or
to move a block of code into a function, replacing it with an invocation of the new
function. Wing IDE's refactoring support provides very high-level editing operations
that are informed by its understanding of Python source code.

6.1. Rename Symbol
The rename symbol operation renames a variable, function, class, or module and
updates the locations where it is used. To start a rename operation, click on the
symbol in the editor and then select Rename Symbol from the Refactor menu or
from the Refactor sub-menu of the editor context menu (right-click). Wing will
begin searching for all of the locations where the symbol is used and list them in
the Refactoring tool. To complete the operation, enter the new symbol name and
press the Rename Checked button.

Note that each found match for the symbol is displayed with a check box that can
be deselected to omit that match from the rename operation. Please refer to Find
Points of Use for more information on how Wing finds symbols for refactoring
operations.

After it completes, the rename operation can be undone with the Revert button in
the Refactoring tool.

Refactoring

70

http://wingware.com/doc/edit/points-of-use
http://wingware.com/doc/edit/points-of-use

6.2. Move Symbol
The move symbol operation moves a variable, function, or class, and updates
locations where it is used to reference the symbol at its new location. To start a
move operation, click on the symbol to be moved and then select Move Symbol
from the Refactor menu or from the Refactor sub-menu of the editor context menu
(right-click). Wing will search for all of the locations where the symbol is used and
list them in the Refactoring tool. To complete the operation, enter the destination
filename and / or scope name and press the Move and Update Checked button.

Note that each found match for the symbol is displayed with a check box that can
be deselected to omit that match from the rename operation. Please refer to Find
Points of Use for more information on how Wing finds symbols for refactoring
operations.

After it completes, the rename operation can be undone with the Revert button in
the Refactoring tool.

6.3. Extract Function / Method
The extract function / method operation creates a new function or method from the
currently selected lines. It replaces the lines with a call to the new function or
method, passing in needed arguments and returning any values needed in the
calling block of code.

To start an extract operation, select the lines to be extract in the editor and then
select Extract Function/Method from the Refactor menu or from the Refactor
sub-menu of the editor context menu (right-click). Wing will then display the
Refactoring tool. To complete the operation, enter the name for the new function
or method, select the scope in which to define it, and press the Extract button.

After it completes, the extract operation can be undone with the Revert button in
the Refactoring tool.

Note that the extract operation currently cannot extract lines that contain return
statements before the final line.

6.4. Introduce Variable
The introduce variable operation adds a variable that is initialized to the value of an
existing expression and then replaces the expression with the new variable. To
start an introduce variable operation, select an existing expression and then select
Introduce Variable from the Refactor menu or from the Refactor sub-menu of the
editor context menu (right-click). Wing will find all places the expression is used in
the current scope and list them in the Refactoring tool. To complete the operation,
enter the name for the new variable and press the Introduce Variable button. The
name may include a dot, so a name starting with self. may be used to introduce an
instance attribute in a method.

Refactoring

71

http://wingware.com/doc/edit/points-of-use
http://wingware.com/doc/edit/points-of-use

Note that each found match for the expression is displayed with a check box that
can be deselected to omit that match from the rename operation.

After it completes, the introduce variable operation can be undone with the Revert
button in the Refactoring tool.

Diff/Merge Tool
Wing IDE Professional provides single and multi-file difference and merge
capabilities.

To initiate a session, use the Diff/Merge toolbar item (click to display a menu of
options) or use the Difference and Merge menu item in the Source menu. You
will be prompted for any file or directory names in the status area at the bottom of
the IDE window. Additional sessions can be started concurrently but only one
session is current at a given time. The same menus can be used to switch among
multiple concurrent sessions, when there are two or more.

Once a session is started, the selected files will be displayed side by side, one
annotated with A: and the other annotated with B:. Use the newly revealed toolbar
items to move to the next or previous difference pair, to merge differences from
one file into the other, or to terminate the session. Navigation and merging is also
possible with the key bindings listed in the diff/merge menu.

In addition, a summary listing all changes is available from the diff/merge icon
displayed at the top right of editors in the active session. This includes line number,
change summary, and Python scope name when applicable. Selecting a change
from this menu will jump to it.

The following types of difference/merge sessions are available:

• Compare Files -- Compare two selected files.
• Compare Directories -- Compare two selected directories. The Diff/Merge

tool, which will be shown while the multi-file session is active, will display a list
of files and estimated degree of difference in each file pair. Clicking on the list
will display the first difference in the selected file pair. The selection on the list
will also update as you move through the difference list.

• Compare Visible Files -- Compare the two visible files. This is only available
when two editor splits are shown and two different files are open in them.

• Compare Buffer with Disk -- Compare the current file and its contents on
disk. This is only available when the current file has unsaved edits.

• Compare Recent -- This provides a sub-menu for quick access to recently
performed comparisons.

• Compare to Repository -- When a file is in checked into one of the version
control systems that Wing IDE supports, this item can be used to compare the
working copy of the file with the corresponding revision in version control.

Diff/Merge Tool

72

Diff/Merge Options
The Difference and Merge menu also contains two items that control the action of
the diff/merge sessions:

• Lock Scrolling -- When this is checked, Wing keeps the scrolling position of
the two files in the diff/merge session synchronized.

• Ignore Whitespace -- When this is checked, Wing will ignore changes that
consist solely of white space (space, tab, line feed, or carriage return
characters).

It is also possible to select between side by side or top/bottom orientation of the
two files shown during a difference and merge session using the Orientation
preference.

The color used in the highlights for differences can be configured with the
Diff/Merge Color preference.

Source Code Browser
The Source Browser, which is available only in Wing IDE Professional, acts as an
index to your source code, supporting inspection of collections of Python code from
either a module-oriented or class-oriented viewpoint.

Note

Background Source Analysis

Wing IDE's source code analyzer will run in the background from the time
that you open a project until all files have been analyzed. You may notice
this overhead immediately after opening your project, depending on the size
of your source base. Until analysis is complete, the class-oriented view within
the browser window will only include those classes that have been analyzed.
This list is updated as more code is analyzed.

8.1. Display Choices
The source code browser offers three ways in which to browse your source code:
All code by module, all code by class, or only the current file. These are selected
from the menu at the top left of the browser.

Source Code Browser

73

8.1.1. Browse Project Modules

When browsing project modules, the source browser shows in alphabetical order
all Python modules and packages that you have placed into your project and all
modules and packages reachable by traversing the directory structure that
contains your project files (including all sub-directories). The following types of
items are present in this display mode, each of which is displayed with its own icon:

• Packages, which are directories that contain a number of files and a special
file __init__.py. This file optionally contains a special variable __all__ that lists
the file-level modules Python should automatically import when the package
as a whole is imported. See the Python documentation for additional
information on creating packages.

• Directories found in your project that do not contain the necessary __init__.py
file are shown as directories rather than packages.

• Python files found at any level are shown as modules.

Within each top-level package, directory, or module, the browser will display all
sub-modules, sub-directories, modules, and any Python constructs. These are all
labeled by generic type, including the following types:

• class -- an object class found in Python source
• method -- a class method
• attribute -- a class or instance attribute
• function -- a function defined at the top-level of a Python module
• variable -- a variable defined at the top-level of a Python module

The icons for these are shown in the Options menu in the top right of the source
browser. Note that the base icons are modified in color and with arrows depending
on whether they are imported or inherited, and whether they are public,
semi-private, or private. This is described in more detail later.

8.1.2. Browsing Project Classes

When browsing by class, the browser shows a list of all classes found in the
project. Within each class, in addition to a list of derived classes, the methods and
attributes for the class are shown.

Navigation to super classes is possible by right-clicking on classes in the display.

8.1.3. Viewing Current Module

The browser can also be asked to restrict the display to only those symbols defined
in the current module. This view shows all types of symbols at the top level and
allows expansion to visit symbols defined in nested scopes. In this mode, the
browser can be used as an index into the current editor file.

Source Code Browser

74

8.2. Display Filters
A number of options are available for filtering the constructs that are presented by
the source code browser. These filters are available from the Options popup menu
at the top right of the browser. They are organized into two major groups: (1)
construct scope and source, and (2) construct type.

8.2.1. Filtering Scope and Source

The following distinctions of scope and source are made among the symbols that
are shown in the source browser. Constructs in each category can be shown or
hidden as a group using the filters in the Options menu:

• Public -- Constructs accessible to any user of a module or instance. These
are names that have no leading underscores, such as Print() or
kMaxListLength.

• Semi-Private -- Constructs intended for use only within related modules or
from related or derived classes. These are names that have one leading
underscore, such as _NotifyError() or _gMaxCount. Python doesn't enforce
usage of these constructs, but they are helpful in writing clean, well-structured
code and are recommended in the Python language style guide.

• Private -- Constructs intended to be private to a module or class. These are
names that have two leading underscores, such as __ConstructNameList()
or __id_seed. Python enforces local-only access to these constructs in class
methods. See the Python documentation for details.

• Inherited -- Constructs inherited from a super-class.
• Imported -- Constructs imported into a module with an import statement.

8.2.2. Filtering Construct Type

Constructs in the source code browser window can also be shown or hidden on the
basis of their basic type within the language:

• Classes -- Classes defined in Python source.
• Methods -- Methods defined within classes.
• Attributes -- Attributes (aka 'instance variables') of a class. Note that these

can be either class-wide or per-instance, depending on whether they are
defined within the class scope or only within methods of the class.

• Functions -- Non-object functions defined in Python source (usually at the
top-level of a module or withing another function or method).

• Variables -- Variables defined anywhere in a module, class, function, or
method. This does not include function or method parameters, which are not
shown in the source browser.

Source Code Browser

75

8.3. Sorting the Browser Display
In all the display views, the ordering of constructs within a module or class can be
controlled from the Options popup menu in the browser.

• Alphabetically -- Displays all entries in the tree in alphabetic order, regardless
of type.

• By Type -- Sorts first by construct type, and then alphabetically.
• In File Order -- Sorts the contents of each scope in the same order that the

symbols are defined in the source file.

8.4. Navigating the Views
To navigate source code from the browser, double click on the tree display. This
will open source files to the appropriate location.

Source files opened from the browser will automatically close when browsing
elsewhere, except if they are edited or if the stick pin icon in the upper right of the
source area is clicked to indicate that the source file should remain open. For
details on this, see Transient, Sticky, and Locked Editors.

The option Follow Selection may be enabled in the Options menu to cause the
browser to open files even on a single click or as the currently selected item on the
browser is changed from the keyboard.

Right-clicking on classes will present a popup menu that includes any super
classes, allowing quick traversal up the class hierarchy.

8.5. Browser Keyboard Navigation
Once it has the focus, the browser tree view is navigable with the keyboard, using
the up/down arrow keys, page up and page down, home/end, and by using the
right arrow key on a parent to expand it, or the left arrow key to collapse a parent.

Whenever a tree row is selected, pressing enter or return will open the source view
for the selected symbol in a separate window, indicating the point of definition for
that symbol.

Interactive Python Shell
Wing provides an integrated Python Shell for execution of commands and
experimental evaluation of expressions. The version of Python used in the Python
Shell, and the environment it runs with, is configured in your project using Project
Properties or by setting a particular launch configuration from the Options menu.

This shell runs a separate Python process that is independent of the IDE and
functions without regard to the state of any running debug process. In Wing

Interactive Python Shell

76

http://wingware.com/doc/edit/transient
http://wingware.com/doc/proj/project-wide-properties
http://wingware.com/doc/proj/project-wide-properties

Professional, the Debug Probe can be used to interact in a similar way with your
debug process. For details see Interactive Debug Probe.

Convenient ways to run parts of your source code in the shell include:

Copy/Paste part of a file -- Wing will automatically adjust leading indentation so
the code can be executed in the shell.

Drag and Drop part of a file -- This works like Copy/Paste.

Evaluate File in Python Shell -- This command in the Source menu will evaluate
the top level of the current file in the shell.

Evaluate Selection in Python Shell -- The command in the Source menu and
editor's context menu (right-click) will evaluate the current selection in the shell.

Set an Active Range -- This is done with the icons in the top right of the Python
Shell. By selecting a range in an editor and pressing the active range icon, Wing
locks that range of code into the shell so it's easily re-executed after being edited.

The Options menu in the Python Shell tool -- This contains items for evaluating
the current file or selection

In the Python Shell, the Up and Down arrow keys will traverse the history of the
code you have entered and the return key will either execute the code if it is
complete or prompt for another line if it is not. Ctrl-Up and Ctrl-Down will move the
cursor up and down and Ctrl-Return will insert a new line character at the cursor
position.

To restart the Python Shell, select Restart Shell from the Options menu in the top
right of the tool. This will terminate the external Python process and restart it,
clearing and resetting the state of the shell.

To save the contents of the shell, use Save a Copy in the Options menu or
right-click context menu. The right-click context menu also provides items for
copying and pasting text in the shell.

To preload some code into the Python Shell when it is started, you can set the
PYTHONSTARTUP environment variable, as supported by the Python Shell
outside of Wing IDE.

9.1. Python Shell Auto-completion
Wing's Python Shell includes auto-completion, which can be a powerful tool for
quickly finding and investigating functionality at runtime, for the purposes of code
learning, or in the process of crafting new code. The Python Shell's completer is
fueled by introspection of the runtime environment.

The Source Assistant will display details for the currently selected item in the
auto-completer within the Python Shell. This provides quick access to the
documentation and call signature of functions and methods that are being invoked.

Interactive Python Shell

77

http://wingware.com/doc/debug/interactive-debug-probe
http://wingware.com/doc/edit/source-assistant

Goto-definition will also work in the Python Shell, using a combination of live
runtime state and static analysis to attempt to find the definition of the symbol or its
type.

9.2. Python Shell Options
The Options menu in the Python Shell contains some settings that control how the
Python Shell works:

• Wrap Lines causes the shell to wrap long output lines in the display
• Pretty Print causes Wing to use Python's pprint module to format output
• Enable Auto-completion controls whether Wing will show the auto-completer

in the Python Shell
• Filter history by entered prefix controls whether the history will be filtered by

the string between the prompt an the cursor. If history is filtered and a is
entered at the prompt, the up arrow will find the most recent history item
starting with a

• Evaluate Whole Lines causes Wing to round up the selection to the nearest
line when evaluating selections, making it easier to select the desired range

• Auto-restart when Evaluate File causes Wing to automatically restart the
shell before evaluating a file, so that each evaluation is made within a clean
new environment.

• Prompt to Confirm Restart controls whether Wing will prompt before
restarting the Python Shell

• Launch Configuration allows selecting a defined launch configuration to use
as the runtime environment for the Python Shell

• Prompt on Stale Environment controls whether Wing will display a dialog
indicating that the Python Shell is no longer using a Python environment that
matches the configured environment

OS Commands Tool
Wing IDE Professional includes an OS Commands tool that can be used to
execute and interact with external commands provided by the OS or by other
software, and to execute files outside of the debugger.

This is used for the Execute items in the Debug menu and Project context menu
and to run any build command configured in Project Properties or Launch
Configurations. It can also be used for other purposes such as integrating external
commands into Wing, starting code that is debugged using wingdbstub, and so
forth.

Adding and Editing Commands

Whenever a file is executed outside of the debugger, or when a build command is
configured, these are added automatically to the OS Commands tool.

OS Commands Tool

78

http://wingware.com/doc/proj/project-wide-properties
http://wingware.com/doc/proj/launch-configs
http://wingware.com/doc/proj/launch-configs

Additional items can be added with the Options menu's New commands, and any
existing items can be edited or removed with the Edit and Remove items here. For
details, see OS Command Properties.

Executing Commands

The Options menu also includes items for starting, terminating, or restarting a
command, clearing the execution console, and selecting whether consoles should
auto-clear each time the process is started or restarted.

For Python files, it is also possible to specify that the Python interpreter should be
left active and at a prompt after the file is executed. This is done with the
Python Prompt after Execution item in the Options menu.

The area below the popup menu at the top of the OS Commands tool is the
console where commands are executed, where output is shown and where input
can be entered for sending to the sub-process. Use the popup menu to switch
between multiple running processes, or add multiple instances of the OS
Commands tool to view them concurrently. The console provides a context menu
(right click) for controlling the process, copy/pasting, and clearing or saving a copy
of the output to a file.

Toolbox

The OS Commands Toolbox is hidden by default but can be shown with the Show
Toolbox item in the Options menu. This contains the same items in the popup
menu at the top of the OS Commands tool, but can be convenient for editing or
removing multiple items, or quickly executing a series of commands. Right click on
the list for available actions, or middle click or double click on the list to execute
items.

Using Bash

To set up a bash shell running inside Wing IDE, add an OS Command with
executable set to bash -norc and enable the Use pseudo-TTY and Line mode
options. This is a fairly limited integration in that the tab key, color, and cursor
movement are not supported.

10.1. OS Command Properties
Items added to the OS Commands tool can be configured to run within a particular
environment using the dialog shown when the item is added from the OS
Commands tool or by selecting an item and using the Edit item in the Options
menu.

There are three types of OS Commands: (1) Command Lines, which are executed
in the environment configured in the OS Command itself (2) Python files, which
are executed in the environment configured in their File Properties, and (3) Named

OS Commands Tool

79

http://wingware.com/doc/oscommands/properties
http://wingware.com/doc/proj/per-file-properties

Entry Points, which are executed in the environment configured by the selected
Named Entry Point.

Shared Properties

All OS Command types share the following configurable properties:

Title -- This is the user-assigned title to use for the command. If not set, the
command line or file name is shown instead.

I/O Encoding -- This is the encoding to use for text sent to and received from the
sub-process.

Key Binding -- This field can be used to assign a key binding to the command.
Press the keys desired while focus is in the field. Multi-key sequences may be
used if pressed within a few seconds of each other. To replace an incorrect value,
wait briefly before retrying your binding. To reset the value to blank (no key
binding), select all text and press Backspace or Delete.

Raise OS Commands when executed -- This option causes the OS Commands
tool to be shown whenever this command is executed. When disabled, the tool will
not be brought to front.

Auto-save files before execution -- Enable this to automatically save any unsaved
changes in open files before the command is executed.

Use pseudo TTY -- This option is only available on Linux and OS X. When set,
Wing runs the subprocess in a pseudo tty and tries to (minimally) emulate how the
command would work in a shell. Many of the ANSI escape sequences are not
supported, but the basics should work. For some commands, adding options can
help it to work better in the OS Commands tool. For example, bash -norc works
better than bash if you have bash using colors, and ipython -colors NoColor
works better than ipython alone.

Line mode -- This option is only available on Linux and OS X (on Windows, all I/O
will be done line by line). When it is unchecked, Wing will enter raw mode and send
every keystroke to the subprocess, rather than collecting input line by line. Often,
but not always, when a pseudo TTY is being used then line mode should be
disabled. Some experimentation may be required to determine the best settings.

Additional Properties for Command Lines

In command lines, use $(ENV) or ${ENV} to insert values from the environment or
from the special variables enumerated in Environment Variable Expansion. These
values will be empty if undefined.

Note that the commands are executed on their own and not in a shell, so any
commands that are built into the shell cannot be used here. For example, on
Windows dir and some others are built-in commands so cannot be used directly;
however, the form cmd /c dir will work in this case. On Linux, invoking bash
directly may be necessary in similar cases.

OS Commands Tool

80

http://wingware.com/doc/debug/named-entry-points
http://wingware.com/doc/proj/variable-expansion

The Environment tab provided for command lines allows specifying the Initial
Directory, Python Path, and Environment, which act the same as the
corresponding values configurable in Project Properties.

Test Execute

While editing command properties, the Test Execute button can be used to try
executing with the current settings. A temporary entry is added to the OS
Commands tool, and removed again after the command properties dialog is
closed.

Unit Testing
The Wing IDE Testing tool provides a convenient way to run and debug unit tests
written using the standard library's unittest module, doctest, pytest, nose, and the
Django testing framework.

Overview

To add tests, use the Testing menu items. Tests can be added individually with
Add Single File and Add Current File or can be added by applying a filter to the
set of all files in the project, using Add Files from Project. For details on adding
from the project, see Project Test Files.

The testing framework used by files is set through the Default Test Framework
field on the Testing page of Project properties or the Test Framework field on the
Testing page of File properties for individual test files.

To run tests, press the Run Tests button, or use one of the items in the Testing
menu. For details, see Running Tests.

While tests are running, a jogging man icon is shown next to the test(s) in the
Testing tool's list.

After the tests have finished running, the status indicator for the test will turn into a
green check or red warning sign, depending on whether the test failed or
succeeded. Status indicators for each file will also be set to red or green
depending on whether any test failed or not. Individual test nodes may be
expanded to show any output generated by the test or any exception that occurred.
Exceptions may be expanded to display tracebacks.

Navigating

Double-clicking on any node or using the Goto Source option on the right-click
popup menu in the testing tool's tree will display source code in the editor, if the
source is available

Note that the File Filter field in the Testing tool can be used to subset the list of
tests displayed in the tool. Restore it to blank or use the Clear item in its popup

Unit Testing

81

http://wingware.com/doc/proj/project-wide-properties
http://wingware.com/doc/testing/proj
http://wingware.com/doc/proj/project-wide-properties
http://wingware.com/doc/proj/per-file-properties
http://wingware.com/doc/testing/running

menu to see the entire lists of tests. This is a convenient way to find and focus on
only those tests being worked on.

11.1. Project Test Files
A subset of a project's files can automatically be included in the list of test files in
the Testing tool. The set of files is specified by the Test file patterns field on the
Testing tab of the Project Properties dialog (which can also be accessed using the
Add Files from Project menu item.

Any file matching the glob style wildcard pattern specified here is considered a test
file. For details, see Wildcard Search Syntax. If the field is left empty then no
project files will automatically be added.

Automatically added files may not be removed from the project tool's list except by
altering the set of wild cards in the Test file patterns project attribute.

11.2. Running Tests
Tests can be run and debugged from Wing in a variety of ways. The options are:

• Run all tests in the testing tool. This is done with the Run All Tests item in the
Testing menu or by selecting no tests (or all tests) in the list and pressing the
Run Tests button.

• Run only the tests in current file open in the source editor. This is done with
the Run Tests in Current File item in the Testing menu.

• Run a subset of test(s) by location of the cursor or selection in the source
editor. This is done with the Run Tests at Cursor item in the Testing menu.

• Run tests that failed the last time tests were run. This is done with the
Run Failed Tests item in the Testing menu.

• Run all tests that were run the last time tests were run. This is done with the
Run Tests Again item in the Testing menu.

Test files and/or individual tests may also be selected in the Testing tool and run
with the Run Tests button or using the items in the context menu (right click) on
the Testing tool.

For each of these run options, there is an equivalent debug option that will run the
tests in the debugger. These are in the Debug group of the Testing menu.

To stop running tests, use the Abort Running Tests item in the Testing menu or
the Abort Tests item on the Testing tool.

To clear the previous test results from the Testing tool, use the Clear Results item
in the right-click context menu.

Unit Testing

82

http://wingware.com/doc/edit/search-wildcard

11.3. Running unittest Tests From the Command Line
Wing's unittest test runner can be run from the command line and store results in
an XML file that can be loaded into Wing via the Load Test Results item in the
Testing menu. The test runner script is src/testing/runners/run_unittest_xml.py
within the install directory listed in Wing's About box. It should be run with the
Python interpreter that should be used for the selected tests as follows:

/path/to/python /path/to/src/testing/runners/run_unittests_xml.py [options] -q testModule.className.testName

Where [options] is replaced with any of the command line options listed below and
the test specification is the test specification used when running with the standard
library's unittest module. The test specification above consists of testModule is
the module name (without .py), className is the test class name, and testName
is the name of the test to run. To run all tests in a class, omit the testName. To run
all tests in a module, omit also the className.

Available command line options are:

• --directory=<dirname>: Run in the given directory. Otherwise runs in the
current directory inherited from the command line.

• --output-file=<filename>: Write results to the selected file. Results are written
to stdout if this option is not given.

• --append-to-file: Append results to the file selected with the --output-file=
option.

• --one-module-per-process: Run each module in a separate process space to
avoid unintended interactions between the tests. Tests are still run sequentially
and not concurrently.

• --pattern=<glob filename pattern>: Run tests in each filename matching the
given glob pattern. This option may be repeated multiple times with different
glob patterns. It also turns on the --one-process-per-module option.

Note: Only the unittest test runner supports running from the command line. The
other test runners cannot be used this way.

Debugger
Wing's debugger provides a powerful toolset for rapidly locating and fixing bugs in
single-threaded or multi-threaded Python code. It supports breakpoints, stepping
through code, inspecting and changing stack or module data, watch points,
expression evaluation, and command shell style interaction with the paused debug
process.

The debugger is built around a TCP/IP client/server design that supports launching
your application not just from Wing itself but also externally, as with CGI scripts or

Debugger

83

code running in an embedded scripting facility within a larger application. Remote
(host to host) debugging is also provided.

Because the debugger core is written in optimized C, debug overhead is relatively
low; however, you should expect your programs to run about 50% slower within the
debugger.

12.1. Quick Start
Wing IDE can be used to debug all sorts of Python code, including scripts and
stand-alone applications written with wxPython, Tkinter, PyQt, PyGTK, and
pygame. Wing can also debug web CGIs including those running under
mod_python, code running under frameworks like Zope, Plone, Turbogears,
Django, Paste/Pylons, mod_wsgi, and Twisted, and code running in an embedded
Python interpreter in the context of a larger application such as Blender, Maya,
Nuke, and Source Filmmaker.

This section describes how to debug stand-alone scripts and applications that can
be launched from within Wing IDE. If you wish to debug code running within a web
server or other environment you cannot launch from Wing IDE, please refer to
Debugging Externally Launched Code and, for remote host-to-host debugging, see
Remote Debugging.

Before debugging, you will need to install Python on your system if you have not
already done so. Python is available from www.python.org.

To debug Python code with Wing, open up the Python file and select
Start / Continue from the Debug menu. This will run to the first breakpoint,
unhandled exception, or until the debug program completes. Select Step Into
instead to run to the first line of code.

Use the Debug I/O tool to view your program's output, or to enter values for input
to the program. If your program depends on characteristics of the Windows
Console or a particular Linux/Unix shell, see External I/O Consoles for more
information.

In some cases, you may also need to enter a PYTHONPATH and other
environment values using the Project Properties dialog available from the Project
menu. This can also be used to specify which Python executable should be used
to run with your debug process. Use this if Wing IDE cannot find Python on your
system or if you have more than one version of Python installed.

To set breakpoints, just click on the leftmost part of the margin next to the source
code. In Wing IDE Professional, conditional and ignore-counted breakpoints are
also available from the Breakpoint Options group in the Debug menu, or by
right-clicking on the breakpoints margin.

Debugger

84

http://wingware.com/doc/howtos/wxpython
http://wingware.com/doc/howtos/pyqt
http://wingware.com/doc/howtos/pygtk
http://wingware.com/doc/howtos/pygame
http://wingware.com/doc/howtos/debugging-web-cgis
http://wingware.com/doc/howtos/mod_python
http://wingware.com/doc/howtos/zope
http://wingware.com/doc/howtos/plone
http://wingware.com/doc/howtos/turbogears
http://wingware.com/doc/howtos/django
http://wingware.com/doc/howtos/paste-pylons
http://wingware.com/doc/howtos/mod_wsgi
http://wingware.com/doc/howtos/twisted
http://wingware.com/doc/howtos/blender
http://wingware.com/doc/howtos/maya
http://wingware.com/doc/howtos/nuke
http://wingware.com/doc/howtos/sfm
http://wingware.com/doc/debug/debugging-externally-launched-code
http://wingware.com/doc/debug/remote-debugging
http://www.python.org/
http://wingware.com/doc/debug/external-i-o-consoles

12.2. Specifying Main Entry Point
Normally, Wing will start debugging in whatever file you have active in the
frontmost editor. Depending on the nature of your project, you may wish to specify
a file or a named entry point as the default debug entry point. This is done with
Set Current As Main Debug File in the Debug menu, by right clicking on a file in
the Project tool and selecting Set As Main Debug File, or by setting
Main Entry Point in Project Properties.

When a main debug entry point is specified, it is used whenever you start the
debugger, except when using Debug Current File in the Debug menu, or when
right-clicking on an entry in the project manager and choosing the Debug Selected
context menu item.

Note that the path to the main debug file is highlighted in red in the project window.

The main entry point defined for a project is also used by the source code analysis
engine to determine the python interpreter version and Python path to use for
analysis. Thus, changing this value will cause all source files in your project to be
reanalyzed from scratch. See section Source Code Analysis for details.

12.2.1. Named Entry Points

Named entry points can be used to define additional debug/execute entry points
into Python code. These are accessed with the Named Entry Points... item in the
Debug menu, and can be debugged or executed from the
Debug Named Entry Point and Execute Named Entry Point sub-menus.

The named entry point manager is used to create, edit, duplicate, and delete
named entry points. The manager's list is initially blank. Right click on the list to
create, edit, duplicate, or delete a named entry point. To rename an entry point,
click on its name and type the new name.

Each named entry point may be assigned a key binding to debug it and another
key binding to execute it. This is also done by right clicking in the named entry
point manager.

Each named entry point defines the following fields:

Python File -- The file to launch.

Environment -- The environment to use when launching the file. This can either be
the project-defined environment from Project Properties with a specified command
line, or it can be a selected launch configuration.

Show this dialog before each run -- Select this to show the named entry point
properties dialog before debugging or executing it. This is off by default.

Debugger

85

http://wingware.com/doc/debug/named-entry-points
http://wingware.com/doc/edit/source-code-analysis
http://wingware.com/doc/proj/project-wide-properties
http://wingware.com/doc/proj/launch-configs

12.3. Debug Properties
In some cases, you may need to set project and per-file properties from the Project
manager before you can debug your code. This is done to specify Python
interpreter, PYTHONPATH, environment variables, command line arguments, start
directory, and other values associated with the debug process. For details, see
Project-Wide Properties and Per-file Properties.

12.4. Setting Breakpoints
Breakpoints can be set on source code by opening the source file and clicking on
the breakpoint margin to the left of a line of source code. Right-clicking on the
breakpoint margin will display a context menu with additional breakpoint operations
and options. In Wing IDE Professional, the Breakpoints tool in the Tools menu
can be used to view, modify, or remove defined breakpoints. Alternatively, the
Debug menu or the toolbar's breakpoint icons can be used to set or clear
breakpoints at the current line of source (where the insertion cursor or selection is
located).

Breakpoint Types

In Wing IDE Professional, the following types of breakpoints are available:

• Regular -- A regular breakpoint will always cause the debugger to stop on a
given line of code, whenever that code is reached.

• Conditional -- A conditional breakpoint contains an expression that is
evaluated each time the breakpoint is reached. The debugger will stop only if
the conditional evaluates to True (any non-zero, non-empty, non-None value,
as defined by Python). You may edit the condition of any existing breakpoint
with the Edit Breakpoint Condition... item in the Breakpoint Options group
of the Debug menu, by right clicking on the breakpoint, or in the Breakpoints
tool.

• Temporary -- A temporary breakpoint will be removed automatically after the
first time it is encountered. No record of the breakpoint is retained for future
debug runs.

Breakpoint Attributes

Once breakpoints have been defined, you can operate on them in a number of
ways to alter their behavior. These operations are available as menu items in the
Debug menu, in the breakpoint margin's context menu, and from the Breakpoints
tool:

• Ignore Count -- It is possible to set an ignore count for a breakpoint. In this
case, the breakpoint will be ignored the given number of times, and the
debugger will only stop at the breakpoint if it is encountered more than the set

Debugger

86

http://wingware.com/doc/proj/project-wide-properties
http://wingware.com/doc/proj/per-file-properties

number of times. The ignore count is reset to its original value with each new
debug run. Use the Breakpoint tool to monitor the remaining number of times
a breakpoint will be ignored.

• Disable/Enable -- Breakpoints can be temporarily disabled and subsequently
re-enabled. Any disabled breakpoint will be ignored until re-enabled.

Breakpoints Tool

The Breakpoints tool, available in the Tools menu displays a list of all currently
defined breakpoints. The following columns of data are provided:

• Enabled -- Checked if the breakpoint is enabled. The checkbox can be used
to alter the breakpoint's state.

• Location -- The file and line number where the breakpoint is located
• Condition -- The conditional that must be true for the breakpoint to cause the

debug process to stop (or blank if the breakpoint is not conditional). This value
can be changed by clicking on it and editing it directly on the list.

• Temporary -- Checked if the breakpoint is a temporary (one-time) breakpoint.
The checkbox can be used to alter the breakpoint's type.

• Ignores -- The number of times the breakpoint should be ignored before it
causes the debugger to stop. This value can be changed by clicking on it and
editing it directly on the list.

• Ignores Left -- The number of ignores left for a breakpoint, if a debug process
exists.

• Hits -- The number of times the breakpoint has been reached in the current
debug run (if any).

To visit the file and line number where a breakpoint is located, double click on it in
the list or select Show Breakpoint from the context menu obtained by
right-clicking on the surface of the Breakpoints tool. Additional options are also
available from this context menu.

Keyboard Modifiers for Breakpoint Margin

Clicking on the breakpoint margin will toggle to insert a regular breakpoint or
remove an existing breakpoint. You can also shift-click to insert a conditional
breakpoint, and control-click to insert a breakpoint and set an ignore count for it.

When a breakpoint is already found on the line, shift-click will disable or enable it,
control-click will set its ignore count, and shift-control-click will set or edit the
breakpoint conditional.

12.5. Starting Debug
There are several ways in which to start a debug session from within Wing:

Debugger

87

• Choose Start / Continue from the Debug menu or push the Debug icon in the
toolbar. This will run the main debug file if one has been defined (described in
Setting a Main Debug File), or otherwise the file open in the frontmost editor
window. Execution stops at the first breakpoint or exception, or upon program
completion.

• Choose Step Into from the Debug menu or push the Step Into icon in the
toolbar. This will run the main debug file if one has been defined, or otherwise
the file open in the frontmost editor window. Execution stops at the first line of
code.

• Choose Debug Current File from the Debug menu or Debug Selected from
the right-click popup menu on the Project tool to run a specific file regardless
of whether a main debug file has been specified for your project. This will stop
on the first breakpoint or exception, or upon program completion.

• Choose Run to Cursor from the Debug menu or toolbar. This will run the
main debug file if one has been defined or otherwise the file open in the
frontmost editor window. Execution continues until it reaches the line selected
in the current source text window, until a breakpoint or exception is
encountered, or until program completion.

• Use Debug Recent in the Debug menu to select a recently debugged file.
This will stop on the first breakpoint or exception, or upon program completion.

• Create and launch a Named Entry Point from the Debug menu.
• Use one of the key bindings given in the Debug menu.

Additional options exist for initiating a debug session from outside of Wing and for
attaching to an already-running process. These are described in sections
Debugging Externally Launched Code and Attaching, respectively.

Once a debug process has been started, the status indicator in the lower left of the
window should change from white or grey to another color, as described in
Debugger Status.

Note

Non-Standard Python Interpreters

If you are attempting to run your debug process against a non-standard
version of Python, for example one that has been compiled with altered
values for Py_TRACE_REFS or WITH_CYCLE_GC, or that has been
altered in other ways, you may need to recompile the debugger core module.
This is only possible with Wing IDE Professional, as it requires access to the
source code. Please contact us for details.

Debugger

88

http://wingware.com/doc/debug/specifying-main-entry-point
http://wingware.com/doc/debug/debugging-externally-launched-code
http://wingware.com/doc/debug/attaching
http://wingware.com/doc/debug/status
mailto:support@wingware.com

12.6. Debugger Status
The debugger status indicator in the lower left of editor Windows is used to display
the state of the debugger. Mousing over the bug icon shows expanded debugger
status information in a tool tip. The color of the bug icon summarizes the status of
the debug process, as follows:

• White -- There is no debug process, but Wing is listening for a connection
from an externally launched process.

• Gray -- There is no debug process and Wing is not allowing any external
process to attach.

• Green -- The debug process is running.
• Yellow -- The debug process is paused or stopped at a breakpoint.
• Red -- The debug process is stopped at an exception.

The current debugger status is also appended to the Debugger status group in the
IDE's Messages tool.

12.7. Flow Control
Once the debugger is running, the following commands are available for controlling
further execution of the debug program from Wing. These are accessible from the
tool bar and the Debug menu:

• At any time, a freely running debug program can be paused with the Pause
item in the Debug menu or with the pause tool bar button. This will stop at the
current point of execution of the debug program.

• At any time during a debug session, the Stop Debugging menu item or
toolbar item can be used to force termination of the debug program. This
option is disabled by default if the current process was launched outside of
Wing. It may be enabled for all local processes by using the
Kill Externally Launched preference.

When stopped on a given line of code, execution can be controlled as follows from
the Debug menu:

Step Over Instruction will step over a single instruction in Python. This may not
leave the current line if it contains something like a list comprehension or
single-line for loop.

Step Over Statement will step over the current statement, even if if spans more
than one line or contains a looping construct like a list comprehension.

Step Over Block will step over or finish the current block of code, such as a for
loop, conditional, function, or method.

Debugger

89

Step Into will attempt to step into the next executed function on the current line of
code. If there is no function or method to step into, this command acts like Step
Over Instruction.

Step Out will complete execution of the current function or method and stop on the
first instruction encountered after returning from the current function or method.

Continue will continue execution until the next breakpoint, exception, or program
termination

Run To Cursor will run to the location of the cursor in the frontmost editor, or to
the next breakpoint, exception, or program termination.

You can you also step through code using the toolbar icons. The step icon in the
toolbar implements Step Over Statement.

Move Program Counter Here in the editor context menu (right-click) can be used
to move the current position within the innermost stack frame in the debug process
to any other valid position within the same scope. Stepping or execution will then
continue with the selected line.

Attach and Detach (only in Wing IDE Professional) may be used to change the
debugger between different debug processes. This is for advanced users and is
detailed in Attaching and Detaching.

12.8. Viewing the Stack
Whenever the debug program is paused at a breakpoint or during manual
stepping, the current stack is displayed in the Call Stack tool. This shows all
program stack frames encountered between invocation of the program and the
current run position. Outermost stack frames are higher up on the list.

When the debugger steps or stops at a breakpoint or exception, it selects the
innermost stack frame by default. In order to visit other stack frames further up or
down the stack, select them in the Call Stack tool. You may also change stack
frames using the Up Stack and Down Stack items in the Debug menu, the
up/down tool bar icons, the stack selector popup menus the other debugging tools.

When you change stack frames, all the tools in Wing that reference the current
stack frame will be updated, and the current line of code at that stack frame is
presented in an editor window.

In Wing IDE Professional, the current stack frame is also used to control evaluation
context in the Debug Probe and Watch tools.

To change the type of stack display, right-click on the Call Stack tool and select
from the options for the display and positioning of the code line excerpted from the
debug process.

Debugger

90

http://wingware.com/doc/debug/attaching-and-detaching

When an exception has occurred, a backtrace is also captured by the Exceptions
notification tool, where it can be accessed even after the debug process has
exited.

12.9. Viewing Debug Data
The Wing IDE debugger provides several ways in which to look at your debug
program's data:

1. By inspecting locals and globals using the Stack Data tool. This area displays
values for the currently selected stack frame.

2. By browsing values in all loaded modules (as determined by sys.modules),
using the Modules tool.

3. By watching specific values from either of the above views (right click on
values to add them to the Watch tool)

4. By typing expressions in the Watch tool.

Note

Values Fetched on Demand

The variable data displayed by Wing is fetched from the debug server on the
fly as you navigate. Because of this, you may experience a brief delay when
a change in an expansion or stack frame results in a large data transfer.

For the same reason, leaving large amounts of debug data visible on screen
may slow down stepping through code.

12.9.1. Stack Data View

The Stack Data debugger tool contains a popup menu for selecting thread (in
multi-threaded processes) and accessing the current debug stack, a tree view area
for browsing variable data in locals and globals, and a textual view area for
inspecting large data values that are truncated on the tree display.

Simple values, such as strings and numbers, and values with a short string
representation, will be displayed in the value column of the tree view area.

Strings are always contained in "" (double quotes). Any value outside of quotes is
a number or internally defined constant such as None or Ellipsis.

Integers can be displayed as decimal, hexadecimal, or octal, as controlled by the
Integer Display Mode preference.

Debugger

91

Complex values, such as instances, lists, and dictionaries, will be presented with
an angle-bracketed type and memory address (for example, <dict 0x80ce388>)
and can be expanded by clicking on the expansion indicator in the Variable
column. The memory address uniquely identifies the construct. If you see the same
address in two places, you are looking at two object references to the same
instance.

If a complex value is short enough to be displayed in its entirety, the
angle-bracketed form is replaced with its value, for example {'a': 'b'} for a small
dictionary. These short complex values can still be expanded in the normal way.

Upon expansion of complex data, the position or name of each sub-entry will be
displayed in the Variable column, and the value of each entry (possibly also
complex values) will be displayed in the Value column. Nested complex values can
be expanded indefinitely, even if this results in the traversal of cycles of object
references.

Once you expand an entry, the debugger will continue to present that entry
expanded, even after you step further or restart the debug session. Expansion
state is saved for the duration of your Wing IDE session.

When the debugger encounters a long string, it will be truncated in the Value
column. In this case, the full value of the string can be viewed in the textual display
area at the bottom of the Stack Data tool, which is accessed by right-clicking on a
value and selecting Show Detail. The contents of the detail area is updated when
other items in the Stack Data tool are selected.

Note

Opaque Data

Some data types, such as those defined only within C/C++ code, or those
containing certain Python language internals, cannot be transferred over the
network. These are denoted with Value entries in the form
<opaque 0x80ce784> and cannot be expanded further. In Wing IDE
Professional you may be able to use the Debug Probe to access them (for
example try typing dir(value)).

12.9.1.1. Popup Menu Options

Right-clicking on the surface of the Stack Data view displays a popup menu with
options for navigating data structures:

Debugger

92

http://wingware.com/doc/debug/interactive-debug-probe

• Show/Hide Detail -- Used to quickly show and hide the split where Wing
shows expanded copies of values that are truncated on the main debug data
view (click on items to show their expanded form).

• Expand More -- When a complex data value is selected, this menu item will
expand one additional level in the complex value. Since this expands a
potentially large number of values, you may experience a delay before the
operation completes.

• Collapse More -- When a complex data value is selected, this menu item will
collapse its display by one additional level.

• Watch by ... -- These items can be used to watch a debug data value over
time, as described in Watching Values.

• Force Reload -- This forces Wing IDE to reload the displayed value from the
debug process. This is useful in cases where Wing is showing an evaluation
error or when the debug program contains instances that implement __repr__
or similar special methods in a way that causes the value to change when
subjected to repeated evaluation.

12.9.1.2. Filtering Value Display

There are a number of ways in which the variable displays can be configured:

• Wing lets you prune the variable display area by omitting all values by type,
and variables or dictionary keys by name. This is done by setting the two
preferences, Omit Types and Omit Names.

• You can also tell Wing to avoid probing certain values by data type. This is
useful to avoid attempting expansion of data values defined in buggy
extension modules, which can lead to crashing of the debug process as the
debugger invokes code that isn't normally executed. This preference is also
respected during introspection of the runtime state for auto-completion and
other features in the IDE. To add values to avoid, set preference
Do Not Expand.

• Wing provides control over size thresholds above which values are considered
too large to move from the debug process into the variable display area.
Values found to be too large are annotated as huge in the variable display
area and cannot be expanded further. The data size thresholds are controlled
with preferences Huge List Threshold and Huge String Threshold.

• By default Wing will display small items on a single line in the variable display
areas, even if they are complex types like lists and maps. The size threshold
used for this is controlled with preference Line Threshold. If you want all
values to be shown uniformly, this preference should be set to 0.

Debugger

93

http://wingware.com/doc/debug/tracking-values

12.9.2. Watching Values

Wing can watch debug data values using a variety of techniques for tracking the
value over time. In most cases, watching a value is initiated by right-clicking a
value within a Stack Data view and selecting one of the Watch menu items. The
value is then added to the list in the Watch tool and tracked by one of the following
methods:

• By Symbolic Path - The debugger looks at the symbolic path from locals() or
globals() for the currently selected stack frame, and tries to re-evaluate that
path whenever the value may have changed. For example, if you define a
dictionary variable called testdict in a function and set a value
testdict[1] = 'test', the watched value for testdict[1] would show any value for
that slot of testdict, even if you delete testdict and recreate it. In other words,
value tracking is independent of the life of any object instances in the data
path.

• By Direct Object Reference - The debugger uses the object reference to the
selected value to track it. If you use this mode with testdict as a whole, it
would track the contents of that dictionary as long as it exists. If you were to
reassign the variable testdict to another value, your zoomed out display would
still show the contents of the original dictionary instance (if it still exists), rather
than the new value of the variable testdict. In other words, the symbolic path
to the value is completely disregarded and only instance identity is used to
track the value. Because it's meaningless to track immutable types this way,
this option is disabled or enabled according to the values you select to zoom
out into a separate window.

• By Parent Reference and Slot - The debugger uses the object reference to
the parent of the selected data slot and uses a symbolic representation of the
slot within the parent in order to determine where to look for any value
updates. This means that reassignment of the variable that points to the parent
does not alter what is displayed in the zoomed-out view; only reassignment of
the selected slot changes what is displayed by the debugger.

• By Module Slot - This is only available for values within a module, such as
string, sys.path, or os.environ. The debugger uses the module name to look
up the module in sys.modules and references the value by symbolic path.
Any change in the value, even across module reloads, is reflected in the
Watch view.

For any of these, if the value cannot be evaluated because it does not exist, the
debugger displays <undefined>. This happens when the last object reference to a
reference-tracked value is discarded, or if a selected symbolic path is undefined or
cannot be evaluated.

The Watch tool will remember watch points across debug sessions, except those
that make use of an object reference, which do not survive the debug process.

Debugger

94

12.9.3. Evaluating Expressions

The debugger Watch tool can also be used to view the value of keyboard-entered
expressions. These may be entered by clicking on any cell in the Watch manager's
display tree and editing or entering the desired expression in the Variable column.
Press enter to complete the editing session.

Only expressions that evaluate to a value may be entered. Other statements, like
variable assignments, import statements, and language constructs are rejected
with an error. These may only be executed using the Debug Probe.

Expressions are evaluated in the context of the current debug stack frame, so this
feature is available only when the debug program has been paused or has stopped
at a breakpoint or exception. This also means that the value of the same typed
expression may change as you move up and down the call stack in the main
debugger window.

In cases where evaluating an expression results in changing the value of local or
global variables, your debug program will continue in that changed context.
Whenever a value is changed as a result of expression evaluation, the updated
value will be propagated into any visible debugger variable display areas because
Wing IDE refetches all displayed data values after the evaluation of each
expression. However, since you may not notice these changes, caution is required
to avoid undesired side-effects in the debug process.

Note that breakpoints are never reached as a result of expression evaluation, and
any exceptions encountered are not reported. If you need to debug an expression,
use the Debug Probe where exceptions will be reported.

12.9.4. Problems Handling Values

The Wing debugger tries to handle debug data as gently as possible to avoid
entering into lengthy computations or triggering errors in the debug process while it
is packaging debug data for transfer. Even so, not all debug data can be shown on
the display. This section describes each of the reasons why this may happen:

Wing may time out handling a value -- Large data values may hang up the
debug server process during packaging. Wing tries to avoid this by carefully
probing an object's size before packing it up. In some cases, this does not work
and Wing will wait for the data for the duration set by the Network Timeout
preference and then will display the variable value as
<network timeout during evaluate>.

Wing may encounter values too large to handle -- Wing will not package and
transfer large sequences, arrays or strings that exceed the size limits set by
Huge List Threshold and Huge String Threshold preferences. On the debugger
display, oversized sequences and arrays are annotated as huge and <truncated>
is prepended to large truncated strings.

Debugger

95

http://wingware.com/doc/debug/interactive-debug-probe
http://wingware.com/doc/debug/interactive-debug-probe

To avoid this, increase the value of the threshold preferences, but be prepared for
longer data transfer times. Note that setting these values too high will cause the
debugger to time out if the Network Timeout value isn't also increased.

An alternative available in Wing IDE Professional for viewing large data values is to
enter expressions into the Watch tool or Debug Probe to view sub-parts of the data
rather than tranferring the whole top-level portion of the value.

Wing may encounter errors during data handling -- Because Wing makes
assignments and comparisons during packaging of debug data, and because it
converts debug data into string form, it may execute special methods such as
__cmp__ and __str__ in your code. If this code has bugs in it, the debugger may
reveal those bugs at times when you would otherwise not see them.

The rare worst case scenario is crashing of the debug process if flawed C or C++
extension module code is invoked. In this case, the debug session is ended.

More common, but still rare, are cases where Wing encounters an unexpected
Python exception while handling a debug data value. When this happens, Wing
displays the value as <error handling value>.

These errors are not reported as normal program errors in the Exceptions tool.
However, extra output that may contain the exception being raised can be obtained
by setting the Debug Internals Log File preference.

Stored Value Errors

Wing remembers errors it encounters on debug values and stores these in the
project file. These values will not be refetched during subsequent debugging, even
if Wing is quit and restarted.

To override this behavior for an individual value, use the Force Reload item in the
right-click context menu on a data value.

To clear the list of all errors previously encountered so that all values are reloaded,
use the Clear Stored Value Errors item in the Debug menu. This operates only
on the list of errors known for the current debug file, if a debug session is active, or
for the main debug file, if any, when no debug process is running.

12.10. Debug Process I/O
While running under the Wing debugger, any output from print or any writes to
stdout or stderr will be seen in the Debug I/O tool. This is also where you enter
keyboard input, if your debug program requests any with input() or raw_input() or
by reading from stdin.

The code that services debug process I/O does two things: (1) any waits on
sys.stdin are multiplexed with servicing of the debug network socket, so that the
debug process remains responsive to Wing IDE while waiting for keyboard input,
and (2) in some cases, I/O is redirected to another window.

Debugger

96

http://wingware.com/doc/debug/evaluating-expressions
http://wingware.com/doc/debug/interactive-debug-probe

For a debug process launched from within Wing, keyboard I/O always occurs either
in the Debug I/O tool or in a new external console that is created before the debug
process is started. This can be controlled as described in External I/O Consoles.
Using an external console is recommended when printing very large amounts of
output from a debug process.

Debug processes launched outside of Wing, using wingdbstub, always do their
keyboard I/O through the environment from which they were launched (whether
that's a console window, web server, or any other I/O environment).

When commands are typed in the Debug Probe, I/O is redirected temporarily to the
Debug Probe only during the time that the command is being processed.

12.10.1. External I/O Consoles

In cases where the debug process requires specific characteristics provided by the
Windows Console or specific Linux/Unix shell, or to better handle very large
amounts of debug process output, you can redirect debug I/O to a new external
window using the Use External Console preference.

The most effective way to keep the external console visible after the debug
process exits is to place a breakpoint on the last line of your program. Alternatively,
enable the External Console Waits on Exit preference. However, this can result
in many external consoles being displayed at once if you do not press enter inside
the consoles after each debug run.

On Linux/Unix it is possible to select which console applications will be tried for the
external console by altering the External Consoles preference.

Windows always uses the standard DOS Console that comes with your version of
Windows.

12.10.2. Disabling Debug Process I/O Multiplexing

Wing alters the I/O environment in order to make it possible to keep the debug
process responsive while waiting for I/O. This code mimics the environment found
outside of the debugger, so any code that uses only Python-level I/O does not
need to worry about this change of environment.

There are however several cases that can affect users that bypass Python-level
I/O by doing C/C++ level I/O from within an extension module:

• Any C/C++ extension module code that does standard I/O calls using the
C-level stdin or stdout will bypass Wing's I/O environment (which affects only
Python-level stdin and stdout). This means that waiting on stdin in C or C++
code will make the debug process unresponsive to Wing, causing time out and
termination of the debug session if you attempt to Pause or alter breakpoints
at that time. In this case, redirection of I/O to the debugger I/O tool and Debug
Probe (in Wing Pro only) will also not work.

Debugger

97

http://wingware.com/doc/debug/external-i-o-consoles
http://wingware.com/doc/debug/interactive-debug-probe

• On all platforms, calling C-level stdin from multiple threads in a multi-threaded
program may result in altered character read order when running under the
Wing debugger.

• When debugging on win32, calling C-level stdin, even in a single-threaded
program, can result in a race condition with Wing's I/O multiplexer that leads to
out-of-order character reads. This is an unavoidable result of limitations on
multiplexing keyboard and socket I/O on this platform.

If you run into a problem with keyboard I/O in Wing's debugger, you should:

1. Turn off Wing's I/O multiplexer by setting the Use sys.stdin Wrapper
preference to False.

2. Turn on the Use External Console preference (for details see External I/O
Consoles)

Once that is done, I/O should work properly in the external console, but the debug
process will remain unresponsive to Pause or breakpoint commands from Wing
IDE whenever it is waiting for input, either at the C/C++ or Python level.

Also, in this case keyboard input invoked as a side effect of using the Debug Probe
will happen through unmodified stdin instead of within the Debug Probe, even
though command output will still appear there.

12.11. Interactive Debug Probe
The Debug Probe acts like the Python Shell for evaluating and executing arbitrary
Python code in the context of a debug program. This acts on the current debug
stack frame, and is available only when the debug program is paused.

You may use many of Wing's source editor commands and key bindings within the
Debug Probe, and can use the up/down arrow keys to traverse a history of recently
typed commands.

Like the Python Shell, the Debug Probe in Wing provides auto-completion and
integrates with the Source Assistant so that documentation and call signatures are
readily available for functions and methods that are invoked here. Goto-definition
works here as well.

This makes the Debug Probe particularly useful, not just to find and understand
bugs, but also in crafting and trying out new code to fix the bug.

Even when no bugs are present, the Debug Probe can be used to craft code
quickly in the live context in which it is intended to work. To do this, set a
breakpoint where you plan to place the code, debug until you reach that
breakpoint, then work in the Debug Probe to design parts or all of your new code.
The auto-completer and Source Assistant running in the live program context make
navigation of unfamiliar or complex code quite easy, and can greatly speed up the
design and implementation of new features for existing code.

Debugger

98

http://wingware.com/doc/debug/external-i-o-consoles
http://wingware.com/doc/debug/external-i-o-consoles
http://wingware.com/doc/debug/interactive-python-shell
http://wingware.com/doc/edit/source-assistant

Conditional breakpoints are a natural companion for the Debug Probe. Setting a
conditional breakpoint makes it easier to isolate one iteration or invocation out of
many, thus isolating either a problematic case for which a bug fix is needed, or a
particular case for which a new feature is desired.

In the Debug Probe, the Up and Down arrow keys will traverse the history of the
code you have entered and the return key will either execute the code if it is
complete or prompt for another line if it is not. Ctrl-Up and Ctrl-Down will move the
cursor up and down and Ctrl-Return will insert a new line character at the cursor
position.

12.11.1. Managing Program State

If commands you type change any local, instance, or global data values, cause
modules to be loaded or unloaded, set environment variables, or otherwise alter
the run environment, your debug program will continue within that altered state. All
visible variable display views are also updated after each line entered in the Debug
Probe in order to reflect any changes caused by your commands. Since you may
not notice these changes, caution is needed to avoid creating undesired
side-effects in the running debug program.

Note that breakpoints are never reached as a result of entries typed into the Debug
Probe, and any exceptions are reported only after the fact. This means that activity
in the Debug Probe has no effect on the debug run position or stack, even though
an exception location in source code may in some cases be displayed.

12.11.2. Debug Probe Options

The Options menu in the Debug Probe provides the following choices:

• Clear -- Clear previous text from the shell.
• Save a Copy -- Save a copy of the shell to a disk file.
• Wrap Lines -- Toggle whether or not long lines are wrapped in the display.
• Pretty Print -- Causes Wing to use Python's pprint module to format output
• Enable Auto-completion -- Controls whether Wing will show the

auto-completer in the Debug Probe
• Filter history by entered prefix -- controls whether the history will be filtered

by the string between the prompt an the cursor. If history is filtered and a is
entered at the prompt, the up arrow will find the most recent history item
starting with a

• Evaluate Only Whole Lines -- Controls whether Wing will operation on whole
lines when a selection of code from the editor is evaluated in the Debug Probe

The preference Raise Source from Tools can be used to determine whether
source code windows will be raised when exceptions occur in the Debug Probe.

Debugger

99

12.12. Multi-Process Debugging
Wing's debugger can debug multiple processes at once, either processes launched
separately from the IDE, or (optionally) sub-processes spawned by a parent
process.

When multiple processes are running at once, Wing adds a process selector to the
stack selection area of the various debugging tools. This selector displays all the
connected debug processes, arranged into an indented tree that indicates which
processes are children of others. The selector annotates each process entry to
show its process ID and whether or not it is paused or running.

Multi-process debugging is on by default but can be disabled with the Debugger >
Processes > Enabled Multi-Process Debugging preference. When disabled, only
one debug process can connect at a time or be created from the IDE.

Debugging Child Processes

Sub-processes started with the Python multiprocessing module or with os.fork()
can optionally be debugged automatically, so that each child process appears as a
separate debug process in Wing IDE. This is disabled by default but can be
enabled with the Debugger > Processes > Debug Child Processes preference or
by setting Debug/Execute > Debug Child Processes in Project Properties.

Sub-processes started with os.system(), CreateProcess (on Windows), os.exec()
(on Posix), or similar calls will not be debugged automatically because the OS
completely replaces the parent process context and there is no way to keep a
debug connection intact. However, it is still possible to debug processes launched
in this way by manually initiating debug in the sub-process as described in
Debugging Externally Launched Code.

Notice that processes started by os.fork() followed by os.exec() will be debugged
for the (usually brief) period of time between the os.fork() and os.exec() calls.

Process Control

When multi-process debugging is enabled, Wing will allow creation of multiple
processes from the Debug > Processes sub-menu. This menu also provides a
way to continue, pause, restart, or terminate all debug processes at once.

Pressing the Alt key while clicking on the Continue, Terminate, or Restart toolbar
icons also causes the operation to be applied to all applicable debug processes at
once.

By default when a new process connects and reaches a breakpoint or exception, it
is made into the current debug process only if there is no previously current and
paused debug process, or if it is the first process in the launched process group
that has stopped. In other cases, Wing displays a message at the bottom of the
IDE window indicating that a debug process has stopped but does not make it the
current process.

Debugger

100

http://wingware.com/doc/debug/debugging-externally-launched-code

This behavior can be changed using the Debug > Processes > Switch to Stopped
Processes preference. Setting this preference to Always Switch can be
confusing if many processes are reaching a stopping point at once.

Wing also lets you control the maximum number of debug processes that may be
attached to the IDE at once using the Debugger > Processes >
Maximum Process Count preference.

Terminating Processes

When a debug process is terminated from Wing, the IDE will by default also
terminate all other processes in the process group. This is appropriate behavior in
many but not all cases. The Debugger > Processes > Termination Model
preference provides several options for managing termination of debug processes
in a multi-processing environment:

Leave Other Processes Running -- This kills only the selected current process
and leaves all other processes running.

Kill Child Processes with Parent -- This also kills all children, grand-children, and
other processes spawned by the parent or its children. However, any parent or
grand-parent processes and their children are left running.

Kill Entire Process Group -- This kills all processes in the group, including all
parents, grand-parents, children, grand-children, etc. This is the default termination
model.

Prompt for Action When a Process is Killed -- This displays a dialog listing
processes associated with the debug process that was terminated and offers to kill
selected processes, all children, or the entire process group.

Note that when not all processes in a group are killed, those remaining processes
that expect to interact with one of the terminated processes may raise "broken
pipe" or similar errors.

Notes on Debugging Child Processes Created with sys.executable

By default when debugging sub-processes is enabled, Wing replaces
sys.executable to cover some of the common ways in which sub-processes may
be launched, particularly on Windows. This can be disabled with the Debugger >
Processes > Replace sys.executable preference.

On Windows this option should be disabled if the parent process launches children
with a command line that contains a Handle created specifically for its child
process, for example by setting hTargetProcessHandle in a call to
DuplicateHandle. In this case, the handle will be invalid in the child because
replacing sys.executable creates an intervening process and the child runs as the
grand-child instead.

Debugger

101

If a Handle is instead set to be inheritable for all child processes, for example by
setting bInheritHandle in a call to DuplicateHandle, then replacing
sys.executable will work without any problems.

Because the multiprocessing standard library module uses sys.executable to
launch its children on Windows, this option must be enabled there in order to
debug children created by that module.

Wing replaces sys.executable at startup only. As a result, user code that alters
the value (other than by calling multiprocessing.forking.set_executable) will
break debugging of child processes that are launched with a command line that
contains sys.executable.

One way to work around cases where sys.executable replacement does not work
is to manually initiating debug in the sub-process as described in Debugging
Externally Launched Code.

Other Notes and Limitations

When debugging child processes created with the multiprocessing module, Wing
will stop on exceptions raised in child processes. Continuing debug from that point
will pack up and return the exception to the parent process, as in normal operation.
Exceptions in children can be ignored with the Ignore this exception location
checkbox in the Exceptions tool.

If child processes are created with sys.executable the code that starts the child
processes will need to correctly handle spaces in the path within sys.executable.
Otherwise, child processes will fail to launch if Wing is installed into a directory
path that has spaces in it and child process debugging is enabled.

Overriding the _bootstrap method of multiprocessing.process.Process (or
multiprocessing.process.BaseProcess in Python 3.4+) in a custom process
class will prevent Wing from stopping on exceptions in child processes unless the
exception is propagated to the inherited method. A work-around for this would be
to call logging.exception with any exception before sending it out to the parent
process.

Some approaches to spawning child processes may result in the creation of
intermediate processes that appear in Wing's process tree display. For example,
using the shell=True option in subprocess.Popen will do this on Linux. When
setting shell=False you may need to change the command passed to Popen to a
list rather than a string.

Debug overhead may reveal timing bugs not seen outside of the debugger. For
example, if a parent process may attempt to interact with a child process too
quickly, causing problems only under the debugger. This is particularly likely on
Windows, where there is an intermediate process created between the parent and
child process.

Debugger

102

http://wingware.com/doc/debug/debugging-externally-launched-code
http://wingware.com/doc/debug/debugging-externally-launched-code

12.13. Debugging Multi-threaded Code
Wing's debugger can debug multi-threaded code, as well as single-threaded code.
By default, Wing will debug all threads and will stop all threads if a single thread
stops. If multiple threads are present in the debug process, the Stack Data tool
(and in Wing Pro the Debug Probe and Watch tools) will add a thread selector
popup to the stack selector.

Even though Wing tries to stop all threads, some may continue running if they do
not enter any Python code. In that case, the thread selector will list the thread as
running. It also indicates which thread was the first one to stop.

When moving among threads in a multi-threaded program, the Show Position icon
shown in the toolbar during debugging (between the up/down frame icons) is a
convenient way to return to the original thread and stopping position.

Whenever debugging threaded code, please note that the debugger's actions may
alter the order and duration that threads are run. This is a result of the small added
overhead, which may influence timing, and the fact that the debugger
communicates with the IDE through a TCP/IP connection.

Selecting Threads to Debug

Currently, the only way to avoid stopping all threads in the debugger is to launch
your debug process from outside Wing, import wingdbstub, and use the debugger
API's SetDebugThreads() call to specify which threads to debug. All other threads
will be entirely ignored. This is documented in Debugging Externally Launched
Code and the API is described in Debugger API

An example of this can be seen in the file DebugHttpServer.py that ships with
Wing's support for Zope and Plone. To see this, unpack the WingDBG archive
found inside the zope directory in your Wing installation.

Note, however, that specifying a subset of threads to debug may cause problems
in some cases. For example, if a non-debugged thread starts running and does not
return control to any other threads, then Wing's debugger will cease to respond to
the IDE and the connection to the debug process will eventually be closed. This is
unavoidable as there is no way to preemptively force the debug-enabled threads to
run again.

12.14. Managing Exceptions
By default, Wing's debugger stops at exceptions when they would be printed by the
Python interpreter or when they are logged with logging.exception. Wing will also
stop on all AssertionError exceptions, whether or not they are printed or logged,
since these usually indicate a program error even if they are handled.

The Debugger > Exceptions preference group can be used to control how Wing
approaches exception reporting. This includes the following preferences.

Debugger

103

http://wingware.com/doc/debug/debugging-externally-launched-code
http://wingware.com/doc/debug/debugging-externally-launched-code
http://wingware.com/doc/debug/debugger-api

Exception Reporting Mode

The overall strategy for identifying and reporting exceptions is configured with the
Report Exceptions preference. The following choices are available:

When Printed (default) -- The debugger will stop on exceptions at the time that
they would have been printed out by the Python interpreter.

For code with catch-all exceptions written in Python, Wing may fail to report
unexpected exceptions if the handlers do not print the exception. In this case, it is
best to rewrite the catch-all handlers as described in Trouble-shooting Failure to
Stop on Exceptions.

In this exception handling mode, any code in finally clauses, except clauses that
reraise the exception, and with statement cleanup routines will be executed before
the debugger stops because they execute before the traceback is printed.

Always Immediately -- The debugger will stop at every single exception
immediately when it is raised. In most code this will be very often, since exceptions
may be used internally to handle normal, acceptible runtime conditions. As a result,
this option is usually only useful after already running close to code that requires
further examination.

At Process Termination -- In this case, the debugger will make a best effort to
stop and report exceptions that actually lead to process termination. This occurs
just before or sometimes just after the process is terminated. The exception is also
printed to stderr, as it would be when running outside of the debugger.

When working with an Externally Launched Debug Process , the At Process
Termination mode may not be able to stop the debug process before it exits, and
in some cases may even fail to show any post-mortem traceback at all (except as
printed to stderr in the debug process).

Similarly, when working with wxPython, PyGTK, and similar environments that
include a catch-all exception handler in C/C++ code, the At Process Termination
mode will fail to report any unexpected exceptions occurring during the main loop
because those exceptions do not actually lead to process termination.

Immediately if Appear Unhandled -- The debugger will attempt to detect
unhandled exceptions as they are raised in your debug process, making it possible
to view the program state that led to the exception and to step through
subsequently reached finally clauses. This is done by looking up the stack for
exception handlers written in Python, and reporting only exceptions for which there
is no matching handler.

Debugger

104

http://wingware.com/doc/install/trouble-debug-nostop-exceptions
http://wingware.com/doc/install/trouble-debug-nostop-exceptions
http://wingware.com/doc/debug/debugging-externally-launched-code

Note

Because of changes in the Python implementation, this mode no longer
works in Python versions 2.7+ and 3.0+.

The Immediately if Appear Unhandled mode works well with wxPython, PyGTK,
and in most other code where unexpected exceptions either lead to program
termination or are handled by catch-all exception handlers written in C/C++
extension module code.

In some cases, Wing's unhandled exception detector can report normal handled
exceptions that are not seen outside of the debugger. This occurs when the
exceptions are handled in C/C++ extension module code. Wing can be trained to
ignore these by checking the Ignore this exception location check box in the
debugger's Exception tool. Ignored exceptions are still reported if they actually
lead to program termination, and your selection is remembered in your project file
so only needs to be made once. Use Clear Ignored Exceptions from the Debug
menu at any time to reset the ignore list to blank.

Reporting Logged Exceptions

The Report Logged Exceptions in When Printed Mode preference controls
whether exceptions that are not printed but that are logged with a call to
logging.exception will be reported by the default When Printed exception
reporting mode. This preference is ignored in other exception reporting modes.

Exception Type Filters

The Never Report and Always Report preferences can be used to specify that
certain exception types should never be reported at all, or always reported
regardless of whether they are printed or logged. For example, by default Wing will
never stop on SystemExit or GeneratorExit since these occur during normal
program behavior, and Wing will always stop on AssertionError since this usually
indicates a bug in code even if it is handled.

In some code, adding NameError or AttributeError to the Always Report list may
help uncover bugs; however, this may not work if these are treated as normal
expected exceptions by the authors of the code and there are too many such
cases to ignore them with the Ignore this exception location checkbox in the
Exceptions tool.

Debugger

105

12.15. Running Without Debug
Files may also be executed outside of the debugger. This can be done with any
Python code, makefiles, and any other file that is marked as executable on disk.
This is done with the Execute Current File and Execute Recent items in the
Debug menu, or with Execute Selected after right-clicking on the project view.

Files executed in this way are run in a separate process and any input or output
occurs within the OS Commands tool.

This is useful for triggering builds, executing utilities used in development, or even
to launch a program that is normally launched outside of Wing and debugged using
wingdbstub.py.

Wing can also run arbitrary command lines. See the OS Commands Tool chapter
for more information on executing files or command lines from Wing.

Advanced Debugging Topics
This chapter collects documentation of advanced debugging techniques, including
debugging externally launched code, and using Wing's debugger together with a
debugger for C/C++ code.

See also the collection of How-Tos for tips of working with specific third party
libraries and frameworks for Python.

13.1. Debugging Externally Launched Code
This section describes how to start debugging from a process that is not launched
by Wing. Examples of debug code that is launched externally include CGI scripts
or web servlets running under a web server and embedded Python scripts running
inside a larger application.

13.1.1. Importing the Debugger

The following step-by-step instructions can be used to start debugging in externally
launched code that is running on the same machine as Wing IDE:

1. Copy wingdbstub.py from the install directory listed in Wing's About box into
the same directory as your debug program.

2. In some cases, you will also need to copy the file wingdebugpw from your
User Settings Directory into the same directory as wingdbstub.py. This is
needed when running the debug process as a different user or in a way that
prevents the debug process from reading the wingdebugpw file from within
your User Settings Directory.

3. At the point where you want debugging to begin, insert the following source
code: import wingdbstub Depending on your code base, you may need to
be cautious about whether this statement is reached by multiple processes. If

Advanced Debugging Topics

106

http://wingware.com/doc/oscommands/index
http://wingware.com/doc/howtos/index
http://wingware.com/doc/install/user-settings-dir

this happens, the first process will connect to Wing and the second one will fail
to connect and continue running without debug. If you are debugging code in
an embedded Python instance, see the notes in Debugging Embedded Python
Code.

4. Make sure the Wing IDE preference Accept Debug Connections is turned
on, to allow connection from external processes.

5. Set any required breakpoints in your Python source code.
6. Initiate the debug program from outside Wing IDE, for example with a page

load in your web browser, if the program is a web app. You should see the
status indicator in the lower left of the main Wing IDE window to yellow, red, or
green, as described in Debugger Status. Make sure that you are running the
Python interpreter without the -O option. The debugger will not work when
optimization is turned on.

7. The debugger should stop at the first breakpoint or exception found. If no
breakpoint or exception is reached, the program will run to completion, or you
can use the Pause command in the Debug menu.

Note

Enabling Process Termination

In some cases, you may wish to enable termination of debug processes that
were launched from outside of Wing IDE. By default, Wing recognizes
externally launched processes and disables process termination in these
cases unless the Kill Externally Launched preference is enabled.

If you have problems making this work, try setting kLogFile variable in
wingdbstub.py for log additional diagnostic information.

Advanced Debugging Topics

107

http://wingware.com/doc/debug/debugging-embedded-code
http://wingware.com/doc/debug/debugging-embedded-code
http://wingware.com/doc/debug/status

Note

Behavior on Failure to Attach to IDE

Whenever the debugger cannot contact Wing IDE (for example, if the IDE is
not running or is listening on a different port), the debug program will be run
without debugging. This is useful since debug-enabled CGIs and other
programs should work normally when Wing is not present. However, you can
force the debug process to exit in this case by setting the kExitOnFailure
flag in wingdbstub.py. To attach to processes started without debug, see
Attaching (only available in Wing IDE Professional).

13.1.2. Debug Server Configuration

In some cases you may also need to alter other preset configuration values at the
start of wingdbstub.py. These values completely replace any values set in Wing's
Project or File Properties, which are relevant only when the debug program is
launched from within Wing. The following options are available:

• The debugger can be disabled entirely with kWingDebugDisabled=1. This is
equivalent to setting the WINGDB_DISABLED environment variable before
launching the debug program.

• Set kWingHostPort to specify the network location of Wing IDE, so the
debugger can connect to it when it starts. This is equivalent to setting the
WINGDB_HOSTPORT environment variable before launching the debug
program. The default value is localhost:50005. See section Remote
Debugging for details if you need to change this value.

• You can control whether or not the debugger's internal error messages are
written to a log file by setting kLogFile. Use <stdout>, <stderr>, or a file
name. If the given file doesn't exist, it is created if possible. Note that using
<stderr> may cause problems on Windows if the debug process is not running
in a console. This is equivalent to setting the WINGDB_LOGFILE environment
variable before launching the debug program (use a value of - to turn off
logging to file).

• Set kEmbedded to 1 when debugging embedded scripts. In this case, the
debug connection will be maintained across script invocations instead of
closing the debug connection when the script finishes. When this is set to 1,
you may need to call wingdbstub.debugger.ProgramQuit() before your
program exits, or before it discards an instance of Python, in order to cleanly
close the debug connection to the IDE. This is equivalent to setting the
environment variable WINGDB_EMBEDDED.

Advanced Debugging Topics

108

http://wingware.com/doc/debug/attaching
http://wingware.com/doc/debug/remote-debugging
http://wingware.com/doc/debug/remote-debugging

• Set kAttachPort to define the default port at which the debug process will
listen for requests to attach (available in Wing IDE Professional only). This is
equivalent to setting the WINGDB_ATTACHPORT environment variable
before launching the debug program. If this value is less than 0, the debug
process will never listen for attach requests. If it is greater than or equal to 0,
this value is used when the debug process is running without being in contact
with Wing IDE, as might happen if it initially fails to connect to the
above-defined host and port, or if the IDE detaches from the process for a
period of time. For Wing IDE Professional, this is described in more detail in
section Attaching and Detaching.

• Set kPWFilePath and kPWFileName to define the search path and file name
used to find a wingdebugpw file for the debugger. The environment variables
WINGDB_PWFILEPATH and WINGDB_PWFILENAME will override these
settings. The file path should be a Python list of strings if set in
wingdbstub.py or a list of directories separated by the path separator
(os.pathsep) when sent by environment variable. The string
$<winguserprofile> may be used to specify Wing's User Settings Directory
for the user that the debug process is running as. The password file name is
usually wingdebugpw but may be changed in cases where this naming is
inconvenient.

• Optionally, set WINGHOME, which is the Wing IDE installation directory (or
the name of Wing's .app folder on OS X). This is set up during installation, but
may need to be altered if you are running Wing from source or copied the
debugger binaries over from another machine.

Setting any of the above-described environment variable equivalents will override
the value given in the wingdbstub.py file.

13.1.3. Debugger API

A simple API can be used to control debugging more closely, once you have
imported wingdbstub.py the first time, as was describe. This is useful in cases
where you want to be able to start and stop debugging on the fly several times
during a debug run, for example to avoid debug overhead except within a small
sub-section of your code. It can also be useful in embedded scripting
environments, particularly in those that alter the thread state or discard and
recreate the Python instance across invocations.

To use the API, you must first configure and import wingdbstub.py as described
in section Importing the Debugger.

High-Level API

The wingdbstub.Ensure(require_connection=1, require_debugger=1) function
may be used to ensure the debugger is running and connected to the IDE. If
require_connection is true, ValueError will be raised if a connection to the IDE

Advanced Debugging Topics

109

http://wingware.com/doc/debug/attaching-and-detaching
http://wingware.com/doc/install/user-settings-dir
http://wingware.com/doc/debug/importing-the-debugger

cannot be made. If require_debugger is true, ValueError will be raised if the
debugger binaries cannot be found or the debugger cannot be started.

Low-Level API

After importing wingdbstub, the following calls may be made on
wingdbstub.debugger to control the debugger:

• StopDebug() - Stop debugging completely and disconnect from Wing IDE.
The debug program continues executing in non-debug mode and must be
restarted to resume debugging.

• StartDebug(stophere=0, connect=1) -- Start debugging, optionally
connecting back to the IDE and/or stopping immediately afterwards.

• Break() -- This pauses the free-running debug program on the current line, as
if at a breakpoint.

• ProgramQuit() - This must be called before the debug program is exited if
kEmbedded was set to 1 in wingdbstub.py or if autoquit=0 in the preceding
StartDebug() API call (if any). This makes sure the debug connection to the
IDE is closed cleanly.

• SetDebugThreads(threads={}, default_policy=1) - This can be used in
multi-threaded code to tell Wing's debugger which threads to debug. Pass in a
dictionary that maps from thread id (as obtained from thread.get_ident()) to
one of the following values: 0 to ignore the thread (do not debug it), or 1 to
debug the thread and immediately stop it if any thread stops. The
default_policy sets the action to take when a thread is not found in the thread
map.

• SuspendDebug() - This will leave the connection to the debug client intact but
disables the debugger so that connection overhead is avoided during
subsequent execution. This should be used only to exempt a particular section
of code from debug overhead. In most cases StopDebug is preferable.

• ResumeDebug() - This will resume debugging using an existing connection to
Wing.

Here is a simple usage example:

import wingdbstub
a = 1 # This line is debugged
wingdbstub.debugger.SuspendDebug()
x = 1 # This is executed without debugging
wingdbstub.debugger.ResumeDebug()
y = 2 # This line is debugged

SuspendDebug() and ResumeDebug() can be called as many times as desired,
and nested calls will be handled so that debugging is only resumed when the
number of ResumeDebug() calls matches the number of SuspendDebug() calls.

Advanced Debugging Topics

110

13.1.4. Debugging Embedded Python Code

When Python code is run by an interpreter embedded in a larger application, you
may need to craft special code to make debugging work properly.

If the host application is simply creating a single Python instance and reusing it for
all script invocations, in most cases setting kEmbedded=1 in wingdbstub.py will
suffice.

In certain cases where the host application is manually creating or altering the
thread state for each invocation of a script, you may need to use code as follows to
reset the debugger and connection for each script invocation:

import wingdbstub
wingdbstub.Ensure()

In other cases where the host application uses an entirely different Python instance
for each invocation, you may need to arrange that the Debugger API function
ProgramQuit is called before each instance is destroyed and may also want to
leave kEmbedded=0 in wingdbstub.py. In this case you may also need to unset
the environment variable WINGDB_ACTIVE before importing wingdbstub, as this
may be left in the environment by the host application and will prevent wingdbstub
from initiating debug in the second or later Python instance.

13.2. Remote Debugging
Since remote debugging is fairly complicated to configure, we currently
recommend using remote display of the IDE via X Windows (Linux/Unix) or
Remote Desktop (Windows) when possible, instead of setting up the IDE on a
separate host from the debug process.

When this is not an option, you can also ask the debugger to connect remotely
over the network. In order to do this, take the following steps (see also Remote
Debugging Example):

(1) First set up Wing IDE to successfully accept connections from another process
within the same machine, as described in section Importing the Debugger. You can
use any Python script for testing this until you have values that work.

(2) Optionally, alter the Server Host preference to the name or IP address of the
network interface on which the IDE listens for debug connections. The default
server is None, which indicates that the IDE should listen on all the valid network
interfaces on the host.

(3) Optionally, alter the preference Server Port to the TCP/IP port on which the
IDE should listen for debug connections. This value may need to be changed if
multiple copies of Wing IDE are running on the same host.

Advanced Debugging Topics

111

http://wingware.com/doc/debug/debugger-api
http://wingware.com/doc/debug/remote-debugging-example
http://wingware.com/doc/debug/remote-debugging-example
http://wingware.com/doc/debug/importing-the-debugger

(4) Set the Allowed Hosts preference to include the host on which the debug
process will be run. For security purposes, Wing will reject connections if the host
isn't included here.

(5) Configure any firewall on the system that Wing IDE is running on to accept a
connection on the server port from the system that the debug process will run on.

(6) Next install Wing IDE on the machine on which you plan to run your debug
program. Creating an entire Wing IDE installation is the easiest approach.
Alternatives are to copy only the debug server code out of a Wing installation on
the same type of OS or to compile the debugger core from source code. For
details, see Installing the Debugger Core.

(7) Next, transfer copies of all your debug code so that the source files are
available on the host where Wing IDE will be running and at least the *.pyc files
are available on the debug host.

During debugging, the client and server copies of your source files must match or
the debugger will either fail to stop at breakpoints or stop at the wrong place, and
stepping through code may not work properly.

Since there is no mechanism in Wing IDE for transferring your code, you need to
use NFS, Samba, FTP or some other file sharing or file transfer mechanism to
keep the remote files up to date as you edit them in Wing.

If files appear in different disk locations on the two machines, you will also need to
set up a file location map, as described in File Location Maps.

(8) On your debug host, copy wingdbstub.py into the same directory as your
source files and import it in your Python source as described in Debugging
Externally Launched Code.

(9) If you didn't copy wingdbstub.py out of a complete installation of Wing IDE on
the debug host, you will need to set WINGHOME in your copy to match the
location where you have copied the debug server code on your debug host.

(10) In wingdbstub.py on your debug host, set kWingHostPort. The host in this
value must be the IP address of the machine where Wing IDE is running. The port
must match the port configured with the Server Port preference on the host where
Wing IDE is running.

(11) Then restart Wing and try running your program on the debug host. You
should see the Wing IDE debugger status icon change to indicate that a debug
process has attached.

If you have problems making this work, try setting kLogFile variable in
wingdbstub.py for log additional diagnostic information.

Advanced Debugging Topics

112

http://wingware.com/doc/debug/installing-debugger-core
http://wingware.com/doc/debug/file-location-maps
http://wingware.com/doc/debug/debugging-externally-launched-code
http://wingware.com/doc/debug/debugging-externally-launched-code

13.2.1. SSH Tunneling

In many remote debugging cases firewalls will get in the way of making a direct
connection between the remote host and Wing IDE running locally. The way
around this is to establish an SSH tunnel that forwards network traffic from the
remote host to the local host. This also encrypts all your debugger traffic in a
secure way.

This does require a working ssh server, which most remote hosts will already have.
You will want to set up remote login using ssh first, and in most case add your ssh
key to the list of allowed keys on the remote host, so that ssh can login without any
password. Once that is done, SSH tunneling can be configured as follows.

Wing Running on OS X or Linux

When Wing IDE is running on OS X or Linux, tunneling is done as follows from the
machine that is running Wing IDE (not the remote host):

ssh -N -R 50005:localhost:50005 username@remotehost

You'll need to replace username@remotehost with the login name and ip address
of the remote host.

The -R option sets up a reverse tunnel, which is needed since the debug process
initiates the connection back to the IDE.

The -N option causes ssh not to run any code on the remote host, so it just sets up
the tunnel and nothing else.

The -f option can be added just after ssh to cause ssh to run in the background.
Without this option, you can use Ctrl-C to terminate the tunnel. With it, you'll need
to use ps and kill to manage the process.

If you also want a login shell on the remote host, use this form instead:

ssh -R 50005:localhost:50005 username@remotehost bash

Wing Running Windows

When Wing IDE is running on Windows, use PuTTY to configure an ssh tunnel
with the same settings on the Connections > SSH > Tunnels page: Set
Source port to 50005, Destination to localhost:50005, and select the Remote
radio button, then press the Add button. Once this is done the tunnel will be
established whenever PuTTY is connected to the remote host.

Using Different Port Numbers

The above assumes the default configuration where Wing IDE is listening for
connections on port 50005. If for some reason you can't use port 50005 as the
debug port on either machine, this can be changed on the remote host with

Advanced Debugging Topics

113

kHostPort in wingdbstub.py or with the WINGDB_HOSTPORT environment
variable. To change the port the IDE is listening on, use the
Debugger > External/Remote > Server Port preference and or
Debug Server Port in Project Properties in Wing IDE.

If this is done, you will need to replace the port numbers in the ssh tunnel
invocation in the following form:

ssh -N -R <remote_port>:localhost:<ide_port> username@remotehost

<remote_port is the port specified in kHostPort or with WINGDB_HOSTPORT
environment variable, and <ide_port is the port set in Wing IDE's preferences or
Project Properties.

On Windows using PuTTY, the Source port is the port set with kHostPort or
WINGDB_HOSTPORT on the remote host, and the port in the Destination is the
port Wing is configured to listen on.

Refer to the documentation for ssh or PuTTY for details.

Location Maps

When using an SSH tunnel, the IP address entered into the Location Map
preference described in the following sections is always 127.0.0.1 since the IDE
thinks the connection is coming from the local host.

13.2.2. File Location Maps

In cases where the full path to your source is not the same on both machines, you
also need to set up a mapping that tells Wing where it can find your source files on
each machine.

This is done with the Location Map preference, which lists corresponding local
and remote directory locations for each remote host's dotted quad IP address.

Each host IP address in the location map is paired with one or more
(remote_prefix, local_prefix) tuples. The remote file prefix will be a full path on
the debug server's file system. The local file prefix is usually the full path of a local
directory, though it may also be a file: url.

The best way to understand this is to look at the Location Map Examples.

When running Wing IDE on Windows XP, UNC formatted file names such as
\\machine\path\to\file may be used. On other Windows systems, you must map
remote drives to a drive letter such as F:. In cases where setting up a persistent
drive mapping is a problem, use a cmd.exe script with a net use command to map
the drive on demand.

Note that making symbolic links on the client or server will not work as an
alternative to using this mapping. This is a side-effect of functionality in the

Advanced Debugging Topics

114

http://wingware.com/doc/debug/file-location-map-example

debugger that ensures that debugging works right when symbolic links are present:
Internally, source file names are always resolved to their actual full path location.

13.2.2.1. File Location Map Examples

The best way to understand location mapping is to inspect a few examples.

Defaults Explained

The default value for the Location Map preference contains one entry for
127.0.0.1 where the mapping is set to None (in Python this is represented as
{'127.0.0.1':None}). This is equivalent to the more verbose Python representation
of {'127.0.0.1':[('/','')]}. It converts full paths on the debug server to the client-side
URLs without altering any part of the full path.

Two Linux/Unix Hosts

Here is an example setting for debug.location-map that would be used if running
Wing on desktop1 and debugging some code on server1 with IP address
192.168.1.1:

debug.location-map={
 '127.0.0.1':None,
 '192.168.1.1':[('/home/apache/cgi', '/svr1/home/apache/cgi')]
}

In this example, the files located in /home/apache/cgi on server1 are the same
files seen in /server1/home/apache/cgi on desktop1 because the entire file
system on server1 is being shared via NFS and mounted on desktop1 under
/svr1.

To enter this value in Preferences, you would add 192.168.1.1 as a new Remote
IP Address and a single local/remote mapping pair containing /home/apache/cgi
and /svr1/home/apache/cgi.

Two Hosts Using an SSH Tunnel

When using an SSH tunnel, the IP address to which you add a mapping is always
127.0.0.1 because the tunnel forwards traffic in such a way that the IDE sees the
connection as coming from the local machine. The remote and local file paths
given are the same as for the other examples given here. For the example above it
would be:

debug.location-map={
 '127.0.0.1':[('/home/apache/cgi', '/svr1/home/apache/cgi')]
}

IDE on Linux/Unix with Debug Process on Windows

Advanced Debugging Topics

115

If you are debugging between Windows and Linux or Unix, some care is needed in
specifying the conversion paths because of the different path name conventions on
each platform. The following entry would be used when running Wing IDE on a
Linux/Unix host and the debug process on a Windows host with ip address
192.168.1.1:

debug.location-map={
 '127.0.0.1':None,
 '192.168.1.1':[(r'e:\src', '/home/myuser/src')],
}

In this example the Linux/Unix directory /home/myuser is being shared via Samba
to the Windows machine and mapped to the e: drive.

In the Preferences GUI, you would add 192.168.1.1 as a new Remote IP Address
and a single local/remote mapping pair containing e:\src and /home/myuser/src.

IDE on Windows with Debug Process on Linux/Unix

If running Wing IDE on a Windows host and the debug process on a Linux/Unix
host with IP address 192.168.1.1, the following would be used instead for the same
file locations:

debug.location-map={
 '127.0.0.1':None,
 '192.168.1.1':[('/home/myuser/src', 'e:/src')],
}

Again, note the use of forward slashes in the URL even though the file is on a
Windows machine.

In the Preferences GUI, you would add 192.168.1.1 as a new Remote IP Address
and a single local/remote mapping pair containing /home/myuser/src and e:/src.

Two Windows Hosts

If running Wing IDE on Windows and the debug process on another Windows
machine with IP address 192.168.1.1, the following would be used:

debug.location-map={
 '127.0.0.1':None,
 '192.168.1.1':[(r'c:\src', 'e:/src')],
}

In this case, the host where Wing is running has mapped the entire remote (debug
process) host's c: drive to e:.

In the Preferences GUI, you would add 192.168.1.1 as a new Remote IP Address
and a single local/remote mapping pair containing c:\src and e:/src.

Two Windows Hosts using UNC Share

Advanced Debugging Topics

116

A UNC style path name can be used on Windows XP as follows:

debug.location-map={
 '127.0.0.1':None,
 '192.168.1.1':[(r'c:\src', '\\server\share\dir')],
}

In this case, c:src on the remote host, where the debug process is running, can be
accessed as \serversharedir on the machine where Wing IDE is running.

In the Preferences GUI, you would add 192.168.1.1 as a new Remote IP Address
and a single local/remote mapping pair containing c:\src and \\server\share\dir.

13.2.3. Remote Debugging Example

Here is a simple example that enables debugging a process running on a
Linux/Unix host (192.168.1.200) using Wing IDE running on a Windows machine
(192.168.1.210). This example is for wingdbstub users only. If you are using the
WingDBG product to debug Zope code, please refer to the Zope Debugging
How-To (also included in the WingDBG control panel's Help tab).

On the Windows machine, the following preferences must be specified:

• Accept Debug Connections should be checked
• Server Host should be set to All Interfaces (this is the default)
• Server Port should be set to 50005 (this is the default)
• Allowed Hosts should be altered by adding 192.168.1.200

On the Linux/Unix machine, the following value is needed in wingdbstub.py:

kWingHostPort='192.168.1.210:50005'

Once this is done and Wing has been restarted, you should be able to run code
that imports wingdbstub on the Linux/Unix machine and see the debug
connection establish on the Windows machine.

Then you will need to set up file sharing between the two machines (for example,
using Samba) and will need to establish a location map in your Wing IDE
preferences on the Windows machine.

If your source code on the Linux/Unix machine is in /home/myuser/mysource and
you map /home/myuser to e: on the Windows machine, then you would enter this
location map via the Preferences GUI by adding 192.168.1.200 as a new Remote
Host IP and entering a single mapping pair with /home/myuser/mysource and
e:/mysource.

See Location Map Examples for additional examples.

Advanced Debugging Topics

117

http://wingware.com/doc/howtos/zope
http://wingware.com/doc/howtos/zope
http://wingware.com/doc/debug/file-location-map-example

13.2.4. Installing the Debugger Core

When Wing is used to debug a Python program remotely, the Wing debugger core
must be installed on the remote machine. The easiest way to do that is just to
install Wing IDE there. If that is not possible, there are two options: (1) Copy just
the debugger files from a Wing IDE installation on the same type of machine, or (2)
compile the debugger core from sources (available for Wing IDE Professional
only).

Copying from Wing IDE Installation

When copying from an existing Wing IDE installation on another machine, you will
need to copy all of the following files and directories from the install directory listed
in Wing's About box:

wingdbstub.py
bin/wingdb.py
bin/#.#/src/debug/tserver
bin/#.#/src.zip/debug/tserver (only Python 2.5)
bin/#.#/opensource/schannel (Python versions other than 2.5)
bin/#.#/opensource.zip/schannel (only Python 2.5)

Replace #.# with each version Python you wish to debug under (for example, 2.5).
You can omit the directories for the versions that you are not using.

The directories within zip files (used only in Python 2.5 and later) can either be
copied by moving the entire zip file or by creating a subset that contains only the
necessary directories.

Be sure to copy these directories from a Wing installation on the same type of host,
so that on Linux/Unix you include *.so extension modules, on Windows *.pyd
extension modules, and so forth.

Compiling from Source

On machines for which there is no Wing IDE installer, the debugger core can be
installed from source code. This is only available to Wing IDE Professional
customers, and requires signing a non-disclosure agreement. The compilation
instructions are located in build-files/README.DBG-SRC/txt in the source
distribution that you will be provided with.

13.3. Using wingdb to Initiate Debug
In addition to starting debug by importing wingdbstub, it is also possible to start
debugging code by running wingdb (or wingdb.exe on Windows) from the top
level of the Wing IDE installation. These are invoked like the Python command line,
after setting some environment variables that tell Wing which Python installation to
use and how to connect to the IDE.

Advanced Debugging Topics

118

http://wingware.com/pub/wingide/support/source-non-discl.pdf

To use this methods, first make sure that Wing is listening for debug connections
by clicking on the bug icon in the lower left and checking on
Accept Debug Connections.

Next set the following two environment variables if needed:

WINGDB_PYTHON -- The full path to the python or python.exe to use if you do not
want to use the default of python.

WINGDB_HOSTPORT -- The host:port where the IDE is running if different than
the default of localhost:50005. The host can be either a host name or an IP
address and the port is the one shown when the mouse is hovered over the bug
icon in the lower left of Wing's main window.

Now you can start debugging by running wingdb (or wingdb.exe) as if it were
Python. Debugging should start and the process should connect back to Wing IDE
on the configured host and port number.

For example on Windows:

set WINGDB_PYTHON=C:\Python34\python.exe
set WINGDB_HOSTPORT=127.0.0.1:50005
C:\Program Files\Wing IDE 5.0\wingdb.exe myscript.py arg1 arg2

Or on Linux:

export WINGDB_PYTHON=python3.4
export WINGDB_HOSTPORT=127.0.0.1:50005
/usr/lib/wingide5/wingdb myscript.py arg1 arg2

Or on OS X:

export WINGDB_PYTHON=python3.4
export WINGDB_HOSTPORT=127.0.0.1:50005
/Applications/WingIDE.app/Contents/Resources/wingdb myscript.py arg1 arg2

Other optional environment variables include:

WINGDB_PYARGS -- Provides any arguments to send to the Python specified
with WINGDB_PYTHON. Do not use this for arguments sent to your Python code.
Those are specified on the command line instead.

WINGDB_STEPINTO -- 0 or 1 to indicate whether to stop on the first line of code
(defaults=don't stop)

WINGDB_LOGFILE -- The full path to a diagnostic log file (default=no logging)

WINGDB_LOGVERYVERBOSE -- Whether to print extremely verbose low-level
logging (default=off)

Advanced Debugging Topics

119

WINGDB_WAIT_ON_EXIT -- Whether the debug process should wait on exit for
further interaction with the debugger (default=don't wait)

WINGDB_ENV_FILE -- When given, the debugger will load environment from this
file and then exec sys.executable in the environment. The environment file
contains a sequence of byte strings, each separated by a '0' byte. The 1st of every
pair is a key and the 2nd is the value. (default=run in inherited environment)

WINGDB_WINGHOME -- The Wing IDE installation directory (default=compute
based on location of the wingdb or wingdb.exe file)

WINGDB_USERSETTINGS -- The Wing IDE User Settings directory, used only to
find the debugger implementation if provided by a patch (default=None)

The following optional envs are only used to support Python < 2.6; in Python 2.6+
set PYTHONIOENCODING instead:

WINGDB_STDOUT_ENCODING -- Sets the encoding to use for stdout

WINGDB_STDIN_ENCODING -- Sets the encoding to use for stdin

On Windows, wingdb.bat can be used in the same way as wingdb.exe and may
be useful in cases where modifying the launcher is convenient or necessary.

13.4. Attaching and Detaching
Debug processes normally contact Wing IDE automatically during startup.
However, Wing IDE can also attach to debug processes that are already running
but not yet in contact with the IDE if the process will allow it. There are two cases
where this is useful:

(1) When an externally launched process (one that uses wingdbstub.py, as
described in section Debugging Externally Launched Code) cannot reach the IDE
at the configured host and port during initial startup, for example because the IDE
is not yet running or was not configured to accept debug connections.

(2) When a process attached to the IDE is disconnected using Detach
from Process in the Debug menu or the detach icon in the toolbar.

In either case, the IDE can manage any number of detached processes, allowing
you to attach to any one process at a time.

13.4.1. Access Control

Wing will not allow attach/detach functionality unless it has available to it a
password that can be used to control access. This is important because an
unsecured debug server provides the client (Wing IDE) full control of the host
machine via the Debug Probe tool. Any Python command can be executed in this
way, including programs that compromise the security of your machine and
network.

Advanced Debugging Topics

120

http://wingware.com/doc/debug/debugging-externally-launched-code

Because Wing sets up an access control password during installation, attach and
detach will work out of the box as long as your debug processes are launched from
Wing IDE, by you from the command line, or in the context of some service or
program that is running under your user name on a machine that has access to
your User Settings Directory.

If you plan to debug remotely, you will also need to copy the file wingdebugpw
from your User Settings Directory into the same directory as wingdbstub.py.

13.4.2. Detaching

The Detach from Process item in the Debug menu is used to detach from an
active debug process.

Whenever a process is detached, it continues running as if outside of the
debugger, without stopping at any breakpoints or exceptions. Even if a process is
paused within the debugger at time of detaching from the IDE, the process will start
running actively immediately after the IDE disconnects.

13.4.3. Attaching

The Attach to Process item in the Debug menu is available whenever no other
debug process is attached to the IDE. This brings up a dialog box that includes a
list of available processes to attach to. The list is built from hard-wired host/port
pairs given with the Common Attach Hosts preference, combined with known
processes that were previously attached to Wing IDE.

Wing updates the list of available processes as debug sessions are terminated
from the IDE, as they are seen to exit from the outside while attached to Wing, or
when the process cannot be contacted by Wing.

To attach to a process, select it from the list and push the Attach button. You may
also type in a host/port value manually if your choice is not on the list (see
Identifying Foreign Processes).

Once you are attached to a process, it continues running until it reaches a
breakpoint, unhandled exception, or you Pause it.

13.4.4. Identifying Foreign Processes

When debugging externally launched code (as described in Debugging Externally
Launched Code), you may use the kAttachPort constant in wingdbstub.py to set
the port on which the debug process will listen for attach requests from Wing IDE.
This is useful when spawning multiple processes concurrently, or in other cases
where the debug process may not be able to attached to Wing IDE as it starts up.

It is important to set unique values for the kAttachPort value for each concurrent,
externally-launched process. If the set port is in use, a random port number will be

Advanced Debugging Topics

121

http://wingware.com/doc/install/user-settings-dir
http://wingware.com/doc/install/user-settings-dir
http://wingware.com/doc/debug/identifying-foreign-processes
http://wingware.com/doc/debug/debugging-externally-launched-code
http://wingware.com/doc/debug/debugging-externally-launched-code

used instead and it may be difficult to determine this number if the process cannot
initially contact Wing IDE to register itself.

Once this is done, the debug process can be reached from Wing IDE by typing its
host/port into the Attach dialog text areas. If you find yourself typing a host/port
value often, it is best to add that value to the Common Attach Hosts preference.

See section Debugging Externally Launched Code for more information.

13.4.5. Constraints

Wing supports attaching only to a single debug process at a time. Whenever you
detach from a process, it begins free-running and will not stop at any breakpoints
or non-fatal exceptions. This limits what can be done with detach/attach from a
single copy of Wing. If you wish to actively debug two processes at once,
simultaneously controlling stepping, breakpoint activation, and execution (as in a
client/server network program), you must run two copies of Wing at once.

13.5. OS X Debugging Notes

System-Provided Python

The copy of Python in /Library/Python on OS X does not include source files for
the standard libraries, so Wing's editor will not offer autocompletion values for
those modules. To work around this, use Python from within
/Library/Frameworks/Python.frameworks instead or copy of Python installed
from the standard source distribution.

MacPorts Python

At least some versions of the MacPorts packaging of Python are known not to work
with Wing's debugger because it contains an _md5 module that won't load. To
work around this, use a different distribution of Python instead.

Debugging 32-bit Python on a 64-bit System

On 64-bit OS X systems, you can set up a shell script with the following contents
and set it as the Python Executable in Project Properties, in order to facilitate
debugging Python in 32-bit mode:

#!/bin/bash
arch -i386 python "$@"

This should only be necessary if your code needs 32-bit libraries. Wing's debugger
works in either 64-bit or 32-bit mode.

Advanced Debugging Topics

122

http://wingware.com/doc/debug/debugging-externally-launched-code

13.6. Debugger Limitations
There are certain situations that the debugger cannot handle, because of the way
the Python programming language works. If you are having problems getting the
debugger to stop at breakpoints or to display source as you step through your
code, one or more of these may apply.

Always read the Trouble-shooting Failure to Debug section first. If that fails to
uncover your problem, refer to the following detailed documention of debugger
limitations (many of which are extremely rare and esoteric):

(1) Your source files must be stored on disk and accessible to the IDE. If you are
trying to debug code fragments, try writing them to disk temporarily and setting the
__file__ variable in the module name space before invoking Python's exec or eval.
This will allow Wing's debugger to map code objects to the source you've
temporarily written to disk.

(2) Running without saving will lead to incorrect display of breakpoints and run
position because the debug process runs against the on-disk version of the source
file. Wing will indicate in the Messages tool and Stack Data status indicator that
some files are out of sync so this case should only occur if you ignore its warnings.

(3) You cannot run the debug program using the -O or -OO optimization options for
the Python interpreter. This removes information about line numbers and source
file names, making it impossible to stop at breakpoints or step through code.

(4) There are several cases where Wing may fail to stop at breakpoints or
exceptions, or may fail to find source files corresponding with breakpoints or
exception points. All of these are caused by storage of incorrect file names in *.pyc
files:

• Moving *.pyc files on disk after they are generated invalidates the file name
stored in the file if it is a partial relative path. This happens if your
PYTHONPATH or sys.path contains partial relative path names.

• A similar problem may result from use of compileall.py and some other
utilities that don't record a correct filename in the *.pyc file.

• If you run the same code twice using different paths to the same working
directory, as is possible on Linux/Unix with symbolic links, the file names left in
*.pyc may contain a mix of each of these paths. If the symbolic link that was
used is subsequently removed, some of the file names become invalid.

The fix for all of these problems is to remove the *.pyc files and let Python
regenerate them from the corresponding *.py files with the correct file name
information.

Hint: You can open *.pyc files in most text editors to inspect the stored file names.

Advanced Debugging Topics

123

http://wingware.com/doc/install/trouble-debug

(5) For code that spends much of its time in C/C++ without calling Python at all, for
example as in a GUI main loop, the debugger may not reliably stop at breakpoints
added during a run session, and may not respond to Pause requests. See section
Debugging Non-Python Mainloops for more information.

(6) You cannot use pdb or other debuggers in code that you are running within the
Wing debugger. The two debuggers conflict because they attempt to use the same
debugger hooks in the Python interpreter.

(7) If you override __import__ in your code, you will break the debugger's ability to
stop at breakpoints unless you call the original __import__ as part of your code
whenever a module is actually imported. If you cannot call the original __import__
for some reason, it may be possible to instead use wingdbstub and then call
wingdbstub.debugger.NotifyImport(mod) from your import handler (where mod
is the module that was just imported).

(8) If you set __file__ in a module's name space to a value other than its original,
Wing will be unable to stop at breakpoints in the module and may fail to report
exceptions to the IDE's user interface.

(9) If you use an extension module to call C/C++ level stdio calls instead of using
the Python-level facilities, the debug process will remain unresponsive to Wing IDE
while waiting for keyboard input, I/O redirection to the Debug Probe in Wing Pro
will fail, and you may run into out-of-order character reads in some cases. Details
can be found in Debug Process I/O.

(10) Using partial path names in module __file__ attribute can in rare cases cause
Wing to fail to stop on breakpoints and exceptions, to fail to display source files, or
to confuse source files of the same name.

A partial path name may end up in __file__ only when (a) invoking Python code
with a partial path name, for example with python myfile.py instead of python
/path/to/myfile.py, (b) sending partial path names into exec, (c) using partial path
names in your PYTHONPATH or sys.path, or (d) using compileall.py or similar
tool to compile modules with a partial path name.

Because Wing does everything possible to avoid this problem in practice, it actually
only occurs in the following rare cases:

• When modules are loaded with partial path names and os.chdir() is called
before debugging is started. This is only possible when using wingdbstub or
otherwise starting debug after your debug process is started.

• When modules are loaded with partial path names and os.chdir() is called
after wingdbstub.debugger.SuspendDebug() and before
wingdbstub.debugger.ResumeDebug().

• When modules are loaded with partial path names and removed from
sys.modules before the debugger is started or while debugging is suspended.

Advanced Debugging Topics

124

http://wingware.com/doc/howtos/non-python-mainloops
http://wingware.com/doc/debug/debug-process-i-o

• When code objects are created on the fly using compile(), the C API, or the
new module, a relative filename or an incorrect filename are used for the
filename argument, and os.chdir() is called before the code is executed.

(11) Wing tries to identify when source code in the IDE matches or does not match
the code that is running in the debug process. There are certain very rare cases
where this will fail, which may lead to failure to stop on breakpoints and other
problems even when files are identified by the IDE as being synchronized:

Using execfile(), eval(), or exec with a globals dict that contains __file__ will
cause Wing to incorrectly assert that the specified file has been reloaded. In
practice, this scenario usually occurs when execfile() is called from the top level of
a module, in which case the module is in fact being loaded or reloaded (so no
mis-identification of module load status occurs). However, in cases where a
module load takes a long time or involves a long-running loop at the top level, the
execfile(), eval(), or exec may occur after edits to the module have been made
and saved. In this case, Wing will mis-identify the module as having been reloaded
with the new edits.

This problem can also be triggered if a globals with __file__ is explicitly passed to
execfile(), eval(), or exec. However, it will only occur in this case when the code
object file name is ?, and locals and globals dictionaries are the same, as they
are by default for these calls.

(12) In very rare cases, when using the wingdbstub.py, if you set sys.exitfunc
after debugging has been started, the IDE will time out on a broken network
connection after the debug program exits on an exception. This only happens in
some exception handling modes with exceptions that look like they will be handled
because a try/except block is present that might handle the exception, but where
the exception is not in the end handled and the debug program exits without calling
StopDebug(). Work-arounds include setting sys.exitfunc before importing
wingdbstub.py or adding a top-level try/except clause that always calls
StopDebug() before exiting the debug program.

(13) Naming a file <string> will prevent the debugger from debugging that file
because it is confused with the default file name used in Python for code that is not
located in a file.

(14) The debugger may fail to step or start after stopping at a breakpoint if the
floating point mode is set to single precision (24 bit) on Intel x86 and potentially
other processors. This is sometimes done by graphics libraries such as DirectX or
by other code that optimizes floating point calculations.

(15) When using Stackless Python, overriding stackless.tasklet.__call__ without
calling the Wing debugger's __call__ will break the debugger.

Advanced Debugging Topics

125

Integrated Version Control
Wing IDE ships with integrated support for the Subversion, Mercurial, Bazaar, Git,
CVS, and Perforce version control systems. Version control operations can be
accessed with a menu on the main menubar, context menus in the editors and
Project view, and a tool available from the Tools menu.

By default Wing auto-detects which version control system is in use for your
project, based on files and directories that have been added to the project, and
assigns a single active system for project-wide operations such as status, update,
or commit. However, when right-clicking in the editor or Project view, the
appropriate version control system is used even if this is different from the one
defined for the project as a whole.

The name of the menu in the menu bar and the tool in the Tools menu changes to
match the version control system that Wing is using for the project as a whole.
Which version control systems will be considered for projects can be controlled by
enabling or disabling each one in the Version Control preferences group.

Wing relies on being able to run the command line executable, such as svn, git, or
p4, for any version control system in use. It also relies on an external ssh agent or
other security agent to help authorize version control operations. Wing does not
store passwords nor does it provide a way to enter them for each operation. See
Version Control Configuration for help configuring ssh or the command line
executables.

Note that version control operations are directory-based, just as they are on the
command line, and most operations are applied recursively to sub-directories and
their files. This is true even if those sub-directories or files are not visible in the
Project view in Wing.

14.1. Setting Up Version Control in Wing
If you do not already have files checked out of a version control system (VCS), or
have not already set up your version control repository, you will want to do that first
outside of Wing according to the instructions for the VCS that you are using.
Wing's version control integration is not designed to create or initially check out
files from a VCS.

Once you have your files added to version control, you can set up in Wing simply
by adding those files (or more likely, the directory containing them) to your Wing
project, using the items in the Project menu.

At this point, Wing should show an extra menu in the menu bar and an item in the
Tools menu for the VCS you are using. Wing also adds version control operations
to the editor and Project tool context menus.

Integrated Version Control

126

http://wingware.com/doc/versioncontrol/configuration

If this does not happen, you may need to point Wing to the executable for your
VCS using the Executable preference in the appropriate Version Control area.
This should be set to the full path to the command line executable and not the
executable for GUIs like TortoiseHg. Wing runs the command lines in the
background and parses their output when you issue VCS commands from the IDE.

The operations covered by Wing's integration include adding, moving, renaming,
and removing files in version control (this is integrated also with the
add/move/rename/remove file management operations on the Project tool), status,
log, commit, update, revert, diff, push/pull (for distributed VCSes), and some other
operations specific to each supported VCS.

When a VCS is active, Wing also adds Compare to Repository to context menus,
which kicks off graphical diff/merge between the working version and the repository
version it is based on.

14.2. Version Control Tool Panel
The version control tool panel for the active version control system can be shown
by selecting it from the Tools menu or as a side effect of selecting operations from
any of the version control menus.

By default, the version control tool contains a Project Status view that shows the
status operation applied to the entire project. It summarizes which files have been
modified, and can also show unregistered files when the Show Unregistered
option in the right-click context menu is enabled.

Note that the Project Status operates on files in the project, and thus requires that
some files or directories managed by the active version control system have been
added to the project.

Operations invoked for a version control system will also display a view within the
version control tool. These views display the output from the external command run
to implement the operation, any input parameters, and optionally the console
output for the external command. The menu in the top left can be used to switch
between operations or to return to the Project Status view. Clicking on the X icon
closes the view for the current operation. Operations may also be cancelled and
many may be run again using the buttons in the lower right.

The Options menu can be used to access the version control preferences,
documentation, or a console that displays the version control invocations.

Integrated Version Control

127

http://wingware.com/doc/diff/index

14.3. Common Version Control Operations
Some operations are similiar across different version control systems and are
supported in Wing by common commands. There are some variations among
these from one version control system to another (for example, the add operation
in CVS is not recursive), but there are more similarities than differences and the
operations should perform as they do on the command line.

Commit

The commit operation copies changes in the local file system to the version control
repository that the files are associated with. The repository might be entirely local
in distributed systems such as git or bzr or it may be on a server in centralized
systems such as Subversion or CVS.

The tool shown for a commit operation has a several tabs that contain the commit
message, the diffs for this commit, the list of files eligible for the commit, and the
results once the commit is run. The Files tab may be used to select files for the
commit by un-checking files that should not be committed.

The common operation Commit Project can be used to run the commit operation
against all the files in the project.

Diff

The diff operation displays a tool with the differences between files on the local file
system and files in the repository. The diff appears in the tool itself and the
right-click context menu may be used to copy the diff text, goto the source for a
particular section of the diff, or run the diff command again.

Status

The status operation displays a tool with the status of files in the scope of the
command. The files are displayed as a tree by default, but may also be displayed
as a flat list by right-clicking and selecting View as List. To the left of the file name,
there is an icon to indicate if the file has been modified (or added or removed), has
a conflict, is locked, or is not registered. Unregistered files are omitted from the
status view by default. They can be shown by right-clicking on the tool and
selecting Show Unregistered.

The common operation Project Status can be used to run the status operation
against all the files in the project. This requires that files or directories managed by
the selected version control system have alreadya been added to the project.

Log

This operation displays a list of all the revisions, with commit comments, for the
files that are in the scope of the command.

Add

The add operation registers a file or directory to be added in the next commit.

Integrated Version Control

128

Remove

The remove operation requests that a file or directory be removed in the next
commit.

Revert

This operation will dispose of any local changes and revert the local files to match
the current revision in the repository.

14.4. Bazaar
Wing's Bazaar support requires the bzr command line executable to be installed
separately from Wing. Please see http://bazaar-vcs.org/ for information about
Bazaar. The bzr executable may either be in your path or set it with the
Bazaar executable preference in the Version Control / Bazaar preferences group.

The Bazaar support defines the following commands, in addition to those
documented in Common Version Control Operations. Please see the Bazaar
documentation for information on what these commands do when executed by the
command line executable.

Merge Entire Branch

Merge changes in remote branch with the local branch. This command runs
bzr merge <remote> to merge the changes.

Push Entire Branch

Push changes in local branch to remote branch. This command runs
bzr push <remote> to push the changes.

14.5. CVS
Wing's CVS support requires the cvs command line executable to be installed
separately from Wing. Please see http://www.nongnu.org/cvs/ for information about
CVS. The cvs executable may either be in your path or set it with the
CVS executable preference in the Version Control / CVS preferences group.

The CVS support works best if usernames and passwords are handled by another
program such as ssh-agent, pageant, or another ssh agent. For details on this
see Setting up SSH.

If this is not possible and you must use the obsolete pserver authentication
mechanism, you will need to issue the cvs login command once from the
command line before starting Wing.

CVS defines the following commands, in addition to those documented in Common
Version Control Operations:

Revert

Integrated Version Control

129

http://bazaar-vcs.org/
http://wingware.com/doc/versioncontrol/common-operations
http://www.nongnu.org/cvs/
http://wingware.com/doc/versioncontrol/configuring-ssh
http://wingware.com/doc/versioncontrol/common-operations
http://wingware.com/doc/versioncontrol/common-operations

This operation will dispose of any local changes and revert the local files to match
the current revision in the repository.

14.6. Git
Wing's Git support requires the git command line executable to be installed
separately from Wing. Please see http://git-scm.com/ for information about Git. The
git executable may either be in your path or set it with the Git executable
preference in the Version Control / Git preferences group.

The Git support defines the following commands, in addition to those documented
in Common Version Control Operations. Please see the Git documentation for
information on what these commands do when executed by the command line
executable.

List Branches

List all branches in local repository

Switch Branch

Switch to a different named branch. This runs git checkout <branch>

Fetch Repository Changes

Fetch changes from a remote repository. This runs git fetch <remote>

Pull Branch Changes

Pull changes on a branch from a remote repository to the local repository. This
runs git pull <remote> <branch>

Push Branch Changes

Push changes on a branch from the local repository to a remote repository. This
runs git push <remote> <branch>

14.7. Mercurial
Wing's Mercurial support requires the hg command line executable to be installed
separately from Wing. Please see http://mercurial.selenic.com for information
about Mercurial. The hg executable may either be in your path or set it with the
Mercurial executable preference in the Version Control / Mercurial preferences
group.

The Mercurial support defines the following commands, in addition to those
documented in Common Version Control Operations. Please see the Mercurial
documentation for information on what these commands do when executed by the
command line executable.

Pull

Integrated Version Control

130

http://git-scm.com/
http://wingware.com/doc/versioncontrol/common-operations
http://mercurial.selenic.com
http://wingware.com/doc/versioncontrol/common-operations

Pull changes from a remote repository to a local one and optionally update the
working directory of the local repository.

Update

Update entire working directory with changes from the local repository.

Merge

Merge changes in local repository with the working directory.

Push

Push changes in local repository to remote repository.

14.8. Perforce
Wing's Perforce is disabled by default and must be enabled with the Active
preference in the Version Control / Perforce preferences group. The support also
requires the p4 command line executable to be installed separately from Wing.
Please see http://www.perforce.com for information about Perforce. The p4
executable may either be in your path or set it with the Perforce executable
preference.

Wing finds Perforce's working directory is found by executing p4 client -o in the
environment defined in Project Properties when a project is opened or the
environment is changed. The client specification must be defined outside of Wing.

If Wing's Project Home Directory project property is set to a value outside of the
Perforce tree, it may be necessary to add -d pathname (with the appropriate
pathname for your configuration) to Extra Global Arguments in Wing's Perforce
preferences.

If you usually use the Perforce GUI, you may need to start up the GUI before the
environment used by the p4 executable is set up properly.

Perforce defines the following commands, in addition to those documented in
Common Version Control Operations:

Edit

Prepare the files for editing and make any editor the file is opened in writable. Note
that revert on an unmodified file that's opened for editing will release the file from
edit status.

14.9. Subversion
Wing's Subversion support requires the svn command line executable to be
installed separately from Wing. Please see http://subversion.tigris.org/ for
information about Subversion. The svn executable may either be in your path or
set it with the SVN executable preference in the Version Control / SVN
preferences group.

Integrated Version Control

131

http://www.perforce.com
http://wingware.com/doc/versioncontrol/common-operations
http://subversion.tigris.org/

The Subversion support works best if usernames and passwords are handled by
another program such as ssh-agent, pageant, or another ssh agent. For details
on this see Setting up SSH.

Using SSH is preferred because there is no safe way to interact with the svn
executable to pass it a username and password. The --username and --password
command line arguments can be used, but will expose the password to anyone on
the system who can list process command lines. If there is no alternative, these
can be specified in the Extra global arguments preference in the Version Control
/ SVN preferences group.

Subversion defines the following commands, in addition to those documented in
Common Version Control Operations:

Revert

This operation will dispose of any local changes and revert the local files to match
the current revision in the repository.

Resolved

This is used to indicate that a conflict that arose during update has been resolved.
Files that are in conflict cannot be checked in with commit until the resolved
operation is completed.

Blame/Praise

This can be used to see the revision number and author for every line in a file.

Last Revision Diff

This shows the differences for the changes that were most recently checked in for
a files.

14.10. Version Control Configuration
This section provides additional information for users that have not already started
using a version control system outside of Wing.

14.10.1. Configuring SSH

Most modern version control systems use SSH as a secure and convenient way to
access the version control repository.

To set up SSH on Windows:

1. Install putty -- the combined installer is easiest
2. Add the location where putty is installed to your PATH environment variable

from the Advanced tab of the System control panel.
3. Run puttygen and generate an SSH2 RSA key pair. Use a passphrase you

will remember. Save both private and public keys to disk. Copy the contents of
the key box (starting with "ssh-rsa") to rsa-public.key on disk.

Integrated Version Control

132

http://wingware.com/doc/versioncontrol/configuring-ssh
http://wingware.com/doc/versioncontrol/common-operations
http://www.chiark.greenend.org.uk/~sgtatham/putty/

4. Copy the rsa-public.key file to your server and add it to the
.ssh/authorized_keys file under your username. E.g., use
pscp rsa-public.key user@hostname: and then log into hostname and
cat rsa-public.key >> .ssh/authorized_keys.

5. Run putty and enter host name in Host Name and Saved Sessions boxes
then press Save. Go to the Connection category and enter your user name
on the server into the Auto-login username box. Go back to Session
category and press Save again.

6. Run pageant, which adds an icon to your Windows tray. Right click and select
Add Key. Navigate to the private key saved from puttygen and enter your
passphrase when prompted.

7. Restart putty, click on the saved session, press Load, and then Open. This
should open a connection to the server without prompting for any further
information.

To set up SSH on Linux/Unix:

If you do not already have openssh and cvs installed, install them from packages
that came with your Linux or Unix distribution.

1. If ssh-add -l complains that it cannot find the SSH agent, run ssh-agent bash
(or your favorite shell). This can be skipped on most modern Linux
distributions because they run the X window manager inside ssh-agent.

2. If you don't already have an ssh key in .ssh, issue the command
ssh-keygen -t rsa to create a key pair in .ssh/id_rsa (the private key) and
.ssh/id_rsa.pub (the public key). Enter a passphrase you will remember.

3. Copy the file .ssh/id_rsa.pub to your server and add it to the
.ssh/authorized_keys file under your username. E.g., use
scp rsa-public.key user@hostname: and then log into hostname and
cat rsa-public.key >> .ssh/authorized_keys.

4. Back on your client (where you plan to run Wing), type ssh-add and enter your
passphrase to get the SSH key loaded into ssh-agent.

5. Type ssh user@hostname and you should be able to log into your server
without being asked for a password.

To set up SSH on OS X:

You can set up SSH on OS X in the same way as on Linux/Unix (described above).
OS X automatically manages ssh keys so you will be prompted for access to the
key chain as needed by the version control system.

14.10.2. Configuring Subversion

Installing Subversion

Integrated Version Control

133

On Windows: Download from http://subversion.tigris.org/ and add installation
location to PATH environment variable from the Advanced tab of the System
control panel

On Linux/Unix: Install Subversion using the packages that came with your
Linux/Unix distribution or download from http://subversion.tigris.org/ and build from
sources.

Subversion with SSH

First time configuration: Install and configure SSH as described earlier (this also
loads authentication information into the cache for the current session)

To check out a repository: Type svn checkout
svn+ssh://hostname/path/to/repository. If you're not sure what to check out try
this first: svn list svn+ssh://hostname/

Future sessions require: On Windows, double click on your private key file and
enter your pass phrase, or on Linux/Unix, run ssh-add and enter your pass
phrase.

Subversion with http/https or file URLs

To check out a repository with http or https, type svn checkout
http://hostname/path/to/repository. If you're not sure what to check out try this
first: svn list http://hostname/

To check out a repository with file: URLs, type svn checkout
file:///path/to/repository You will be prompted for your user name and password,
which will be cached by Subversion for future sessions.

14.10.3. Configuring CVS

Installing CVS

On Windows: Download from http://www.nongnu.org/cvs and add installation
location to PATH environment variable from the Advanced tab of the System
control panel

On Linux/Unix: Install CVS from using the packages that came with your
Linux/Unix distribution or download from http://www.nongnu.org/cvs and build from
sources.

Using CVS with SSH

First time configuration: Install and configure SSH as described earlier (this also
loads authentication information into the cache for the current session). Then: On
Windows, add CVS_RSH=plink to your environment from the Advanced tab of the
System control panel. On Linux/Unix, add CVS_RSH=ssh to your environment.
For example, CVS_RSH=ssh; export CVS_RSH on the command line, or add this
to your .bashrc file. Note that Environment in your Project Properties can also be

Integrated Version Control

134

http://subversion.tigris.org/
http://subversion.tigris.org/
http://wingware.com/doc/versioncontrol/configuring-ssh
http://www.nongnu.org/cvs
http://www.nongnu.org/cvs
http://wingware.com/doc/versioncontrol/configuring-ssh

used to set CVS_RSH or other environment variables, however only for CVS
commands issued from the IDE.

To check out a repository: Type
cvs -d :ext:username@hostname:/path/to/repository co module_name

Future sessions require: On Windows, double click on your private key file and
enter your pass phrase, or on Linux/Unix, run ssh-add and enter your pass phrase

Using CVS with pserver

CVS's pserver authentication mechanism is obsolete but it is still used for
anonymous CVS access in some places, such as on sourceforge.net. If you are
working with a pserver repository that requires a password, then you will need to
issue cvs login once from the command line before starting Wing.

Source Code Analysis
Wing's auto-completer, source assistant, source index menu, goto-definition
capability, find uses, refactoring, and other features all rely on a central engine that
reads and analyzes your source code in the background as you add files to your
project or alter your code in the source code editor. This engine can also load and
inspect extension modules used by your code, can make use of live runtime state
when available in a debug process or in the integrated Python Shell, and can read
user-provided interface description files.

15.1. How Analysis Works
In analysing your source, Wing will use the Python interpreter and PYTHONPATH
that you have specified in your Project Properties. If you have indicated a main
debug file for your project, the values from that file's properties are used; otherwise
the project-wide values are used. Whenever any of these values changes, Wing
will re-analyze some or all of your source code.

You can view the Python interpreter and PYTHONPATH that are being used by the
source code analysis engine, by selecting the Show Analysis Stats item in the
Source menu. The values shown in the resulting dialog window are read-only but
may be changed by pushing the Settings button. See Project-wide Properties for
details on changing these values.

Be aware that if you use multiple versions of the Python interpreter or different
PYTHONPATH values for different source files in your project, Wing will analyse all
files in the project using the one interpreter version and PYTHONPATH it finds
through the main debug file or project-wide debug properties settings. This may
lead to incorrect or incomplete analysis of some source, so it is best to use only
one version of Python with each Wing IDE project file.

When Wing tries to find analysis information for a particular module or file, it takes
the following steps:

Source Code Analysis

135

http://sourceforge.net/
http://wingware.com/doc/proj/project-wide-properties

• The path and same directory as the referencing module are searched for an
importable module

• If the module is Python code, Wing statically analyses the code to extract
information from it

• If the module is an extension module, Wing looks for a *.pi interface
description file as described later in this section

• If the module cannot be found, Wing tries to import it in a separate process
space in order to analyze its contents

• If a debug process is active, Wing tries to read relevant type information from
the live runtime state associated with the source code

15.2. Static Analysis Limitations
The following are known limitations affecting features based on static source
analysis:

• Argument number, name, and type is not determined for functions and
methods in extension modules.

• Analysis sometimes fails to identify the type of a construct because Python
code doesn't always provide clues to determine the data type.

• Types of elements in lists, tuples, and dictionaries are not identified.
• Analysis information may be out of date if you edit a file externally with another

editor and don't reload it in Wing. See section Auto-reloading Changed Files
for reload options.

• From time to time, as Python changes, some newer Python language
constructs and possible type inferencing cases are not supported.

A good way to work around these limitations, when they arise, is to place a
breakpoint in the code where you are working, run to it, and then auto-completion
and other information presented by the IDE will be based on the actual runtime
state rather than static analysis.

See Helping Wing Analyze Code for more information.

15.3. Helping Wing Analyze Code
Wing's source analyser can only read Python code and does not contain support
for understanding C/C++ extension module code other than by attempting to import
the extension module and introspecting its contents (which yields only a limited
amount of information and cannot determine argument number, name, or types).
Also, since Python is a dynamic language, it is possible to craft code that Wing's
static analysis engine cannot understand.

There are a number of ways of assistant Wing's static source analyzer in
determining the type of values in Python code.

Source Code Analysis

136

http://wingware.com/doc/edit/auto-reloading-changed-files
http://wingware.com/doc/edit/helping-wing-analyze-code

Using Live Runtime State

When a debug process is active, or when working in the Python Shell, Wing
extracts relevant type information from the live runtime state associated with your
Python code. Since this yields complete and correct type information even for code
that Wing's static analysis engine cannot understand, it is often useful to run to a
breakpoint before designing new code that is intended to work in that context.

In the editor, the cog icon in the auto-completer indicates that type information was
found in the live runtime state.

In Wing IDE Professional, the Debug Probe can be used to immediately try out
new code in the runtime environment for which it is being designed.

Both the Python Shell and (in Wing Pro) the Debug Probe can mark an active
range in the editor so code can quickly be reevaluated as it is being edited. This is
done by selecting the code and pressing the Active Range icon in the upper right
of the tool into which you want to set the active range.

Using isinstance() to Assist Analysis

One way to inform the static analysis engine of the type of a variable is to add an
isinstance call in your code. For example isinstance(obj, CMyClass) or
assert isinstance(obj, CMyClass) when runtime type checking is desired. The
code analyzer will pick up on these and present more complete information for the
asserted values.

In cases where doing this introduces a circular import, you can use a conditional to
allow Wing's static analyser to process the code without causing problems when it
is executed:

if 0:
 import othermodule
 assert isinstance(myvariable, othermodule.COtherClass)

In most code, a few isinstance calls go a long way to making code faster and
easier to edit and navigate.

Using *.pi Files to Assist Analysis

It is also possible to create a *.pi (Python Interface) file that describes the contents
of a module. This file is simply a Python skeleton with the appropriate structure,
call signature, and return values to match the functions, attributes, classes, and
methods defined in a module. Wing IDE will read this file and merge its contents
with any information it can obtain through static analysis or by loading an extension
module.

In somes cases, as for Python bindings for GUI and other toolkits, these *.pi files
can be auto-generated from interface description files. The code that Wing uses to

Source Code Analysis

137

automatically generate *.pi files from extension modules is in
src/wingutils/generate_pi.py in your Wing IDE installation, and another example
that is used to generate interface information for PyGTK is in
src/wingutils/pygtk_to_pi.py.

Naming and Placing *.pi Files

Wing expects the *.pi file name to match the name of the module. For example, if
the name referenced by import as mymodule then Wing looks for mymodule.pi.

The most common place to put the *.pi file is in the same directory as the *.pyd,
*.so, or *.py for the module is is describing. *.pi files that describe entire packages
(directories containing __init__.py) should be placed in the package directory's
parent directory.

If Wing cannot find the *.pi file in the same directory as the module, it proceeds to
search as follows, choosing the first matching *.pi file:

1. In the path set with the Source Analysis > Advanced > Interfaces Path
preference.

2. In the resources/builtin-pi-files in the Wing IDE installation. This is used to
ship type overrides for Python's builtin types and standard library.

3. In resources/package-pi-files, which is used to ship some *.pi files for
commonly used third party packages.

For all of these, Wing inspects the path directory for a matching *.pi file and treats
any sub-directories as packages.

In cases where Wing cannot find a *.pi at all for an extension module, it will still
attempt to load the extension module by name, in a separate process space, so
that it can introspect its contents. The results of this operation are stored in
pi-cache within the Cache Directory shown in Wing's About box. This file is
regenerated only if the *.pyd or *.so for the loaded extension module changes.

For Python source modules, absence of a *.pi causes Wing to fall back on static
analysis and (if available) runtime analysis through the debugger.

Merging *.pi Name Spaces

When Wing finds a *.pi file in the same directory as a Python module or extension
module, or if it finds it using the Source Analysis > Advanced > Interfaces Path
preference, then Wing merges the contents of the *.pi file with any information
found by analyzing or introspecting the module. The contents of the *.pi file take
precedence when symbols are defined in both places.

Source Code Analysis

138

Creating Variants by Python Version

In rare cases, you may need to create variants of your *.pi files according to
Python version. An example of this is in resources/builtin-pi-files, the directory
used to ship type overrides for Python's builtin types and standard library.

As noted above, Wing always looks first at the top level of an interface path
directory for a matching *.pi file. If this fails then Wing tries looking in a
sub-directory #.# named according to the major and minor version of Python being
used with your source base, and subsequently in each lower major/minor version
back to 2.0.

For example, if c:\share\pi\pi-files is on the interfaces path and Python 2.7 is
being used, Wing will check first in c:\share\pi\pi-files, then in
c:\share\pi\pi-files\2.7. then in c:\share\pi\pi-files\2.6, and so forth.

15.4. Analysis Disk Cache
The source code analyzer writes information about files it has recently examined
into the Cache Directory that is listed in Wing's About box, which is accessed from
the Help menu.

Cache size may be controlled with the Max Cache Size preference However, Wing
does not perform well if the space available for the cache is smaller than the space
needed for a single project's source analysis information. If you see excessive
sluggishness, either increase the size of the cache or disable it entirely by setting
its size to 0.

If the same cache will be used by more than one computer, make sure the clocks
of the two computers are synchronized. The caching mechanism uses time
stamps, and may become confused if this is not done.

The analysis cache may be removed in its entirety. Wing IDE will reanalyze your
code and recreate the cache as necessary.

PyLint Integration
Wing Pro provides a simple integration with pylint, which is a third party tool that
runs error and warning analyses on Python code.

To use the tool, you must install pylint separately first and verify that it works from
the command line. Note that pylint has certain dependencies that may be missing
from your system. See the pylint website for installation details.

Once this is done and pylint works on the command line, bring up the PyLint tool
from the Tools menu. Right click on the tool and select Configure. This will open a
configuration file in an editor in Wing. You can alter the following here:

• command -- The command that invokes pylint

PyLint Integration

139

http://www.pylint.org/
http://www.pylint.org/

• args -- Additional command line arguments to send to pylint (see the pylint
documentation for details on those available)

• timeout -- The maximum amount of time to wait for pylint to complete before
aborting analysis.

• autosave -- Set this to 1 to automatically save a file before starting pylint to
analyze it or 2 to auto-save all open files before starting pylint to analyze any
file. 0 disables any auto-saving.

The configuration file can contain environment variable references in the form
$(ENV) or ${ENV}, including references to regular environment variables defined in
Project Properties or special environment defined by Wing.6

Once you have edited the configuration file as desired, save and close it.

Per-project pylintrc files can also be specified. If a file .pylintrc exists in the same
directory as a Wing project file, then this file name is passed to pylint using the
--rcfile argument. See the pylint documentation for details on what this file can
contain.

Next, bring up some Python source code in an editor in Wing and then right click
on the PyLint tool and select Update. After some time (up to a minute for larger
files), lists of errors, warnings, and informational messages will be placed into the
tool. Click on the items to bring up the source code with the indicated line selected.

Note that you can disable messages on the command line to pylint, as configured
using the args item in the configuration file. See the pylint documentation for
details.

Processing multiple files

The context menu on the PyLint tool will include an item for running pylint on all
the files in the current package, when the current file is in a package (a directory
that contains a file __init__.py). In this case, the file name as well as the line
number is shown in the Line column of the output.

Note that this option adds --output-format=parseable to the pylint command line
so that the file names can be obtained. This may not work with all pylint versions.

Using VirtualEnv on Windows

On Windows, pylint installed into a virtualenv does not work because pylint.bat is
invoking just python and that may find the wrong Python installation. To fix this,
edit pylint.bat and change python to the full path of the virtualenv's Python.
Another fix is to edit pylint instead and add the following lines at the top:

import os
dirname = os.path.dirname(__file__)
execfile(os.path.join(dirname, 'activate_this.py'))

Credits

PyLint Integration

140

http://wingware.com/doc/proj/variable-expansion

Thanks to Markus Meyer for providing the original implementation of this capability
for Wing IDE. The source code for this integration is available under open source
license in scripts/pylintpanel.py within your Wing IDE installation.

Scripting and Extending Wing IDE
Wing IDE provides an API that can be used to extend and enhance the IDE's
functionality with scripts written in Python.

Simple scripts can be written without any extra tools -- Wing will find and load
scripts at startup and reload them when they are edited within Wing IDE and saved
to disk. The API Wing allows scripts access to the editor, debugger, project, and a
range of application-level functionality. Scripts may also access all documented
preferences and can issue any number of documented commands which
implement functionality not duplicated in the formal Python API.

Scripts can be executed like any other command provided by Wing IDE. Scripts
can add themselves to the editor and project context menus, or to new menus in
the menu bar, and they can also register code for periodic execution as an idle
event. They can also be bound to a key combination, or can be invoked by name
using the Command by Name item in the Edit menu.

Errors encountered while loading or executing scripts are displayed in the Scripts
channel of the Messages tool.

Scripts can optionally be designated as plugins, which allows the script to enable
or disable itself as a whole when appropriate (for example, according to project
contents or current editor file type), and allows the user to selectively enable or
disable the script in the Tools menu.

More advanced scripting, including the ability to add tool panels, is also available
but generally requires running a copy of Wing IDE from source code, so that scripts
can be debugged more efficiently.

17.1. Scripting Example
The scripting facility is documented in detail in the sections that follow, but in most
cases it is easiest simply to work from the examples in the scripts directory in the
Wing IDE installation, using the rest of this chapter as a reference.

User scripts are usually placed inside a directory named scripts within the User
Settings Directory. They can also be placed in scripts inside the Wing IDE
installation.

Try adding a very simple script now by pasting the following into a file called
test.py within one of the scripts directories:

import wingapi
def test_script(test_str):

Scripting and Extending Wing IDE

141

http://wingware.com/doc/preferences/index
http://wingware.com/doc/preferences/index
http://wingware.com/doc/commands/index
http://wingware.com/doc/install/user-settings-dir
http://wingware.com/doc/install/user-settings-dir

 app = wingapi.gApplication
 v = "Product info is: " + str(app.GetProductInfo())
 v += "\nAnd you typed: %s" % test_str
 wingapi.gApplication.ShowMessageDialog("Test Message", v)

Then select Reload All Scripts from the Edit menu. This is only needed the first
time a new script file is added, in order to get Wing to discover it. Afterward, Wing
automatically reloads scripts whenever they are saved to disk.

Next execute the script with the Command by Name item in the Edit menu and
then type test-script followed by pressing the Enter key in the text entry that
appears at the bottom of the IDE window. Wing will ask for the argument test_str
using it's builtin argument collection facility. Type a string and then Enter. The
script will pop up a modal message dialog.

Next make a trivial edit to the script (e.g., change "And you typed" to "Then you
typed"). Save the script and execute the script again. You will see that Wing has
automatically reloaded the script and the new text appears in the message dialog.

Finally, make an edit to the script that introduces an error into it. For example,
change import wingapi to import wingapi2. Save the script and Wing will show a
clickable traceback in the Scripts channel of the Messages tool. This makes it
easy to quickly find and fixed errors in scripts during their development.

To make life easier, you may want to create a project for your scripting work, and
then add WINGHOME/bin to your Python Path in Project Properties, where
WINGHOME is replaced with the installation location of Wing IDE or on OS X the
name of the Contents/Resources folder inside of Wing's .app folder. This will
make it possible for Wing to show auto-completion and call tips for items inside the
module wingapi.

That's all there is to basic scripting. The most relevant examples for most simple
scripts can be found in editor-extensions.py in the scripts directory inside the
Wing IDE installation. This shows how to access and alter text in the current editor,
among other things.

For more advanced scripting, where more complete debugging support is needed,
you will need to obtain a copy of the Wing IDE source code distribution and run
Wing from source code so that the scripts (and all of Wing) can be debugged with
another copy of Wing (usually your binary installation of Wing). This is done by
signing and submitting a non-disclosure agreement.

17.2. Getting Started
Scripts are Python modules or packages containing one or more Python functions.
When Wing starts up, it will search all directories in the configured
Script Search Path for modules (*.py files) and packages (directories with an
__init__.py file and any number of other *.py files or sub-packages).

Scripting and Extending Wing IDE

142

http://wingware.com/pub/wingide/support/source-non-discl.pdf

Wing will load scripts defined in each file and add them to the command set that is
defined internally. The script directories are traversed in the order they are given in
the preference and files are loaded in alphabetical order. When multiple scripts
with the same name are found, the script that is loaded last overrides any loaded
earlier under that name.

Functions in scripts are exposed as commands in Wing unless their names start
with an underscore. Commands may be bound to keys, added to menus or run via
Command by Name on the Edit menu.

Naming Commands

Commands can be referred to either by their short name or their fully qualified
name (FQN).

The short name of a command is the same as the function name but with
underscores optionally replaced by dashes (cmdname.replace('_', '-')).

The FQN of a command always starts with .user., followed by the module name,
followed by the short name.

For example, if a function named xpext_doit is defined inside a module named
xpext.py, then the short name of the command created will be xpext-doit and the
FQN will be .user.xpext.xpext-doit.

Reloading Scripts

Once script files have been loaded, Wing watches the files and automatically
reloads them when they are edited inside Wing IDE and saved to disk. As a result,
there is usually no need to restart Wing when working on a script, except when a
new script file is added. In that case, Wing will not load the new script until the
reload-scripts command (Reload All Scripts in the Edit menu) is issued or the
IDE is restarted.

Reloading will not work for any file that sets _ignore_scripts or for modules
outside of the script path. For details on how reloading works, see Advanced
Scripting.

Overriding Internal Commands

Wing will not allow a script to override a command that Wing defines internally
(those documented in the Command Reference). If a script is named the same as
a command in Wing, it can only be invoked using its fully qualified name. This is a
safeguard against completely breaking the IDE by adding a script.

One implication of this behavior is that a script may be broken if a future version of
Wing ever adds a command with the same name. This can generally be avoided
by using appropriately descriptive and unique names and/or by referencing the
command from key bindings and menus using only its fully qualified name.

Scripting and Extending Wing IDE

143

http://wingware.com/doc/scripting/advanced
http://wingware.com/doc/scripting/advanced
http://wingware.com/doc/commands/index

17.3. Script Syntax
Scripts are syntactically valid Python with certain extra annotations and structure
that are used by Wing IDE to determine which scripts to load and how to execute
them.

Only functions defined at the top level of the Python script are treated as
commands, and only those that start with a letter of the alphabet. This allows the
use of _ prefixed names to define utilities that are not themselves commands, and
allows use of Python classes defined at the top level of script files in the
implementation of script functionality.

Script Attributes

In most cases additional information about each script def is provided via function
attributes that define the type of arguments the script expects, whether or not the
command is available at any given time, the display name and documentation for
the command, and the contexts in which the script should be made available in the
GUI.

The following are supported:

• arginfo -- This defines the argument types for any arguments passed to the
script. It is a dictionary from the argument name to an ArgInfo specification
(described in more detail below) or a callable object that returns this dictionary.
Argument information is used by Wing to drive automatic collection of
argument values from the user. When this is missing, all arguments are
treated as strings.

• available -- This defines whether or not the script is available. If missing, the
command is always available. If set to a constant, the truth value of that
constant defines availability of the script. If set to a callable object, it is invoked
with the same arguments as the script itself and the return value determines
availability.

• label -- The label to use when referring to the command in menus and
elsewhere. When omitted, the label is derived from the command name by
replacing underscores with a space and capitalizing each word
(cmdname.replace('_', ' ').title())

• doc -- The documentation for the script. Usually, a docstring in the function
definition is used instead.

• contexts -- The contexts in which the script will be added in the GUI, a
described in more detail below.

• plugin_override -- Used in scripts that are designated as plugins to indicate
that a command should be enabled even if the plugin is not. It should be set to
True.

Scripting and Extending Wing IDE

144

ArgInfo

Argument information is specified using the CArgInfo class in the Wing API
(wingapi.py inside bin in the Wing IDE installation, although the class is imported
from Wing IDE's internals) and the datatype and formbuilder modules in Wing's
wingutils package. The source code for this class and support modules is only
available in the source distribution, although most use cases are covered by the
following.

CArgInfo's contructor takes the following arguments:

• doc -- The documentation string for the argument
• type -- The data type, using one of the classes descended from

wingutils.datatype.CTypeDef (see below for the most commonly used ones)
• formlet -- The GUI formlet to use to collect the argument from the user when

needed. This is one of the classes descended wingutils.formbuilder.CDataGui
(see below for the most commonly used ones).

• label -- The label to use for the argument when collected from the user. This
argument may be omitted, in which case Wing builds the label as for the label
function attribute described above.

Commonly Used Types

The following classes in wingutils.datatype.py cover most cases needed for
scripting:

• CBoolean -- A boolean value. Constructor takes no arguments.
• CType -- A value of type matching one of the parameters sent to the

constructor. For example, CType("") for a string, CType(1) for an integer, and
CType(1.0, 1) for a float, or an integer.

• CValue -- One of the values passed to the constructor. For example
CValue("one", "two", "three") to allow a value to be either "one", "two", or
"three".

• CRange -- A value between the first and second argument passed to the
constructor. For example, CRange(1.0, 10.0) for a value between 1.0 and
10.0, inclusive.

Additional types are defined in wingutils.datatype.py, but these are not usually
needed in describing scripting arguments.

Commonly Used Formlets

The following classes in guiutils.formbuilder.py cover most of the data collection
formlets needed for scripting:

Scripting and Extending Wing IDE

145

CSmallTextGui -- A short text string entry area with optional history,
auto-completion, and other options. The constructor takes the following keyword
arguments, all of which are optional:

max_chars -- Maximum allowed text length (-1=any, default=80)
history -- List of strings for history (most recent 1st) or
 a callable that will return the history (default=None)
choices -- List of strings with all choices, or a callable
 that will take a fragment and return all possible
 matches (default=None)
partial_complete -- True to only complete as far as unique match when
 the tab key is pressed. Default=True.
stopchars -- List of chars to always stop partial completion.
 Default=''
allow_only -- List of chars allowed for input (all others are
 not processed). Set to None to allow all. Default=None
auto_select_choice -- True to automatically select all of the entry text
 when browsing on the autocompleter (so it gets erased
 when any typing happens). Default=False.
default -- The default value to use. Default=''
select_on_focus -- True to select range on focus click; false to retain
 pre-focus selection. Default=False
editable -- True to allow editing this field. Default=True.

CLargeTextGui -- A longer text string. The constructor takes no arguments.

CBooleanGui -- A single checkbox for collecting a boolean value. The constructor
takes no arguments.

CFileSelectorGui -- A keyboard-driven file selector with auto-completion, optional
history, and option to browse using a standard file open dialog. The constructor
takes the following keyword arguments:

want_dir -- True to browse for a directory name (instead of a
 file name). Default=False.
history -- Optional list with history of recent choices, most
 recent first. Default=()
default -- The default value to use. Default=''

Additional formlet types are defined in guiutils.formbuilder.py but these are not
usually needed in collecting scripting arguments.

CPopupChoiceGui -- A popup menu to select from a range of values. The
constructor takes a list of items for the popup. Each item may be one of:

None -- A divider
string -- The value. The label used in the menu is derived:
 label = value.replace('_', ' ').title()
(value, label) -- The value and label to use in menu.
(value, label, tip) -- The value, label, and a tooltip to show when the
 user hovers over the menu item.

Scripting and Extending Wing IDE

146

CNumberGui -- A small entry area for collecting a number. The constructor takes
these arguments (all are required):

min_value -- The minimum value (inclusive)
max_value -- The maximum value (inclusive)
page_size -- Increment when scroller is used to browse the range
num_decimals -- Number of decimal places (0 to collect an integer)

Additional formlets for collecting data are defined in guiutils.formbuilder.py, but
these are not usually needed for scripting.

Magic Default Argument Values

Wing treats certain defaults values specially when they are specified for a script's
arguments. When these default values are given, Wing will replace them with
instances of objects defined in the API. This is a convenient way for the script to
access the application, debugger, current project, current editor, and other objects
in the API. All the default values are defined in the wingapi.py file, as are the
classes they reference.

• kArgApplication -- The CAPIApplication instance (this is a singleton). Also
accessible as wingapi.gApplication.

• kArgDebugger -- The currently active CAPIDebugger. Also accessible as
wingapi.gApplication.GetDebugger().

• kArgProject -- The currently active CAPIProject. Also accessible as
wingapi.gApplication.GetProject().

• kArgEditor -- The currently active CAPIEditor. Also accessible as
wingapi.gApplication.GetActiveEditor().

• kArgDocument -- The CAPIDocument for the currently active editor. Also
accessible as wingapi.gApplication.GetActiveDocument().

GUI Contexts

Scripts can use the contexts function attribute to cause Wing to automatically
place the script into certain menus or other parts of the GUI. The following contexts
are currently supported (they are defined in wingapi.py):

• kContextEditor -- Adds an item to the end of the editor's context menu
(accessed by right clicking on the editor)

• kContextProject -- Adds an item to the end of the project's context menu
(accessed by right clicking on the project)

• kContextNewMenu -- Adds an item to a new menu in the menu bar. This is a
class whose constructor takes the localized name of the menu to add. The
menu is only added if one or more valid scripts with that menu context are
successfully loaded.

Scripting and Extending Wing IDE

147

• kContextScriptsMenu -- Adds an item to the scripts menu, which is shown in
the menu bar if any scripts are added to it (this is currently the same as
kContextNewMenu("Scripts") but may be moved in the future).

All scripts, under both short and fully qualified name, are always listed along with
all internally defined commands in the auto-completion list presented by the
Command by Name item in the Edit menu, and in the Custom Key Bindings
preference.

Top-level Attributes

Default values for some of the Script Attributes defined above can be set at the top
level of the script file, and some additional attributes are also supported:

• _arginfo -- The default argument information to use when no per-script
arginfo attribute is present.

• _available -- The default availability of scripts when no available attribute is
present.

• _contexts -- The default contexts in which to add scripts when no contexts
attribute is present.

• _ignore_scripts -- When set to True, Wing will completely ignore this script
file.

• _i18n_module -- The name of the gettext internationalized string database to
use when translating docstrings in this script. See below for more information.

• _plugin -- This indicates that the script is a plugin that can be selectively
enabled and disabled either according to IDE state or by the user in
preferences. See below for more information.

Importing Other Modules

Scripts can import other modules from the standard library, wingapi (the API), and
even from Wing's internals. However, because of the way in which Wing loads
scripts, users should avoid importing one script file into another. If this is done, the
module loaded at the import will not be the same as the one loaded into the
scripting manager. This happens because the scripting manager uniquifies the
module name by prepending internal_script_ so two entries in sys.modules will
result. In practice, this is not always a problem except if global data at the top level
of the script module is used as a way to share data between the two script
modules. Be sure to completely understand Python's module loading facility before
importing one script into another.

Internationalization and Localization

String literals and docstrings defined in script files can be flagged for translation
using the gettext system. To do this, the following code should be added before
any string literals are used:

Scripting and Extending Wing IDE

148

import gettext
_ = gettext.translation('scripts_example', fallback=1).gettext
_i18n_module = 'scripts_example'

The string 'scripts_example' should be replaced with the name of the .mo
translation file that will be added to the resources/locale localization directories
inside the Wing installation.

Subsequently, all translatable strings are passed to the _() function as in this code
example:

kMenuName = _("Test Base")

The separate _i18n_module attribute is needed to tell Wing how to translate
docstrings (which cannot be passed to _()).

Currently, the only support provided by Wing for producing the *.po and *.mo files
used in the gettext translation system is in the build system that comes with the
Wing IDE sources. Please refer to build-files/wingide.py and
build-files/README.txt for details on extracting strings, merging string updates,
and compiling the *.mo files. On Linux, KDE's kbabel is a good tool for managing
the translations.

Plugins

When a script contains the _plugin attribute at the top level, it is treated as a
plugin that can enable/disable itself as a whole and/or be enabled/disabled by the
user in preferences.

When _plugin is present, it contains (name, _activator_cb) where name is the
display name of the plugin and activator_cb is a function minimally defined as
follows for a plugin that is always enabled:

def _activator_cb(plugin_id):
 wingapi.gApplication.EnablePlugin(plugin_id, True)
 return True

The _activator_cb can also selectively enable the script by any code that
accesses the Wing scripting API. For example, it could set up an instance that
connects to signals in the API and calls wingapi.gApplication.EnablePlugin() to
enable or disable itself according to project contents, file type in active editor, etc.

When a plugin is inactive, none of its commands are available and any added
menus or menu items its adds to the GUI are removed. Plugins may denote
particular commands as always available even when the plugin is inactive by
setting the _plugin_override function attribute to True.

Scripting and Extending Wing IDE

149

If the user disables a plugin in the Tools menu, this prevents loading of the plugin,
and thus overrides _activator_cb and any _plugin_override attributes for the
plugin.

17.4. Scripting API
Wing's formal scripting API consists of several parts:

1. The contents of the wingapi.py file in bin inside the Wing IDE installation (this
file is located in src when working from the source distribution). Please refer to
the file itself for details of the API.

2. The portions of the wingutils.datatype and guiutils.formbuilder modules
that are documented in the preceding section.

3. All of the documented commands which can be invoked using the
ExecuteCommand() method on wingapi.gApplication. Note keyword
arguments can be passed to commands that take them, for example
ExecuteCommand('replace-string',
search_string="tset", replace_string="test")

4. All of the documented preferences which can be obtained and altered using
GetPreference and SetPreference on wingapi.gApplication.

Scripts can, of course, also import and use standard library modules from Python,
although Wing ships with a pruned subset of the standard library that includes only
those modules that are used by the IDE's internals.

Advanced scripts may also "reach through" the API into Wing internals, however
this requires reading Wing's souce code and no guarantee is made that these will
remain unchanged or will change only in a backward compatible manner.

17.5. Advanced Scripting
While simple scripts can generally be developed from example using only the Wing
IDE binary distribution, more advanced scripts require Wing to be run from the
source code distribution, usually as a debug process being controlled by another
copy of Wing IDE.

This provides not only more complete access to the source code for scripts that
reach through the API into Wing internals, but also more complete support for
debugging the scripts as they are developed.

To obtain Wing's source code, you must have a valid license to Wing IDE
Professional or higher and must fill out and submit a non-disclosure agreement.
Once this is done, you will be provided with access to the source code and more
information on working with Wing IDE's sources.

Scripting and Extending Wing IDE

150

http://wingware.com/doc/commands/index
http://wingware.com/doc/preferences/index
http://wingware.com/pub/wingide/support/source-non-discl.pdf

Example

For an example of an advanced script that adds a tool panel to the IDE's interface,
see templating.py in the scripts directory inside the Wing IDE installation.

How Script Reloading Works

Advanced scripters working outside of the API defined in wingapi.py should note
that Wing only clears code objects registered through the API. For example, a
script-added timeout (using CAPIApplication.InstallTimeout() method) will be
removed and re-added automatically during reload, but a tool panel added using
Wing internals will need to be removed and re-added before it updates to run on
altered script code. In some cases, when object references from a script file are
installed into Wing's internals, it will be necessary to restart Wing IDE.

Script files that define a global _no_reload_scripts will never be reloaded or
unloaded. Files that define _ignore_scripts or that exist outside of the script path
are also never reloaded.

Here is how reloading works:

1. All currently loaded script files are watched so that saving the file from an
editor will cause Wing to initiate reload after it has been saved.

2. When a file changes, all scripts in its directory will be reloaded.
3. Wing removes all old scripts from the command registry, unregisters any

timeouts set with CAPIApplication.InstallTimeout(), and removes any
connections to preferences, attributes, and signals in the API.

4. Next imp.find_module is used to locate the module by name.
5. Then the module is removed from sys.modules and reloaded using

imp.find_module and a module name that prepends internal_script_ to the
module name (in order to avoid conflicting with other modules loaded by the
IDE).

6. If module load fails (for example, due to a syntax error), any timeouts or other
connections registered by the module during partial load are removed and the
module is removed from sys.modules.

7. If the module contains _ignore_scripts, then any timeouts or other
connections are removed and scripts in the file are ignored.

8. Otherwise, Wing adds all the scripts in the module to the command registry
and loads any sub-modules if the module is a package with __init__.py.

Note that reloading is by design slightly different than Python's builtin reload()
function: Any old top-level symbols are blown away rather than being retained. This
places some limits on what can be done with global data: For example, storing a
database connection will require re-establishing the connection each time the script
is reloaded.

Scripting and Extending Wing IDE

151

Trouble-shooting Guide
This chapter describes what to do if you are having trouble installing or using Wing
IDE.

Note

We welcome feedback and bug reports, both of which can be submitted
directly from Wing IDE using the Submit Feedback and
Submit Bug Report items in the Help menu, or by emailing us at support at
wingware.com.

18.1. Trouble-shooting Failure to Start
If you are having trouble getting Wing to start at all, read through this section for
information on diagnosing the problem.

To rule out problems with a project file or preferences, try renaming your User
Settings Directory and restart Wing. If this works, you can copy over files from the
renamed directory one at a time to isolate the problem -- or email support at
wingware dot com for help.

On Windows, the user's temporary directory sometimes becomes full, which
prevents Wing from starting. Check whether the directory contains more than
65,000 files.

On Linux, OS X, or other Posix systems, in some cases when the ~/.cache
directory or the cache directory set by the $XDG_CACHE_DIR is located on an
NFS or other remote file server, Wing can't obtain a lock on a database file. To use
slower, dotfile locking set the Use sqlite dotfile locking preference to enabled or
run Wing with the --use-sqlite-dotfile-locking command line option. Note that all
Wing processes, regardless of the system they're running on, that use the same
cache directory need to either use or not use dotfile locking.

Under a Windows terminal server, Wing may not be able to set up the
environment variables it uses internally and will not start up. In this case, you can
get Wing to start with the following commands:

set PYTHONOPTIMIZE=1
set PYTHONHOME=D:\Program Files\WingIDE\bin\PyCore
wing.exe

Alter PYTHONHOME according to the location at which you've installed Wing IDE.

Trouble-shooting Guide

152

mailto:support@wingware.com
mailto:support@wingware.com
http://wingware.com/doc/install/user-settings-dir
http://wingware.com/doc/install/user-settings-dir

On Linux with System Qt, Wing may fail to start if there is an incompatibility with
the version of Qt that you have on your system. This should only occur if you are
using the --system-qt command line option or have previoulsy changed the
Use System Qt preference from its default value. To solve this, start Wing with the
--private-qt command line option and restore the Use System Qt preference to
Use Wing's Private Qt.

Constant Guard from Comcast can prevent Wing IDE from starting without
showing any dialog or message that it is doing so.

In other cases, refer to Obtaining Diagnostic Output.

18.2. Speeding up Wing
Wing should present a responsive, snappy user interface even on relatively slow
hardware. In some cases, Wing may appear sluggish:

With New Projects, the first time you set up a project file, Wing analyzes all
source files for the source code browser and auto-completion facilities. During this
time, the browser's class-oriented views will display only the source constructs
from files of which analysis information has already been obtained. The user
interface may also appear to be sluggish and Wing will consume substantial
amounts of CPU time.

To avoid this in subsequent sessions, Wing stores its source analysis information
to disk in a cache within your User Settings Directory.

On a multi-core virtual machine where Wing runs slowly, you may be able to
improve performance by setting the processor affinity for Wing. This is done with
schedtool -a 0x1 -e wing5.1 on Linux (the schedtool package needs to be
installed if not already present) and with START
/AFFINITY 01 "Wing IDE" "C:\Program Files\Wing IDE 5.1\bin\wing.exe" on
Windows. Although Wing runs on only one core, this technique has been reported
to improve performance.

On OS X Mavericks, certain graphics drivers have a bug that substantially slows
down Wing IDE because the OS is incorrectly detecting Wing IDE as inactive.
Turning off App Nap has no effect on this, although the bug may be associated
with that feature. The work-around is to put the computer to sleep briefly while
Wing IDE is already running. Wing should then remain responsive until it is quit.

18.3. Trouble-shooting Failure to Debug
If you have trouble debugging with Wing IDE, select which of the following most
closely describes the problem you are seeing.

Trouble-shooting Guide

153

http://wingware.com/doc/install/trouble-diagnostic
http://wingware.com/doc/install/user-settings-dir

18.3.1. Failure to Start Debug

Wing may fail to start the debug process in certain cases. If this happens, it often
helps to try debugging a small test such as the following:

print("test1")
print("test2")

Use the Step Into command from the Debug menu to cause Wing IDE to attempt
to run only as far as the first line of your code. This rules out possible problems
caused by specific code.

Then check through the following common problems. For information on obtaining
additional information from the debug sub-system, refer to the Diagnostic Output
section:

Requires TCP/IP -- Wing's debugger uses a TCP/IP protocol to communicate with
the IDE. Make sure that TCP/IP is installed and configured on your machine. If you
are running a custom-built copy of Python, verify that the socket module is
available.

Selecting Python Version -- If Wing says it can't find Python or if you've got
multiple versions of Python on your system, make sure you've got your
Project Properties set up to contain a valid interpreter (see Source / Show Python
Environment menu item to verify that the right interpreter is being found).

Setting PYTHONPATH -- Enter any necessary PYTHONPATH for your debug
process in Project Properties if not already defined in the environment.

Environment Conflicts -- If you set PYTHONHOME or PYTHONPATH
environment variables, these may cause the debug process to fail if they do not
match the particular Python interpreter that Wing is launching. You can either
change the interpreter used so it matches, or unset or alter these environment
values from the outside or via Project Properties from the Project menu.

• PYTHONHOME is a problem in all cases when it doesn't match the Python
interpreter reported in the Source menu's Show Python Environment dialog.

• PYTHONPATH is only a problem if it contains directories that are part of a
Python installation. When this doesn't match the interpreter version, this leads
to import errors because Python tries to import incompatible modules.

Corrupt Python Install -- All forms of the Python binary distribution (TAR, RPM,
and Windows installer) are known to have problems when a newer version of
Python is installed directly over an older one on disk.

In this case, most Python programs will appear to work fine outside of Wing IDE
but will not work within the Wing IDE debugger. This occurs because the debug

Trouble-shooting Guide

154

http://wingware.com/doc/install/trouble-diagnostic

support code uses sockets and other functionality that is not necessarily exercised
by your debug program outside of the Wing debugger.

If you try to run a debug session in Wing IDE and it fails, you may be having this
problem. The following test script can be used to confirm that the problem exists in
your Python installation:

import sys
print('sys.version =', sys.version)
print('sys.executable =', sys.executable)
print('sys.version_info =', sys.version_info)
import socket
print('socket =', socket)
print('socket._socket =', socket._socket)
import select
print('select =', select)

To solve this problem, try uninstalling Python, manually removing any remaining
files, and installing again. Or install Python into a new location on disk.

Once this is done, be sure to confirm that Wing is configured to use the new
Python installation from the Project Properties dialog in the Project menu and that
the Show Python Environment item in the Source menu displays the correct
intepreter.

PyGame Full Screen Mode -- Wing's debugger is unable to debug games written
with pygame when they are running in full screen mode. Use window mode
instead. This is a problem also for other Python debuggers.

18.3.2. Failure to Stop on Breakpoints or Show Source Code

There are several reasons why Wing may fail to stop on breakpoints or fail to show
the Python source code when the breakpoint is reached:

Missing or Incorrect Source File Names -- The most common cause of failure to
stop on breakpoints or to bring up source windows while stopping or stepping
through code is a mismatch between the file name that is stored in the *.pyc file
and the actual location of the *.py source file.

This can be caused by (1) not saving before you run in the debugger, (2) using
partial path names on PYTHONPATH or when invoking a script from the command
line (the partial path stored in the *.pyc file may become invalid if current directory
changes), (3) moving around the *.pyc file after they are created, or (4) using
compileall.py to create *.pyc files from source. The easiest way to solve this is to
use only full paths on PYTHONPATH and remove any suspect *.pyc files.

Concurrent Processes -- Wing may fail to stop when debugging an application
that gets invoked repeatedly in separate processes, for example a CGI script
invoked multiple times from a browser as part of a page load. This is because the
debugger can only debug one process at a time. If the debugger is already

Trouble-shooting Guide

155

connected to one process, the second and later processes will not be debugged
and thus may miss breakpoints.

Other Problems -- Less common causes of this problem are (1) running Python
with the -O optimization option, (2) running Python with psyco or other optimizer,
(3) overriding the Python __import__ routine, (4) adding breakpoints after you've
started debugging an application that spends much of its time in C/C++ or other
non-Python code, and (5) on Windows, using symbolic links to directories that
contain your source code files.

For more information, see the Debugger Limitations section.

18.3.3. Failure to Stop on Exceptions

Failure to stop on exceptions is most commonly caused by the same factors that
can cause failure to stop on breakpoints. The rest of this section covers additional
possible causes of failure to stop on exceptions.

By default, Wing only stops on exceptions for which a traceback is printed when
the code is run outside of the debugger. If your code runs within a catch-all
try/except clause written in Python (as in some GUI main loops or in an
environment like Zope), Wing may not report all exceptions encountered in your
debug process.

In some cases, altering the Exception Reporting preference will work. In others, it
may suffice to set a breakpoint in the top-level exception handler.

An alternative is to recode your app by adding the following code to catch-all
exception handlers:

import os, sys
if 'WINGDB_ACTIVE' in os.environ:
 sys.excepthook(*sys.exc_info())

The above only works with the default exception handling configuration. If you are
not using the When Printed exception handling mode (as set by the
Report Exceptions preference) then the above will not cause the debugger to
stop. In that case, the following variant can be used instead:

import os

No handler when running in Wing's debugger
if 'WINGDB_ACTIVE' in os.environ:
 dosomething()

Handle unexpected exceptions gracefully at other times
else:
 try:
 dosomething()

Trouble-shooting Guide

156

http://wingware.com/doc/debug/debugger-limitations
http://wingware.com/doc/install/trouble-debug-nostop-breakpoints

 except:
 # handler here

Note that environments such as wxPython, PyGTK, and others include catch-all
handlers for unexpected exceptions raised in the main loop, but those handlers
cause the exception traceback to be printed and thus will be reported correctly by
Wing without any modification to the handler.

18.3.4. Extra Debugger Exceptions

This section is only relevant if you have set the Exception Reporting preference
to Immediately if Appears Unhandled.

When Wing's debugger is running in this exception handling mode, it sometimes
appears to reveal bugs that are not seen when running outside of the debugger.
This is a result of how this mode decides which exceptions should be shown to the
user -- it is inspecting exceptions as they are raised and making decisions about
whether or not the exception is unexpected or part of normal operation.

You can train Wing to ignore unwanted exception reports with the checkbox in the
Exceptions tool.

You can also change the way Wing reports debug process exceptions with the
Exception Reporting preference.

For more information, see Managing Exceptions.

18.4. Trouble-shooting Other Known Problems
Here are some other known problems that can affect some of Wing IDE's
functionality:

Windows File Names with Spaces

When using Windows File Types or Open With to cause Python files to be opened
with Wing, some versions of Windows set up the wrong command line for opening
the file. You can fix this using regedt32.exe, regedit.exe, or similar tool to edit the
following registry location:

HKEY_LOCAL_MACHINE\SOFTWARE\Classes\Applications\wing.exe\shell\open\command

The problem is that the association stored there is missing quotes around the %1
argument. It should instead read as follows:

"C:\Program Files\Wing IDE\bin\wing.exe" "%1" %*

Copy/Paste Fails on Windows

Trouble-shooting Guide

157

http://wingware.com/doc/debug/managing-exceptions

Webroot Secure Anywhere v8.0.4.66 blocks Wing IDE and Python's access to the
clipboard by default so Copy/Paste will not work. The solution is to remove Wing
IDE and Python from the list of applications that Webroot is denying access to the
clipboard.

Failure to Find Python

Wing scans for Python at startup and may sometimes report that it could not be
found even if it is on your machine.

If this happens all the time, point Python Executable in Project Properties
(accessed from the Project menu) to your Python interpreter (python, python2.7,
python.exe, etc). Wing remembers this and the message should go away, even
with new projects.

If this happens only intermittently, it may be caused by high load on your machine.
Try restarting Wing after load goes down. In some cases anti-virus software
causes this during periods of intensive scanning.

Failure to Detect HTTP Proxy and Connect to wingware.com

Wing will try to open an http connection to wingware.com when you activate a
license, check for product updates, or submit feedback or a bug report. If you are
running in an environment with an http proxy, Wing will try to auto-detect your
proxy settings. If this fails you will need to configure your proxy manually using
Wing's HTTP Proxy Server preference. To determine the correct settings to use,
ask your network administrator or see how to determine proxy settings.

18.5. Obtaining Diagnostic Output
Wing IDE and your debug code run in separate processes, each of which can
independently be configured to collect additional diagnostic log information.

Diagnosing General IDE Problems

A quick way to diagnose problems seen while working with Wing IDE is to submit a
bug report from the Help menu. Please include a description of the problem and
check the Include error log checkbox so we can diagnose and fix the problem.

To diagnose other problems, such as failure to start, try looking at the file error-log
in your User Settings Directory.

Alternatively, run console_wing.exe (on Windows) or wing5.1 --verbose (on
Linux/Unix and OS X) from the command line to display diagnostic output.

Email this output to support at wingware.com along with your system type and
version, version of Wing IDE, version of Python, and any other potentially relevant
details.

Diagnosing Debugger Problems

Trouble-shooting Guide

158

http://superuser.com/questions/346372/how-do-i-know-what-proxy-server-im-using
http://wingware.com/doc/install/user-settings-dir
mailto:support@wingware.com

To diagnose debugger problems, set preference Debug Internals Log File to a
value other than No logging and turn on preferences Use External Console and
External Console Waits on Exit. When you try again, Wing will display a debug
console with diagnostics.

Alternatively, copy wingdbstub.py out of your Wing IDE installation, set
WINGDB_LOGFILE environment variable to <stderr> or the name of a log file on
disk (or alter kLogFile inside wingdbstub.py), turn on the
Accept Debug Connections preference, and try launching the following script
from the command line:

import wingdbstub
print("test1")
print("test2")

This prints diagnostic output that may be easier to capture in some cases.

Email this output to support at wingware.com. Please include also the contents of
the file error-log in your User Settings Directory , and also your system version,
version of Wing IDE, version of Python, and any other potentially relevant details.

Preferences Reference
This chapter documents the entire set of available preferences for Wing IDE
Professional. Note that this includes preferences that are ignored and unused in
Wing IDE Personal and Wing IDE 101.

Most preferences can be set from the Preferences GUI but some users may wish
to build preference files manually to control different instances of Wing IDE (see
details in Preferences Customization).

User Interface
Display Language

The language to use for the user interface. Either the default for this system, or set
to a specific supported language.

Internal Name: main.display-language

Data Specification: [None, de, en, fr]

Default Value: None

Display Style

Configures the overall display style used by Wing IDE.

Internal Name: gui.qt-display-theme

Data Specification: [tuple length 4 of: [None, selected-style, selected-colors], N one, [CDE, Motif, Windows, Macintosh (aqua), Cleanlooks, Plastique], None]

Preferences Reference

159

mailto:support@wingware.com
http://wingware.com/doc/install/user-settings-dir
http://wingware.com/doc/custom/preferences

Default Value: (None, None, u'Windows', None)

Color Palette

The overall color palette used by Wing IDE. All color preferences default to using
colors from the palette, but can be overridden individually. The background colors
from the palette will only apply to the editor, unless the Display Style preference is
set to Match Palette. Additional palettes can be defined and added to the 'palettes'
sub-directory of the User Settings directory.

Internal Name: gui.qt-color-palette

Data Specification: <type str>

Default Value: wing-classic

• Layout

Windowing Policy

Policy to use for window creation: Combined Toolbox and Editor mode places
toolboxes into editor windows, Separate Toolbox mode creates separate toolbox
windows, and One Window per Editor mode also creates a new window for each
file opened in an editor.

Internal Name: gui.windowing-policy

Data Specification:
[combined-window, one-window-per-editor, separate-toolbox-window]

Default Value: combined-window

Show Editor Tabs

Controls whether or not Wing shows tabs for switching between editors. When
false, a popup menu is used instead.

Internal Name: gui.use-notebook-editors

Data Specification: <boolean: 0 or 1>

Default Value: 1

Enable Tooltips

Controls whether or not tooltips containing help are shown when the mouse hovers
over areas of the user interface.

Internal Name: gui.enable-tooltips

Data Specification: <boolean: 0 or 1>

Default Value: 1

• Toolbar

Preferences Reference

160

Show Toolbar

Whether toolbar is shown in any window.

Internal Name: gui.show-toolbar

Data Specification: <boolean: 0 or 1>

Default Value: 1

Toolbar Size

Sets size of the toolbar icons. By default, adjusts according to available space.

Internal Name: gui.toolbar-icon-size

Data Specification: [medium, default, xlarge, text-height, large, small]

Default Value: auto

Toolbar Style

Select style of toolbar icons to use. By default, adjusts according to available
space.

Internal Name: gui.toolbar-icon-style

Data Specification: [medium, default, auto, xlarge, text-height, large, small]

Default Value: auto

Groups Shown

Controls which groups of tools will be shown in the toolbar.

Internal Name: guimgr.toolbar-groups

Data Specification: [tuple of: [search, indent, clip, bookmark, debug, vcs, proj, file, diff, test, batch-search]]

Default Value: ['file', 'clip', 'search', 'diff', 'indent', 'proj', 'debug']

Custom Items

Extra items to add to the tool bar.

Internal Name: guimgr.toolbar-custom-items

Data Specification:
[tuple of: [tuple length 3 of: <icon spec>, <type str>, <type str>]]

Default Value: ()

Primary Icon Color

Primary color for icons

Internal Name: gui.icon-color-primary

Data Specification:
[None or [tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]]

Preferences Reference

161

Default Value: None

Secondary Icon Color

Secondary color for icons

Internal Name: gui.icon-color-secondary

Data Specification:
[None or [tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]]

Default Value: None

Tertiary Icon Color

Tertiary color for icons

Internal Name: gui.icon-color-tertiary

Data Specification:
[None or [tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]]

Default Value: None

Quaternary Icon Color

Quaternary color for icons

Internal Name: gui.icon-color-quaternary

Data Specification:
[None or [tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]]

Default Value: None

Quinary Icon Color

Quinary color for icons

Internal Name: gui.icon-color-quinary

Data Specification:
[None or [tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]]

Default Value: None

Senary Icon Color

Senary color for icons

Internal Name: gui.icon-color-senary

Data Specification:
[None or [tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]]

Default Value: None

• Fonts

Preferences Reference

162

Display Font/Size

The base font and size to use for the user interface's menus and labels

Internal Name: gui.qt-display-font

Data Specification: [None or <type str>]

Default Value: None

Editor Font/Size

The base font and size to use for the source code editor, Python Shell, Debug
Probe, Source Assistant, and other tools that display source code.

Internal Name: edit.qt-display-font

Data Specification: [None or <type str>]

Default Value: None

• Keyboard

Personality

Selects the overall editor personality, optionally to emulate another commonly used
editor.

Internal Name: edit.personality

Data Specification: [osx, normal, vi, xcode, eclipse, brief, emacs, visualstudio]

Default Value: osx

Tab Key Action

Defines the action of the Tab key, one of: "Default for Personality" to emulate the
selected Keyboard Personality. "Indent To Match" to indent the current line or
selected line(s) to match the context, "Move to Next Tab Stop" to enter indentation
characters so the caret reaches the next tab stop, "Indent Region" to increase the
indentation of the selected line(s) by one level, or "Insert Tab Character" to insert a
Tab character (chr(9)). For Python files, "Smart Tab" is an option that varies the tab
key action according to the location of the caret within the line.

Internal Name: edit.tab-key-action

Data Specification: [dict; keys: <type str>, values: <type str>]

Default Value: {'*': '--default--', 'text/x-python': '--default--'}

Smart Tab End of Line Indents

Select type of indentation that Smart Tab will place at the end of a line.

Internal Name: edit.smart-tab-eol-indents

Data Specification: [None, 1, 2, 3, 4]

Preferences Reference

163

Default Value: 4

Alt Key

Selects the key to use as the Alt- modifier in key bindings. Note that the Option key
is also used to enter characters, such as ® on US keyboards or] on German
keyboards. When the Option key is used for the Alt key, Alt-key bindings take
precedence and thus may block entering of characters with the Option key. If both
functions are needed, use the left Option key for the Alt-key and enter characters
with the right Option key. If the Command keys are used for the Alt key, any Alt-key
bindings will override Command-key bindings for the same key.

Internal Name: gui.qt-osx-key-for-alt

Data Specification: [both-option-keys, command-keys, left-option-key, none]

Default Value: left-option-key

Use Alt for Accelerators

Specifies whether plain Alt keystrokes should be used only for accelerators. When
enabled, Alt-key presses that could be for an accelerator will be used only for
accelerators and never for key bindings. When disabled, Alt-key bindings take
precedence over accelerators. This preference is ignored when Wing is running
with native OS X display style, since in that case accelerators do not exist.

Internal Name: gui.qt-os-alt-for-accelerators

Data Specification: <boolean: 0 or 1>

Default Value: False

Custom Key Bindings

Override key bindings in the keymap. To enter the key, place focus on the entry
area and type the key combination desired. The command is one of those
documented in the user manual's Command Reference, or the name of any user
scripts that have been loaded into the IDE. Leave the command name blank to
remove the default binding for a key (this is useful when adding multi-key bindings
that conflict with a default).

Internal Name: gui.keymap-override

Data Specification: [dict; keys: <type str>, values: <type str>]

Default Value: {}

Typing Group Timeout

Sets the timeout in seconds to use for typing, after which keys pressed are
considered a separate group of characters. This is used for typing-to-select on lists
and in other GUI areas. Before the timeout subsequent keys are added to previous
ones to refine the selection during keyboard navigation.

Preferences Reference

164

Internal Name: gui.typing-group-timeout

Data Specification: <type float>, <type int>

Default Value: 1

VI Mode Ctrl-C/X/V

Controls the behavior of the Ctrl-X/C/V key bindings in vi mode. Either always use
these for cut/copy/paste, use them for vi native actions such as
initiate-numeric-repeat and start-select-block, or use the default by system
(clipboard on win32 and other commands elsewhere).

Internal Name: vi-mode.clipboard-bindings

Data Specification: [other, clipboard, system-default]

Default Value: system-default

• Perspectives

Auto-save Perspectives

Selects whether to auto-save perspectives when switching to another perspective.
Can always auto-save, never auto-save, prompt each time a perspective is left, or
auto-save as configured on a per-perspective basis.

Internal Name: main.perspective-auto-save

Data Specification:
[tuple length 2 of: [always, never, prompt, choose], <type str>]

Default Value: always

Shared Perspective File

Selects the file to use for storing and retrieving shared perspectives. By default
(when value is None) the file 'perspectives' in the user settings directory is used.

Internal Name: main.perspective-shared-file

Data Specification: [one of: <type NoneType>, <type str>]

Default Value: None

• Other

Show Splash Screen

Controls whether or not the splash screen is shown at startup.

Internal Name: main.show-splash-screen

Data Specification: <boolean: 0 or 1>

Default Value: 1

Preferences Reference

165

When Launching Wing

Controls whether Wing tries to reuse an existing running instance of the IDE when
it is launched again.

Internal Name: main.instance-reuse-policy

Data Specification: [tuple of: [None, new, reuse]]

Default Value: None

Quit Application When Last Window Closes

Quit application when last document window closes

Internal Name: guimgr.quit-on-last-window-close-osx

Data Specification: <boolean: 0 or 1>

Default Value: False

Auto-Focus Tools

Controls whether to automatically move keyboard focus from the editor to tools
when they are revealed.

Internal Name: gui.auto-focus-tools

Data Specification: <boolean: 0 or 1>

Default Value: 1

Case Sensitive Sorting

Controls whether names are sorted case sensitively (with all caps preceding small
letters) or case insensitively

Internal Name: gui.sort-case-sensitive

Data Specification: <boolean: 0 or 1>

Default Value: 0

Auto-Show Bug Report Dialog

Whether the error bug reporting dialog (also available from the Help menu) is
shown automatically when an unexpected exception is encountered inside Wing
IDE.

Internal Name: gui.show-report-error-dialog

Data Specification: <boolean: 0 or 1>

Default Value: False

Auto-check for Product Updates

Automatically attempt to connect to wingware.com to check for updates once every
day after Wing is started.

Preferences Reference

166

Internal Name: main.auto-check-updates

Data Specification: <boolean: 0 or 1>

Default Value: 1

Show Support+Upgrades Reminders

Show a reminder when Support+Upgrades for the active license is expired or will
expire soon.

Internal Name: main.monitor-support-upgrades

Data Specification: <boolean: 0 or 1>

Default Value: 1

Always Use Full Path in Tooltips

Enable to always show the full path of a file name in the tooltips shown from the
editor tabs and file selection menus. When disabled, the configured Source Title
Style is used instead.

Internal Name: gui.full-path-in-tooltips

Data Specification: <boolean: 0 or 1>

Default Value: True

• Advanced

Max Error Log Size

The number of bytes at which the error log file (USER_SETTINGS_DIR/error-log)
is truncated. This file can be sent to technical support to help diagnose problems
with the IDE.

Internal Name: main.max-error-log-size

Data Specification: [from 10000 to 10000000]

Default Value: 500000

Shared File Sets Repository

Selects the file to use for storing and retrieving shared named files sets. By default
(when value is None) the file 'filesets' in the user settings directory is used.

Internal Name: main.fileset-shared-file

Data Specification: [one of: <type NoneType>, <type str>]

Default Value: None

Key Map File

Defines location of the keymap override file. Use None for default according to
configured editor personality. See the Wing IDE Manual for details on building your

Preferences Reference

167

keymap override file -- in general this is used only in development or debugging
keymaps; use the keymap-override preference instead for better tracking across
Wing versions.

Internal Name: gui.keymap

Data Specification: [None or <type str>]

Default Value: None

Projects
Auto-reopen Last Project

Controls whether most recent project is reopened at startup, in the absence of any
other project on the command line.

Internal Name: main.auto-reopen-last-project

Data Specification: <boolean: 0 or 1>

Default Value: 1

Close Files with Project

Controls whether any files open in an editor are also closed when a project file is
closed

Internal Name: proj.close-also-windows

Data Specification: <boolean: 0 or 1>

Default Value: 1

Show New Project Dialog

Whether to show New Project dialog when creating projects. When this is disabled,
a blank project is created and can be configured and saved from the Project menu.

Internal Name: proj.show-new-project-dialog

Data Specification: <boolean: 0 or 1>

Default Value: 1

Open Projects as Text

Controls whether project files are opened as project or as text when opened from
the File menu. This does not affect opening from the Project menu.

Internal Name: gui.open-projects-as-text

Data Specification: <boolean: 0 or 1>

Default Value: 0

Confirm Drag Copy/Move

Preferences Reference

168

Controls whether or not the IDE will confirm file copy/move operations initiated by
dragging items around on the Project view.

Internal Name: proj.confirm-file-drags

Data Specification: <boolean: 0 or 1>

Default Value: 1

• Context Menu

Groups Shown

Controls which groups of menu items will be shown in the Project tool's context
menu.

Internal Name: proj.context-menu-groups

Data Specification: [tuple of: [clip, script, vcs, nav, proj, file, debug]]

Default Value: ['clip', 'nav', 'debug', 'vcs', 'proj', 'file', 'script']

Custom Items

Extra menu items to add to the Project tool context menu.

Internal Name: proj.context-menu-custom-items

Data Specification: [tuple of: [tuple length 2 of: <type str>, <type str>]]

Default Value: ()

Files
Auto-Save Files Before Debug or Execute

Controls whether or not all edited files are saved without asking before a debug
run, before starting unit tests, or before a file or build process is executed.

Internal Name: gui.auto-save-before-action

Data Specification: <boolean: 0 or 1>

Default Value: 0

Default Directory Policy

Defines how Wing determines the starting directory to use when prompting for a
file name: Either based on location of the resource at current focus, location of the
current project home directory, the last directory visited for file selection, the
current directory at startup (or selected since), or always the specific fixed directory
entered here.

Internal Name: main.start-dir-policy

Data Specification: [tuple length 2 of: [current-project, current-directory, recen t-directory, current-focus, selected-directory], <type str>]

Preferences Reference

169

Default Value: ('current-focus', '')

Title Style

Format used for titles of source files: Use Base Name Only to display just the file
name, Prepend Relative Path to use partial relative path from the project file
location or configured Project Home Directory, Append Relative Path to instead
append the relative path after the file namePrepend Full Path to use full path, or
Append Full Path to instead append the fullpath after the file name.

Internal Name: gui.source-title-style

Data Specification: [append-relative, basename, prepend-fullpath, append-fullp ath, prepend-relative]

Default Value: append-relative

Default Encoding

The default encoding to use for text files opened in the source editor and other
tools, when an encoding for that file cannot be determined by reading the file.
Other encodings may also be tried. This also sets the encoding to use for newly
created files.

Internal Name: edit.default-encoding

Data Specification: [None or [Central and Eastern European iso8859-2, Japane se iso-2022-jp-2004, Hebrew cp856, Japanese euc-jp, Vietnamese cp1258, Gr eek cp1253, Baltic Languages cp1257, Korean johab, Western European cp12 52, Baltic Languages cp775, Japanese iso-2022-jp-ext, Korean iso-2022-kr, Ic elandic cp861, Hebrew cp424, Cyrillic Languages cp1251, Turkish iso8859-9, Unicode (UTF-16, little endian) utf-16-le, Western European cp500, Chinese (P RC) gb18030, Greek cp875, Arabic cp864, Icelandic mac-iceland, Chinese (PR C) gbk, Turkish mac-turkish, Greek iso8859-7, Baltic Languages iso8859-13, Cyrillic Languages mac-cyrillic, Greek cp869, Japanese iso-2022-jp-1, Central and Eastern European cp852, System default (utf-8), Chinese (ROC) big5, Ur du cp1006, Hebrew iso8859-8, Japanese iso-2022-jp-3, Celtic Languages iso8 859-14, Thai cp874, Cyrillic Languages cp855, Western European iso8859-15, Greek mac-greek, Ukrainian koi8-u, Hebrew cp1255, Danish, Norwegian cp86 5, Cyrillic Languages iso8859-5, Turkish cp1026, Western European mac-rom
an, Western European cp1140, Chinese (PRC) hz, Portuguese cp860, Japane se iso-2022-jp-2, Chinese (ROC) cp950, Unicode (UTF-16, big endian) utf-16-b e, Japanese shift-jis-2004, Turkish cp1254, Hebrew cp862, Western European latin-1, Japanese euc-jisx0213, US, Canada, and Others cp037, Japanese euc -jis-2004, Japanese shift-jisx0213, Central and Eastern European cp1250, Balt ic Languages iso8859-4, English ascii, Japanese shift-jis, Arabic iso8859-6, C anadian English/French cp863, Russian koi8-r, Japanese iso-2022-jp, Unicod e (UTF-8) utf-8, Greek cp737, Nordic Languages iso8859-10, Central and East ern European mac-latin2, Chinese (PRC) gb2312, Unicode (UTF-7) utf-7, Arabi c cp1256, Chinese (PRC) big5hkscs, Western European cp850, None, Espera nto and Maltese iso8859-3, Turkish cp857, Korean cp949, US, Australia, New Zealand, S. Africa cp437, Unicode (UTF-16) utf-16, Japanese cp932]]

Default Value: None

New File EOL

Default end-of-line to use. Wing matches existing line endings in non-blank files
and uses this preference only when a file contains no end-of-line characters.

Internal Name: edit.new-file-eol-style

Data Specification: [lf, cr, crlf]

Default Value: lf

New File Extension

Default file extension for newly created files

Internal Name: edit.new-file-extension

Data Specification: <type str>

Default Value: .py

Max Recent Items

Maximum number of items to display in the Recent menus.

Internal Name: gui.max-recent-files

Data Specification: [from 3 to 200]

Preferences Reference

170

Default Value: 20

Maximum File Size (MB)

Maximum size of files that Wing will try to open, in MB.

Internal Name: gui.max-file-size

Data Specification: [from 1 to 100000]

Default Value: 100

• File Types

Extra File Types

This is a map from file extension or wildcard to mime type. It adds additional file
type mappings to those built into Wing IDE. File extensions can be specified alone
without dot or wildcard, for example "xcf" or using wildcards containing "*" and/or
"?", for example "Makefile*". The mime type to use for Python files is
"text/x-python".

Internal Name: main.extra-mime-types

Data Specification: [dict; keys: <type str>, values: [text/x-smalltalk, text/x-sql, t ext/x-pov, text/x-ave, text/x-less, text/x-pl-sql, text/x-bash, text/x-java-source, text/x-lua-source, text/x-eiffel, text/x-vxml, text/x-lot, text/x-errorlist, text/x-ca ml, text/xml, text/x-octave, text/x-asn1, text/x-php-source, text/x-cython, appli cation/x-tex, text/x-dos-batch, text/x-bullant, text/x-baan, text/x-python, text/x- mako, text/x-matlab, text/x-metaport, text/x-mmixal, text/x-nncrontab, text/po stscript, text/x-django, text/x-cmake, text/x-erlang, text/x-javascript, text/x-sc ss, text/x-fortran, text/x-mysql, text/x-vhdl, text/x-escript, text/x-lisp, text/x-ma kefile, text/x-diff, text/x-haskell, text/x-ms-idl, text/x-cpp-source, text/x-asm, te
xt/x-ruby, text/x-abaqus, text/x-ada, text/x-d, text/x-idl, text/x-nsis, text/x-scrip tol, text/x-perl, text/x-po, text/x-docbook, text/x-rc, text/x-coffee, text/x-verilog , text/x-xcode, text/x-c-source, text/plain, text/x-spice, text/x-zope-pt, text/x-lo ut, text/x-hss, text/x-inno-setup, text/html, text/x-forth, text/x-tcl, text/x-qss, te xt/x-vb-source, text/x-pascal, text/x-yaml, text/x-conf, text/x-ms-makefile, text/ x-properties, text/css, text/x-r]]

Default Value: {}

File Filters

Defines file filters to apply to file names for inclusion and exclusion from a larger
set (such as scanned disk files or all project files).

Each filter is named and contains one list of inclusion patterns and one list of
exclusion patterns. The patterns can be a wildcard on the file name, wildcard on a
directory name, or a mime type name.

Only a single pattern needs to be matched for inclusion or exclusion. Exclusion
patterns take precedence over inclusion patterns, so any match on an
exclusion pattern will always exclude a file from the selected set. Filters are
used in constraining search, adding project files, and for other operations on
collections of files.

Internal Name: main.file-filters

Data Specification: [file filters]

Default Value: {u'All Source Files': (set([]), set([('wildcard-filename', '*.pyo'), (' wildcard-filename', '*$py.class'), ('wildcard-filename', '*.exe'), ('wildcard-filena me', '*.dsw'), ('wildcard-filename', '*.bsc'), ('wildcard-directory', '__pycache__'), ('wildcard-filename', '.#*'), ('wildcard-filename', '*.lib'), ('wildcard-filename', '* .bak'), ('wildcard-filename', '*.tgz'), ('wildcard-filename', '*.sln'), ('wildcard-dire ctory', '.git'), ('wildcard-filename', '*.obj'), ('wildcard-directory', '.hg'), ('wildcar d-filename', 'core'), ('wildcard-filename', '*.ilk'), ('wildcard-filename', '*.temp'), (
'wildcard-filename', '*~'), ('wildcard-filename', '*.manifest'), ('wildcard-filename ', '*.pdb'), ('wildcard-filename', '*.old'), ('wildcard-filename', '*.wpr'), ('wildcard- filename', '*.log'), ('wildcard-filename', '*.ncb'), ('wildcard-filename', '*.user'), (' wildcard-directory', '_svn'), ('wildcard-filename', '*.so'), ('wildcard-filename', '* .tmp'), ('wildcard-directory', '.xvpics'), ('wildcard-filename', '#*#'), ('wildcard-fil ename', '*.pyd'), ('wildcard-filename', '*.zip'), ('wildcard-filename', '.coverage'), ('wildcard-filename', '*.wpu'), ('wildcard-filename', '*.a'), ('wildcard-directory', ' .svn'), ('wildcard-filename', '*.dll'), ('wildcard-filename', '*.dsp'), ('wildcard-filen
ame', '*.pyc'), ('wildcard-filename', '*.tar.gz'), ('wildcard-directory', '.bzr'), ('wild card-directory', 'CVS'), ('wildcard-filename', '*.sbr'), ('wildcard-filename', '*.o'), ('wildcard-filename', '*-old'), ('wildcard-filename', '*.suo'), ('wildcard-filename', '*.svn-base'), ('wildcard-filename', '*.vcproj')])), u'HTML and XML Files': (set([('mime-type', 'text/html'), ('mime-type', 'text/xml'), ('mime-type', 'text/x-zope-pt')]), set([('wildcard-directory', '_svn'), ('wildcard-directory', '.xvpics'), ('wildcard- filename', '*~'), ('wildcard-directory', '.bzr'), ('wildcard-directory', 'CVS'), ('wild card-filename', '#*#'), ('wildcard-filename', '*.svn-base'), ('wildcard-directory', ' __pycache__'), ('wildcard-filename', '.coverage'), ('wildcard-directory', '.git'), (' wildcard-filename', '.#*'), ('wildcard-directory', '.svn'), ('wildcard-directory', '.h
g')])), u'C/C++ Files': (set([('mime-type', 'text/x-c-source'), ('mime-type', 'text/x- cpp-source')]), set([('wildcard-directory', '_svn'), ('wildcard-directory', '.xvpics '), ('wildcard-filename', '*~'), ('wildcard-directory', '.bzr'), ('wildcard-directory', ' CVS'), ('wildcard-filename', '#*#'), ('wildcard-filename', '*.svn-base'), ('wildcard -directory', '__pycache__'), ('wildcard-filename', '.coverage'), ('wildcard-direct ory', '.git'), ('wildcard-filename', '.#*'), ('wildcard-directory', '.svn'), ('wildcard-d irectory', '.hg')])), u'Hidden & Temporary Files': (set([('wildcard-filename', '*.py o'), ('wildcard-filename', '*$py.class'), ('wildcard-filename', '*.exe'), ('wildcard-f
ilename', '*.bsc'), ('wildcard-filename', '.#*'), ('wildcard-filename', '*.lib'), ('wildc ard-filename', '*.bak'), ('wildcard-filename', '*.tgz'), ('wildcard-directory', '.git'), ('wildcard-filename', '*.obj'), ('wildcard-filename', 'core'), ('wildcard-filename', ' *.ilk'), ('wildcard-filename', '*.temp'), ('wildcard-filename', '*~'), ('wildcard-direc tory', '__pycache__'), ('wildcard-filename', '*.pdb'), ('wildcard-filename', '*.old') , ('wildcard-filename', '*.wpr'), ('wildcard-filename', '*.ncb'), ('wildcard-director y', '_svn'), ('wildcard-filename', '*.so'), ('wildcard-filename', '*.tmp'), ('wildcard- directory', '.xvpics'), ('wildcard-filename', '#*#'), ('wildcard-filename', '*.pyd'), ('

Preferences Reference

171

wildcard-filename', '*.zip'), ('wildcard-filename', '.coverage'), ('wildcard-filena
me', '*.wpu'), ('wildcard-filename', '*.a'), ('wildcard-filename', '*.dll'), ('wildcard-
directory', '.hg'), ('wildcard-filename', '*.pyc'), ('wildcard-filename', '*.tar.gz'), ('
wildcard-directory', '.bzr'), ('wildcard-directory', 'CVS'), ('wildcard-filename', '*.
sbr'), ('wildcard-filename', '*.o'), ('wildcard-filename', '*-old'), ('wildcard-filena
me', '*.svn-base'), ('wildcard-directory', '.svn')]), set([])), u'Python Files': (set([(
'mime-type', 'text/x-cython'), ('mime-type', 'text/x-python')]), set([('wildcard-dir
ectory', '_svn'), ('wildcard-directory', '.xvpics'), ('wildcard-filename', '*~'), ('wil
dcard-directory', '.bzr'), ('wildcard-directory', 'CVS'), ('wildcard-filename', '#*#'
), ('wildcard-filename', '*.svn-base'), ('wildcard-directory', '__pycache__'), ('wil
dcard-filename', '.coverage'), ('wildcard-directory', '.git'), ('wildcard-filename',
'.#*'), ('wildcard-directory', '.svn'), ('wildcard-directory', '.hg')]))}

• Reloading

External Check Freq

Time in seconds indicating the frequency with which the IDE should check the disk
for files that have changed externally. Set to 0 to disable entirely.

Internal Name: cache.external-check-freq

Data Specification: <type float>, <type int>

Default Value: 5

Reload when Unchanged

Selects action to perform on files found to be externally changed but unaltered
within the IDE. Use Auto Reload to automatically reload these files, Immediately
Request Reload to ask via a dialog box upon detection, Requst Reload on Edit to
ask only if the unchanged file is edited within the IDE subsequently, or Never
Reload to ignore external changes (although you will still be warned if you try to
save over an externally changed file)

Internal Name: cache.unchanged-reload-policy

Data Specification: [never-reload, auto-reload, request-reload, edit-reload]

Default Value: auto-reload

Reload when Changed

Selects action to perform on files found to be externally changed and that also
have been altered in the IDE. One of Immediately Request Reload to ask via a
dialog box upon detection, Request Reload on Edit to ask if the file is edited
further, or Never Reload to ignore external changes (although you will always be
warned if you try to save over an externally changed file)

Internal Name: cache.changed-reload-policy

Data Specification: [never-reload, request-reload, edit-reload]

Preferences Reference

172

Default Value: request-reload

Check Hash before Reloading

Don't reload files if size has not changed and a hash of the contents matches the
hash when it was last read. This check is skipped if file is larger than 5 MB.

Internal Name: cache.check-hash-before-reload

Data Specification: <boolean: 0 or 1>

Default Value: True

• External Display

File Display Commands

Posix only: The commands used to display or edit local disk files selected from the
Help menu or project files selected for external display. This is a map from mime
type to a list of display commands; each display command is tried in order of the
list until one works. The mime type "*" can be used to set a generic viewer, such as
a web browser. Use %s to place the file name on the command lines. If unspecified
then Wing will use the configured URL viewer in the environment (specified by
BROWSER environment variable or by searching the path for common browsers).
On Windows, the default viewer for the file type is used instead so this preference
is ignored. On OS X, files are opened with "open" by default so this preference is
rarely needed.

Internal Name: gui.file-display-cmds

Data Specification: [dict; keys: <type str>, values: [list of: <type str>]]

Default Value: {}

Url Display Commands

Posix only: The commands used to display URLs. This is a map from protocol type
to a list of display commands; each display command is tried in order of the list
until one works. The protocol "*" can be used to set a generic viewer, such as a
multi-protocol web browser. Use %s to place the URL on the command lines. If
unspecified then Wing will use the configured URL viewer in the environment
(specified by BROWSER environment variable or by searching the path for
common browsers). On Windows, the default web browser is used instead so this
preference is ignored. On OS X, URLs are opened with "open" by default so this
preference is rarely needed.

Internal Name: gui.url-display-cmds

Data Specification: [dict; keys: <type str>, values: [list of: <type str>]]

Default Value: {}

Preferences Reference

173

Editor
Error Indicators

Controls whether Wing will show error and/or warning indicators on the editor as
red and yellow underlines. When shown, hovering the mouse over the indicator
shows the error or warning detail in a tooltip.

Internal Name: edit.error-display

Data Specification: [show-errors, show-none, show-all]

Default Value: show-all

Show Line Numbers

Shows or hides line numbers on the editor.

Internal Name: edit.show-line-numbers

Data Specification: <boolean: 0 or 1>

Default Value: 0

Show Whitespace

Set to true to show whitespace with visible characters by default

Internal Name: edit.show-whitespace

Data Specification: <boolean: 0 or 1>

Default Value: 0

Show EOL

Set to true to show end-of-line with visible characters by default

Internal Name: edit.show-eol

Data Specification: <boolean: 0 or 1>

Default Value: 0

Split Reuse Policy

Policy for reusing splits in editors when new files are opened: Either always open in
current split, reuse already visible editor falling back on current split, reuse already
visible editor falling back on adjacent split, or always open in an adjacent split. This
only has an effect when more than one editor split is visible.

Internal Name: gui.split-reuse-policy

Data Specification: [current, reuse-adjacent, reuse-current, adjacent]

Default Value: current

Other Split Type

Preferences Reference

174

The type of split to create with commands that display in other split. The default is
to split horizontally if the window width is greater than the height and to split
vertically otherwise.

Internal Name: edit.other-split-type

Data Specification: [<generator object <genexpr> at 0x10842c820>]

Default Value: None

Show All Files in All Splits

Whether to show all open editors in a window in every split.

Internal Name: gui.all-editors-in-all-splits

Data Specification: <boolean: 0 or 1>

Default Value: True

Strip Trailing White Space

Controls whether to automatically strip trailing white space in the editor. May be
enabled for any file or only files that are part of the current project.

Internal Name: main.auto-rstrip-on-save

Data Specification:
[tuple length 2 of: [disabled, on-save-project, on-save], <type str>]

Default Value: disabled

Block Comment Style

Style of commenting to use when commenting out blocks of Python code.

Internal Name: gui.block-comment-style

Data Specification: [indented-pep8, indented, block]

Default Value: indented

Scroll Past End

Set this to allow scrolling the editor past the last line.

Internal Name: edit.scroll-past-end

Data Specification: <boolean: 0 or 1>

Default Value: True

Ensure File Ends With EOL When Saving

Whether to add an eol at the end of the file when it is saved

Internal Name: edit.ensure-ending-eol-on-save

Data Specification: <boolean: 0 or 1>

Preferences Reference

175

Default Value: False

Enable Font Size Zooming

Whether to allow font size zooming in the editor, using the mouse wheel, track pad,
or zoom-in and zoom-out commands.

Internal Name: edit.enable-font-zoom

Data Specification: <boolean: 0 or 1>

Default Value: False

• Selection/Caret

Selection Color

The color used to indicate the current text selection on editable text.

Internal Name: gui.qt-text-selection-color

Data Specification:
[None or [tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]]

Default Value: None

Caret Color

Selects the color to use for the editor caret.

Internal Name: edit.caret-color

Data Specification:
[None or [tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]]

Default Value: None

Caret Width

Width of the blinking insertion caret on the editor, in pixels. Currently limited to a
value between 1 and 3.

Internal Name: edit.caret-width

Data Specification: [from 1 to 3]

Default Value: 1

Caret Flash Rate (ms)

Sets the time in milliseconds between showing and hiding the caret when it is
flashing; use 0 to disable flashing entirely

Internal Name: edit.caret-flash-rate

Data Specification: [from 0 to 2000]

Default Value: 500

Preferences Reference

176

Caret Line Highlight

Selects whether to highlight the line the caret is currently on. When enabled, a
highlight color and alpha (transparency) can be set.

Internal Name: edit.caret-line-highlight

Data Specification: [None or [tuple length 2 of: [None or [tuple length 3 of: [fro m 0 to 255], [from 0 to 255], [from 0 to 255]]], <type int>]]

Default Value: None

• Indentation

Use Indent Analysis

Select when to use indent analysis (examination of current file contents) in order to
determine tab size and indent size. Either always in all files, only in Python files, or
never.

Internal Name: edit.use-indent-analysis

Data Specification: [always, never, python-only]

Default Value: always

Default Tab Size

Set size of tabs, in spaces, used in new files. Note that in Python files that contain
mixed space and tab indentation, tab size is always forced to 8 spaces. Use the
Indentation Manager to alter indentation in existing files.

Internal Name: edit.tab-size

Data Specification: [from 1 to 80]

Default Value: 8

Default Indent Size

Sets size of an indent, in spaces, used in new files. This is overridden in non-empty
files, according to the actual contents of the file. In files with tab-only indentation,
this value may be modified so it is a multiple of the configured tab size. Use the
Indentation Manager to alter indentation in existing files.

Internal Name: edit.indent-size

Data Specification: [from 1 to 80]

Default Value: 4

Default Indent Style

Set the style of indentation used in new files. This is overridden in non-empty files,
according to the actual contents of the file. Use the Indentation Manager to alter
indentation in existing files.

Internal Name: edit.indent-style

Preferences Reference

177

Data Specification: [mixed, spaces-only, tabs-only]

Default Value: spaces-only

Auto Indent

Controls when Wing automatically indents when return or enter is typed.

Internal Name: edit.auto-indent

Data Specification: [0, 1, blank-only]

Default Value: 1

Show Indent Guides

Set to true to show indent guides by default

Internal Name: edit.show-indent-guides

Data Specification: <boolean: 0 or 1>

Default Value: 0

Show Python Indent Warning Dialog

Set to show a warning dialog when opening a Python file that contains potentially
problematic indentation: Either inconsistent and possibly confusing indentation, a
mix of indent styles in a single file, or mixed tab and space indentation (which is not
recommended for Python).

Internal Name: edit.show-python-indent-warnings

Data Specification: <boolean: 0 or 1>

Default Value: 1

Show Override Warning Dialog

Show indent mismatch warning dialog when user selects an indent style that is
incompatible with existing file content. This only applies to non-Python files since
Wing disallows overriding the indent style in all Python files.

Internal Name: edit.show-non-py-indent-warning

Data Specification: <boolean: 0 or 1>

Default Value: True

• Line Wrapping

Wrap Long Lines

Enable to wrap long source lines on the editor display.

Internal Name: edit.wrap-lines

Data Specification: <boolean: 0 or 1>

Preferences Reference

178

Default Value: 0

Edge Markers

Control whether and how edge markers are shown in the editor.

Internal Name: edit.qt-show-edge-markers

Data Specification: [tuple length 3 of: [0, 1, 2], [from 0 to 10000], [None or [tupl e length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]]]

Default Value: (0, 80, None)

Reformatting Wrap Column

Column at which text should be wrapped by commands that automatically
rearrange text

Internal Name: edit.text-wrap-column

Data Specification: <type int>

Default Value: 77

• Clipboard

On Empty Selection

Controls whether or not to copy or cut the whole current line when there is no
selection on the editor.

Internal Name: edit.smart-clipboard

Data Specification: [disabled, copy-cut, copy]

Default Value: copy

Middle Mouse Paste

Paste text into the editor from the clipboard when the middle mouse button is
pressed. Disabling this is mainly useful for wheel mice with a soft wheel that
causes pasting of text before wheel scrolling starts.

Internal Name: edit.middle-mouse-paste

Data Specification: <boolean: 0 or 1>

Default Value: True

Convert Indent Style On Paste

Controls whether Wing automatically converts indent style and size on text that is
pastedinto an editor.

Internal Name: edit.convert-indents-on-paste

Data Specification: <boolean: 0 or 1>

Default Value: True

Preferences Reference

179

Adjust Indent After Paste

Controls whether Wing automatically adjusts indents after multi-line text is pasted.
When enabled, a single undo will remove any alterations in indentation.

Internal Name: edit.adjust-indent-after-paste

Data Specification: <boolean: 0 or 1>

Default Value: True

• Syntax Coloring

Background Color

Background color to use on the source editor, Python Shell, Debug Probe, Source
Assistant, and other tools that display source code. Foreground colors for text may
be altered automatically to make them stand out on the selected background color.

Internal Name: edit.background-color

Data Specification:
[None or [tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]]

Default Value: None

Syntax Formatting

Formatting options for syntax coloring in editors. Colors are relative to a white
background and will be transformed if the background color is set to a color other
than white.

Internal Name: .edit.syntax-formatting

Data Specification: [dict; keys: <type str>, values: [dict; keys: [italic, back, fore , bold], values: [one of: None, <type str>, <boolean: 0 or 1>]]]

Default Value: {}

Highlight Builtins

Highlight Python builtins

Internal Name: edit.highlight-builtins

Data Specification: <boolean: 0 or 1>

Default Value: True

• Occurrences

Highlight Occurrences

Selects when to automatically highlight other occurrences of the current selection
on the editor

Internal Name: edit.highlight-occurrences

Preferences Reference

180

Data Specification: [always, never, words]

Default Value: words

Match Case

Disable to allow occurrences highlighting also where case does not match.

Internal Name: edit.match-case-occurrences

Data Specification: <boolean: 0 or 1>

Default Value: True

Occurrences Indicator Style

The style of indicator to use for highlighting other occurrences of the current
selection on the editor.

Internal Name: edit.occurrence-indicator-style

Data Specification: [box, block]

Default Value: block

Occurrences Color

The color used to indicate the current text selection on editable text.

Internal Name: edit.occurrence-color

Data Specification:
[None or [tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]]

Default Value: None

• Bookmarks

Bookmark Color

Color to use on the source editor to indicate the location of user-defined
bookmarks.

Internal Name: edit.qt-bookmark-color

Data Specification:
[None or [tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]]

Default Value: None

Bookmark Style

Visual display style to use for bookmarks: Either an underline, a background color
change, or no visible marker.

Internal Name: edit.bookmark-style

Data Specification: [None, underline, background]

Preferences Reference

181

Default Value: background

• Folding

Enable Folding

Whether to enable folding source code.

Internal Name: edit.enable-folding

Data Specification: <boolean: 0 or 1>

Default Value: 1

Line Mode

Whether and how to show a line at a collapsed fold point. Controls the position of
the line and whether it is shown for collapsed or expanded fold points.

Internal Name: edit.fold-line-mode

Data Specification:
[above-collapsed, above-expanded, none, below-collapsed, below-expanded]

Default Value: below-collapsed

Indicator Style

Selects the type of indicators to draw at fold points.

Internal Name: edit.fold-indicator-style

Data Specification: [from 0 to 3]

Default Value: 1

Fold Trailing White Space

Controls whether or not trailing white space after a block of code is folded up along
with the block, for a more compact folded display.

Internal Name: edit.fold-trailing-whitespace

Data Specification: <boolean: 0 or 1>

Default Value: 1

Foreground Color

Color to use for the foreground of the fold indicators.

Internal Name: edit.fold-mark-foreground-color

Data Specification:
[None or [tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]]

Default Value: None

Background Color

Preferences Reference

182

Color to use for the background of the fold indicators.

Internal Name: edit.fold-mark-background-color

Data Specification:
[None or [tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]]

Default Value: None

• Auto-completion

Auto-show Completer

Controls whether or not the completer is always shown automatically during typing,
never auto-shown, or shown only after a certain number of characters are in the
completion fragment. When auto-show is disabled, the auto-completer can still be
shown on demand with the Show Completer item in the Source menu.

Internal Name: edit.autocomplete-autoshow-option

Data Specification: [always, never]

Default Value: always

Auto-completer Height

The maximum number of lines to show in the auto-completer at once.

Internal Name: edit.autocompleter-height

Data Specification: <type int>

Default Value: 10

Auto-complete Delay (sec)

Delay in seconds from last key press to wait before the auto-completer is shown. If
0.0, the auto-completer is shown immediately.

Internal Name: edit.autocomplete-delay

Data Specification: <type float>, <type int>

Default Value: 0.0

Auto-complete Timeout

Timeout in seconds from last key press after which the auto-completer is
automatically hidden. If 0.0, the auto-completer does not time out.

Internal Name: edit.autocomplete-timeout

Data Specification: <type float>, <type int>

Default Value: 0

Completion Keys

Preferences Reference

183

Controls which keys will enter selected completion value into the editor.

Internal Name: edit.autocomplete-keys

Data Specification: [tuple of: [f1, f3, return, space, period, bracketleft, tab, f12, colon, f10, parenleft]]

Default Value: ['tab']

Completion Mode

Selects how completion is done in the editor: Either insert the completion at the
cursor, replace any symbols that heuristically match the selected completion (and
insert in other cases), or replace any existing symbol with the new symbol.

Internal Name: edit.autocomplete-mode

Data Specification: [replace-matching, insert, replace]

Default Value: insert

Case Insensitive Matching

Controls whether matching in the completer is case sensitive or not. The correct
case is always used when a completion is chosen.

Internal Name: edit.autocomplete-case-insensitive

Data Specification: <boolean: 0 or 1>

Default Value: True

Include Snippets in Completer

Whether or not to include code snippets in the auto-completer.

Internal Name: edit.snippets-in-autocompleter

Data Specification: <boolean: 0 or 1>

Default Value: True

Python Turbo Mode (Experimental)

When enabled, the Python auto-completer enters the completion automatically
whenever a key other than a valid symbol name key is pressed. When disabled,
only the configured completion keys enter the completion into the editor.

Internal Name: edit.autocomplete-turbo-mode

Data Specification: <boolean: 0 or 1>

Default Value: 0

Non-Python Completion

Controls whether or not use the completer in non-Python files, where it uses a
simple word list generated from the existing contents of the file. If enabled, the

Preferences Reference

184

number of characters required before the completer is shown may be specified
here.This value overrides any character threshold set above.

Internal Name: edit.autocomplete-non-python-option

Data Specification: [always, never]

Default Value: 3

Non-Python Word Size

Sets the minimum size of words to add to the completion list for non-Python files.
This affects only words found in the file, and not words included because they are
keywords for that file type.

Internal Name: edit.autocomplete-non-python-word-size

Data Specification: <type int>

Default Value: 4

• Auto-editing

Auto-Editing Enabled

Enable or disable Wing's auto-editing capability. When enabled, a default set of
individual auto-editing operations (such as auto-closing quotes and parenthesis
and auto-entering invocation arguments) will be activated. The individual
operations can then be enabled or disabled independently in preferences.

Internal Name: edit.auto-edit-enabled

Data Specification: <boolean: 0 or 1>

Default Value: 1

Auto-Close Characters

Enable to auto-close quotes, parenthesis, braces, comments, and so forth.

Internal Name: edit.auto-edit-close

Data Specification: <boolean: 0 or 1>

Default Value: 1

Auto-Enter Invocation Args

Enable auto-entry of invocation arguments for a function or method call.

Internal Name: edit.auto-edit-invoke

Data Specification: <boolean: 0 or 1>

Default Value: 1

Apply Quotes to Selection

Preferences Reference

185

Enable placing quotes around a non-empty selection.

Internal Name: edit.auto-edit-quotes

Data Specification: <boolean: 0 or 1>

Default Value: 1

Apply Comment Key to Selection

Enable commenting out a non-empty selection when a comment character is
pressed.

Internal Name: edit.auto-edit-comment

Data Specification: <boolean: 0 or 1>

Default Value: 1

Apply (), [], and {} to Selection

Enable surrounding non-empty selection when a parenthesis is pressed.

Internal Name: edit.auto-edit-parens

Data Specification: <boolean: 0 or 1>

Default Value: 1

Apply Colon to Selection

Enable creating a new block with a selected range of lines when colon is pressed.

Internal Name: edit.auto-edit-colon-creates-block

Data Specification: <boolean: 0 or 1>

Default Value: 1

Auto-Enter Spaces

Enable auto-entering spaces around operators and punctuation.

Internal Name: edit.auto-edit-spaces

Data Specification: <boolean: 0 or 1>

Default Value: 0

** Auto-Space After Keywords**

Enable auto-entering spaces after keywords.

Internal Name: edit.auto-edit-spaces-kw

Data Specification: <boolean: 0 or 1>

Default Value: 0

** Enforce PEP8 Style Spacing**

Preferences Reference

186

When auto-entering spaces is enabled, enforce PEP8 style spacing by preventing
redundant spaces.

Internal Name: edit.auto-edit-spaces-enforce

Data Specification: <boolean: 0 or 1>

Default Value: 0

** Spaces in Argument Lists**

When auto-entering spaces is enabled, also auto-enter spaces in argument lists.

Internal Name: edit.auto-edit-spaces-args

Data Specification: <boolean: 0 or 1>

Default Value: 0

Manage Blocks on Repeated Colon Key Presses

Auto-enter newline and auto-indent after typing a colon that starts a new Python
block and indent following line or block of lines when colon is pressed repeatedly.
This also starts a new Python block using a selected range of lines as the body, if
colon is pressed on a non-empty selection.

Internal Name: edit.auto-edit-colon

Data Specification: <boolean: 0 or 1>

Default Value: 0

Continue Comment or String on New Line

Automatically continue comments or strings in the form ("") or () after a newline is
typed within the comment or string text

Internal Name: edit.auto-edit-continue

Data Specification: <boolean: 0 or 1>

Default Value: 1

Correct Out-of-Order Typing

Automatically correct code when typing keys out of order. This handles cases such
as x(.) -> x(). and x(:) -> x(): as well as auto-inserting . when missing

Internal Name: edit.auto-edit-fixups

Data Specification: <boolean: 0 or 1>

Default Value: 1

• Diff/Merge

Orientation

Preferences Reference

187

Orientation of difference/merge views: Side-by-side or top/bottom

Internal Name: diff.orientation

Data Specification: [horizontal, vertical]

Default Value: horizontal

Lock Scrolling

Controls whether scrolling of the diff/merge editors is locked to synchronize the
editor scroll positions.

Internal Name: diff.scroll-lock

Data Specification: <boolean: 0 or 1>

Default Value: True

Ignore White Space

Controls whether differences will ignore changes that alter white space only.

Internal Name: diff.ignore-whitespace

Data Specification: <boolean: 0 or 1>

Default Value: False

Empty Session Warning

Controls whether to warn when changing white space filtering causes sessions to
become empty of changes.

Internal Name: diff.empty-session-warning

Data Specification: <boolean: 0 or 1>

Default Value: True

Diff Color

Color to use on the source editor for differences during a diff/merge session. The
current mark is drawn in a lighter version of the same color. The within-difference
change indicators are drawn transparently with the color set in the Text Selection
Color preference.

Internal Name: edit.qt-diff-color

Data Specification:
[None or [tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]]

Default Value: None

Merged Diff Color

Color to use on the source editor for already merged differences during a
diff/merge session. The current mark is drawn in a lighter version of the same

Preferences Reference

188

color. The within-difference change indicators are drawn transparently with the
color set in the Text Selection Color preference.

Internal Name: edit.qt-merged-diff-color

Data Specification:
[None or [tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]]

Default Value: None

• Printing

Print Header Format

Set the header format to use for printing. This can be any text with any of the
following special fields mixed in: %basename% - base file name;
%prepend-fullpath% - full path file name; %prepend-relative% - relative path with
from project file; %append-relative% - file name with relative path appended;
%append-fullpath% - file name with full path appended; %file-time% - file
modification time; %file-date% - file modification date; %current-time% - current
time; %current-date% - current date; %page% - current page being printed

Internal Name: edit.print-header-format

Data Specification: <type str>

Default Value: %prepend-fullpath%

Print Footer Format

Set the footer format to use for printing. The values allowed are the same as those
for print-header-format.

Internal Name: edit.print-footer-format

Data Specification: <type str>

Default Value: Page %page%, last modified %file-date% %file-time%

Print Header Font

Font to use in print header.

Internal Name: edit.print-header-font

Data Specification: [None or <type str>]

Default Value: None

Print Footer Font

Font to use in print footer.

Internal Name: edit.print-footer-font

Data Specification: [None or <type str>]

Preferences Reference

189

Default Value: None

Use Default Foreground Colors

Use default foreground colors for all text when printing. This is necessary when
using a dark background in the GUI and printing on white paper.

Internal Name: edit.use-default-foreground-when-printing

Data Specification: <boolean: 0 or 1>

Default Value: False

• Context Menu

Groups Shown

Controls which groups of menu items will be shown in the editor's context menu.

Internal Name: edit.context-menu-groups

Data Specification: [tuple of: [comment, indent, clip, script, vcs, nav, debug]]

Default Value: ['clip', 'nav', 'debug', 'comment', 'indent', 'vcs', 'script']

Custom Items

Extra menu items to add to the editor context menu.

Internal Name: edit.context-menu-custom-items

Data Specification: [tuple of: [tuple length 2 of: <type str>, <type str>]]

Default Value: ()

• Advanced

Brace Highlighting

Enabled to automatically highlight the matching braces next to the cursor or as
they are typed.

Internal Name: edit.auto-brace-match

Data Specification: <boolean: 0 or 1>

Default Value: 1

Maximum Non-Sticky Editors

Maximum number of non-sticky (auto-closing) editors to keep open at one time, in
addition to any that are visible on screen

Internal Name: gui.max-non-sticky-editors

Data Specification: <type int>

Default Value: 1

Preferences Reference

190

Selection Policy

This controls whether to retain selection in the editor after certain operations. The
editor may always select the text that was operated on, only retain existing
selections, or never select after the operation completes.

Internal Name: edit.select-policy

Data Specification: [dict; keys: [(u'Indent Region', 'indent-region'), (u'Indent To Match', 'indent-to-match'), (u'Uncomment out Region', 'uncomment-out-regio n'), (u'Outdent Region', 'outdent-region'), (u'Comment out Region', 'comment- out-region')], values: [(u'Never Select', 'never-select'), (u'Retain Select', 'retai
n-select'), (u'Always Select', 'always-select')]]

Default Value: {'uncomment-out-region': 'retain-select', 'outdent-region': 'retai n-select', 'comment-out-region': 'retain-select', 'indent-region': 'retain-select', 'indent-to-match': 'retain-select'}

Mini-search Case Sensitivity

Whether or not mini-search is case sensitive. May match the current keyboard
personality's default, use case sensitive search only if an upper case character is
typed, always search case sensitive, or always search case insensitively.

Internal Name: edit.minisearch-case-sensitive

Data Specification: [always, never, if-upper, match-mode]

Default Value: match-mode

Symbol Menu Max Length

The maximum number of names allowed on a single symbol menu

Internal Name: .edit.max-symbol-menu-name-count

Data Specification: <type int>

Default Value: 200

Command-Click to Goto Definition

Enable pressing Command-Click to goto definition in the editor, Python Shell, and
Debug Probe.

Internal Name: edit.enable-click-goto-definition

Data Specification: <boolean: 0 or 1>

Default Value: True

Alt-Click to Find Points of Use

Enable pressing Alt-Click to find points of use in the editor.

Internal Name: edit.enable-click-find-uses

Data Specification: <boolean: 0 or 1>

Default Value: True

Preferences Reference

191

Debugger
Integer Display Mode

Select the display style for integer values.

Internal Name: debug.default-integer-mode

Data Specification: [dec, hex, oct]

Default Value: dec

Hover Over Symbols

Enable to display debug data values for any symbol on the editor when the mouse
cursor hovers over it.

Internal Name: debug.hover-over-symbols

Data Specification: <boolean: 0 or 1>

Default Value: 1

Hover Over Selection

Controls whether debug values are shown when the mouse hovers over a
selection in the editor. This may be disabled, enabled for symbols (like x.y.z) only,
or enabled for all selections including function or methods calls. WARNING:
Enabling evaluation of any selection may result in function or method calls that
have side effects such as altering the program state or even making unintended
database or disk accesses!

Internal Name: debug.hover-over-selections

Data Specification: [0, 1, all]

Default Value: 1

Run Marker Color

The color of the text highlight used for the run position during debugging

Internal Name: debug.debug-marker-color

Data Specification:
[None or [tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]]

Default Value: None

Run Marker Alpha

Select transparency (0-160) of the text highlight used for the run position during
debugging

Internal Name: debug.run-marker-alpha

Data Specification: [None or <type int>]

Preferences Reference

192

Default Value: None

Active Range Color

The color of the active range of code used for quick evaluation in the Python Shell
or Debug Probe.

Internal Name: debug.active-range-color

Data Specification:
[None or [tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]]

Default Value: None

Line Threshold

Defines the character length threshold under which a value will always be shown
on a single line, even if the value is a complex type like a list or dict.

Internal Name: debug.line-threshold

Data Specification: <type int>

Default Value: 65

Indicate Project Files in Stack

Enable to indicate projects files in the the debug stack, in the stack selector, Stack
Data, and Exception tools.

Internal Name: debug.indicate-project-files

Data Specification: <boolean: 0 or 1>

Default Value: True

• Processes

Enable Multi-Process Debugging

Enable multi-process debugging. When disabled, Wing will only accept one debug
connection at a time.

Internal Name: debug.multi-process-debug

Data Specification: <boolean: 0 or 1>

Default Value: True

Switch to Stopped Processes

When to automatically switch the currently active debug process to a process that
reaches a breakpoint or exception.

Internal Name: debug.multi-process-switch

Data Specification: [always, none, launched]

Preferences Reference

193

Default Value: launched

Debug Child Processes

Enable debugging sub-processes. When disabled, Wing will only debug the initially
launched parent process.

Internal Name: debug.multi-process-debug-sub-processes

Data Specification: <boolean: 0 or 1>

Default Value: False

Replace sys.executable

Enable replacement of sys.executable so that processes launched using that value
will be debugged. This must be enabled on Windows in order to debug child
processes created with the multiprocessing module.

Internal Name: debug.multi-process-replace-sys-executable

Data Specification: <boolean: 0 or 1>

Default Value: True

Termination Model

How to terminate debug when a parent process or child process is terminated. A
process group includes any all parent and child processes, up to the initially
launched process, including also grand-children and any other descendent
process.

Internal Name: debug.multi-process-kill-model

Data Specification: [leave-running, auto-kill-group, prompt, auto-kill]

Default Value: auto-kill-group

Maximum Process Count

Maximum number of debug processes that can connect to Wing at once. After the
limit is reached, Wing accepts no additional connections until some processes
detach or exit.

Internal Name: debug.multi-process-maximum

Data Specification: <type int>

Default Value: 50

Debug Multiple Tests at Once

Enable debugging more than one unit test at once. When enabled, the
Debug/Abort button in the Testing tool alters according to which test is selected.

Internal Name: debug.multi-process-multiple-tests

Data Specification: <boolean: 0 or 1>

Preferences Reference

194

Default Value: False

Debug Multiple Instances of a Named Entry Point

Enable debugging more than one instance of a named entry point. When disabled,
any existing debug process for a named entry point will be terminated when it is
debugged.

Internal Name: debug.multi-process-multiple-entry-points

Data Specification: <boolean: 0 or 1>

Default Value: False

• Exceptions

Report Exceptions

Controls how Wing reports exceptions that are raised by your debug process. By
default, Wing shows exceptions at the time that the exception traceback would
normally be printed. Alternatively, Wing can try to predict which exceptions are
unhandled, and stop immediately when unhandled exceptions are raised so that
any finally clauses can be stepped through in the debugger. Wing can also stop on
all exceptions (even if handled) immediately when they are raised, or it can wait to
report fatal exceptions as the debug process terminates. In the latter case Wing
makes a best effort to stop before the debug process exits or at least to report the
exception post-mortem, but one or both may fail if working with externally launched
debug processes. In that case, we recommend using When Printed exception
reporting mode.

Internal Name: debug.exception-mode

Data Specification: [unhandled, always, never, printed]

Default Value: printed

Report Logged Exceptions In When Printed Mode

Controls whether to stop on exceptions logged with logging.exception if the
exception mode is set to 'When Printed'

Internal Name: debug.stop-on-logged-exception

Data Specification: <boolean: 0 or 1>

Default Value: True

Never Report

Names of builtin exceptions to never report, even if the exception is not handled.
This list takes precedence over the Always Report preference and the Report
Exceptions preference when it is set to a value other than Always Immediately.

Internal Name: debug.never-stop-exceptions

Preferences Reference

195

Data Specification: [tuple of: <type str>]

Default Value: ['SystemExit', 'GeneratorExit']

Always Report

Names of builtin exceptions to (nearly) always report. These exceptions are not
reported only if they are explicitly caught by the specific subclass in the same
frame in which they are raised.

Internal Name: debug.always-stop-exceptions

Data Specification: [tuple of: <type str>]

Default Value: ['AssertionError']

• I/O

Debug I/O Encoding

Encoding of input/output in the Debug I/O panel

Internal Name: debug.debug-io-encoding

Data Specification: [None or [Central and Eastern European iso8859-2, Japane se iso-2022-jp-2004, Hebrew cp856, Japanese euc-jp, Vietnamese cp1258, Gr eek cp1253, Baltic Languages cp1257, Korean johab, Western European cp12 52, Baltic Languages cp775, Japanese iso-2022-jp-ext, Korean iso-2022-kr, Ic elandic cp861, Hebrew cp424, Cyrillic Languages cp1251, Turkish iso8859-9, Unicode (UTF-16, little endian) utf-16-le, Western European cp500, Chinese (P RC) gb18030, Greek cp875, Arabic cp864, Icelandic mac-iceland, Chinese (PR C) gbk, Turkish mac-turkish, Greek iso8859-7, Baltic Languages iso8859-13, Cyrillic Languages mac-cyrillic, Greek cp869, Japanese iso-2022-jp-1, Central and Eastern European cp852, Japanese iso-2022-jp-2, Chinese (ROC) big5, U rdu cp1006, Console default (utf-8), Hebrew iso8859-8, Japanese iso-2022-jp- 3, Celtic Languages iso8859-14, Thai cp874, Cyrillic Languages cp855, Weste rn European iso8859-15, Greek mac-greek, Ukrainian koi8-u, Hebrew cp1255,
Danish, Norwegian cp865, Cyrillic Languages iso8859-5, Turkish cp1026, We stern European mac-roman, Western European cp1140, Chinese (PRC) hz, Po rtuguese cp860, Chinese (ROC) cp950, Unicode (UTF-16, big endian) utf-16-b e, Japanese shift-jis-2004, Turkish cp1254, Hebrew cp862, Western European latin-1, Japanese euc-jisx0213, US, Canada, and Others cp037, Japanese euc -jis-2004, Japanese shift-jisx0213, Central and Eastern European cp1250, Balt ic Languages iso8859-4, English ascii, Japanese shift-jis, Arabic iso8859-6, C anadian English/French cp863, Russian koi8-r, Japanese iso-2022-jp, Unicod e (UTF-8) utf-8, Greek cp737, Nordic Languages iso8859-10, Central and East ern European mac-latin2, Chinese (PRC) gb2312, Unicode (UTF-7) utf-7, Arabi c cp1256, Chinese (PRC) big5hkscs, Western European cp850, None, Espera nto and Maltese iso8859-3, Turkish cp857, Korean cp949, US, Australia, New Zealand, S. Africa cp437, Unicode (UTF-16) utf-16, Japanese cp932]]

Default Value: None

Shell Encoding

Encoding of input/output in the integrated Python Shell and Debug Probe

Internal Name: debug.debug-probe-encoding

Data Specification: [None or [Central and Eastern European iso8859-2, Japane se iso-2022-jp-2004, Hebrew cp856, Japanese euc-jp, Vietnamese cp1258, Gr eek cp1253, Baltic Languages cp1257, Korean johab, Western European cp12 52, Baltic Languages cp775, Japanese iso-2022-jp-ext, Korean iso-2022-kr, Ic elandic cp861, Hebrew cp424, Cyrillic Languages cp1251, Turkish iso8859-9, Unicode (UTF-16, little endian) utf-16-le, Western European cp500, Chinese (P RC) gb18030, Greek cp875, Arabic cp864, Icelandic mac-iceland, Chinese (PR C) gbk, Turkish mac-turkish, Greek iso8859-7, Baltic Languages iso8859-13, Cyrillic Languages mac-cyrillic, Greek cp869, Central and Eastern European mac-latin2, Japanese iso-2022-jp-1, Central and Eastern European cp852, Jap anese iso-2022-jp-2, Chinese (ROC) big5, Urdu cp1006, Hebrew iso8859-8, Ja panese iso-2022-jp-3, Celtic Languages iso8859-14, Thai cp874, Cyrillic Lang uages cp855, Western European iso8859-15, Greek mac-greek, Ukrainian koi 8-u, Hebrew cp1255, Danish, Norwegian cp865, Cyrillic Languages iso8859-5, Turkish cp1026, Western European mac-roman, Western European cp1140,
Chinese (PRC) hz, Portuguese cp860, Chinese (ROC) cp950, Unicode (UTF-16 , big endian) utf-16-be, Japanese shift-jis-2004, Turkish cp1254, Hebrew cp86 2, Western European latin-1, Japanese euc-jisx0213, US, Canada, and Others cp037, Japanese euc-jis-2004, Japanese shift-jisx0213, Central and Eastern E uropean cp1250, Baltic Languages iso8859-4, English ascii, Japanese shift-ji s, Use default stdin / stdout encoding, Canadian English/French cp863, Russi an koi8-r, Japanese iso-2022-jp, Unicode (UTF-8) utf-8, Greek cp737, Nordic L anguages iso8859-10, Arabic iso8859-6, Chinese (PRC) gb2312, Unicode (UT F-7) utf-7, Arabic cp1256, Chinese (PRC) big5hkscs, Western European cp850 , None, Esperanto and Maltese iso8859-3, Turkish cp857, Korean cp949, US, Australia, New Zealand, S. Africa cp437, Unicode (UTF-16) utf-16, Japanese c p932]]

Default Value: None

Pretty Print in Shells

Enable to use pprint.pprint to display values in the Python Shell and Debug Probe.

Internal Name: debug.pretty-print-in-shells

Data Specification: <boolean: 0 or 1>

Default Value: False

OS Commands Encoding

Default encoding of sub-process input/output when run in the OS Commands
panel. This can be overridden on a per-command basis, in each command's
properties.

Internal Name: consoles.encoding

Preferences Reference

196

Data Specification: [None or [Central and Eastern European iso8859-2, Japane se iso-2022-jp-2004, Hebrew cp856, Japanese euc-jp, Vietnamese cp1258, Gr eek cp1253, Baltic Languages cp1257, Korean johab, Western European cp12 52, Baltic Languages cp775, Japanese iso-2022-jp-ext, Korean iso-2022-kr, Ic elandic cp861, Hebrew cp424, Cyrillic Languages cp1251, Turkish iso8859-9, Unicode (UTF-16, little endian) utf-16-le, Western European cp500, Chinese (P RC) gb18030, Greek cp875, Arabic cp864, Icelandic mac-iceland, Chinese (PR C) gbk, Turkish mac-turkish, Greek iso8859-7, Baltic Languages iso8859-13, Cyrillic Languages mac-cyrillic, Greek cp869, Japanese iso-2022-jp-1, Central and Eastern European cp852, Japanese iso-2022-jp-2, Chinese (ROC) big5, U rdu cp1006, Console default (utf-8), Hebrew iso8859-8, Japanese iso-2022-jp- 3, Celtic Languages iso8859-14, Thai cp874, Cyrillic Languages cp855, Weste rn European iso8859-15, Greek mac-greek, Ukrainian koi8-u, Hebrew cp1255,
Danish, Norwegian cp865, Cyrillic Languages iso8859-5, Turkish cp1026, We stern European mac-roman, Western European cp1140, Chinese (PRC) hz, Po rtuguese cp860, Chinese (ROC) cp950, Unicode (UTF-16, big endian) utf-16-b e, Japanese shift-jis-2004, Turkish cp1254, Hebrew cp862, Western European latin-1, Japanese euc-jisx0213, US, Canada, and Others cp037, Japanese euc -jis-2004, Japanese shift-jisx0213, Central and Eastern European cp1250, Balt ic Languages iso8859-4, English ascii, Japanese shift-jis, Arabic iso8859-6, C anadian English/French cp863, Russian koi8-r, Japanese iso-2022-jp, Unicod e (UTF-8) utf-8, Greek cp737, Nordic Languages iso8859-10, Central and East ern European mac-latin2, Chinese (PRC) gb2312, Unicode (UTF-7) utf-7, Arabi c cp1256, Chinese (PRC) big5hkscs, Western European cp850, None, Espera nto and Maltese iso8859-3, Turkish cp857, Korean cp949, US, Australia, New Zealand, S. Africa cp437, Unicode (UTF-16) utf-16, Japanese cp932]]

Default Value: None

Use External Console

Selects whether to use the integrated Debug I/O tool for debug process
input/output or an external terminal window. Use an external window if your debug
process depends on details of the command prompt environment for cursor
movement, color text, etc.

Internal Name: debug.external-console

Data Specification: <boolean: 0 or 1>

Default Value: 0

External Console Waits on Exit

Determines whether to leave up the console after normal program exit, or to close
the console right away in all cases. This is only relevant when running with an
external native console instead of using the integrated Debug I/O tool.

Internal Name: debug.persist-console

Data Specification: <boolean: 0 or 1>

Default Value: 0

External Consoles

A list of the terminal programs that are used with debug processes when running
with an external console. Each is tried in turn until one is found to exist. If just the
name is given, Wing will look for each first on the PATH and then in likely places.
Specify the full path (starting with "/") to use a specific executable. If program
arguments are specified, they must end with the argument that indicates that the
rest of arguments are the program to run in the terminal. If the program name
starts with ${WINGHOME} , ${WINGHOME} is replaced by the Wing install
directory. On OS X if the program name ends is .applescript, the environment is
loaded from a file before starting the debugger.

Internal Name: debug.x-terminal

Data Specification: [tuple of: <type str>]

Default Value: ['${WINGHOME}/resources/osx/run-in-terminal.applescript', 'gn ome-terminal "--title=Wing Debug Console" -x', 'xterm -T "Wing Debug Conso le" -e', 'konsole -T "Wing Debug Console" -e', 'rxvt -T "Wing Debug Console" -e']

• Data Filters

Omit Types

Defines types for which values are never shown by the debugger.

Internal Name: debug.omit-types

Preferences Reference

197

Data Specification: [tuple of: <type str>]

Default Value: ('function', 'builtin_function_or_method', 'class', 'classobj', 'inst ance method', 'type', 'module', 'ufunc', 'wrapper_descriptor', 'method_descrip tor', 'member_descriptor')

Omit Names

Defines variable/key names for which values are never shown by the debugger.

Internal Name: debug.omit-names

Data Specification: [tuple of: <type str>]

Default Value: ()

Do Not Expand

Defines types for which values should never be probed for contents. These are
types that are known to crash when the debugger probes them because they
contain buggy data value extraction code. These values are instead shown as an
opaque value with hex object instance id and are never accessed for runtime
introspection.

Internal Name: debug.no-probe-types

Data Specification: [tuple of: <type str>]

Default Value: ('GdkColormap', 'IOBTree', 'JPackage')

Huge List Threshold

Defines the length threshold over which a list, dict, or other complex type will be
considered too large to show in the normal debugger. If this is set too large, the
debugger will time out (see the Network Timeout preference)

Internal Name: debug.huge-list-threshold

Data Specification: <type int>

Default Value: 2000

Huge String Threshold

Defines the length over which a string is considered too large to fetch for display in
the debugger. If this is set too large, the debugger will time out (see the Network
Timeout preference).

Internal Name: debug.huge-string-threshold

Data Specification: <type int>

Default Value: 64000

• External/Remote

Accept Debug Connections

Preferences Reference

198

Controls whether or not the debugger listens for connections from an externally
launched program. This should be enabled when the debug program is not
launched by the IDE.

Internal Name: debug.passive-listen

Data Specification: <boolean: 0 or 1>

Default Value: 0

Allowed Hosts

Sets which hosts are allowed to connect to the debugger when it is listening for
externally launched programs.

Internal Name: debug.passive-hosts

Data Specification: [tuple of: <type str>]

Default Value: ('127.0.0.1',)

Server Host

Determines the network interface on which the debugger listens for connections.
This can be a symbolic name, an IP address, or left unspecified to indicate that the
debugger should listen on all valid network interfaces on the machine. Note that
when a debug session is launched from within the IDE (with the Run button), it
always connects from the loopback interface (127.0.0.1)

Internal Name: debug.network-server

Data Specification: [None or <type str>]

Default Value: None

Server Port

Determines the TCP/IP port on which the IDE will listen for the connection from the
debug process. This needs to be unique for each developer working on a given
host. The debug process, if launched from outside of the IDE, needs to be told the
value specified here using kWingHostPort inside wingdbstub.py or by
WINGDB_HOSTPORT environment variable before importing wingdbstub in the
debug process.

Internal Name: debug.network-port

Data Specification: [from 0 to 65535]

Default Value: 50005

Location Map

Defines a mapping between the remote and local locations of files for host-to-host
debugging. For each IP address, a remote and local prefix is given. This should be
used when full paths of files on the remote host do not match those for the same

Preferences Reference

199

files on the local host. Wing assumes an external file server or synchronization
protocol is in use and does not itself transfer the files.

Internal Name: debug.location-map

Data Specification: [dict; keys: <ip4 address #.#.#.#>, values: [None or [list of: [tuple length 2 of: <type str>, <type str>]]]]

Default Value: {'127.0.0.1': None}

Kill Externally Launched

Enable or disable the terminating debug processes that were launched from
outside of the IDE. When disabled, Wing just detaches from the process, leaving it
running.

Internal Name: debug.enable-kill-external

Data Specification: <boolean: 0 or 1>

Default Value: 0

Common Attach Hosts

List of host/port combinations that should be included by default in the attach
request list shown with Attach to Process in the Debug menu, in addition to those
that are registered at runtime. These are used primarily with externally launched
debug processes, since Wing automatically shows IDE-launched processes for
attach when appropriate. This value corresponds with kAttachPort configured in
wingdbstub.py or by WINGDB_ATTACHPORT environment variable before
importing wingdbstub in the debug process.

Internal Name: debug.attach-defaults

Data Specification: [tuple of: [tuple length 2 of: <type str>, [from 0 to 65535]]]

Default Value: (('127.0.0.1', 50015),)

• Advanced

Network Timeout

Controls the amount of time that the IDE will wait for the debug process to respond
before it gives up. This protects the IDE from freezing up if your program running
within the debug process crashes or becomes unavailable. It must also be taken
into account when network connections are slow or if sending large data values
(see the Huge List Threshold and Hug String Threshold preferences).

Internal Name: debug.network-timeout

Data Specification: <type float>, <type int>

Default Value: 10

Resolve Properties

Preferences Reference

200

Set to show property values in the debug data views. This should be used with
caution. It enables invocation of the fget() method on the property, which in some
code bases can execute unwanted code, make unexpected changes to runtime
state, hang on lengthy computations, trigger thread deadlocks, or crash on buggy
user code while debug data is being displayed in the IDE.

Internal Name: debug.resolve-properties

Data Specification: <boolean: 0 or 1>

Default Value: False

Allow Dynamic Introspection

Set to allow Python code and other dynamic calls to be invoked while introspecting
values in the debugger, for display in the auto-completer, shells, and source
assistant. This should be used with caution. In some code bases, enabling this can
execute unwanted code, make unexpected changes to runtime state, hang on
lengthy computations, trigger thread deadlocks, or crash on buggy user code, while
working in the IDE.

Internal Name: debug.allow-dynamic-introspection

Data Specification: <boolean: 0 or 1>

Default Value: False

Call Python ____repr____ Methods

Allow __repr__ methodes implemented in Python to be invoked. Set to false if the
__repr__ methods take too long to compute or fail due to other bugs

Internal Name: debug.allow-bytecode-repr

Data Specification: <boolean: 0 or 1>

Default Value: True

Show Data Warnings

Controls whether or not time out, huge value, and error handling value errors are
displayed by the debugger the first time they are encountered in each run of Wing.

Internal Name: debug.show-debug-data-warnings

Data Specification: <boolean: 0 or 1>

Default Value: 1

Ignore Unsynchronized Files

Controls whether or not Wing ignores files that were not saved before starting
debug or that have changed since they were loaded by the debug process. Wing
normally will warn of unsynchronized files since breakpoints may not be reached

Preferences Reference

201

and stepping through the files may not work properly if lines have moved. Checking
this option turns off these warnings.

Internal Name: gui.ignore-unsaved-before-action

Data Specification: <boolean: 0 or 1>

Default Value: 0

Use sys.stdin Wrapper

Whether sys.stdin should be set a wrapper object for user input in the program
being debugged. The wrapper allows debug commands, such as pause, to be
executed while the program is waiting for user input. The wrapper may cause
problems with multi-threaded programs that use C stdio functions to read directly
from stdin and will be slower than the normal file object.However, turning this
preference off means that your debug process will not pause or accept breakpoint
changes while waiting for keyboard input, and any keyboard input that occurs as a
side effect of commands typed in the Debug Probe will happen in unmodified stdin
instead (even though output will still appear in the Debug Probe as always).

Internal Name: debug.use-stdin-wrapper

Data Specification: <boolean: 0 or 1>

Default Value: 1

Show Editor on Exceptions in Shells

Controls whether the debugger raises source files to indicate exception locations
encountered when working in the Debug Probe, and other debugger tools.

Internal Name: debug.raise-from-tools

Data Specification: <boolean: 0 or 1>

Default Value: 1

Shells Ignore Editor Modes

Set to False so that shells will act modal in the same way as editors when working
with a modal key bindings such as that for VI. When True, the shells always act as
if in Insert mode.

Internal Name: debug.shells-ignore-editor-modes

Data Specification: <boolean: 0 or 1>

Default Value: 1

Execute Pasted Lines in Shells Immediately

Whether to always execute immediately after text is pasted into a shell. Note that if
the number of lines exceed the pasted line threshold, the lines are immediately
executed.

Preferences Reference

202

Internal Name: debug.shell-always-execute-on-paste

Data Specification: <boolean: 0 or 1>

Default Value: False

Auto-show Run Args Dialog

Controls whether the Debug Args dialog is shown before each debug run: Either
never show the dialog or show it only if 'Show this dialog before each run' is
checked in the file's properties (this is the default).

Internal Name: debug.show-args-dialog

Data Specification: [per-file, never]

Default Value: per-file

When Build Fails

Controls whether to start debugging if the defined build process fails

Internal Name: debug.debug-if-build-fails

Data Specification: [None, 0, 1]

Default Value: None

Default Watch Style

Sets the tracking style used when a value is double clicked in order to watch it.
Values may be tracked by symbolic name, by object reference and attribute by
name, and by direct object reference.

Internal Name: debug.default-watch-style

Data Specification: [ref, parent-ref, symbolic]

Default Value: symbolic

• Diagnostics

Debug Internals Log File

This is used to obtain verbose information about debugger internals in cases where
you are having problems getting debugging working. Logging can be disabled, or
sent to stderr, stdout, or a file.

Internal Name: debug.logfile

Data Specification: [one of: None, [<stdout>, <stderr>], <type str>]

Default Value: None

Extremely Verbose Internal Log

This is used to turn on very verbose and detailed logging from the debugger. Only
recommended when debugging the debugger.

Preferences Reference

203

Internal Name: debug.very-verbose-log

Data Specification: <boolean: 0 or 1>

Default Value: False

Python Shell Debug Log

This is used to obtain verbose information about the Python Shell internals in
cases where you are having problems getting it working. Logging can be disabled,
or sent to stderr, stdout, or a file.

Internal Name: debug.shell-logfile

Data Specification: [one of: None, [<stdout>, <stderr>], <type str>]

Default Value: None

Extremely Verbose Python Shell Debug Log

This is used to turn on very verbose and detailed logging from the Python Shell
internals. Only recommended when debugging the Python Shell.

Internal Name: debug.very-verbose-shell-log

Data Specification: <boolean: 0 or 1>

Default Value: False

Source Analysis
Analyze in Background

Whether Wing should try to analyze python source in the background.

Internal Name: pysource.analyze-in-background

Data Specification: <boolean: 0 or 1>

Default Value: 1

Introspect Live Runtime

Set to introspect live Python runtimes for information displayed in autocompletion,
the Source Assistant, and debug data value tooltips. Runtimes introspected include
the Python Shell and live debug processes stopped at an exception or breakpoint.

Internal Name: debug.introspect-in-shells

Data Specification: <boolean: 0 or 1>

Default Value: 1

Typing Suspend Timeout

Number of seconds between last key press and when analysis is re-enabled if
analysis is to be suspended while typing occurs. If <= 0, analysis is not suspended.

Preferences Reference

204

Internal Name: edit.suspend-analysis-timeout

Data Specification: <type float>, <type int>

Default Value: 3

Max Cache Size (MB)

The maximum size of the disk cache in megabytes

Internal Name: pysource.max-disk-cache-size

Data Specification: [from 100 to 10000]

Default Value: 500

Max Memory Buffers

The maximum # of analysis info buffers that can be in-memory at once for files that
are not open.

Internal Name: pysource.max-background-buffers

Data Specification: [from 50 to 300]

Default Value: 80

• Advanced

Interface File Path

Path to search for interface files for extension modules. If directory name is
relative, it will be interpreted as relative to the user settings directory
(USER_SETTINGS_DIR)

Internal Name: pysource.interfaces-path

Data Specification: [tuple of: <type str>]

Default Value: ('pi-files',)

Scrape Extension Modules

Enable to automatically load and introspect extension modules and other modules
that cannot be statically analysed. These modules are loaded in another process
space and 'scraped' to obtain at least some analysis of the module's contents.

Internal Name: pysource.scrape-modules

Data Specification: <boolean: 0 or 1>

Default Value: True

Scraping Helper Snippets

This is a dictionary from module name to Python code that should be executed
before attempting to load extension modules for scraping. This is needed in cases
where the extension modules are designed to be loaded only after some

Preferences Reference

205

configuration magic is performed. For most extension modules, no extra
configuration should be needed.

Internal Name: pysource.scrape-config

Data Specification: [dict; keys: <type str>, values: <type str>]

Default Value: {'QtSvg': 'try:\n from PyQt4 import QtSvg\nexcept:\n try:\n fr om PyQt5 import QtSvg\n except:\n from PySide import QtSvg\n', 'QtWidge ts': 'try:\n from PyQt4 import QtWidgets\nexcept:\n try:\n from PyQt5 impo rt QtWidgets\n except:\n from PySide import QtWidgets\n', 'wxpython': 'pa ss', 'QtHelp': 'try:\n from PyQt4 import QtHelp\nexcept:\n try:\n from PyQt5 import QtHelp\n except:\n from PySide import QtHelp\n', 'gdk': 'import pyg
tk\nvers = pygtk._get_available_versions().keys()\nvers.sort()\nvers.reverse()\ nfor v in vers:\n try:\n pygtk.require(v)\n break\n except:\n pass\n', 'Qt Gui': 'try:\n from PyQt4 import QtGui\nexcept:\n try:\n from PyQt5 import QtGui\n except:\n from PySide import QtGui\n', '_gst': 'from gst import _gst
', 'gtk': 'import pygtk\nvers = pygtk._get_available_versions().keys()\nvers.so rt()\nvers.reverse()\nfor v in vers:\n try:\n pygtk.require(v)\n break\n exce pt:\n pass\n', 'QtXml': 'try:\n from PyQt4 import QtXml\nexcept:\n try:\n fr om PyQt5 import QtXml\n except:\n from PySide import QtXml\n', 'QtWebK it': 'try:\n from PyQt4 import QtWebKit\nexcept:\n try:\n from PyQt5 import QtWebKit\n except:\n from PySide import QtWebKit\n', 'QtScriptTools': 'try
:\n from PyQt4 import QtScriptTools\nexcept:\n try:\n from PyQt5 import Q tScriptTools\n except:\n from PySide import QtScriptTools\n', 'QtSql': 'try:\ n from PyQt4 import QtSql\nexcept:\n try:\n from PyQt5 import QtSql\n ex cept:\n from PySide import QtSql\n', 'Qt': 'try:\n from PyQt4 import Qt\nexc ept:\n try:\n from PyQt5 import Qt\n except:\n from PySide import Qt\n', ' QtAssistant': 'try:\n from PyQt4 import QtAssistant\nexcept:\n try:\n from PyQt5 import QtAssistant\n except:\n from PySide import QtAssistant\n', ' QtXmlPatterns': 'try:\n from PyQt4 import QtXmlPatterns\nexcept:\n try:\n from PyQt5 import QtXmlPatterns\n except:\n from PySide import QtXmlPa tterns\n', 'QtDeclarative': 'try:\n from PyQt4 import QtDeclarative\nexcept:\n try:\n from PyQt5 import QtDeclarative\n except:\n from PySide import Qt Declarative\n', 'QtDesigner': 'try:\n from PyQt4 import QtDesigner\nexcept:\n try:\n from PyQt5 import QtDesigner\n except:\n from PySide import QtD
esigner\n', 'pango': 'import pygtk\nvers = pygtk._get_available_versions().key s()\nvers.sort()\nvers.reverse()\nfor v in vers:\n try:\n pygtk.require(v)\n b reak\n except:\n pass\n', 'QtOpenGL': 'try:\n from PyQt4 import QtOpenGL\ nexcept:\n try:\n from PyQt5 import QtOpenGL\n except:\n from PySide i mport QtOpenGL\n', 'QtUiTools': 'try:\n from PyQt4 import QtUiTools\nexcep t:\n try:\n from PyQt5 import QtUiTools\n except:\n from PySide import Q tUiTools\n', 'QSci': 'try:\n from PyQt4 import QSci\nexcept:\n try:\n from P
yQt5 import QSci\n except:\n from PySide import QSci\n', 'atk': 'import pyg tk\nvers = pygtk._get_available_versions().keys()\nvers.sort()\nvers.reverse()\ nfor v in vers:\n try:\n pygtk.require(v)\n break\n except:\n pass\n', 'QtT est': 'try:\n from PyQt4 import QtTest\nexcept:\n try:\n from PyQt5 import
QtTest\n except:\n from PySide import QtTest\n', 'QtScript': 'try:\n from Py Qt4 import QtScript\nexcept:\n try:\n from PyQt5 import QtScript\n except: \n from PySide import QtScript\n', 'gobject': 'import pygtk\nvers = pygtk._g et_available_versions().keys()\nvers.sort()\nvers.reverse()\nfor v in vers:\n tr y:\n pygtk.require(v)\n break\n except:\n pass\n', 'QtCore': 'try:\n from PyQt4 import QtCore\nexcept:\n try:\n from PyQt5 import QtCore\n except: \n from PySide import QtCore\n', 'QtNetwork': 'try:\n from PyQt4 import Qt Network\nexcept:\n try:\n from PyQt5 import QtNetwork\n except:\n from PySide import QtNetwork\n'}

Python Docs URL Prefix

Prefix for Python Standard Library Documentation. This should be in the form
http://docs.python.org/library/ and Wing will append module and symbol specific to
the given URL. To use locally stored documentation, you must run a local web
server since # bookmarks do not work in file: URLs.

Internal Name: pysource.python-doc-url-prefix

Data Specification: [None or <type int>]

Default Value: None

Version Control
Enable built-in version control

Enable the integrated version control system.

Internal Name: versioncontrol.enable-non-script

Data Specification: <boolean: 0 or 1>

Default Value: True

Save files without prompting

Save without prompting before running version control commands.

Internal Name: versioncontrol.save-without-prompting

Data Specification: <boolean: 0 or 1>

Default Value: True

Track changes made in project tool

Track file add, remove, and rename operations made with Wing's Project view into
the version control repository.

Internal Name: versioncontrol.track-disk-operations

Preferences Reference

206

http://docs.python.org/library/

Data Specification: <boolean: 0 or 1>

Default Value: True

Automatically refresh status

Watch disk for version control changes and refresh the Project view and Project
Status accordingly.

Internal Name: versioncontrol.watch-disk

Data Specification: <boolean: 0 or 1>

Default Value: True

Enable diagnostic logging

Log all commands to the error-log.

Internal Name: versioncontrol.log-all-commands

Data Specification: <boolean: 0 or 1>

Default Value: False

• SVN

Active

When Subversion version control support is active

Internal Name: .versioncontrol.svn.active

Data Specification: [(u'Always Active', 'always-active'), (u'Not active', 'not-activ e'), (u'Active if used by project directories', 'active-if-project-dir')]

Default Value: active-if-project-dir

SVN Executable

Executable command to run Subversion

Internal Name: .versioncontrol.svn.executable

Data Specification: <type str>

Default Value: svn

SVN Admin Executable

Executable command to run svn

Internal Name: versioncontrol.svn.svnadmin-executable

Data Specification: <type str>

Default Value: svnadmin

Extra global arguments

Extra arguments to pass to every command.

Preferences Reference

207

Internal Name: versioncontrol.svn.extra-global-args

Data Specification: <type str>

Default Value: ""

• Git

Active

When Git version control support is active

Internal Name: .versioncontrol.git.active

Data Specification: [(u'Always Active', 'always-active'), (u'Not active', 'not-activ e'), (u'Active if used by project directories', 'active-if-project-dir')]

Default Value: active-if-project-dir

Git Executable

Executable command to run Git

Internal Name: .versioncontrol.git.executable

Data Specification: <type str>

Default Value: git

Use --porcelain

Use --porcelain output for git status

Internal Name: versioncontrol.git.use-porcelain

Data Specification: <boolean: 0 or 1>

Default Value: True

• BZR

Active

When Bazaar version control support is active

Internal Name: .versioncontrol.bzr.active

Data Specification: [(u'Always Active', 'always-active'), (u'Not active', 'not-activ e'), (u'Active if used by project directories', 'active-if-project-dir')]

Default Value: active-if-project-dir

Bazaar Executable

Executable command to run Bazaar

Internal Name: .versioncontrol.bzr.executable

Data Specification: <type str>

Default Value: bzr

Preferences Reference

208

• Mercurial

Active

When Mercurial version control support is active

Internal Name: .versioncontrol.hg.active

Data Specification: [(u'Always Active', 'always-active'), (u'Not active', 'not-activ e'), (u'Active if used by project directories', 'active-if-project-dir')]

Default Value: active-if-project-dir

Mercurial Executable

Executable command to run Mercurial

Internal Name: .versioncontrol.hg.executable

Data Specification: <type str>

Default Value: hg

Extra global arguments

Extra arguments to pass to every command.

Internal Name: versioncontrol.hg.extra-global-args

Data Specification: <type str>

Default Value: --encoding=utf8

• CVS

Active

When CVS version control support is active

Internal Name: .versioncontrol.cvs.active

Data Specification: [(u'Always Active', 'always-active'), (u'Not active', 'not-activ e'), (u'Active if used by project directories', 'active-if-project-dir')]

Default Value: active-if-project-dir

CVS Executable

Executable command to run CVS

Internal Name: .versioncontrol.cvs.executable

Data Specification: <type str>

Default Value: cvs

Extra global arguments

Extra arguments to pass to every command.

Internal Name: versioncontrol.cvs.extra-global-args

Preferences Reference

209

Data Specification: <type str>

Default Value: -z3

• Perforce

Active

When Perforce version control support is active

Internal Name: .versioncontrol.perforce.active

Data Specification: [(u'Always Active', 'always-active'), (u'Not active', 'not-activ e'), (u'Active if used by project directories', 'active-if-project-dir')]

Default Value: not-active

Perforce Executable

Executable command to run Perforce

Internal Name: .versioncontrol.perforce.executable

Data Specification: <type str>

Default Value: p4

Extra Global Arguments

Extra arguments to pass to every command.

Internal Name: versioncontrol.perforce.extra-global-args

Data Specification: <type str>

Default Value: ""

Don't Find Unregistered Files

Don't find unregistered files when scanning for file status. This can substantially
reduce the time to scan large repositories.

Internal Name: versioncontrol.perforce.dont-find-unregistered

Data Specification: <boolean: 0 or 1>

Default Value: True

IDE Extension Scripting
Search Path

Specifies the directories in which Wing will look for user-defined scripts that extend
the functionality of the IDE itself. The directory names may contain environment
variables in the $(envname) form. Use $(WING:PROJECT_DIR) for the project
directory.For each directory, Wing will load all found Python modules and
packages, treating any function whose name starts with a letter (not _ or __) as a
script-provided command. Extension scripts found in files within directories later in

Preferences Reference

210

the list will override scripts of the same name found earlier, except that scripts can
never override commands that are defined internally in Wing itself (these are
documented in the Command Reference in the users manual). See the Scripting
and Extending chapter of the manual for more information on writing and using
extension scripts. Note that WINGHOME/scripts is always appended to the given
path since it contains scripts that ship with Wing.

Internal Name: main.script-path

Data Specification: [list of: <type str>]

Default Value: [u'USER_SETTINGS_DIR/scripts']

Auto-Reload Scripts on Save

When enabled, Wing will automatically reload scripts that extend the IDE when
they are edited and saved from the IDE. This makes developing extension scripts
for the IDE very fast, and should work in most cases. Disable this when working on
extension scripts that do not reload properly, such as those that reach through the
scripting API extensively.

Internal Name: main.auto-reload-scripts

Data Specification: <boolean: 0 or 1>

Default Value: True

Network
HTTP Proxy Server

Allows manual configuration of an http proxy to be used for feedback, bug reports,
and license activation, all of which result in Wing connecting to wingware.com via
http. Leave user name and password blank if not required.

Internal Name: main.http-proxy

Data Specification:
[None or [tuple length 4 of: <type str>, <type int>, <type str>, <type str>]]

Default Value: None

Internal Preferences

Core Preferences
main.debug-break-on-critical

If True and a gtk, gdk, or glib critical message is logged, Wing tries to start a C
debugger and break at the current execution point

Internal Name: main.debug-break-on-critical

Data Specification: <boolean: 0 or 1>

Preferences Reference

211

Default Value: False

main.documentation-language

The language to use for the documentation, when available (not all documentation
is translated into all supported languages).

Internal Name: main.documentation-language

Data Specification: [None, de, en, fr]

Default Value: en

main.extra-mime-type-comments

This is a map from mime type to tuple of start/end comment characters for each
mime type. One entry should be added for each new mime type added with the
main.extra-mime-types preference.

Internal Name: main.extra-mime-type-comments

Data Specification:
[dict; keys: <type str>, values: [tuple length 2 of: <type str>, <type str>]]

Default Value: {}

main.extra-mime-type-names

This is a map from mime type to displayable name for that mime type; one entry
should be added for each new mime type added with the main.extra-mime-types
preference.

Internal Name: main.extra-mime-type-names

Data Specification: [dict; keys: <type str>, values: <type str>]

Default Value: {}

main.help-font-zoom

The amount by which to zoom font sizes in or out in the documentation viewer.

Internal Name: main.help-font-zoom

Data Specification: <type float>

Default Value: 1.0

main.ignored-updates

Used internally to keep track of updates the user is not interested in

Internal Name: main.ignored-updates

Data Specification: [list of: <type str>]

Default Value: []

main.plugin-overrides

Preferences Reference

212

Defines which plugins are enabled or disabled.

Internal Name: main.plugin-overrides

Data Specification: [dict; keys: <type str>, values: <boolean: 0 or 1>]

Default Value: {}

main.sassist-allow-pep287-errors

Whether show docstrings as ReST even if they contain parse errors. When
disabled, they are shown as plain text instead. When enabled, this may destroy
formatting of some docstrings.

Internal Name: main.sassist-allow-pep287-errors

Data Specification: <boolean: 0 or 1>

Default Value: False

main.sassist-always-show-docstrings

Whether to always show docstrings in the Source Assistant. When disabled, only
the docstring for the last displayed symbol is shown.

Internal Name: main.sassist-always-show-docstrings

Data Specification: <boolean: 0 or 1>

Default Value: False

main.sassist-tries-rewrap

Whether to rewrap plain text docstrings for display in the Source Assistant. This
may destroy formatting of some docstrings.

Internal Name: main.sassist-tries-rewrap

Data Specification: <boolean: 0 or 1>

Default Value: True

main.sassist-show-validity

Whether show docstring type and validity in the Source Assistant.

Internal Name: main.sassist-show-validity

Data Specification: <boolean: 0 or 1>

Default Value: True

main.sassist-tries-pep287

Whether to try parsing docstrings as ReST format for display in the Source
Assistant. This may destroy formatting of some docstrings.

Internal Name: main.sassist-tries-pep287

Data Specification: <boolean: 0 or 1>

Preferences Reference

213

Default Value: True

User Interface Preferences
gui.alphabetize-tabs

Whether to keep tabs in alphabetical order.

Internal Name: gui.alphabetize-tabs

Data Specification: <boolean: 0 or 1>

Default Value: True

gui.feedback-email

Email address to use by default in the Feedback and Bug Report dialogs

Internal Name: gui.feedback-email

Data Specification: <type str>

Default Value: ""

gui.last-feedback-shown

Used internally to avoid showing the feedback dialog on exit over and over again.

Internal Name: gui.last-feedback-shown

Data Specification: <type float>

Default Value: 0.0

gui.message-config

Controls the format and verbosity of messages shown to the user for each
message domain in the message area. Each domain specifies the format (in
Python 2.3 logging.Formatter format), and the minimum logging level that should
be shown in the display. If a message domain is left unspecified, then the parent
domain settings are used instead ("" is the parent of all domains).

Internal Name: gui.message-config

Data Specification: [dict; keys: [search, debugger, analysis, general, project, e ditor, scripts, browser], values: [tuple length 3 of: <type str>, [0, 40, 30], <typ e int>]]

Default Value: {'': ('%(message)s', 0, 100000)}

gui.more-controls-for-search-in-files

Controls whether "Search in Files" dialog has an extra row of visible options as
buttons.

Internal Name: gui.more-controls-for-search-in-files

Data Specification: <boolean: 0 or 1>

Default Value: 0

Preferences Reference

214

gui.prefered-symbol-order

Control preferred order in source index displays such as the editor browse menus.
Either sort in the order found in the file or alphabetical order.

Internal Name: gui.prefered-symbol-order

Data Specification: [file-order, alpha-order]

Default Value: alpha-order

gui.reported-exceptions

Used internally to remember which unexpected exceptions have already been
reported so we only show error reporting dialog once for each.

Internal Name: gui.reported-exceptions

Data Specification: [dict; keys: <type str>, values: [dict; keys: <type str>, value s: <boolean: 0 or 1>]]

Default Value: {}

gui.scan-for-pythoncom-shell-extensions

Scan for pythoncom shell extensions on Windows

Internal Name: gui.scan-for-pythoncom-shell-extensions

Data Specification: <boolean: 0 or 1>

Default Value: True

gui.set-win32-foreground-lock-timeout

Controls whether or not to set the foreground lock timeout on Windows XP, where
normally Wing will be unable to bring source windows to front whenever the debug
process has windows in the foreground. When this preference is true, the
system-wide value that prevents background applications from raising windows is
cleared whenever Wing is running. This means that other apps will also be able to
raise windows without these restrictions while Wing is running. Set the preference
to false to avoid this, but be prepared for windows to fail to raise in some instances.
Note: If Wing is terminated abnormally or from the task manager, the changed
value will persist until the user logs out.

Internal Name: gui.set-win32-foreground-lock-timeout

Data Specification: <boolean: 0 or 1>

Default Value: 1

gui.show-feedback-dialog

Whether feedback dialog is shown to user on quit.

Internal Name: gui.show-feedback-dialog

Data Specification: <boolean: 0 or 1>

Preferences Reference

215

Default Value: 1

gui.startup-show-wingtips

Controls whether or not the Wing Tips tool is shown automatically at startup of the
IDE.

Internal Name: gui.startup-show-wingtips

Data Specification: <boolean: 0 or 1>

Default Value: 1

gui.use-system-qt

Use the system-provided Qt library (requires Qt4 4.8 or later). Wing comes with its
own private copy of the Qt libraries for which it is built and tested. Use the system
Qt option to better integrate with the gnome or other desktop environment,
however on some systems this may result in random crashing or other bugs
resulting from binary incompatibilities in library versions. This preference may be
overridden on the command line with the --system-qt and --private-qt command
line options.

Internal Name: gui.use-system-qt

Data Specification: [None, True, False]

Default Value: False

gui.work-area-rect

Rectangle to use for the IDE work area on screen. All windows open within this
area. Format is (x, y, width, height), or use None for full screen.

Internal Name: gui.work-area-rect

Data Specification:
[None or [tuple length 4 of: <type int>, <type int>, <type int>, <type int>]]

Default Value: None

Editor Preferences
consoles.auto-clear

Automatically clear the OS Commands consoles each time the command is
re-executed

Internal Name: consoles.auto-clear

Data Specification: <boolean: 0 or 1>

Default Value: False

edit.autocomplete-autoshow

Preferences Reference

216

Controls whether or not the completer is shown automatically during typing. When
disabled, it can still be shown on demand with the Show Completer item in the
Source menu.

Internal Name: edit.autocomplete-autoshow

Data Specification: <boolean: 0 or 1>

Default Value: 1

edit.fold-mime-types

Selects the mime types for which folding should be allowed when folding in general
is enabled.

Internal Name: edit.fold-mime-types

Data Specification: [list of: <type str>]

Default Value: ['text/x-python', 'text/x-c-source', 'text/x-cpp-source', 'text/x-jav a-source', 'text/x-javascript', 'text/html', 'text/x-mako', 'text/x-django', 'text/xml ', 'text/x-zope-pt', 'text/x-eiffel', 'text/x-lisp', 'text/x-ruby', 'text/x-cython']

edit.gtk-input-method

Input method used for typing characters. This is important primarily for
non-Western European languages.

Internal Name: edit.gtk-input-method

Data Specification: []

Default Value: default

consoles.wrap-long-lines

Wrap long output lines in OS Commands tool to fit within available display area.

Internal Name: consoles.wrap-long-lines

Data Specification: <boolean: 0 or 1>

Default Value: False

consoles.python-prompt-after-execution

Drop into Python shell after executing any Python file in the OS Commands tool

Internal Name: consoles.python-prompt-after-execution

Data Specification: <boolean: 0 or 1>

Default Value: False

edit.sassist-font-zoom

The amount by which to zoom font sizes in or out in the Source Assistant.

Internal Name: edit.sassist-font-zoom

Data Specification: <type float>

Preferences Reference

217

Default Value: 1.0

edit.symbol-find-alpha-sort

Controls whether to sort Find Symbol dialog alphabetically or in natural file order

Internal Name: edit.symbol-find-alpha-sort

Data Specification: <boolean: 0 or 1>

Default Value: True

edit.symbol-find-include-args

Controls whether to include argument specs in the searchable text used in the Find
Symbol dialog

Internal Name: edit.symbol-find-include-args

Data Specification: <boolean: 0 or 1>

Default Value: False

Project Manager Preferences
proj.follow-editor

Controls whether or not the IDE will follow the current editor by expanding the
project tree to show the file open in the editor.

Internal Name: proj.follow-editor

Data Specification: <boolean: 0 or 1>

Default Value: 0

proj.follow-selection

Controls whether or not the IDE will follow the current project manager selection by
opening the corresponding source file in a non-sticky (auto-closing) editor. In either
case, the project manager will always open a file in sticky mode when an item is
double clicked or the Goto Source context menu item is used.

Internal Name: proj.follow-selection

Data Specification: <boolean: 0 or 1>

Default Value: 0

proj.open-from-project-full-paths

Match fragments to full path of the file name, rather than just the file name. Full
path matching still occurs when the path separation character is included in the
search pattern.

Internal Name: proj.open-from-project-full-paths

Data Specification: <boolean: 0 or 1>

Preferences Reference

218

Default Value: 1

Debugger Preferences
debug.auto-clear-debug-io

Enable to automatically clear the Debug I/O tool each time a new debug session is
started

Internal Name: debug.auto-clear-debug-io

Data Specification: <boolean: 0 or 1>

Default Value: 1

debug.auto-show-debug-io

Controls whether and when to automatically show the Debug I/O tool when it
receives output.

Internal Name: debug.auto-show-debug-io

Data Specification: [False, True, first]

Default Value: 1

debug.debug-io-history

Enable to maintain a history of Debug I/O, up to the number configured in the Files
> Max Recent Items preference.

Internal Name: debug.debug-io-history

Data Specification: <boolean: 0 or 1>

Default Value: False

debug.debug-io-history

Enable to include child processes in the process selector popup.

Internal Name: debug.debug-io-history

Data Specification: <boolean: 0 or 1>

Default Value: True

debug.debug-shells

Enables debugging code executed in the Python Shell orDebug Probe.

Internal Name: debug.debug-shells

Data Specification: <boolean: 0 or 1>

Default Value: 0

debug.default-python-exec

Preferences Reference

219

Sets the default Python Executable to use for debugging and source code
analysis. This can be overridden on a project by project basis in Project Properties.

Internal Name: debug.default-python-exec

Data Specification: [None or <type str>]

Default Value: None

debug.filter-shell-history

Enable to filter shell history traversal when something is entered prior to starting
traversal. When enabled, Wing will only show history items starting with the text
between the start of the current item and the caret.

Internal Name: debug.filter-shell-history

Data Specification: <boolean: 0 or 1>

Default Value: False

main.launch-shared-file

Selects the file to use for storing and retrieving shared launch configurations. By
default the file 'launch' in the user settings directory is used.

Internal Name: main.launch-shared-file

Data Specification: [one of: <type NoneType>, <type str>]

Default Value: None

debug.prompt-to-restart-python-shell-debug

Whether to prompt when restarting the Python Shell as a result of restarting
debugging.

Internal Name: debug.prompt-to-restart-python-shell-debug

Data Specification: <boolean: 0 or 1>

Default Value: True

debug.recursive

Enables recursive debugging in the Python Shell andDebug Probe.

Internal Name: debug.recursive

Data Specification: <boolean: 0 or 1>

Default Value: 0

debug.shell-auto-restart-before-eval

Auto-restart the Python Shell before a file is evaluated within it. When this is
disabled, be aware that previously defined symbols will linger in the Python Shell
environment.

Preferences Reference

220

Internal Name: debug.shell-auto-restart-before-eval

Data Specification: <boolean: 0 or 1>

Default Value: 1

debug.shell-eval-whole-lines

Evaluate whole lines from editor rather than the exact selection, when a selection
from the editor is sent to the Python Shell tool.

Internal Name: debug.shell-eval-whole-lines

Data Specification: <boolean: 0 or 1>

Default Value: 0

debug.shell-pasted-line-threshold

The number of lines after which the Python Shell will just print a summary rather
than the actual lines of code pasted, dragged, or other transferred to the shell.

Internal Name: debug.shell-pasted-line-threshold

Data Specification: <type int>

Default Value: 30

debug.show-exceptions-tip

Used internally to show information about exception handling to new users. Once
turned off, it is never turned on again

Internal Name: debug.show-exceptions-tip

Data Specification: <boolean: 0 or 1>

Default Value: 1

debug.stop-timeout

Number of seconds to wait before the debugger will stop in its own code after a
pause request is received and no other Python code is reached.

Internal Name: debug.stop-timeout

Data Specification: <type float>, <type int>

Default Value: 3.0

debug.use-members-attrib

Set this to true to have the debug server use the __members__ attribute to try to
interpret otherwise opaque data values. This is a preference because some
extension modules contain bugs that result in crashing if this attribute is accessed.
Note that __members__ has been deprecated since Python version 2.2.

Internal Name: debug.use-members-attrib

Preferences Reference

221

Data Specification: <boolean: 0 or 1>

Default Value: 1

debug.warn-stale-shell

Enable to display a dialog when the Python Shell state no longer matches the
configured Python Executable and/or Python Path.

Internal Name: debug.warn-stale-shell

Data Specification: <boolean: 0 or 1>

Default Value: 0

debug.wrap-debug-io

Enables line wrapping in the integrated Debug I/O tool.

Internal Name: debug.wrap-debug-io

Data Specification: <boolean: 0 or 1>

Default Value: 0

debug.wrap-debug-probe

Enables line wrapping in the Debug Probe.

Internal Name: debug.wrap-debug-probe

Data Specification: <boolean: 0 or 1>

Default Value: 0

debug.wrap-python-shell

Enables line wrapping in the Python Shell.

Internal Name: debug.wrap-python-shell

Data Specification: <boolean: 0 or 1>

Default Value: 0

Source Analysis Preferences
pysource.use-sqllite-dotfile-locking

Use slower, dotfile locking for sqllite databases to work around buggy remote file
servers. Only needed if the user cache directory is on a remote file system or can
be accessed via a remote file system. It is recommended that the user cache
directory be on the local file system for performance reasons.

Internal Name: pysource.use-sqllite-dotfile-locking

Data Specification: <boolean: 0 or 1>

Default Value: False

Preferences Reference

222

Command Reference
This chapter describes the entire top-level command set of Wing IDE. Use this
reference to look up command names for use in modified keyboard bindings.

Commands that list arguments of type <numeric modifier> accept either a
number or previously entered numeric modifier. This is used with key bindings that
provide a way to enter a numeric modifier (such as Esc 1 2 3 in the emacs
personality or typing numerals in browse mode in the vi personality).

20.1. Top-level Commands

Application Control Commands

These are the high level application control commands.

abandon-changes (confirm=True)

Abandon any changes in the current document and reload it from disk. Prompts for
user to confirm the operation unless either there are no local changes being
abandoned or confirm is set to False.

about-application ()

Show the application-wide about box

begin-visited-document-cycle (move_back=True, back_key=None,
forward_key=None)

Start moving between documents in the order they were visited. Starts modal key
interaction that ends when a key other than tab is seen or ctrl is released. Key
Binding: Ctrl-Tab invokes begin-visited-document-cycle(move_back=True)

bookmarks-menu-items ()

Returns list of menu items for selecting among defined bookmarks

check-for-updates ()

Check for updates to Wing IDE and offer to install any that are available

close (ignore_changes=False, close_window=True, can_quit=False)

Close active document. Abandon any changes when ignore_changes is True.
Close empty windows when close_window is true and quit if all document windows
closed when can_quit is true. Key Bindings: Wing IDE: Ctrl-F4; Brief: Ctrl-F4;
Eclipse: Ctrl-F4; Emacs: Ctrl-F4; OS X: Command-F4; VI/VIM: Ctrl-F4; Visual
Studio: Ctrl-F4; XCode: Command-F4

close-all (omit_current=False, ignore_changes=False, close_window=False)

Close all documents in the current window, or in all windows if in
one-window-per-editor windowing policy. Leave currently visible documents (or

Command Reference

223

http://wingware.com/doc/custom/key-equivalents

active window in one-window-per-editor-mode) if omit_current is True. Abandons
changes rather than saving them when ignore_changes is True. Close empty
window and quit if all document windows closed when close_window is True. Key
Bindings: Eclipse: Ctrl-Shift-F2

close-window ()

Close the current window and all documents and panels in it Key Bindings: Wing
IDE: Alt-F4; Brief: Alt-F4; Eclipse: Alt-F4; Emacs: Alt-F4; OS X: Option-F4; VI/VIM:
Alt-F4; Visual Studio: Alt-F4; XCode: Option-F4

command-by-name (command_name)

Execute given command by name, collecting any args as needed Key Bindings:
Wing IDE: Ctrl-F12; Brief: Ctrl-F12; Eclipse: Ctrl-F12; Emacs: Ctrl-F12; OS X:
Command-F12; VI/VIM: Ctrl-F12; Visual Studio: Ctrl-F12; XCode: Command-F12

copy-tutorial ()

Prompt user and copy the tutorial directory from the Wing IDE installation to the
directory selected by the user

edit-file-sets ()

Show the File Sets preference editor

edit-preferences-file ()

Edit the preferences as a text file

enter-license ()

Enter a new license code, replacing any existing license activation

execute-file (loc=None)

Execute the file at the given location or use the active view if loc is None. Key
Bindings: Eclipse: Ctrl-U

execute-os-command (title, show=True)

Execute one of the stored commands in the OS Commands tool, selecting it by its
title

execute-os-command-by-id (id, raise_panel=True)

Execute one of the stored commands in the OS Commands tool, selecting it by its
internal ID

execute-process (cmd_line)

Execute the given command line in the OS Commands tool using default run
directory and environment as defined in project properties, or the values set in an
existing command with the same command line in the OS Commands tool. Key
Bindings: Emacs: Alt-!

Command Reference

224

fileset-load (name)

Load the given named file set

fileset-manage ()

Display the file set manager dialog

fileset-new-with-open-files (file_set_name)

Create a new named file set with the currently open files

fileset-new-with-selected-files (file_set_name)

Create a new named file set with the currently selected files

goto-bookmark (mark)

Goto named bookmark Key Bindings: Wing IDE: Ctrl-Alt-G; Eclipse: Ctrl-Alt-G;
Emacs: Ctrl-X R B; OS X: Command-Shift-D; Visual Studio: Ctrl-Alt-G; XCode:
Command-Shift-D

goto-next-bookmark (current_file_only=False)

Go to the next bookmark, or the first one if no bookmark is selected. Stays within
the file in the current editor when current_file_only is True. Key Bindings: Wing
IDE: Ctrl-Alt-Right; Brief: Ctrl-Alt-Right; Eclipse: Ctrl-Alt-Right; Emacs:
Ctrl-Alt-Right; VI/VIM: Ctrl-Alt-Right; Visual Studio: Ctrl-Alt-Right

goto-previous-bookmark (current_file_only=False)

Go to the previous bookmark in the bookmark list, or the last one if no bookmark is
selected. Stays within the file in the current editor when current_file_only is True.
Key Bindings: Wing IDE: Ctrl-Alt-Left; Brief: Ctrl-Alt-Left; Eclipse: Ctrl-Alt-Left;
Emacs: Ctrl-Alt-Left; VI/VIM: Ctrl-Alt-Left; Visual Studio: Ctrl-Alt-Left

hide-line-numbers ()

Hide line numbers in editors

initiate-numeric-modifier (digit)

VI style repeat/numeric modifier for following command Key Bindings: VI/VIM: 1
invokes initiate-numeric-modifier(digit=1)

initiate-repeat ()

Enter a sequence of digits indicating number of times to repeat the subsequent
command or keystroke. Key Bindings: Emacs: Ctrl-U

initiate-repeat-0 ()

Enter a sequence of digits indicating number of times to repeat the subsequent
command or keystroke. Key Bindings: Emacs: Alt-0

initiate-repeat-1 ()

Command Reference

225

Enter a sequence of digits indicating number of times to repeat the subsequent
command or keystroke. Key Bindings: Emacs: Alt-1

initiate-repeat-2 ()

Enter a sequence of digits indicating number of times to repeat the subsequent
command or keystroke. Key Bindings: Emacs: Alt-2

initiate-repeat-3 ()

Enter a sequence of digits indicating number of times to repeat the subsequent
command or keystroke. Key Bindings: Emacs: Alt-3

initiate-repeat-4 ()

Enter a sequence of digits indicating number of times to repeat the subsequent
command or keystroke. Key Bindings: Brief: Ctrl-R; Emacs: Alt-4

initiate-repeat-5 ()

Enter a sequence of digits indicating number of times to repeat the subsequent
command or keystroke. Key Bindings: Emacs: Alt-5

initiate-repeat-6 ()

Enter a sequence of digits indicating number of times to repeat the subsequent
command or keystroke. Key Bindings: Emacs: Alt-6

initiate-repeat-7 ()

Enter a sequence of digits indicating number of times to repeat the subsequent
command or keystroke. Key Bindings: Emacs: Alt-7

initiate-repeat-8 ()

Enter a sequence of digits indicating number of times to repeat the subsequent
command or keystroke. Key Bindings: Emacs: Alt-8

initiate-repeat-9 ()

Enter a sequence of digits indicating number of times to repeat the subsequent
command or keystroke. Key Bindings: Emacs: Alt-9

internal-profile-start ()

Start internal profiling. Profile information is collected for Wing IDE's internals until
internal_profile_stop is executed.

internal-profile-stop ()

Stop internal profiling after earlier internal_profile_start command. The profile can
be found in the error-log file or submitted to Wingware as part of the error log
included with a bug report from the Help menu.

new-blank-file (filename)

Command Reference

226

Create a new blank file on disk, open it in an editor, and add it to the current
project.

new-directory (filename)

Create a new directory on disk and add it to the current project.

new-document-window ()

Create a new document window with same documents and panels as in the current
document window (if any; otherwise empty with default panels) Key Bindings:
Emacs: Ctrl-X 5 2; OS X: Shift-F4; XCode: Shift-F4

new-file (ext='.py')

Create a new file Key Bindings: Wing IDE: Ctrl-N; Eclipse: Ctrl-N; OS X:
Command-N; Visual Studio: Ctrl-N; XCode: Command-N

new-package (filename)

Create a new Python package directory on disk, add it to the current project, and
open the new __init__.py in the editor.

new-panel-window (panel_type=None)

Create a new panel window of given type

next-document (repeat=<numeric modifier; default=1>)

Move to the next document alphabetically in the list of documents open in the
current window Key Bindings: Wing IDE: Ctrl-Page_Down; Brief: Ctrl-Page_Down;
Eclipse: Ctrl-Page_Down; Emacs: Ctrl-Page_Down; OS X: Command-0; VI/VIM:
Ctrl-Page_Down; Visual Studio: Ctrl-Page_Down; XCode: Command-0

next-window ()

Switch to the next window alphabetically by title Key Bindings: Wing IDE:
Ctrl-Comma; Eclipse: Ctrl-Comma; Emacs: Ctrl-O; Visual Studio: Ctrl-Comma

nth-document (n=<numeric modifier; default=0>)

Move to the nth document alphabetically in the list of documents open in the
current window Key Bindings: VI/VIM: Ctrl-^

open (filename)

Open a file from disk using keyboard-driven selection of the file

open-from-keyboard (filename)

Open a file from disk using keyboard-driven selection of the file Key Bindings: Wing
IDE: Ctrl-K; Eclipse: Ctrl-K; Emacs: Ctrl-X Ctrl-F; Visual Studio: Ctrl-K Ctrl-O

open-from-project (fragment='', skip_if_unique=False)

Open document from the project via the Open From Project dialog. The given
fragment is used as the initial fragment filter and if it is None, the selected text or

Command Reference

227

the symbol under the cursor is used. If skip_if_unique is true, the file is opened
without the dialog being displayed if only one filename matches the fragment. Key
Bindings: Wing IDE: Ctrl-Shift-O; Eclipse: Ctrl-Shift-O; Emacs: Ctrl-X Ctrl-O; OS X:
Command-Shift-O; VI/VIM: Ctrl-Shift-O; Visual Studio: Ctrl-Shift-O; XCode:
Command-Shift-O

open-gui (filename=None)

Open a file from disk, prompting with file selection dialog if necessary Key
Bindings: Wing IDE: Ctrl-O; Brief: Alt-E; Eclipse: Ctrl-O; OS X: Command-O; Visual
Studio: Ctrl-O; XCode: Command-O

perspective-disable-auto ()

Disable auto-perspectives

perspective-enable-auto ()

Enable auto-perspectives

perspective-manage ()

Display the perspectives manager dialog

perspective-restore (name)

Restore the given named perspective.

previous-document (repeat=<numeric modifier; default=1>)

Move to the previous document alphabetically in the list of documents open in the
current window Key Bindings: Wing IDE: Ctrl-Page_Up; Brief: Ctrl-Page_Up;
Eclipse: Ctrl-Page_Up; Emacs: Ctrl-Page_Up; OS X: Command-9; VI/VIM:
Ctrl-Page_Up; Visual Studio: Ctrl-Page_Up; XCode: Command-9

previous-window ()

Switch to the previous window alphabetically by title

query-end-session ()

Process query-end-session message on win32

quit ()

Quit the application. Key Bindings: Wing IDE: Ctrl-Q; Brief: Alt-X; Eclipse: Ctrl-Q;
Emacs: Ctrl-X Ctrl-C; OS X: Command-Q; Visual Studio: Ctrl-Q; XCode:
Command-Q

recent-document ()

Switches to previous document most recently visited in the current window or
window set if in one-window-per-editor windowing mode. Key Bindings: Wing IDE:
Ctrl-8; Eclipse: Ctrl-8; Emacs: Ctrl-X D; OS X: Command-8; Visual Studio: Ctrl-8;
XCode: Command-8

Command Reference

228

reload-scripts ()

Force reload of all scripts, from all configured script directories. This is usually only
needed when adding a new script file. Existing scripts are automatically reloaded
when they change on disk.

remove-bookmark (mark)

Remove the given named bookmark

remove-bookmark-current ()

Remove bookmark at current line, if any. This command is only available if there is
a bookmark on the line.

rename-current-file (filename)

Rename current file, moving the file on disk if it exists.

restart-wing ()

Restart the application

restore-default-tools ()

Hide/remove all tools and restore to original default state

save (close=False, force=False)

Save active document. Also close it if close is True. Key Bindings: Wing IDE:
Ctrl-S; Brief: Alt-W; Eclipse: Ctrl-S; Emacs: Ctrl-X Ctrl-S; OS X: Command-S;
VI/VIM: Ctrl-S; Visual Studio: Ctrl-S; XCode: Command-S

save-all (close_window=False)

Save all unsaved items, prompting for names for any new items that don't have a
filename already. Key Bindings: Eclipse: Ctrl-Shift-S; Visual Studio: Ctrl-Shift-S

save-as ()

Save active document to a new file Key Bindings: Wing IDE: Ctrl-Shift-S; Eclipse:
Ctrl-Shift-S; OS X: Command-Shift-S; XCode: Command-Shift-S

scratch-document (title='Scratch', mime_type='text/plain')

Create a new scratch buffer with given title and mime type. The buffer is never
marked as changed but can be saved w/ save-as.

set-bookmark (mark)

Set a bookmark at current location on the editor. Mark is the project-wide textual
name of the bookmark. Key Bindings: Wing IDE: Ctrl-Alt-M; Brief: Alt-0 invokes
set-bookmark(mark="0"); Eclipse: Ctrl-Alt-M; Emacs: Ctrl-X R M; OS X:
Command-D; Visual Studio: Ctrl-Alt-M; XCode: Command-D

set-bookmark-default ()

Command Reference

229

Set a bookmark at current line, using a default bookmark name for that context.
This command is only available if there is not already a bookmark on the line.

show-bookmarks ()

Show a list of all currently defined bookmarks Key Bindings: Wing IDE: Ctrl-Alt-K;
Brief: Alt-J; Eclipse: Ctrl-Alt-K; Emacs: Ctrl-X R Return; OS X: Command-Shift-K;
Visual Studio: Ctrl-Alt-K; XCode: Command-Shift-K

show-bug-report-dialog ()

Show the bug reporting dialog

show-document (section='manual')

Show the given documentation section Key Bindings: OS X: Command-?; XCode:
Command-?

show-feedback-dialog ()

Show the feedback submission dialog

show-file-in-editor (filename, lineno=None, col=-1, length=0)

Show the given file in the editor. Selects the code starting and given column (if >=
0) and of given length.

show-file-in-os-file-manager (filename=None)

Show the selected file in the Explorer, Finder, or other OS-provided file manager.
Shows the given file, if any, or the current file selected in the GUI.

show-howtos ()

Show the How-Tos index

show-html-document (section='manual')

Show the given document section in HTML format.

show-line-numbers (show=1)

Show the line numbers in editors

show-manual-html ()

Show the HTML version of the Wing IDE users manual

show-manual-pdf ()

Show the PDF version of the Wing IDE users manual for either US Letter or A4,
depending on user's print locale

show-panel (panel_type, flash=True, grab_focus=None)

Show most recently visited panel instance of given type. If no such panel exists,
add one to the primary window and show it. Returns the panel view object or None

Command Reference

230

if not shown. Focus is shifted to panel if grab_focus is specified and is true; if
grab_focus is not specified, it defaults to the value of flash.

The valid panel types are:

project (*) browser (**) batch-search (*) interactive-search source-assistant (**)
debug-data debug-stack debug-io debug-exceptions debug-breakpoints (**)
debug-probe (**) debug-watch (**) debug-modules (**) python-shell messages (*)
help indent (**) bookmarks (**) testing (**) open-files (*) os-command (**) snippets
(**) diff (**) uses (**) refactoring (**) versioncontrol.svn (**) versioncontrol.hg (**)
versioncontrol.git (**) versioncontrol.bzr (**) versioncontrol.cvs (**)
versioncontrol.perforce (**)

(*) Wing Personal and Pro only (**) Wing Pro only Key Bindings: Eclipse: Ctrl-E
invokes show-panel(panel_type="open-files")

show-panel-batch-search (flash=True, grab_focus=None)

Not documented

show-panel-bookmarks (flash=True, grab_focus=None)

Not documented

show-panel-browser (flash=True, grab_focus=None)

Not documented

show-panel-debug-breakpoints (flash=True, grab_focus=None)

Not documented

show-panel-debug-data (flash=True, grab_focus=None)

Not documented

show-panel-debug-exceptions (flash=True, grab_focus=None)

Not documented

show-panel-debug-io (flash=True, grab_focus=None)

Not documented

show-panel-debug-modules (flash=True, grab_focus=None)

Not documented

show-panel-debug-probe (flash=True, grab_focus=None)

Not documented

show-panel-debug-stack (flash=True, grab_focus=None)

Not documented

show-panel-debug-watch (flash=True, grab_focus=None)

Command Reference

231

Not documented

show-panel-diff (flash=True, grab_focus=None)

Not documented

show-panel-help (flash=True, grab_focus=None)

Not documented

show-panel-indent (flash=True, grab_focus=None)

Not documented

show-panel-interactive-search (flash=True, grab_focus=None)

Not documented

show-panel-messages (flash=True, grab_focus=None)

Not documented

show-panel-open-files (flash=True, grab_focus=None)

Not documented

show-panel-os-command (flash=True, grab_focus=None)

Not documented

show-panel-project (flash=True, grab_focus=None)

Not documented

show-panel-python-shell (flash=True, grab_focus=None)

Not documented

show-panel-refactoring (flash=True, grab_focus=None)

Not documented

show-panel-snippets (flash=True, grab_focus=None)

Not documented Key Bindings: XCode: Command-Alt-Ctrl-2

show-panel-source-assistant (flash=True, grab_focus=None)

Not documented Key Bindings: XCode: Command-Alt-Ctrl-/

show-panel-testing (flash=True, grab_focus=None)

Not documented

show-panel-uses (flash=True, grab_focus=None)

Not documented

show-panel-versioncontrol-bzr (flash=True, grab_focus=None)

Not documented

Command Reference

232

show-panel-versioncontrol-cvs (flash=True, grab_focus=None)

Not documented

show-panel-versioncontrol-git (flash=True, grab_focus=None)

Not documented

show-panel-versioncontrol-hg (flash=True, grab_focus=None)

Not documented

show-panel-versioncontrol-perforce (flash=True, grab_focus=None)

Not documented

show-panel-versioncontrol-svn (flash=True, grab_focus=None)

Not documented

show-pdf-document (doc='manual')

Show the given document in PDF format. One of 'manual', 'intro', or 'howtos'.

show-plugins-gui ()

Show the plugins GUI for enabling and disabling plugins

show-preferences-gui (prefname=None)

Edit the preferences file using the preferences GUI, optionally opening to the
section that contains the given preference by name Key Bindings: OS X:
Command-Comma; XCode: Command-Comma

show-python-donate-html ()

Show the Python donations web page

show-python-for-beginners-html ()

Show the Python for Beginners web page

show-python-manual-html ()

Show the Python users manual

show-python-org-html ()

Show the python.org site home page

show-python-org-search-html ()

Show the python.org site search page

show-quickstart ()

Show the quick start guide

show-success-stories-html ()

Show the Python Success Stories page

Command Reference

233

show-support-html ()

Show the Wing IDE support site home page

show-text-registers ()

Show the contents of all non-empty text registers in a temporary editor

show-tutorial ()

Show the tutorial

show-wingtip (section='/')

Show the Wing Tips window

show-wingware-store ()

Show the Wingware store for purchasing a license

show-wingware-website ()

Show the Wingware home page

show-wingware-wiki ()

Show the Wingware wiki for sharing scripts, tips, and tricks

switch-document (document_name)

Switches to named document. Name may either be the complete name or the last
path component of a path name. Key Bindings: Emacs: Ctrl-X B; Visual Studio:
Ctrl-K Ctrl-S

terminate-os-command (title)

Terminate one of the stored commands in the OS Commands tool, selecting it by
its title

toggle-bookmark ()

Set or remove a bookmark at current location on the editor. When set, the name of
the bookmark is set to an auto-generated default. Key Bindings: Wing IDE:
Ctrl-Alt-T; Eclipse: Ctrl-Alt-T; Emacs: Ctrl-X R T; OS X: Command-Shift-B; Visual
Studio: Ctrl-Alt-T; XCode: Command-Shift-B

toggle-bookmark-at-click ()

Set or remove a bookmark at the position in the editor where the most recent
mouse click occurred. When set, the name of the bookmark is set to an
auto-generated default.

toolbar-search (text, next=False, set_anchor=True, forward=True)

Search using given text and the toolbar search area. The search is always forward
from the current cursor or selection position

toolbar-search-focus ()

Command Reference

234

Move focus to toolbar search entry. Key Bindings: Wing IDE: Ctrl-D; Eclipse:
Ctrl-D; Visual Studio: Ctrl-D

toolbar-search-next (set_anchor=True)

Move to next match of text already entered in the toolbar search area

toolbar-search-prev (set_anchor=True)

Move to previous match of text already entered in the toolbar search area

vi-delete-bookmark (marks)

Remove one or more bookmarks (pass in space separated list of names)

vi-goto-bookmark ()

Goto bookmark using single character name defined by the next pressed key Key
Bindings: VI/VIM: Grave

vi-set-bookmark ()

Set a bookmark at current location on the editor using the next key press as the
name of the bookmark. Key Bindings: VI/VIM: m

wing-tips ()

Display interactive tip manager

write-changed-file-and-close (filename)

Write current document to given location only if it contains any changes and close
it. Writes to current file name if given filename is None.

write-file (filename, start_line=None, end_line=None, follow=True)

Write current file to a new location, optionally omitting all but the lines in the given
range. The editor is changed to point to the new location when follow is True. If
follow is 'untitled' then the editor is changed to point to the new location only if
starting with an untitled buffer and saving the whole file. Note that the editor
contents will be truncated to the given start/end lines when follow is True. Key
Bindings: Emacs: Ctrl-X Ctrl-W

write-file-and-close (filename)

Write current document to given location and close it. Saves to current file name if
the given filename is None. Key Bindings: VI/VIM: Shift-Z Shift-Z invokes
write-file-and-close(filename=None)

Dock Window Commands

Commands for windows that contain dockable tool areas. These are available for
the currently active window, if any.

display-toolbox-on-left ()

Command Reference

235

Display the tall toolbox on the right.

display-toolbox-on-right ()

Display the tall toolbox on the left.

enter-fullscreen ()

Hide both the vertical and horizontal tool areas and toolbar, saving previous state
so it can be restored later with exit_fullscreen Key Binding: Shift-F2

exit-fullscreen ()

Restore previous non-fullscreen state of all tools and tool bar Key Binding: Shift-F2

hide-horizontal-tools ()

Hide the horizontal tool area

hide-toolbar ()

Hide toolbars in all document windows

hide-vertical-tools ()

Hide the vertical tool area

minimize-horizontal-tools ()

Minimize the horizontal tool area Key Binding: F1

minimize-vertical-tools ()

Minimize the vertical tool area Key Binding: F2

show-horizontal-tools ()

Show the horizontal tool area Key Binding: F1

show-toolbar ()

Show toolbars in all document windows

show-vertical-tools ()

Show the vertical tool area Key Binding: F2

toggle-horizontal-tools ()

Show or minimize the horizontal tool area Key Bindings: XCode: Command-Shift-Y

toggle-vertical-tools ()

Show or minimize the vertical tool area Key Bindings: XCode: Command-Alt-0

Document Viewer Commands

Commands for the documentation viewer. These are available when the
documentation viewer has the keyboard focus.

Command Reference

236

copy ()

Copy any selected text. Key Bindings: Wing IDE: Ctrl-Insert; Brief: Ctrl-Insert;
Eclipse: Ctrl-Insert; Emacs: Ctrl-Insert; OS X: Command-C; VI/VIM: Ctrl-Insert;
Visual Studio: Ctrl-Insert; XCode: Command-C

document-back ()

Go back to prior page in the history of those that have been viewed

document-contents ()

Go to the document contents page

document-forward ()

Go forward to next page in the history of those that have been viewed

document-next ()

Go to the next page in the current document

document-previous ()

Go to the previous page in the current document

isearch-backward (search_string=None, repeat=<numeric modifier; default=1>)

Initiate incremental mini-search backward from the cursor position, optionally
entering the given search string. Key Bindings: Wing IDE: Ctrl-Shift-U; Eclipse:
Ctrl-Shift-U; Emacs: Ctrl-R; OS X: Command-Shift-U; Visual Studio: Ctrl-Shift-U;
XCode: Command-Shift-U

isearch-backward-regex (search_string=None, repeat=<numeric modifier;
default=1>)

Initiate incremental regular expression mini-search backward from the cursor
position, optionally entering the given search string. Key Bindings: Emacs:
Ctrl-Alt-R; VI/VIM: ?

isearch-forward (search_string=None, repeat=<numeric modifier; default=1>)

Initiate incremental mini-search forward from the cursor position, optionally
entering the given search string. Key Bindings: Wing IDE: Ctrl-U; Eclipse: Ctrl-U;
Emacs: Ctrl-S; OS X: Command-U; Visual Studio: Ctrl-I; XCode: Command-U

isearch-forward-regex (search_string=None, repeat=<numeric modifier;
default=1>)

Initiate incremental regular expression mini-search forward from the cursor
position, optionally entering the given search string. Key Bindings: Emacs:
Ctrl-Alt-S; VI/VIM: /

isearch-repeat (reverse=False, repeat=<numeric modifier; default=1>)

Command Reference

237

Repeat the most recent isearch, using same string and regex/text. Reverse
direction when reverse is True. Key Bindings: VI/VIM: n

isearch-sel-backward (persist=True, repeat=<numeric modifier; default=1>)

Initiate incremental mini-search backward from the cursor position, using current
selection as the search string. Set persist=False to do the search but end the
interactive search session immediately. Key Bindings: Wing IDE: Ctrl-Shift-B;
Eclipse: Ctrl-Shift-B; Emacs: Ctrl-C R; VI/VIM: # invokes
isearch-sel-backward(persist=0, whole_word=1); Visual Studio: Ctrl-Shift-B

isearch-sel-forward (persist=True, repeat=<numeric modifier; default=1>)

Initiate incremental mini-search forward from the cursor position, using current
selection as the search string. Set persist=False to do the search but end the
interactive search session immediately. Key Bindings: Wing IDE: Ctrl-B; Eclipse:
Ctrl-B; Emacs: Ctrl-C S; VI/VIM: * invokes isearch-sel-forward(persist=0,
whole_word=1); Visual Studio: Ctrl-B

zoom-in ()

Increase documentation font size Key Binding: Ctrl-=

zoom-out ()

Decrease documentation font size Key Binding: Ctrl--

zoom-reset ()

Reset documentation font size to default Key Binding: Ctrl-_

Global Documentation Commands

Commands for the documentation viewer that are available regardless of where
the focus is.

document-search (txt=None)

Search all documentation.

Window Commands

Commands for windows in general. These are available for the currently active
window, if any.

focus-current-editor ()

Move focus back to the current editor, out of any tool, if there is an active editor.
Key Bindings: Eclipse: F12; XCode: Command-J

move-editor-focus (dir=1, wrap=True)

Move focus to next or previous editor split, optionally wrapping when the end is
reached. Key Bindings: Emacs: Ctrl-X O; VI/VIM: Ctrl-W j invokes
move-editor-focus(wrap=False)

Command Reference

238

move-editor-focus-first ()

Move focus to first editor split Key Bindings: VI/VIM: Ctrl-W t

move-editor-focus-last ()

Move focus to last editor split Key Bindings: VI/VIM: Ctrl-W b

move-editor-focus-previous ()

Move focus to previous editor split Key Bindings: VI/VIM: Ctrl-W p

move-focus ()

Move the keyboard focus forward within the Window to the next editable area Key
Binding: Shift-F1

Wing Tips Commands

Commands for the Wing Tips tool. These are only available when the tool is visible
and has focus

wingtips-close ()

Close the Wing Tips window

wingtips-contents ()

Go to the Wing Tips contents page

wingtips-next ()

Go to the next page in Wing Tips

wingtips-next-unseen ()

Go to a next unseen Wing Tips page

wingtips-previous ()

Go to the previous page in Wing Tips

Subversion Commands

Subversion revision control system commands

svn-update (locs=<selected files>)

Update the selected files from the Subversion repository

svn-add ()

Add the files to %(label)s

svn-commit-project ()

Not documented

svn-revert ()

Command Reference

239

Revert selected files.

svn-project-status ()

View status for entire project.

svn-blame (locs=<selected files>)

Show blame / praise / annotate for selected files.

svn-diff ()

Show differences between files in working directory and last committed version.

svn-diff-recent (locs=<selected files>)

Show diffs for most recent checkin

svn-log (locs=<selected files>)

Show the revision log for the selected files in the Subversion repository

svn-configure ()

Show preferences page for selected VCS

svn-status ()

View status of the selected files in the working directory

svn-remove ()

Remove files

svn-update-project ()

Update files in project

svn-resolved (locs=<selected files>)

Indicate that any conflicts are resolved

svn-checkout ()

Start the initial checkout from svn repository. Repository and working directory
must be entered before the checkout.

svn-commit ()

Commit selected files.

Git Commands

git revision control system commands

git-diff ()

Show differences between files in working directory and last committed version.

git-fetch-repository (locs=<selected files>)

Command Reference

240

Pull from repository.

git-remove ()

Remove files

git-list (locs=<selected files>)

Show the status of the given files in the git repository

git-commit-project ()

Not documented

git-project-status ()

View status for entire project.

git-pull-branch (locs=<selected files>)

Pull branch from other git repository

git-list-branches (locs=<selected files>)

List all branches

git-add ()

Add the files to %(label)s

git-log (locs=<selected files>)

Show the revision log for the selected files in the git repository

git-push-branch (locs=<selected files>)

Push branch to other git repository

git-commit ()

Commit selected files.

git-status ()

View status of the selected files in the working directory

git-switch-branch (locs=<selected files>)

Switch to another branch

git-configure ()

Show preferences page for selected VCS

git-blame (locs=<selected files>)

Show the annotated blame/praise for the selected files in the git repository

Bazaar Commands

Subversion revision control system commands

Command Reference

241

bzr-commit ()

Commit selected files.

bzr-add ()

Add the files to %(label)s

bzr-commit-project ()

Not documented

bzr-remove ()

Remove files

bzr-project-status ()

View status for entire project.

bzr-status ()

View status of the selected files in the working directory

bzr-push-entire-branch (locs=<selected files>)

Update the selected files from the bzr repository

bzr-log (locs=<selected files>)

Show the revision log for the selected files in the bzr repository

bzr-configure ()

Show preferences page for selected VCS

bzr-revert ()

Revert selected files.

bzr-merge-entire-branch (locs=<selected files>)

Update the selected files from the bzr repository

bzr-annotate ()

Show blame / praise / annotate for selected files.

bzr-diff ()

Show differences between files in working directory and last committed version.

C V S Commands

CVS revision control system commands

cvs-revert (locs=<selected files>)

Revert the selected files

cvs-log (locs=<selected files>)

Command Reference

242

Show the revision log for the selected files in the CVS repository

cvs-diff (locs=<selected files>)

Show the differences between working version of given files and the corresponding
revision in the CVS repository

cvs-configure ()

Configure the CVS integration

cvs-project-status ()

Run status for entire project.

cvs-update (locs=<selected files>)

Update the selected files from the CVS repository

cvs-update-project ()

Update files in project

cvs-checkout ()

Start the initial checkout from cvs repository. Repository and working directory
must be entered before the checkout.

cvs-add (locs=<selected files>)

Add the files to cvs

cvs-commit (locs=<selected files>)

Commit the selected files to the CVS repository

cvs-status (locs=<selected files>)

View the CVS repository status for the selected files

cvs-commit-project ()

Commit files in project

cvs-remove (locs=<selected files>)

Remove the selected files

Mercurial Commands

Mercurial revision control system commands

hg-diff ()

Show differences between files in working directory and last committed version.

hg-status ()

View status of the selected files in the working directory

Command Reference

243

hg-revert ()

Revert selected files.

hg-pull-entire-repository (locs=<selected files>)

Pull all changes from remote repository to local repository

hg-commit ()

Commit selected files.

hg-update (locs=<selected files>)

Update working directory from repository

hg-annotate (locs=<selected files>)

Show user and revision for every line in the file(s)

hg-configure ()

Show preferences page for selected VCS

hg-remove ()

Remove files

hg-add ()

Add the files to %(label)s

hg-log (locs=<selected files>)

Show the revision log for the selected files in the hg repository

hg-push-entire-repository (locs=<selected files>)

Update the selected files from the hg repository

hg-merge (locs=<selected files>)

Merge working directory with changes in repository

hg-commit-project ()

Not documented

hg-project-status ()

View status for entire project.

Perforce Commands

Perforce revision control system commands

perforce-log (locs=<selected files>)

Show the revision log for the selected files in the Perforce repository

perforce-blame (locs=<selected files>)

Command Reference

244

Show blame / praise / annotate for selected files.

perforce-status (locs=<selected files>)

View the Perforce repository status for the selected files

perforce-commit (locs=<selected files>)

Commit the selected files to the Perforce repository

perforce-remove (locs=<selected files>)

Remove the selected files

perforce-commit-project ()

Commit files in project

perforce-revert (locs=<selected files>)

Revert the selected files

perforce-add (locs=<selected files>)

Add the files to perforce

perforce-sync-project ()

Update files in project

perforce-sync (locs=<selected files>)

Copy the selected files from the Perforce repository

perforce-configure ()

Show preferences page for selected VCS

perforce-edit (locs=<selected files>)

Copy the selected files from the Perforce repository

perforce-project-status ()

Run status for entire project.

perforce-diff (locs=<selected files>)

Show the differences between working version of given files and the corresponding
revision in the Perforce repository

perforce-resolved (locs=<selected files>)

Indicate that any conflicts are resolved

perforce-annotate ()

Show blame / praise / annotate for selected files.

Command Reference

245

20.2. Project Manager Commands

Project Manager Commands

These commands act on the project manager or on the current project, regardless
of whether the project list has the keyboard focus.

add-current-file-to-project ()

Add the frontmost currently open file to project Key Bindings: Wing IDE: Ctrl-Shift-I;
Brief: Ctrl-Shift-I; Eclipse: Ctrl-Shift-I; Emacs: Ctrl-Shift-I; OS X: Command-Shift-I;
VI/VIM: Ctrl-Shift-I; Visual Studio: Ctrl-Shift-I; XCode: Command-Shift-I

add-directory-to-project (loc=None, recursive=True, filter='*',
include_hidden=False, gui=True)

Add directory to project.

add-file-to-project ()

Add an existing file to the project.

browse-selected-from-project ()

Browse file currently selected in the project manager

clear-project-main-debug-file ()

Clear main debug entry point to nothing, so that debugging runs the file in the
current editor by default

close-project ()

Close currently open project file

debug-selected-from-project ()

Start debugging the file currently selected in the project manager

execute-selected-from-project ()

Execute the file currently selected in the project manager

new-project (show_dialog=None)

Create a new blank project. Use show_dialog to control whether the New Project
dialog is shown or instead a blank new project is created. By default, the Project >
Show New Project Dialog preference is used.

open-ext-selected-from-project ()

Open file currently selected in the project manager

open-project (filename=None)

Open the given project file, or prompt the user to select a file if the filename is not
given.

Command Reference

246

open-selected-from-project ()

Open files currently selected in the project manager

remove-directory-from-project (loc=None, gui=True)

Remove directory from project.

remove-selection-from-project ()

Remove currently selected file or package from the project

rescan-project-directories (dirs=None, recursive=True)

Scan project directories for changes. If list of directories is not specified, currently
selected directories are used.

save-project ()

Save project file.

save-project-as (filename=None)

Save project file under the given name, or prompt user for a name if the filename is
not given.

set-current-as-main-debug-file ()

Set current editor file as the main debug entry point for this project

set-selected-as-main-debug-file ()

Set selected file as the main debug file for this project

show-analysis-stats ()

Show the effective Python version and path for the current configuration. This
command name will be deprecated in Wing 5 and removed in Wing 6. Use
show-python-environment in any new code or key bindings.

show-current-file-in-project-tool ()

Show the currently selected file in the project view, if present. The selection may
be the current editor, if it has focus, or files selected in other views.

show-project-window ()

Raise the project manager window

show-python-environment ()

Show the effective Python version and path for the current configuration

use-shared-project ()

Store project in sharable (two file) format. The .wpr file can be checked into
revision control or other shared with other users and machines. This is the default
and the format cannot be read by Wing IDE Personal.

Command Reference

247

use-single-user-project ()

Store project single-user (one file) format, which can also be read by Wing IDE
Personal.

view-directory-properties (loc=None)

Show the project manager's directory properties dialog

view-file-properties (loc=None, page=None, highlighted_attribs=None)

View project properties for a particular file (current file if none is given) Key
Bindings: Eclipse: Alt-Enter; OS X: Command-I; XCode: Command-I

view-project-as-flat-tree ()

View project as flattened directory tree from project file

view-project-as-tree ()

View project as directory tree from project file

view-project-properties (highlighted_attrib=None)

View or change project-wide properties Key Bindings: Visual Studio: Alt-F7

Project View Commands

Commands that are available only when the project view has the keyboard focus.

browse-selected-from-project ()

Browse file currently selected in the project manager

debug-selected-from-project ()

Start debugging the file currently selected in the project manager

execute-selected-from-project ()

Execute the file currently selected in the project manager

move-files-selected-in-project-to-trash ()

Move the files and/or directories currently selected in the project view to the trash
or recycling bin

open-ext-selected-from-project ()

Open file currently selected in the project manager

open-selected-from-project ()

Open files currently selected in the project manager

remove-selection-from-project ()

Remove currently selected file or package from the project

rename-selected-in-project (new_name)

Command Reference

248

Rename the currently selected file or directory in the project view

search-in-selected-from-project ()

Search in file or directory currently selected in the project manager

set-selected-as-main-debug-file ()

Set selected file as the main debug file for this project

view-project-as-flat-tree ()

View project as flattened directory tree from project file

view-project-as-tree ()

View project as directory tree from project file

Subversion Commands

Subversion revision control system commands

svn-update (locs=<selected files>)

Update the selected files from the Subversion repository

svn-add ()

Add the files to %(label)s

svn-commit-project ()

Not documented

svn-revert ()

Revert selected files.

svn-project-status ()

View status for entire project.

svn-blame (locs=<selected files>)

Show blame / praise / annotate for selected files.

svn-diff ()

Show differences between files in working directory and last committed version.

svn-diff-recent (locs=<selected files>)

Show diffs for most recent checkin

svn-log (locs=<selected files>)

Show the revision log for the selected files in the Subversion repository

svn-configure ()

Show preferences page for selected VCS

Command Reference

249

svn-status ()

View status of the selected files in the working directory

svn-remove ()

Remove files

svn-update-project ()

Update files in project

svn-resolved (locs=<selected files>)

Indicate that any conflicts are resolved

svn-checkout ()

Start the initial checkout from svn repository. Repository and working directory
must be entered before the checkout.

svn-commit ()

Commit selected files.

Git Commands

git revision control system commands

git-diff ()

Show differences between files in working directory and last committed version.

git-fetch-repository (locs=<selected files>)

Pull from repository.

git-remove ()

Remove files

git-list (locs=<selected files>)

Show the status of the given files in the git repository

git-commit-project ()

Not documented

git-project-status ()

View status for entire project.

git-pull-branch (locs=<selected files>)

Pull branch from other git repository

git-list-branches (locs=<selected files>)

List all branches

Command Reference

250

git-add ()

Add the files to %(label)s

git-log (locs=<selected files>)

Show the revision log for the selected files in the git repository

git-push-branch (locs=<selected files>)

Push branch to other git repository

git-commit ()

Commit selected files.

git-status ()

View status of the selected files in the working directory

git-switch-branch (locs=<selected files>)

Switch to another branch

git-configure ()

Show preferences page for selected VCS

git-blame (locs=<selected files>)

Show the annotated blame/praise for the selected files in the git repository

Bazaar Commands

Subversion revision control system commands

bzr-commit ()

Commit selected files.

bzr-add ()

Add the files to %(label)s

bzr-commit-project ()

Not documented

bzr-remove ()

Remove files

bzr-project-status ()

View status for entire project.

bzr-status ()

View status of the selected files in the working directory

bzr-push-entire-branch (locs=<selected files>)

Command Reference

251

Update the selected files from the bzr repository

bzr-log (locs=<selected files>)

Show the revision log for the selected files in the bzr repository

bzr-configure ()

Show preferences page for selected VCS

bzr-revert ()

Revert selected files.

bzr-merge-entire-branch (locs=<selected files>)

Update the selected files from the bzr repository

bzr-annotate ()

Show blame / praise / annotate for selected files.

bzr-diff ()

Show differences between files in working directory and last committed version.

C V S Commands

CVS revision control system commands

cvs-revert (locs=<selected files>)

Revert the selected files

cvs-log (locs=<selected files>)

Show the revision log for the selected files in the CVS repository

cvs-diff (locs=<selected files>)

Show the differences between working version of given files and the corresponding
revision in the CVS repository

cvs-configure ()

Configure the CVS integration

cvs-project-status ()

Run status for entire project.

cvs-update (locs=<selected files>)

Update the selected files from the CVS repository

cvs-update-project ()

Update files in project

cvs-checkout ()

Command Reference

252

Start the initial checkout from cvs repository. Repository and working directory
must be entered before the checkout.

cvs-add (locs=<selected files>)

Add the files to cvs

cvs-commit (locs=<selected files>)

Commit the selected files to the CVS repository

cvs-status (locs=<selected files>)

View the CVS repository status for the selected files

cvs-commit-project ()

Commit files in project

cvs-remove (locs=<selected files>)

Remove the selected files

Mercurial Commands

Mercurial revision control system commands

hg-diff ()

Show differences between files in working directory and last committed version.

hg-status ()

View status of the selected files in the working directory

hg-revert ()

Revert selected files.

hg-pull-entire-repository (locs=<selected files>)

Pull all changes from remote repository to local repository

hg-commit ()

Commit selected files.

hg-update (locs=<selected files>)

Update working directory from repository

hg-annotate (locs=<selected files>)

Show user and revision for every line in the file(s)

hg-configure ()

Show preferences page for selected VCS

hg-remove ()

Command Reference

253

Remove files

hg-add ()

Add the files to %(label)s

hg-log (locs=<selected files>)

Show the revision log for the selected files in the hg repository

hg-push-entire-repository (locs=<selected files>)

Update the selected files from the hg repository

hg-merge (locs=<selected files>)

Merge working directory with changes in repository

hg-commit-project ()

Not documented

hg-project-status ()

View status for entire project.

Perforce Commands

Perforce revision control system commands

perforce-log (locs=<selected files>)

Show the revision log for the selected files in the Perforce repository

perforce-blame (locs=<selected files>)

Show blame / praise / annotate for selected files.

perforce-status (locs=<selected files>)

View the Perforce repository status for the selected files

perforce-commit (locs=<selected files>)

Commit the selected files to the Perforce repository

perforce-remove (locs=<selected files>)

Remove the selected files

perforce-commit-project ()

Commit files in project

perforce-revert (locs=<selected files>)

Revert the selected files

perforce-add (locs=<selected files>)

Add the files to perforce

Command Reference

254

perforce-sync-project ()

Update files in project

perforce-sync (locs=<selected files>)

Copy the selected files from the Perforce repository

perforce-configure ()

Show preferences page for selected VCS

perforce-edit (locs=<selected files>)

Copy the selected files from the Perforce repository

perforce-project-status ()

Run status for entire project.

perforce-diff (locs=<selected files>)

Show the differences between working version of given files and the corresponding
revision in the Perforce repository

perforce-resolved (locs=<selected files>)

Indicate that any conflicts are resolved

perforce-annotate ()

Show blame / praise / annotate for selected files.

20.3. Editor Commands

Editor Browse Mode Commands

Commands available only when the editor is in browse mode (used for VI bindings
and possibly others)

enter-insert-mode (pos='before')

Enter editor insert mode Key Bindings: VI/VIM: A invokes
enter-insert-mode(pos="after")

enter-replace-mode ()

Enter editor replace mode Key Bindings: VI/VIM: Shift-R

enter-visual-mode (unit='char')

Enter editor visual mode. Unit should be one of 'char', 'line', or 'block'.

previous-select ()

Turn on auto-select using previous mode and selection Key Bindings: VI/VIM: g v

start-select-block ()

Command Reference

255

Turn on auto-select block mode Key Bindings: Wing IDE: Shift-Ctrl-F8; Brief:
Shift-Ctrl-F8; Eclipse: Shift-Ctrl-F8; Emacs: Shift-Ctrl-F8; OS X:
Shift-Command-F8; VI/VIM: Shift-Ctrl-F8; Visual Studio: Shift-Ctrl-F8; XCode:
Shift-Command-F8

start-select-char ()

Turn on auto-select mode character by character Key Binding: Shift-F8

start-select-line ()

Turn on auto-select mode line by line Key Bindings: Wing IDE: Ctrl-F8; Brief:
Ctrl-F8; Eclipse: Ctrl-F8; Emacs: Ctrl-F8; OS X: Command-F8; VI/VIM: Ctrl-F8;
Visual Studio: Ctrl-F8; XCode: Command-F8

vi-command-by-name ()

Execute a VI command (implements ":" commands from VI) Key Bindings: VI/VIM:
:

vi-set (command)

Perform vi's :set action. The command is the portion after :set. Currently supports
ic, noic, ai, noai, number or nu, nonumber or nonu, ro, noro, sm, and nosm.
Multiple options can be specied in one call as for :set ic sm ai

Editor Insert Mode Commands

Commands available only when editor is in insert mode (used for VI bindings and
possibly others)

enter-browse-mode (provisional=False)

Enter editor browse mode Key Bindings: VI/VIM: Esc

Editor Non Modal Commands

Commands available only when the editor is in non-modal editing mode

exit-visual-mode ()

Exit visual mode and return back to default mode Key Binding: Esc

start-select-block ()

Turn on auto-select block mode Key Bindings: Wing IDE: Shift-Ctrl-F8; Brief:
Shift-Ctrl-F8; Eclipse: Shift-Ctrl-F8; Emacs: Shift-Ctrl-F8; OS X:
Shift-Command-F8; VI/VIM: Shift-Ctrl-F8; Visual Studio: Shift-Ctrl-F8; XCode:
Shift-Command-F8

start-select-char ()

Turn on auto-select mode character by character Key Binding: Shift-F8

start-select-line ()

Command Reference

256

Turn on auto-select mode line by line Key Bindings: Wing IDE: Ctrl-F8; Brief:
Ctrl-F8; Eclipse: Ctrl-F8; Emacs: Ctrl-F8; OS X: Command-F8; VI/VIM: Ctrl-F8;
Visual Studio: Ctrl-F8; XCode: Command-F8

Editor Panel Commands

Commands that control splitting up an editor panel. These are available when one
split in the editor panel has the keyboard focus.

split-horizontally (new=0)

Split current view horizontally. Key Bindings: Emacs: Ctrl-X 3; VI/VIM: Ctrl-W v

split-horizontally-open-file (filename)

Split current view horizontally and open selected file

split-vertically (new=0)

Split current view vertically. Create new editor in new view when new==1. Key
Bindings: Brief: F3; Emacs: Ctrl-X 2; VI/VIM: Ctrl-W s

split-vertically-open-file (filename)

Split current view vertically and open selected file

unsplit (action='current')

Unsplit all editors so there's only one. Action specifies how to choose the
remaining displayed editor. One of:

current -- Show current editor
close -- Close current editor before unsplitting
recent -- Change to recent buffer before unsplitting
recent-or-close -- Change to recent buffer before closing
split, or close the current buffer if there is only
one split left.

NOTE: The parameters for this command are subject to change in the future. Key
Bindings: Brief: F4; Emacs: Ctrl-X 1; VI/VIM: Ctrl-W q invokes
unsplit(action="close")

Editor Replace Mode Commands

Commands available only when editor is in replace mode (used for VI bindings and
possibly others)

enter-browse-mode (provisional=False)

Enter editor browse mode Key Bindings: VI/VIM: Esc

Command Reference

257

Editor Split Commands

Commands for a particular editor split, available when the editor in that split has
the keyboard focus. Additional commands affecting the editor's content are defined
separately.

activate-file-option-menu ()

Activate the file menu for the editor. Key Bindings: Wing IDE: Ctrl-1; Brief: Ctrl-1;
Eclipse: Ctrl-1; Emacs: Ctrl-1; OS X: Command-1; VI/VIM: Ctrl-1; Visual Studio:
Ctrl-1; XCode: Command-1

grow-split-horizontally ()

Increase width of this split

grow-split-vertically ()

Increase height of this split Key Bindings: VI/VIM: Ctrl-W +

shrink-split-horizontally ()

Decrease width of this split

shrink-split-vertically ()

Decrease height of this split Key Bindings: VI/VIM: Ctrl-W -

visit-history-next ()

Move forward in history to next visited editor position Key Bindings: Wing IDE:
Alt-Right; Brief: Alt-Right; Eclipse: Alt-Right; Emacs: Alt-Right; OS X: Ctrl-.; VI/VIM:
Alt-Right; Visual Studio: Alt-Right; XCode: Ctrl-.

visit-history-previous ()

Move back in history to previous visited editor position Key Bindings: Wing IDE:
Alt-Left; Brief: Alt-Left; Eclipse: Alt-Left; Emacs: Alt-Left; OS X: Ctrl-Comma;
VI/VIM: Alt-Left; Visual Studio: Alt-Left; XCode: Ctrl-Comma

Editor Visual Mode Commands

Commands available only when the editor is in visual mode (used for VI bindings
and some others)

enter-browse-mode ()

Enter editor browse mode Key Bindings: VI/VIM: Esc

enter-insert-mode (pos='delete-sel')

Enter editor insert mode Key Bindings: VI/VIM: A invokes
enter-insert-mode(pos="after")

enter-visual-mode (unit='char')

Command Reference

258

Alter type of editor visual mode or exit back to browse mode. Unit should be one of
'char', 'line', or 'block'.

exit-visual-mode ()

Exit visual mode and return back to default mode Key Binding: Esc

vi-command-by-name ()

Execute a VI command (implements ":" commands from VI) Key Bindings: VI/VIM:
:

Active Editor Commands

Commands that only apply to editors when they have the keyboard focus. These
commands are also available for the Python Shell, Debug Probe, and Debug I/O
tools, which subclass the source editor, although some of the commands are
modified or disabled as appropriate in those contexts.

activate-symbol-option-menu-1 ()

Activate the 1st symbol menu for the editor. Key Bindings: Wing IDE: Ctrl-2; Brief:
Ctrl-2; Eclipse: Ctrl-2; Emacs: Ctrl-2; OS X: Command-2; VI/VIM: Ctrl-2; Visual
Studio: Ctrl-2; XCode: Command-2

activate-symbol-option-menu-2 ()

Activate the 2nd symbol menu for the editor. Key Bindings: Wing IDE: Ctrl-3; Brief:
Ctrl-3; Eclipse: Ctrl-3; Emacs: Ctrl-3; OS X: Command-3; VI/VIM: Ctrl-3; Visual
Studio: Ctrl-3; XCode: Command-3

activate-symbol-option-menu-3 ()

Activate the 3rd symbol menu for the editor. Key Bindings: Wing IDE: Ctrl-4; Brief:
Ctrl-4; Eclipse: Ctrl-4; Emacs: Ctrl-4; OS X: Command-4; VI/VIM: Ctrl-4; Visual
Studio: Ctrl-4; XCode: Command-4

activate-symbol-option-menu-4 ()

Activate the 4th symbol menu for the editor. Key Bindings: Wing IDE: Ctrl-5; Brief:
Ctrl-5; Eclipse: Ctrl-5; Emacs: Ctrl-5; OS X: Command-5; VI/VIM: Ctrl-5; Visual
Studio: Ctrl-5; XCode: Command-5

activate-symbol-option-menu-5 ()

Activate the 5th symbol menu for the editor. Key Bindings: Wing IDE: Ctrl-6; Brief:
Ctrl-6; Eclipse: Ctrl-6; Emacs: Ctrl-6; OS X: Command-6; VI/VIM: Ctrl-6; Visual
Studio: Ctrl-6; XCode: Command-6

backward-char (wrap=1, repeat=<numeric modifier; default=1>)

Move cursor backward one character Key Binding: Left

backward-char-extend (wrap=1, repeat=<numeric modifier; default=1>)

Command Reference

259

Move cursor backward one character, adjusting the selection range to new position
Key Binding: Shift-Left

backward-char-extend-rect (wrap=1, repeat=<numeric modifier; default=1>)

Move cursor backward one character, adjusting the rectangular selection range to
new position Key Bindings: Wing IDE: Shift-Alt-Left; Brief: Shift-Alt-Left; Eclipse:
Shift-Alt-Left; Emacs: Shift-Alt-Left; OS X: Ctrl-Option-Left; VI/VIM: Shift-Alt-Left;
Visual Studio: Shift-Alt-Left; XCode: Ctrl-Option-Left

backward-delete-char (repeat=<numeric modifier; default=1>)

Delete one character behind the cursor, or the current selection if not empty. Key
Bindings: Wing IDE: BackSpace; Brief: BackSpace; Eclipse: BackSpace; Emacs:
BackSpace; OS X: Backspace; VI/VIM: BackSpace; Visual Studio: BackSpace;
XCode: Backspace

backward-delete-word (delimiters=None, repeat=<numeric modifier; default=1>)

Delete one word behind of the cursor Key Bindings: Wing IDE: Ctrl-BackSpace;
Brief: Ctrl-BackSpace; Eclipse: Ctrl-BackSpace; Emacs: Ctrl-BackSpace; OS X:
Ctrl-Option-Delete; VI/VIM: Ctrl-BackSpace; Visual Studio: Ctrl-BackSpace;
XCode: Ctrl-Option-Delete

backward-page (repeat=<numeric modifier; default=1>)

Move cursor backward one page Key Bindings: Wing IDE: Prior; Brief: Prior;
Eclipse: Prior; Emacs: Prior; OS X: Ctrl-Up; VI/VIM: Prior; Visual Studio: Prior;
XCode: Ctrl-Up

backward-page-extend (repeat=<numeric modifier; default=1>)

Move cursor backward one page, adjusting the selection range to new position Key
Bindings: Wing IDE: Shift-Prior; Brief: Shift-Prior; Eclipse: Shift-Prior; Emacs:
Shift-Prior; OS X: Shift-Page_Up; VI/VIM: Shift-Prior; Visual Studio: Shift-Prior;
XCode: Shift-Page_Up

backward-paragraph (repeat=<numeric modifier; default=1>)

Move cursor backward one paragraph (to next all-whitespace line). Key Bindings:
VI/VIM: {

backward-paragraph-extend (repeat=<numeric modifier; default=1>)

Move cursor backward one paragraph (to next all-whitespace line), adjusting the
selection range to new position.

backward-tab ()

Outdent line at current position Key Binding: Shift-Tab

backward-word (delimiters=None, gravity='start', repeat=<numeric modifier;
default=1>)

Command Reference

260

Move cursor backward one word. Optionally, provide a string that contains the
delimiters to define which characters are part of a word. Gravity may be "start" or
"end" to indicate whether cursor is placed at start or end of the word. Key Bindings:
Wing IDE: Ctrl-Left; Brief: Ctrl-Left; Eclipse: Ctrl-Left; Emacs: Ctrl-Left; OS X:
Option-Left; VI/VIM: Ctrl-Left; Visual Studio: Ctrl-Left; XCode: Option-Left

backward-word-extend (delimiters=None, gravity='start', repeat=<numeric
modifier; default=1>)

Move cursor backward one word, adjusting the selection range to new position.
Optionally, provide a string that contains the delimiters to define which characters
are part of a word. Gravity may be "start" or "end" to indicate whether cursor is
placed at start or end of the word. Key Bindings: Wing IDE: Ctrl-Shift-Left; Brief:
Ctrl-Shift-Left; Eclipse: Ctrl-Shift-Left; Emacs: Ctrl-Shift-Left; OS X: Ctrl-Shift-Left
invokes backward-word-extend(delimiters="_`~!@#$%^&*()+-={}[]\|;:'",.<>/? trn");
VI/VIM: Ctrl-Shift-Left; Visual Studio: Ctrl-Shift-Left; XCode: Ctrl-Shift-Left invokes
backward-word-extend(delimiters="_`~!@#$%^&*()+-={}[]\|;:'",.<>/? trn")

beginning-of-line (toggle=True)

Move to beginning of current line. When toggle is True, moves to the end of the
leading white space if already at the beginning of the line (and vice versa). Key
Bindings: Brief: Shift-Home; Emacs: Home; OS X: Command-Left; VI/VIM: 0
invokes beginning-of-line(toggle=0); XCode: Command-Left

beginning-of-line-extend (toggle=True)

Move to beginning of current line, adjusting the selection range to the new position.
When toggle is True, moves to the end of the leading white space if already at the
beginning of the line (and vice versa). Key Bindings: Emacs: Shift-Home; OS X:
Command-Shift-Left; XCode: Command-Shift-Left

beginning-of-line-text (toggle=True)

Move to end of the leading white space, if any, on the current line. If toggle is True,
moves to the beginning of the line if already at the end of the leading white space
(and vice versa). Key Bindings: Wing IDE: Home; Brief: Home; Eclipse: Home;
Emacs: Home; VI/VIM: Home; Visual Studio: Home

beginning-of-line-text-extend (toggle=True)

Move to end of the leading white space, if any, on the current line, adjusting the
selection range to the new position. If toggle is True, moves to the beginning of the
line if already at the end of the leading white space (and vice versa). Key Bindings:
Wing IDE: Shift-Home; Brief: Shift-Home; Eclipse: Shift-Home; Emacs: Shift-Home;
VI/VIM: Shift-Home; Visual Studio: Shift-Home

beginning-of-screen-line ()

Move to beginning of current wrapped line Key Bindings: VI/VIM: g 0

Command Reference

261

beginning-of-screen-line-extend ()

Move to beginning of current wrapped line, extending selection

beginning-of-screen-line-text ()

Move to first non-blank character at beginning of current wrapped line Key
Bindings: VI/VIM: g ^

beginning-of-screen-line-text-extend ()

Move to first non-blank character at beginning of current wrapped line, extending
selection

brace-match ()

Match brace at current cursor position, selecting all text between the two and
hilighting the braces Key Bindings: Wing IDE: Ctrl-E; Eclipse: Ctrl-E; Emacs:
Ctrl-M; OS X: Command-B; Visual Studio: Ctrl-E; XCode: Command-B

cancel ()

Cancel current editor command

cancel-autocompletion ()

Cancel any active autocompletion.

case-lower (repeat=<numeric modifier; default=1>)

Change case of the current selection, or character ahead of the cursor if there is
no selection, to lower case Key Bindings: Visual Studio: Ctrl-U

case-lower-next-move (repeat=<numeric modifier; default=1>)

Change case of text spanned by next cursor movement to lower case Key
Bindings: VI/VIM: g u

case-swap (repeat=<numeric modifier; default=1>)

Change case of the current selection, or character ahead of the cursor if there is
no selection, so each letter is the opposite of its current case Key Bindings: VI/VIM:
~

case-swap-next-move (repeat=<numeric modifier; default=1>)

Change case of text spanned by next cursor movement so each letter is the
opposite of its current case Key Bindings: VI/VIM: g ~

case-title (repeat=<numeric modifier; default=1>)

Change case of the current selection, or character ahead of the cursor if there is
no selection, to title case (first letter of each word capitalized)

case-title-next-move (repeat=<numeric modifier; default=1>)

Command Reference

262

Change case of text spanned by next cursor movement to title case (first letter of
each word capitalized)

case-upper (repeat=<numeric modifier; default=1>)

Change case of the current selection, or character ahead of the cursor if there is
no selection, to upper case Key Bindings: Visual Studio: Ctrl-Shift-U

case-upper-next-move (repeat=<numeric modifier; default=1>)

Change case of text spanned by next cursor movement to upper case Key
Bindings: VI/VIM: g Shift-U

center-cursor ()

Scroll so cursor is centered on display Key Bindings: Brief: Ctrl-C; Emacs: Ctrl-L;
VI/VIM: z .

clear ()

Clear selected text

clear-move-command ()

Clear any pending move command action, as for VI mode Key Bindings: VI/VIM:
Esc

complete-autocompletion (append='')

Complete the current active autocompletion.

copy ()

Copy selected text Key Bindings: Wing IDE: Ctrl-Insert; Brief: Ctrl-Insert; Eclipse:
Ctrl-Insert; Emacs: Ctrl-Insert; OS X: Command-C; VI/VIM: Ctrl-Insert; Visual
Studio: Ctrl-Insert; XCode: Command-C

copy-line ()

Copy the current lines(s) to clipboard

copy-range (start_line, end_line, target_line)

Copy the given range of lines to the given target line. Copies to current line if
target_line is '.'.

copy-selection-or-line ()

Copy the current selection or current line if there is no selection. The text is placed
on the clipboard.

cursor-move-to-bottom (offset=<numeric modifier; default=0>)

Move cursor to bottom of display (without scrolling), optionally at an offset of given
number of lines before bottom Key Bindings: VI/VIM: Shift-L

cursor-move-to-center ()

Command Reference

263

Move cursor to center of display (without scrolling) Key Bindings: VI/VIM: Shift-M

cursor-move-to-top (offset=<numeric modifier; default=0>)

Move cursor to top of display (without scrolling), optionally at an offset of given
number of lines below top Key Bindings: VI/VIM: Shift-H

cursor-to-bottom ()

Scroll so cursor is centered at bottom of display Key Bindings: VI/VIM: z -

cursor-to-top ()

Scroll so cursor is centered at top of display Key Bindings: VI/VIM: z Return

cut ()

Cut selected text Key Bindings: Wing IDE: Shift-Delete; Brief: Shift-Delete; Eclipse:
Shift-Delete; Emacs: Shift-Delete; OS X: Command-X; VI/VIM: Shift-Delete; Visual
Studio: Shift-Delete; XCode: Command-X

cut-line ()

Cut the current line(s) to clipboard. Key Bindings: Visual Studio: Ctrl-L

cut-selection-or-line ()

Cut the current selection or current line if there is no selection. The text is placed
on the clipboard. Key Bindings: Visual Studio: Shift-Delete

delete-line (repeat=<numeric modifier; default=1>)

Delete the current line or lines when the selection spans multiple lines or given
repeat is > 1 Key Bindings: Wing IDE: Ctrl-Shift-C; Eclipse: Ctrl-Shift-C

delete-line-insert (repeat=<numeric modifier; default=1>)

Delete the current line or lines when the selection spans multiple lines or given
repeat is > 1. Enters insert mode (when working with modal key bindings). Key
Bindings: VI/VIM: Shift-S

delete-next-move (repeat=<numeric modifier; default=1>)

Delete the text covered by the next cursor move command. Key Bindings: VI/VIM:
d

delete-next-move-insert (repeat=<numeric modifier; default=1>)

Delete the text covered by the next cursor move command and then enter insert
mode (when working in a modal editor key binding) Key Bindings: VI/VIM: c

delete-range (start_line, end_line, register=None)

Delete given range of lines, copying them into given register (or currently selected
default register if register is None

delete-to-end-of-line (repeat=<numeric modifier; default=1>, post_offset=0)

Command Reference

264

Delete everything between the cursor and end of line Key Bindings: VI/VIM: Shift-D
invokes delete-to-end-of-line(post_offset=-1)

delete-to-end-of-line-insert (repeat=<numeric modifier; default=1>)

Delete everything between the cursor and end of line and enter insert move (when
working in a modal editor key binding) Key Bindings: VI/VIM: Shift-C

delete-to-start-of-line ()

Delete everything between the cursor and start of line Key Bindings: VI/VIM: Ctrl-U;
XCode: Command-Backspace

duplicate-line (pos='below')

Duplicate the current line or lines. Places the duplicate on the line following the
selection if pos is 'below' or before the selection if it is 'above'. Key Bindings: Wing
IDE: Ctrl-Shift-V; Eclipse: Ctrl-Shift-V

duplicate-line-above ()

Duplicate the current line or lines above the selection. Key Bindings: Wing IDE:
Ctrl-Shift-Y; Eclipse: Ctrl-Shift-Y

enclose (start='(', end=')')

Enclose the selection or the rest of the current line when there is no selection with
the given start and end strings. The caret is moved to the end of the enclosed text.
Key Bindings: Wing IDE: Ctrl-(invokes enclose(start="(", end=")"); Brief: Ctrl-(
invokes enclose(start="(", end=")"); Eclipse: Ctrl-(invokes enclose(start="(",
end=")"); Emacs: Ctrl-(invokes enclose(start="(", end=")"); VI/VIM: Ctrl-(invokes
enclose(start="(", end=")"); Visual Studio: Ctrl-(invokes enclose(start="(", end=")")

end-of-document ()

Move cursor to end of document Key Bindings: Wing IDE: Ctrl-End; Brief: Ctrl-End;
Eclipse: Ctrl-End; Emacs: Ctrl-End; OS X: Command-Down; VI/VIM: Ctrl-End;
Visual Studio: Ctrl-End; XCode: Command-Down

end-of-document-extend ()

Move cursor to end of document, adjusting the selection range to new position Key
Bindings: Wing IDE: Ctrl-Shift-End; Brief: Ctrl-Shift-End; Eclipse: Ctrl-Shift-End;
Emacs: Ctrl-Shift-End; OS X: Command-Shift-Down; VI/VIM: Ctrl-Shift-End; Visual
Studio: Ctrl-Shift-End; XCode: Command-Shift-Down

end-of-line (count=<numeric modifier; default=1>)

Move to end of current line Key Bindings: Wing IDE: End; Brief: End; Eclipse: End;
Emacs: End; OS X: Command-Right; VI/VIM: End; Visual Studio: End; XCode:
Command-Right

end-of-line-extend (count=<numeric modifier; default=1>)

Command Reference

265

Move to end of current line, adjusting the selection range to new position Key
Bindings: Wing IDE: Shift-End; Brief: Shift-End; Eclipse: Shift-End; Emacs:
Shift-End; OS X: Command-Shift-Right; VI/VIM: Shift-End; Visual Studio: Shift-End;
XCode: Command-Shift-Right

end-of-screen-line (count=<numeric modifier; default=1>)

Move to end of current wrapped line Key Bindings: VI/VIM: g $

end-of-screen-line-extend (count=<numeric modifier; default=1>)

Move to end of current wrapped line, extending selection

exchange-point-and-mark ()

When currently marking text, this exchanges the current position and mark ends of
the current selection Key Bindings: Emacs: Ctrl-X Ctrl-X; VI/VIM: o

filter-next-move (repeat=<numeric modifier; default=1>)

Filter the lines covered by the next cursor move command through an external
command and replace the lines with the result Key Bindings: VI/VIM: !

filter-range (cmd, start_line=0, end_line=-1)

Filter a range of lines in the editor through an external command and replace the
lines with the result. Filters the whole file by default. Filters nothing and opens up a
scratch buffer with the output of the command if start_line and end_line are both
-1.

filter-selection (cmd)

Filter the current selection through an external command and replace the lines with
the result Key Bindings: VI/VIM: !

form-feed ()

Place a form feed character at the current cursor position

forward-char (wrap=1, repeat=<numeric modifier; default=1>)

Move cursor forward one character Key Binding: Right

forward-char-extend (wrap=1, repeat=<numeric modifier; default=1>)

Move cursor forward one character, adjusting the selection range to new position
Key Binding: Shift-Right

forward-char-extend-rect (wrap=1, repeat=<numeric modifier; default=1>)

Move cursor forward one character, adjusting the rectangular selection range to
new position Key Bindings: Wing IDE: Shift-Alt-Right; Brief: Shift-Alt-Right; Eclipse:
Shift-Alt-Right; Emacs: Shift-Alt-Right; OS X: Ctrl-Option-Right; VI/VIM:
Shift-Alt-Right; Visual Studio: Shift-Alt-Right; XCode: Ctrl-Option-Right

forward-delete-char (repeat=<numeric modifier; default=1>)

Command Reference

266

Delete one character in front of the cursor Key Binding: Delete

forward-delete-char-insert (repeat=<numeric modifier; default=1>)

Delete one char in front of the cursor and enter insert mode (when working in
modal key bindings) Key Bindings: VI/VIM: s

forward-delete-char-within-line (repeat=<numeric modifier; default=1>)

Delete one character in front of the cursor unless at end of line, in which case
delete backward. Do nothing if the line is empty. This is VI style 'x' in browser
mode. Key Bindings: VI/VIM: x

forward-delete-word (delimiters=None, repeat=<numeric modifier; default=1>)

Delete one word in front of the cursor Key Bindings: Wing IDE: Ctrl-Delete; Brief:
Ctrl-Delete; Eclipse: Ctrl-Delete; Emacs: Ctrl-Delete; OS X: Option-Delete; VI/VIM:
Ctrl-Delete; Visual Studio: Ctrl-Delete; XCode: Option-Delete

forward-delete-word-insert (delimiters=None, repeat=<numeric modifier;
default=1>)

Delete one word in front of the cursor and enter insert mode (when working in
modal key bindings)

forward-page (repeat=<numeric modifier; default=1>)

Move cursor forward one page Key Bindings: Wing IDE: Next; Brief: Next; Eclipse:
Next; Emacs: Next; OS X: Ctrl-Down; VI/VIM: Next; Visual Studio: Next; XCode:
Ctrl-Down

forward-page-extend (repeat=<numeric modifier; default=1>)

Move cursor forward one page, adjusting the selection range to new position Key
Bindings: Wing IDE: Shift-Next; Brief: Shift-Next; Eclipse: Shift-Next; Emacs:
Shift-Next; OS X: Shift-Page_Down; VI/VIM: Shift-Next; Visual Studio: Shift-Next;
XCode: Shift-Page_Down

forward-paragraph (repeat=<numeric modifier; default=1>)

Move cursor forward one paragraph (to next all-whitespace line). Key Bindings:
VI/VIM: }

forward-paragraph-extend (repeat=<numeric modifier; default=1>)

Move cursor forward one paragraph (to next all-whitespace line), adjusting the
selection range to new position.

forward-tab ()

Place a tab character at the current cursor position Key Binding: Ctrl-T

forward-word (delimiters=None, gravity='start', repeat=<numeric modifier;
default=1>)

Command Reference

267

Move cursor forward one word. Optionally, provide a string that contains the
delimiters to define which characters are part of a word. Gravity may be "start" or
"end" to indicate whether cursor is placed at start or end of the word. Key Bindings:
Wing IDE: Ctrl-Right; Brief: Ctrl-Right; Eclipse: Ctrl-Right; Emacs: Ctrl-Right; OS X:
Ctrl-Right invokes forward-word(delimiters="_`~!@#$%^&*()+-={}[]\|;:'",.<>/? trn");
VI/VIM: Ctrl-Right; Visual Studio: Ctrl-Right; XCode: Ctrl-Right invokes
forward-word(delimiters="_`~!@#$%^&*()+-={}[]\|;:'",.<>/? trn")

forward-word-extend (delimiters=None, gravity='start', repeat=<numeric modifier;
default=1>)

Move cursor forward one word, adjusting the selection range to new position.
Optionally, provide a string that contains the delimiters to define which characters
are part of a word. Gravity may be "start" or "end" to indicate whether cursor is
placed at start or end of the word. Key Bindings: Wing IDE: Ctrl-Shift-Right; Brief:
Ctrl-Shift-Right; Eclipse: Ctrl-Shift-Right; Emacs: Ctrl-Shift-Right; OS X:
Option-Shift-Right; VI/VIM: Ctrl-Shift-Right; Visual Studio: Ctrl-Shift-Right; XCode:
Option-Shift-Right

goto-overridden-method ()

Goes to the method that is overridden by the current method

hide-selection ()

Turn off display of the current text selection

indent-to-match (toggle=False)

Indent the current line or selected region to match indentation of preceding
non-blank line. Set toggle=True to indent instead of one level higher if already at
the matching position. Key Binding: Ctrl-=

indent-to-next-indent-stop ()

Indent to next indent stop from the current position. Acts like indent command if
selection covers multiple lines.

isearch-backward (search_string=None, repeat=<numeric modifier; default=1>)

Initiate incremental mini-search backward from the cursor position, optionally
entering the given search string Key Bindings: Wing IDE: Ctrl-Shift-U; Eclipse:
Ctrl-Shift-U; Emacs: Ctrl-R; OS X: Command-Shift-U; Visual Studio: Ctrl-Shift-U;
XCode: Command-Shift-U

isearch-backward-regex (search_string=None, repeat=<numeric modifier;
default=1>)

Initiate incremental regular expression mini-search backward from the cursor
position, optionally entering the given search string Key Bindings: Emacs:
Ctrl-Alt-R; VI/VIM: ?

Command Reference

268

isearch-forward (search_string=None, repeat=<numeric modifier; default=1>)

Initiate incremental mini-search forward from the cursor position, optionally
entering the given search string Key Bindings: Wing IDE: Ctrl-U; Eclipse: Ctrl-U;
Emacs: Ctrl-S; OS X: Command-U; Visual Studio: Ctrl-I; XCode: Command-U

isearch-forward-regex (search_string=None, repeat=<numeric modifier;
default=1>)

Initiate incremental regular expression mini-search forward from the cursor
position, optionally entering the given search string Key Bindings: Emacs:
Ctrl-Alt-S; VI/VIM: /

isearch-repeat (reverse=False, repeat=<numeric modifier; default=1>)

Repeat the most recent isearch, using same string and regex/text. Reverse
direction when reverse is True. Key Bindings: VI/VIM: n

isearch-sel-backward (persist=True, whole_word=False, repeat=<numeric
modifier; default=1>)

Initiate incremental mini-search backward from the cursor position, using current
selection as the search string. Set persist=False to do the search but end the
interactive search session immediately. Key Bindings: Wing IDE: Ctrl-Shift-B;
Eclipse: Ctrl-Shift-B; Emacs: Ctrl-C R; VI/VIM: # invokes
isearch-sel-backward(persist=0, whole_word=1); Visual Studio: Ctrl-Shift-B

isearch-sel-forward (persist=True, whole_word=False, repeat=<numeric modifier;
default=1>)

Initiate incremental mini-search forward from the cursor position, using current
selection as the search string. Set persist=False to do the search but end the
interactive search session immediately. Key Bindings: Wing IDE: Ctrl-B; Eclipse:
Ctrl-B; Emacs: Ctrl-C S; VI/VIM: * invokes isearch-sel-forward(persist=0,
whole_word=1); Visual Studio: Ctrl-B

kill-line ()

Kill rest of line from cursor to end of line, and place it into the clipboard with any
other contiguously removed lines. End-of-line is removed only if there is nothing
between the cursor and the end of the line. Key Bindings: Brief: Alt-D; Emacs:
Ctrl-K; OS X: Ctrl-k; XCode: Ctrl-k

middle-of-screen-line ()

Move to middle of current wrapped line Key Bindings: VI/VIM: g m

middle-of-screen-line-extend ()

Move to middle of current wrapped line, extending selection

move-line-down (indent=True, repeat=<numeric modifier; default=1>)

Command Reference

269

Move the current line or lines up down line, optionally indenting to match the new
position Key Bindings: Wing IDE: Ctrl-Shift-Down; Eclipse: Ctrl-Shift-Down; XCode:
Command-Alt-]

move-line-up (indent=True, repeat=<numeric modifier; default=1>)

Move the current line or lines up one line, optionally indenting to match the new
position Key Bindings: Wing IDE: Ctrl-Shift-Up; Eclipse: Ctrl-Shift-Up; XCode:
Command-Alt-[

move-range (start_line, end_line, target_line)

Move the given range of lines to the given target line. Moves to current line if
target_line is '.'.

move-to-register (unit='char', cut=0, num=<numeric modifier; default=1>)

Cut or copy a specified number of characters or lines, or the current selection. Set
cut=1 to remove the range of text from the editor after moving to register
(otherwise it is just copied). Unit should be one of 'char' or 'line' or 'sel' for current
selection. Key Bindings: VI/VIM: Shift-Y invokes move-to-register(unit="line")

move-to-register-next-move (cut=0, repeat=<numeric modifier; default=1>)

Move the text spanned by the next cursor motion to a register Key Bindings:
VI/VIM: y

new-line ()

Place a new line at the current cursor position Key Binding: Return

new-line-after ()

Place a new line after the current line Key Bindings: Wing IDE: Ctrl-Return; Brief:
Ctrl-Return; Eclipse: Ctrl-Return; Emacs: Ctrl-Return; VI/VIM: Ctrl-Return; Visual
Studio: Ctrl-Return

new-line-before ()

Place a new line before the current line Key Bindings: Wing IDE: Shift-Return;
Brief: Shift-Return; Eclipse: Shift-Return; Emacs: Shift-Return; VI/VIM:
Shift-Return; Visual Studio: Shift-Return

next-blank-line (threshold=0, repeat=<numeric modifier; default=1>)

Move to the next blank line in the file, if any. If threshold>0 then a line is
considered blank if it contains less than that many characters after leading and
trailing whitespace are removed. Key Bindings: Emacs: Alt-} invokes
next-blank-line(threshold=1)

next-block (count=1, ignore_indented=True)

Command Reference

270

Select the next block. Will ignore indented blocks under the current block unless
ignore_indented is False. Specify a count of more than 1 to go forward multiple
blocks.

next-line (cursor='same', repeat=<numeric modifier; default=1>)

Move to screen next line, optionally repositioning character within line: 'same' to
leave in same horizontal position, 'start' at start, 'end' at end, or 'fnb' for first
non-blank char. Key Binding: Down

next-line-extend (cursor='same', repeat=<numeric modifier; default=1>)

Move to next screen line, adjusting the selection range to new position, optionally
repositioning character within line: same' to leave in same horizontal position, 'start'
at start, 'end' at end, 'fnb' for first non-blank char, or 'xcode' to simulate XCode
style Shift-Alt line selection. Key Binding: Shift-Down

next-line-extend-rect (cursor='same', repeat=<numeric modifier; default=1>)

Move to next screen line, adjusting the rectangular selection range to new position,
optionally repositioning character within line: same' to leave in same horizontal
position, 'start' at start, 'end' at end, or 'fnb' for first non-blank char. Key Bindings:
Wing IDE: Shift-Alt-Down; Brief: Shift-Alt-Down; Eclipse: Shift-Alt-Down; Emacs:
Shift-Alt-Down; OS X: Ctrl-Option-Down; VI/VIM: Shift-Alt-Down; Visual Studio:
Shift-Alt-Down; XCode: Ctrl-Option-Down

next-line-in-file (cursor='start', repeat=<numeric modifier; default=1>)

Move to next line in file, repositioning character within line: 'start' at start, 'end' at
end, or 'fnb' for first non-blank char. Key Bindings: VI/VIM: + invokes
next-line-in-file(cursor="fnb")

next-scope (count=1, sibling_only=False)

Select the next scope. Specify a count of more than 1 to go forward multiple
scopes. If sibling_only is true, move only to other scopes of the same parent. Key
Bindings: Eclipse: Ctrl-Shift-Down

next-statement (count=1, ignore_indented=True)

Select the next statement. Will ignore indented statements under the current
statements unless ignore_indented is False. Specify a count of more than 1 to go
forward multiple statements. Key Bindings: Eclipse: Alt-Shift-Right

open-line ()

Open the current line by inserting a newline after the caret Key Bindings: Emacs:
Ctrl-O

paste ()

Command Reference

271

Paste text from clipboard Key Bindings: Wing IDE: Shift-Insert; Brief: Shift-Insert;
Eclipse: Shift-Insert; Emacs: Shift-Insert; OS X: Ctrl-y; VI/VIM: Shift-Insert; Visual
Studio: Shift-Insert; XCode: Ctrl-y

paste-register (pos=1, indent=0, cursor=-1)

Paste text from register as before or after the current position. If the register
contains only lines, then the lines are pasted before or after current line (rather
than at cursor). If the register contains fragments of lines, the text is pasted over
the current selection or either before or after the cursor. Set pos = 1 to paste after,
or -1 to paste before. Set indent=1 to indent the pasted text to match current line.
Set cursor=-1 to place cursor before lines or cursor=1 to place it after lines after
paste completes. Key Bindings: VI/VIM: p

previous-blank-line (threshold=0, repeat=<numeric modifier; default=1>)

Move to the previous blank line in the file, if any. If threshold>0 then a line is
considered blank if it contains less than that many characters after leading and
trailing whitespace are removed. Key Bindings: Emacs: Alt-{ invokes
previous-blank-line(threshold=1)

previous-block (count=1, ignore_indented=True)

Select the previous block. Will ignore indented blocks under the current block
unless ignore_indented is False. Specify a count of more than 1 to go backward
multiple blocks.

previous-line (cursor='same', repeat=<numeric modifier; default=1>)

Move to previous screen line, optionally repositioning character within line: same'
to leave in same horizontal position, 'start' at start, 'end' at end, or 'fnb' for first
non-blank char. Key Binding: Up

previous-line-extend (cursor='same', repeat=<numeric modifier; default=1>)

Move to previous screen line, adjusting the selection range to new position,
optionally repositioning character within line: same' to leave in same horizontal
position, 'start' at start, 'end' at end, 'fnb' for first non-blank char, or 'xcode' to
simulate XCode style Shift-Alt line selection. Key Binding: Shift-Up

previous-line-extend-rect (cursor='same', repeat=<numeric modifier; default=1>)

Move to previous screen line, adjusting the rectangular selection range to new
position, optionally repositioning character within line: same' to leave in same
horizontal position, 'start' at start, 'end' at end, or 'fnb' for first non-blank char. Key
Bindings: Wing IDE: Shift-Alt-Up; Brief: Shift-Alt-Up; Eclipse: Shift-Alt-Up; Emacs:
Shift-Alt-Up; OS X: Ctrl-Option-Up; VI/VIM: Shift-Alt-Up; Visual Studio: Shift-Alt-Up;
XCode: Ctrl-Option-Up

previous-line-in-file (cursor='start', repeat=<numeric modifier; default=1>)

Command Reference

272

Move to previous line in file, repositioning character within line: 'start' at start, 'end'
at end, or 'fnb' for first non-blank char. Key Bindings: VI/VIM: - invokes
previous-line-in-file(cursor="fnb")

previous-scope (count=1, sibling_only=False)

Select the previous scope. Specify a count of more than 1 to go backward multiple
scopes. If sibling_only is true, move only to other scopes of the same parent. Key
Bindings: Eclipse: Ctrl-Shift-Up

previous-statement (count=1, ignore_indented=True)

Select the previous statement. Will ignore indented statements under the current
statements unless ignore_indented is False. Specify a count of more than 1 to go
back multiple statements. Key Bindings: Eclipse: Alt-Shift-Left

profile-editor-start ()

Turn on profiling for the current source editor

profile-editor-stop ()

Stop profiling and print stats to stdout

reanalyze-file ()

Rescan file for code analysis.

redo ()

Redo last action Key Bindings: Wing IDE: Ctrl-Y; Brief: Ctrl-U; Eclipse: Ctrl-Y;
Emacs: Ctrl-.; OS X: Command-Shift-Z; VI/VIM: Ctrl-R; Visual Studio: Ctrl-Y;
XCode: Command-Shift-Z

repeat-command (repeat=<numeric modifier; default=1>)

Repeat the last editor command Key Bindings: VI/VIM: .

repeat-search-char (opposite=0, repeat=<numeric modifier; default=1>)

Repeat the last search_char operation, optionally in the opposite direction. Key
Bindings: VI/VIM: ;

rstrip-each-line ()

Strip trailing whitespace from each line.

scroll-text-down (repeat=<numeric modifier; default=1>, move_cursor=True)

Scroll text down a line w/o moving cursor's relative position on screen. Repeat is
number of lines or if >0 and <1.0 then percent of screen. Set move_cursor to False
to leave cursor in current position within the source, otherwise it is moved so the
cursor remains on same screen line. Key Bindings: Wing IDE: Ctrl-Shift-Down;
Brief: Ctrl-Shift-Down; Eclipse: Ctrl-Shift-Down; Emacs: Ctrl-Shift-Down; VI/VIM:
Ctrl-Shift-Down; Visual Studio: Ctrl-Shift-Down

Command Reference

273

scroll-text-left (repeat=<numeric modifier; default=1>)

Scroll text left a column w/o moving cursor's relative position on screen. Repeat is
number of columns or if >0 and <1.0 then percent of screen. Key Bindings: VI/VIM:
z l

scroll-text-page-down (repeat=<numeric modifier; default=1>,
move_cursor=True)

Scroll text down a page w/o moving cursor's relative position on screen. Repeat is
number of pages or if >0 and <1.0 then percent of screen. Set move_cursor to
False to leave cursor in current position within the source, otherwise it is moved so
the cursor remains on same screen line.

scroll-text-page-up (repeat=<numeric modifier; default=1>, move_cursor=True)

Scroll text up a page w/o moving cursor's relative position on screen. Repeat is
number of pages or if >0 and <1.0 then percent of screen. Set move_cursor to
False to leave cursor in current position within the source, otherwise it is moved so
the cursor remains on same screen line.

scroll-text-right (repeat=<numeric modifier; default=1>)

Scroll text right a column w/o moving cursor's relative position on screen. Repeat is
number of columns or if >0 and <1.0 then percent of screen. Key Bindings: VI/VIM:
z h

scroll-text-up (repeat=<numeric modifier; default=1>, move_cursor=True)

Scroll text up a line w/o moving cursor's relative position on screen. Repeat is
number of lines or if >0 and <1.0 then percent of screen. Set move_cursor to False
to leave cursor in current position within the source, otherwise it is moved so the
cursor remains on same screen line. Key Bindings: Wing IDE: Ctrl-Shift-Up; Brief:
Ctrl-Shift-Up; Eclipse: Ctrl-Shift-Up; Emacs: Ctrl-Shift-Up; VI/VIM: Ctrl-Shift-Up;
Visual Studio: Ctrl-Shift-Up

scroll-to-cursor ()

Scroll to current cursor position, if not already visible

scroll-to-end (move_caret=False)

Scroll to the end of the text in the editor. Set move_caret to control whether the
caret is moved. Key Bindings: OS X: End; XCode: End

scroll-to-start (move_caret=False)

Scroll to the top of the text in the editor. Set move_caret to control whether the the
caret is moved. Key Bindings: OS X: Home; XCode: Home

search-char (dir=1, pos=0, repeat=<numeric modifier; default=1>, single_line=0)

Search for the given character. Searches to right if dir > 0 and to left if dir < 0.
Optionally place cursor pos characters to left or right of the target (e.g., use -1 to

Command Reference

274

place one to left). If repeat > 1, the Nth match is found. Set single_line=1 to search
only within the current line. Key Bindings: VI/VIM: F invokes search-char(dir=1,
single_line=1)

select-all ()

Select all text in the editor Key Bindings: Wing IDE: Ctrl-A; Eclipse: Ctrl-A; OS X:
Command-A; Visual Studio: Ctrl-A; XCode: Command-A

select-block ()

Select the block the cursor is in.

select-less ()

Select less code; undoes the last select-more command Key Bindings: Wing IDE:
Ctrl-Down; Brief: Ctrl-Down; Eclipse: Ctrl-Down; Emacs: Ctrl-Down; VI/VIM:
Ctrl-Down; Visual Studio: Ctrl-Down

select-lines ()

Select the current line or lines

select-more ()

Select more code on either the current line or larger multi-line blocks. Key
Bindings: Wing IDE: Ctrl-Up; Brief: Ctrl-Up; Eclipse: Ctrl-Up; Emacs: Ctrl-Up; OS X:
Option-Up; VI/VIM: Ctrl-Up; Visual Studio: Ctrl-Up; XCode: Option-Up

select-scope ()

Select the scope the cursor is in.

select-statement ()

Select the statement the cursor is in.

selection-add-next-occurence (skip_current=False, reverse=False)

Add another selection containing the text of the current selection. If skip_current is
true, the current selection will be deselected. If nothing is currently selected, select
the current word. Searches backwards if reverse is true. Key Bindings: Wing IDE:
Ctrl-Shift-D; Eclipse: Ctrl-Shift-D; OS X: Command-Y; Visual Studio: Ctrl-Shift-D;
XCode: Command-Y

set-mark-command (unit='char')

Set start of text marking for selection at current cursor position. Subsequently, all
cursor move operations will automatically extend the text selection until
stop-mark-command is issued. Unit defines what is selected: can be one of char,
line, or block (rectangle). Key Bindings: Emacs: Ctrl-Space

set-register ()

Command Reference

275

Set the register to use for subsequent cut/copy/paste operations Key Bindings:
VI/VIM: "

show-autocompleter ()

Show the auto-completer for current cursor position Key Bindings: Wing IDE:
Ctrl-space; Eclipse: Ctrl-space; Emacs: Alt-Tab; OS X: Ctrl-space; Visual Studio:
Ctrl-J; XCode: Ctrl-space

show-selection ()

Turn on display of the current text selection

smart-tab ()

Implement smart handling of tab key. The behavior varies by context as follows:

• In Non-Python code, always indents to the next indent stop
• On a non-blank line when cursor is at end or before a comment, insert tab
• On a where indent does not match the computed indent level, move to the

matching indent level
• Otherwise decrease indent one level (thus a non-blank line toggles

between matching position and one block higher)

start-of-document ()

Move cursor to start of document Key Bindings: Wing IDE: Ctrl-Home; Brief:
Ctrl-Home; Eclipse: Ctrl-Home; Emacs: Ctrl-Home; OS X: Command-Up; VI/VIM:
Ctrl-Home; Visual Studio: Ctrl-Home; XCode: Command-Up

start-of-document-extend ()

Move cursor to start of document, adjusting the selection range to new position
Key Bindings: Wing IDE: Ctrl-Shift-Home; Brief: Ctrl-Shift-Home; Eclipse:
Ctrl-Shift-Home; Emacs: Ctrl-Shift-Home; OS X: Command-Shift-Up; VI/VIM:
Ctrl-Shift-Home; Visual Studio: Ctrl-Shift-Home; XCode: Command-Shift-Up

stop-mark-command (deselect=True)

Stop text marking for selection at current cursor position, leaving the selection set
as is. Subsequent cursor move operations will deselect the range and set selection
to cursor position. Deselect immediately when deselect is True. Key Bindings:
Emacs: Ctrl-G

swap-lines (previous=False)

Swap the line at start of current selection with the line that follows it, or the
preceding line if previous is True. Key Bindings: Wing IDE: Ctrl-Shift-L; Eclipse:
Ctrl-Shift-L; Emacs: Ctrl-X Ctrl-T invokes swap-lines(previous=True)

tab-key ()

Command Reference

276

Implement the tab key, the action of which is configurable by preference Key
Binding: Tab

undo ()

Undo last action Key Bindings: Wing IDE: Ctrl-Z; Brief: Alt-U; Eclipse: Ctrl-Z;
Emacs: Ctrl-/; OS X: Command-Z; VI/VIM: u; Visual Studio: Ctrl-Z; XCode:
Command-Z

yank-line ()

Yank contents of kill buffer created with kill-line into the edit buffer Key Bindings:
Emacs: Ctrl-Y

General Editor Commands

Editor commands that act on the current (most recently active) source editor,
whether or not it currently has the keyboard focus.

check-indent-consistency ()

Check whether indents consistently use spaces or tabs throughout the file.

comment-out-region (style=None)

Comment out the selected region. The style of commenting can be controlled with
the style argument: 'indented' uses the default comment style indented at end of
leading white space and 'block' uses a block comment in column zero. If not given,
the style configured with the Editor / Block Comment Style preference is used.
Each call adds a level of commenting. Key Bindings: Wing IDE: Ctrl-/; Eclipse:
Ctrl-/; Emacs: Ctrl-C C; OS X: Command-'; Visual Studio: Ctrl-K Ctrl-C; XCode:
Command-'

comment-out-toggle (style=None)

Comment out the selected lines. This command is not available if they lines are
already commented out. The style of commenting can be controlled with the style
argument: 'indented' uses the default comment style indented at end of leading
white space and 'block' uses a block comment in column zero. If not given, the
style configured with the Editor / Block Comment Style preference is used.

comment-toggle (style=None)

Toggle commenting out of the selected lines. The style of commenting can be
controlled with the style argument: 'indented' uses the default comment style
indented at end of leading white space and 'block' uses a block comment in column
zero. If not given, the style configured with the Editor / Block Comment Style
preference is used. Key Bindings: Wing IDE: Ctrl-.; Eclipse: Ctrl-.; Emacs: Ctrl-C #;
OS X: Command-;; Visual Studio: Ctrl-K Ctrl-T; XCode: Command-;

convert-indents-to-mixed (indent_size)

Convert all lines with leading spaces to mixed tabs and spaces.

Command Reference

277

convert-indents-to-spaces-only (indent_size)

Convert all lines containing leading tabs to spaces only.

convert-indents-to-tabs-only ()

Convert all indentation to use tab characters only and no spaces

evaluate-file-in-ipy (restart_shell=None)

Run the contents of the editor within the IPython Shell

evaluate-file-in-shell (restart_shell=None)

Run the contents of the editor within the Python Shell Key Bindings: Wing IDE:
Ctrl-Alt-V; Eclipse: Ctrl-Alt-V

evaluate-sel-in-debug-probe (whole_lines=None)

Evaluate the current selection from the editor within the Debug Probe tool. When
whole_lines is set, the selection is rounded to whole lines before evaluation. When
unspecified (set to None), the setting from the Shell's Option menu is used instead.
Key Bindings: Wing IDE: Ctrl-Alt-D; Eclipse: Ctrl-Alt-D

evaluate-sel-in-shell (restart_shell=False, whole_lines=None)

Evaluate the current selection from the editor within the Python Shell tool,
optionally restarting the shell first. When whole_lines is set, the selection is
rounded to whole lines before evaluation. When unspecified (set to None), the
setting from the Shell's Option menu is used instead. Key Bindings: Wing IDE:
Ctrl-Alt-E; Eclipse: Ctrl-Alt-E; Emacs: Ctrl-C |; XCode: Command-R

execute-kbd-macro (register='a', repeat=<numeric modifier; default=1>)

Execute most recently recorded keyboard macro. If register is None then the user
is asked to enter a letter a-z for the register where the macro is filed. Otherwise,
register 'a' is used by default. Key Bindings: Wing IDE: Ctrl-M; Brief: F8; Eclipse:
Ctrl-M; Emacs: Ctrl-X E; OS X: Command-M; VI/VIM: @ invokes
execute-kbd-macro(register=None); Visual Studio: Ctrl-M; XCode: Command-M

fill-paragraph ()

Attempt to auto-justify the paragraph around the current start of selection Key
Bindings: Wing IDE: Ctrl-J; Eclipse: Ctrl-J; Emacs: Ctrl-J; OS X: Command-J;
VI/VIM: g q q; Visual Studio: Ctrl-K Ctrl-F; XCode: Command-J

find-symbol ()

Allow user to visit point of definition of a source symbol in the current editor context
by typing a fragment of the name Key Bindings: Wing IDE: Ctrl-Shift-T; Eclipse:
Ctrl-Shift-T; Emacs: Ctrl-X G; OS X: Command-Shift-T; VI/VIM: Ctrl-Shift-T; Visual
Studio: Ctrl-Shift-T; XCode: Command-Shift-T

find-symbol-in-project (fragment=None)

Command Reference

278

Allow user to visit point of definition of a source symbol in the any file in the project
by typing a fragment of the name Key Bindings: Wing IDE: Ctrl-Shift-P; Eclipse:
Ctrl-Shift-P; Emacs: Ctrl-X Ctrl-G; OS X: Command-Shift-P; VI/VIM: Ctrl-Shift-P;
Visual Studio: Ctrl-Shift-P; XCode: Command-Shift-P

fold-collapse-all ()

Collapse all fold points in the current file Key Bindings: Wing IDE: Alt-Home; Brief:
Alt-Home; Eclipse: Alt-Home; Emacs: Alt-Home; OS X: Command-Ctrl--; VI/VIM:
Alt-Home; Visual Studio: Alt-Home; XCode: Command-Ctrl--

fold-collapse-all-clicked ()

Collapse the clicked fold point completely

fold-collapse-all-current ()

Collapse the current fold point completely Key Bindings: Wing IDE: Alt-Page_Up;
Brief: Alt-Page_Up; Eclipse: Alt-Page_Up; Emacs: Alt-Page_Up; OS X:
Command--; VI/VIM: Alt-Page_Up; Visual Studio: Alt-Page_Up; XCode:
Command--

fold-collapse-current ()

Collapse the current fold point Key Bindings: Eclipse: Ctrl--; VI/VIM: z c

fold-collapse-more-clicked ()

Collapse the clicked fold point one more level

fold-collapse-more-current ()

Collapse the current fold point one more level Key Bindings: Wing IDE: Alt-Up;
Brief: Alt-Up; Eclipse: Alt-Up; Emacs: Alt-Up; OS X: Command-_; VI/VIM: Alt-Up;
Visual Studio: Alt-Up; XCode: Command-_

fold-expand-all ()

Expand all fold points in the current file Key Bindings: Wing IDE: Alt-End; Brief:
Alt-End; Eclipse: Alt-End; Emacs: Alt-End; OS X: Command-Ctrl-*; VI/VIM: Alt-End;
Visual Studio: Alt-End; XCode: Command-Ctrl-*

fold-expand-all-clicked ()

Expand the clicked fold point completely

fold-expand-all-current ()

Expand the current fold point completely Key Bindings: Wing IDE: Alt-Page_Down;
Brief: Alt-Page_Down; Eclipse: Alt-Page_Down; Emacs: Alt-Page_Down; OS X:
Command-*; VI/VIM: Alt-Page_Down; Visual Studio: Alt-Page_Down; XCode:
Command-*

fold-expand-current ()

Command Reference

279

Expand the current fold point Key Bindings: Eclipse: Ctrl-+; VI/VIM: z o

fold-expand-more-clicked ()

Expand the clicked fold point one more level

fold-expand-more-current ()

Expand the current fold point one more level Key Bindings: Wing IDE: Alt-Down;
Brief: Alt-Down; Eclipse: Alt-Down; Emacs: Alt-Down; OS X: Command-+; VI/VIM:
Alt-Down; Visual Studio: Alt-Down; XCode: Command-+

fold-toggle ()

Toggle the current fold point Key Bindings: Wing IDE: Alt-/; Brief: Alt-/; Eclipse:
Alt-/; Emacs: Alt-/; OS X: Command-/; VI/VIM: Alt-/; Visual Studio: Alt-/; XCode:
Command-/

fold-toggle-clicked ()

Toggle the clicked fold point

force-indent-style-to-match-file ()

Force the indent style of the editor to match the indent style found in the majority of
the file

force-indent-style-to-mixed ()

Force the indent style of the editor to mixed use of tabs and spaces, regardless of
the file contents

force-indent-style-to-spaces-only ()

Force the indent style of the editor to use spaces only, regardless of file contents

force-indent-style-to-tabs-only ()

Force the indent style of the editor to use tabs only, regardless of file contents

goto-column (column=<numeric modifier; default=0>)

Move cursor to given column Key Bindings: VI/VIM: |

goto-line (lineno=<numeric modifier>)

Position cursor at start of given line number Key Bindings: Wing IDE: Ctrl-L; Brief:
Alt-G; Eclipse: Ctrl-L; Emacs: Alt-G; OS X: Command-L; Visual Studio: Ctrl-G;
XCode: Command-L

goto-line-select (lineno=<numeric modifier>)

Scroll to and select the given line number

goto-nth-line (lineno=<numeric modifier; default=1>, cursor='start')

Position cursor at start of given line number (1=first, -1 = last). This differs from
goto-line in that it never prompts for a line number but instead uses the previously

Command Reference

280

entered numeric modifier or defaults to going to line one. The cursor can be
positioned at 'start', 'end', or 'fnb' for first non-blank character. Key Bindings:
VI/VIM: g g invokes goto-nth-line(cursor="fnb")

goto-nth-line-default-end (lineno=<numeric modifier; default=0>, cursor='start')

Same as goto_nth_line but defaults to end of file if no lineno is given Key Bindings:
VI/VIM: Shift-G invokes goto-nth-line-default-end(cursor="fnb")

goto-percent-line (percent=<numeric modifier; default=0>, cursor='start')

Position cursor at start of line at given percent in file. This uses the previously
entered numeric modifier or defaults to going to line one. The cursor can be
positioned at 'start', 'end', or 'fnb' for first non-blank character, or in VI mode it will
do brace matching operation to reflect how VI overrides this command. Key
Bindings: VI/VIM: % invokes goto-percent-line(cursor="fnb")

hide-all-whitespace ()

Turn off all special marks for displaying white space and end-of-line

hide-eol ()

Turn off special marks for displaying end-of-line chars

hide-indent-guides ()

Turn off special marks for displaying indent level

hide-whitespace ()

Turn off special marks for displaying white space

indent-lines (lines=None, levels=<numeric modifier; default=1>)

Indent selected number of lines from cursor position. Set lines to None to indent all
the lines in current selection. Set levels to indent more than one level at a time.
Key Bindings: Eclipse: Ctrl-| invokes indent-lines(lines=1); VI/VIM: >

indent-next-move (num=<numeric modifier; default=1>)

Indent lines spanned by next cursor move Key Bindings: VI/VIM: >

indent-region (sel=None)

Indent the selected region one level of indentation. Set sel to None to use
preference to determine selection behavior, or "never-select" to unselect after
indent, "always-select" to always select after indent, or "retain-select" to retain
current selection after indent. Key Bindings: Wing IDE: Ctrl->; Eclipse: Ctrl->;
Emacs: Ctrl-C >; OS X: Command-]; VI/VIM: Ctrl-T; Visual Studio: Ctrl->; XCode:
Command-]

indent-to-match-next-move (num=<numeric modifier; default=1>)

Command Reference

281

Indent lines spanned by next cursor move to match, based on the preceding line
Key Bindings: VI/VIM: =

insert-command (cmd)

Insert the output for the given command at current cursor position. Some special
characters in the command line (if not escaped with) will be replaced as follows:

% -- Current file's full path name
-- Previous file's full path name

insert-file (filename)

Insert a file at current cursor position, prompting user for file selection Key
Bindings: Brief: Alt-R; Emacs: Ctrl-X I

join-lines (delim=' ', num=<numeric modifier; default=2>)

Join together specified number of lines after current line (replace newlines with the
given delimiter (single space by default) Key Bindings: VI/VIM: Shift-J

join-selection (delim=' ')

Join together all lines in given selection (replace newlines with the given delimiter
(single space by default) Key Bindings: VI/VIM: Shift-J

kill-buffer ()

Close the current text file Key Bindings: Brief: Ctrl--; Emacs: Ctrl-X K

outdent-lines (lines=None, levels=<numeric modifier; default=1>)

Outdent selected number of lines from cursor position. Set lines to None to indent
all the lines in current selection. Set levels to outdent more than one level at a time.
Key Bindings: VI/VIM: <

outdent-next-move (num=<numeric modifier; default=1>)

Outdent lines spanned by next cursor move Key Bindings: VI/VIM: <

outdent-region (sel=None)

Outdent the selected region one level of indentation. Set sel to None to use
preference to determine selection behavior, or "never-select" to unselect after
indent, "always-select" to always select after indent, or "retain-select" to retain
current selection after indent. Key Bindings: Wing IDE: Ctrl-<; Eclipse: Ctrl-<;
Emacs: Ctrl-C <; OS X: Command-[; VI/VIM: Ctrl-D; Visual Studio: Ctrl-<; XCode:
Command-[

page-setup ()

Show printing page setup dialog

print-view ()

Command Reference

282

Print active editor document Key Bindings: Wing IDE: Ctrl-P; Eclipse: Ctrl-P; OS X:
Command-P; Visual Studio: Ctrl-P; XCode: Command-P

query-replace (search_string, replace_string)

Initiate incremental mini-search query/replace from the cursor position. Key
Bindings: Wing IDE: Alt-comma; Eclipse: Alt-comma; Emacs: Alt-%; OS X: Ctrl-R;
Visual Studio: Alt-comma; XCode: Ctrl-R

query-replace-regex (search_string, replace_string)

Initiate incremental mini-search query/replace from the cursor position. The search
string is treated as a regular expression. Key Bindings: Wing IDE: Ctrl-Alt-Comma;
Eclipse: Ctrl-Alt-Comma; Emacs: Ctrl-Alt-%; Visual Studio: Ctrl-Alt-Comma

range-replace (search_string, replace_string, confirm, range_limit, match_limit,
regex)

Initiate incremental mini-search query/replace within the given selection. This is
similar to query_replace but allows some additional options:

confirm -- True to confirm each replace
range_limit -- None to replace between current selection start and end of document,
 1 to limit operation to current selection or to current line if selection is empty,
 (start, end) to limit operation to within given selection range, or "first|last"
 to limit operating withing given range of lines (1=first).
match_limit -- None to replace any number of matches, or limit of number of replaces.
 When set to "l" plus a number, limits to that number of matches per line,
 rather than as a whole.
regex -- Treat search string as a regular expression

repeat-replace (repeat=<numeric modifier; default=1>)

Repeat the last query replace or range replace operation on the current line. The
first match is replaced without confirmation. Key Bindings: VI/VIM: &

replace-char (line_mode='multiline', num=<numeric modifier; default=1>)

Replace num characters with given character. Set line_mode to multiline to allow
replacing across lines, extend to replace on current line and then extend the line
length, and restrict to replace only if enough characters exist on current line after
cursor position. Key Bindings: VI/VIM: r invokes replace-char(line_mode="restrict")

replace-string (search_string, replace_string)

Replace all occurrences of a string from the cursor position to end of file. Key
Bindings: Wing IDE: Alt-.; Eclipse: Alt-.; Emacs: Alt-@; Visual Studio: Alt-.

replace-string-regex (search_string, replace_string)

Replace all occurrences of a string from the cursor position to end of file. The
search string is treated as a regular expression. Key Bindings: Wing IDE: Ctrl-Alt-.;
Eclipse: Ctrl-Alt-.; Emacs: Ctrl-Alt-@; Visual Studio: Ctrl-Alt-.

Command Reference

283

save-buffer ()

Save the current text file to disk

set-readonly ()

Set editor to be readonly. This cannot be done if the editor contains any unsaved
edits.

set-visit-history-anchor ()

Set anchor in the visit history to go back to

set-writable ()

Set editor to be writable. This can be used to override the read-only state used
initially for editors displaying files that are read-only on disk.

show-all-whitespace ()

Turn on all special marks for displaying white space and end-of-line

show-eol ()

Turn on special marks for displaying end-of-line chars

show-indent-guides ()

Turn on special marks for displaying indent level

show-indent-manager ()

Display the indentation manager for this editor file

show-whitespace ()

Turn on special marks for displaying white space

start-kbd-macro (register='a')

Start definition of a keyboard macro. If register=None then the user is prompted to
enter a letter a-z under which to file the macro. Otherwise, register 'a' is used by
default. Key Bindings: Wing IDE: Ctrl-(; Brief: F7; Eclipse: Ctrl-(; Emacs: Ctrl-X (;
OS X: Command-(; VI/VIM: q invokes start-kbd-macro(register=None); Visual
Studio: Ctrl-(; XCode: Command-(

stop-kbd-macro ()

Stop definition of a keyboard macro Key Bindings: Wing IDE: Ctrl-); Brief: Shift-F7;
Eclipse: Ctrl-); Emacs: Ctrl-X); OS X: Command-); VI/VIM: q; Visual Studio: Ctrl-);
XCode: Command-)

toggle-auto-editing ()

Toggle the global auto-editing switch. When enabled, the editor performs the
auto-edits that have been selected in the Editor > Auto-Editing preferences group.

toggle-line-wrapping ()

Command Reference

284

Toggles line wrapping preference for all editors

toggle-overtype ()

Toggle status of overtyping mode Key Bindings: Wing IDE: Insert; Brief: Insert;
Eclipse: Insert; Emacs: Insert; VI/VIM: Insert; Visual Studio: Insert

uncomment-out-region (one_level=True)

Uncomment out the selected region if commented out. If one_level is True then
each call removes only one level of commenting. Key Bindings: Wing IDE: Ctrl-?;
Eclipse: Ctrl-?; Emacs: Ctrl-C U; OS X: Command-"; Visual Studio: Ctrl-K Ctrl-U;
XCode: Command-"

uncomment-out-toggle (style=None)

Remove commenting from the selected lines, if any. This command is not available
if the lines are not commented out.

use-lexer-ada ()

Force syntax highlighting Ada source

use-lexer-apache-conf ()

Force syntax highlighting for Apache configuration file format

use-lexer-asm ()

Force syntax highlighting for Masm assembly language

use-lexer-ave ()

Force syntax highlighting for Avenue GIS language

use-lexer-baan ()

Force syntax highlighting for Baan

use-lexer-bash ()

Force syntax highlighting for bash scripts

use-lexer-bullant ()

Force syntax highlighting for Bullant

use-lexer-by-doctype ()

Use syntax highlighting appropriate to the file type

use-lexer-cmake ()

Force syntax highlighting for CMake file

use-lexer-coffee-script ()

Force syntax highlighting for Coffee Script source file

use-lexer-cpp ()

Command Reference

285

Force syntax highlighting for C/C++ source Key Bindings: Wing IDE: Ctrl-7 C;
Eclipse: Ctrl-7 C; Emacs: Ctrl-X L C; OS X: Command-7 C; Visual Studio: Ctrl-7 C;
XCode: Command-7 C

use-lexer-css2 ()

Force syntax highlighting for CSS2

use-lexer-cython ()

Force syntax highlighting for Cython source

use-lexer-diff ()

Force syntax highlighting for diff/cdiff files

use-lexer-django ()

Force syntax highlighting for Django template file

use-lexer-dos-batch ()

Force syntax highlighting for DOS batch files

use-lexer-eiffel ()

Force syntax highlighting for Eiffel source

use-lexer-errlist ()

Force syntax highlighting for error list format

use-lexer-escript ()

Force syntax highlighting for EScript

use-lexer-fortran ()

Force syntax highlighting for Fortran

use-lexer-hss ()

Force syntax highlighting for HSS CSS extension language

use-lexer-html ()

Force syntax highlighting for HTML Key Bindings: Wing IDE: Ctrl-7 H; Eclipse:
Ctrl-7 H; Emacs: Ctrl-X L H; OS X: Command-7 H; Visual Studio: Ctrl-7 H; XCode:
Command-7 H

use-lexer-idl ()

Force syntax highlighting for XP IDL

use-lexer-java ()

Force syntax highlighting for Java source

use-lexer-javascript ()

Command Reference

286

Force syntax highlighting for Javascript

use-lexer-latex ()

Force syntax highlighting for LaTeX

use-lexer-less ()

Force syntax highlighting for Less CSS extension language

use-lexer-lisp ()

Force syntax highlighting for Lisp source

use-lexer-lout ()

Force syntax highlighting for LOUT typesetting language

use-lexer-lua ()

Force syntax highlighting for Lua

use-lexer-makefile ()

Force syntax highlighting for make files Key Bindings: Wing IDE: Ctrl-7 M; Eclipse:
Ctrl-7 M; Emacs: Ctrl-X L M; OS X: Command-7 M; Visual Studio: Ctrl-7 M; XCode:
Command-7 M

use-lexer-mako ()

Force syntax highlighting for Mako template file

use-lexer-matlab ()

Force syntax highlighting for Matlab

use-lexer-mmixal ()

Force syntax highlighting for MMIX assembly language

use-lexer-msidl ()

Force syntax highlighting for MS IDL

use-lexer-nncrontab ()

Force syntax highlighting for NNCrontab files

use-lexer-none ()

Use no syntax highlighting Key Bindings: Wing IDE: Ctrl-7 N; Eclipse: Ctrl-7 N;
Emacs: Ctrl-X L N; OS X: Command-7 N; Visual Studio: Ctrl-7 N; XCode:
Command-7 N

use-lexer-nsis ()

Force syntax highlighting for NSIS

use-lexer-pascal ()

Command Reference

287

Force syntax highlighting for Pascal source

use-lexer-perl ()

Force syntax highlighting for Perl source

use-lexer-php ()

Force syntax highlighting for PHP source

use-lexer-plsql ()

Force syntax highlighting for PL/SQL files

use-lexer-pov ()

Force syntax highlighting for POV ray tracer scene description language

use-lexer-properties ()

Force syntax highlighting for properties files

use-lexer-ps ()

Force syntax highlighting for Postscript

use-lexer-python ()

Force syntax highlighting for Python source Key Bindings: Wing IDE: Ctrl-7 P;
Eclipse: Ctrl-7 P; Emacs: Ctrl-X L P; OS X: Command-7 P; Visual Studio: Ctrl-7 P;
XCode: Command-7 P

use-lexer-qss ()

Force syntax highlighting for QSS (Qt Style sheets)

use-lexer-r ()

Force syntax highlighting for R source file

use-lexer-rc ()

Force syntax highlighting for RC file format

use-lexer-ruby ()

Force syntax highlighting for Ruby source

use-lexer-scriptol ()

Force syntax highlighting for Scriptol

use-lexer-scss ()

Force syntax highlighting for SCSS formatted SASS

use-lexer-sql ()

Command Reference

288

Force syntax highlighting for SQL Key Bindings: Wing IDE: Ctrl-7 S; Eclipse: Ctrl-7
S; Emacs: Ctrl-X L S; OS X: Command-7 S; Visual Studio: Ctrl-7 S; XCode:
Command-7 S

use-lexer-tcl ()

Force syntax highlighting for TCL

use-lexer-vb ()

Force syntax highlighting for Visual Basic

use-lexer-vxml ()

Force syntax highlighting for VXML

use-lexer-xcode ()

Force syntax highlighting for XCode files

use-lexer-xml ()

Force syntax highlighting for XML files Key Bindings: Wing IDE: Ctrl-7 X; Eclipse:
Ctrl-7 X; OS X: Command-7 X; Visual Studio: Ctrl-7 X; XCode: Command-7 X

use-lexer-yaml ()

Force syntax highlighting for YAML

zoom-in ()

Zoom in, increasing the text display size temporarily by one font size Key Binding:
Ctrl-=

zoom-out ()

Zoom out, increasing the text display size temporarily by one font size Key Binding:
Ctrl--

zoom-reset ()

Reset font zoom factor back to zero Key Binding: Ctrl-_

Shell Or Editor Commands

Commands available when working either in the shell or editor

goto-clicked-symbol-defn (other_split=False)

Goto the definition of the source symbol that was last clicked on, optionally
showing the definition in another split if one is available and other_split is True. Key
Bindings: Wing IDE: Ctrl-Left_Click; Brief: Ctrl-Left_Click; Eclipse: Ctrl-Left_Click;
Emacs: Ctrl-Left_Click; OS X: Command-Left_Click; VI/VIM: Ctrl-Left_Click; Visual
Studio: Ctrl-Left_Click; XCode: Command-Left_Click

goto-selected-symbol-defn (other_split=False)

Command Reference

289

Goto the definition of the selected source symbol, optionally showing the definition
in another split if one is available and other_split is True. Key Binding: F4

Bookmark View Commands

Commands available on a specific instance of the bookmark manager tool

bookmarks-remove-all (confirm=0)

Remove all bookmarks

bookmarks-selected-goto ()

Goto the selected bookmarks

bookmarks-selected-remove ()

Remove the selected bookmark

bookmarks-show-docs ()

Show the Wing IDE documentation section for the bookmarks manager

Snippet Commands

Top-level commands for code snippets

snippet (snippet_name)

Insert given snippet into current editor, selecting the snippet appropriate for that file
type from universal snippets if not found. This will preprocess the snippet to match
indentation style to the target file, adjusts indentation based on context, and starts
inline argument collection..

snippet-file (snippet_name, mime_type='', context='all')

Create a new file with given snippet and start inline snippet argument collection. If
mime type is given, a file of that type is created. Otherwise, all snippets are
searched and the first found snippet of given name is used, and file type matches
the type of the snippet

Snippet View Commands

Commands available on a specific instance of the snippet manager tool

snippet-add (new_snippet_name, ttype='')

Add a new snippet to the current Snippets tool page or the given page

snippet-add-file-type (file_extension)

Add a file type to the snippet manager. The file type is the file extension. It is
added to the last directory on the snippet path.

snippet-assign-key-binding ()

Command Reference

290

Assign/reassign/unassign the key binding associated with the given snippet by
name.

snippet-clear-key-binding ()

Clear the key binding associated with the given snippet

snippet-reload-all ()

Reload all the snippet files. The snippet manager does this automatically most of
the time, but reload can be useful to cause the snippet panel display to update
when snippets are added or removed from outside of Wing.

snippet-remove-file-type ()

Remove a file type from the snippet manager, including any snippets defined for it.
This operates only on the last directory on the snippet path.

snippet-rename-file-type (new_file_extension)

Rename a file type to the snippet manager. The file type is the file extension. This
operates on the last directory on the snippet path.

snippet-restore-defaults (delete=False)

Restore the factory default snippets. If delete is True, this will completely remove
all snippets first so any changes made to to snippets will be lost. If delete is False,
only missing snippet files will be restored.

snippet-selected-copy (new_name)

Copy the selected snippet to a new name in the same context

snippet-selected-edit ()

Edit the selected snippet

snippet-selected-new-file ()

Paste the currently selected snippet into a new editor

snippet-selected-paste ()

Paste the currently selected snippet into the current editor

snippet-selected-remove ()

Remove the selected snippet

snippet-selected-rename (new_name)

Rename the selected snippet

snippet-show-docs ()

Show the Wing IDE documentation section for the snippet manager

Command Reference

291

Subversion Commands

Subversion revision control system commands

svn-update (locs=<selected files>)

Update the selected files from the Subversion repository

svn-add ()

Add the files to %(label)s

svn-commit-project ()

Not documented

svn-revert ()

Revert selected files.

svn-project-status ()

View status for entire project.

svn-blame (locs=<selected files>)

Show blame / praise / annotate for selected files.

svn-diff ()

Show differences between files in working directory and last committed version.

svn-diff-recent (locs=<selected files>)

Show diffs for most recent checkin

svn-log (locs=<selected files>)

Show the revision log for the selected files in the Subversion repository

svn-configure ()

Show preferences page for selected VCS

svn-status ()

View status of the selected files in the working directory

svn-remove ()

Remove files

svn-update-project ()

Update files in project

svn-resolved (locs=<selected files>)

Indicate that any conflicts are resolved

svn-checkout ()

Command Reference

292

Start the initial checkout from svn repository. Repository and working directory
must be entered before the checkout.

svn-commit ()

Commit selected files.

Git Commands

git revision control system commands

git-diff ()

Show differences between files in working directory and last committed version.

git-fetch-repository (locs=<selected files>)

Pull from repository.

git-remove ()

Remove files

git-list (locs=<selected files>)

Show the status of the given files in the git repository

git-commit-project ()

Not documented

git-project-status ()

View status for entire project.

git-pull-branch (locs=<selected files>)

Pull branch from other git repository

git-list-branches (locs=<selected files>)

List all branches

git-add ()

Add the files to %(label)s

git-log (locs=<selected files>)

Show the revision log for the selected files in the git repository

git-push-branch (locs=<selected files>)

Push branch to other git repository

git-commit ()

Commit selected files.

git-status ()

Command Reference

293

View status of the selected files in the working directory

git-switch-branch (locs=<selected files>)

Switch to another branch

git-configure ()

Show preferences page for selected VCS

git-blame (locs=<selected files>)

Show the annotated blame/praise for the selected files in the git repository

Bazaar Commands

Subversion revision control system commands

bzr-commit ()

Commit selected files.

bzr-add ()

Add the files to %(label)s

bzr-commit-project ()

Not documented

bzr-remove ()

Remove files

bzr-project-status ()

View status for entire project.

bzr-status ()

View status of the selected files in the working directory

bzr-push-entire-branch (locs=<selected files>)

Update the selected files from the bzr repository

bzr-log (locs=<selected files>)

Show the revision log for the selected files in the bzr repository

bzr-configure ()

Show preferences page for selected VCS

bzr-revert ()

Revert selected files.

bzr-merge-entire-branch (locs=<selected files>)

Update the selected files from the bzr repository

Command Reference

294

bzr-annotate ()

Show blame / praise / annotate for selected files.

bzr-diff ()

Show differences between files in working directory and last committed version.

C V S Commands

CVS revision control system commands

cvs-revert (locs=<selected files>)

Revert the selected files

cvs-log (locs=<selected files>)

Show the revision log for the selected files in the CVS repository

cvs-diff (locs=<selected files>)

Show the differences between working version of given files and the corresponding
revision in the CVS repository

cvs-configure ()

Configure the CVS integration

cvs-project-status ()

Run status for entire project.

cvs-update (locs=<selected files>)

Update the selected files from the CVS repository

cvs-update-project ()

Update files in project

cvs-checkout ()

Start the initial checkout from cvs repository. Repository and working directory
must be entered before the checkout.

cvs-add (locs=<selected files>)

Add the files to cvs

cvs-commit (locs=<selected files>)

Commit the selected files to the CVS repository

cvs-status (locs=<selected files>)

View the CVS repository status for the selected files

cvs-commit-project ()

Command Reference

295

Commit files in project

cvs-remove (locs=<selected files>)

Remove the selected files

Mercurial Commands

Mercurial revision control system commands

hg-diff ()

Show differences between files in working directory and last committed version.

hg-status ()

View status of the selected files in the working directory

hg-revert ()

Revert selected files.

hg-pull-entire-repository (locs=<selected files>)

Pull all changes from remote repository to local repository

hg-commit ()

Commit selected files.

hg-update (locs=<selected files>)

Update working directory from repository

hg-annotate (locs=<selected files>)

Show user and revision for every line in the file(s)

hg-configure ()

Show preferences page for selected VCS

hg-remove ()

Remove files

hg-add ()

Add the files to %(label)s

hg-log (locs=<selected files>)

Show the revision log for the selected files in the hg repository

hg-push-entire-repository (locs=<selected files>)

Update the selected files from the hg repository

hg-merge (locs=<selected files>)

Merge working directory with changes in repository

Command Reference

296

hg-commit-project ()

Not documented

hg-project-status ()

View status for entire project.

Perforce Commands

Perforce revision control system commands

perforce-log (locs=<selected files>)

Show the revision log for the selected files in the Perforce repository

perforce-blame (locs=<selected files>)

Show blame / praise / annotate for selected files.

perforce-status (locs=<selected files>)

View the Perforce repository status for the selected files

perforce-commit (locs=<selected files>)

Commit the selected files to the Perforce repository

perforce-remove (locs=<selected files>)

Remove the selected files

perforce-commit-project ()

Commit files in project

perforce-revert (locs=<selected files>)

Revert the selected files

perforce-add (locs=<selected files>)

Add the files to perforce

perforce-sync-project ()

Update files in project

perforce-sync (locs=<selected files>)

Copy the selected files from the Perforce repository

perforce-configure ()

Show preferences page for selected VCS

perforce-edit (locs=<selected files>)

Copy the selected files from the Perforce repository

perforce-project-status ()

Command Reference

297

Run status for entire project.

perforce-diff (locs=<selected files>)

Show the differences between working version of given files and the corresponding
revision in the Perforce repository

perforce-resolved (locs=<selected files>)

Indicate that any conflicts are resolved

perforce-annotate ()

Show blame / praise / annotate for selected files.

20.4. Search Manager Commands

Toolbar Search Commands

Commands available when the tool bar search entry area has the keyboard focus.

backward-char ()

Move backward one character Key Binding: Left

backward-char-extend ()

Move backward one character, extending the selection Key Binding: Shift-Left

backward-delete-char ()

Delete character behind the cursor Key Bindings: Wing IDE: BackSpace; Brief:
BackSpace; Eclipse: BackSpace; Emacs: BackSpace; OS X: Backspace; VI/VIM:
BackSpace; Visual Studio: BackSpace; XCode: Backspace

backward-delete-word ()

Delete word behind the cursor Key Bindings: Wing IDE: Ctrl-BackSpace; Brief:
Ctrl-BackSpace; Eclipse: Ctrl-BackSpace; Emacs: Ctrl-BackSpace; OS X:
Ctrl-Option-Delete; VI/VIM: Ctrl-BackSpace; Visual Studio: Ctrl-BackSpace;
XCode: Ctrl-Option-Delete

backward-word ()

Move backward one word Key Bindings: Wing IDE: Ctrl-Left; Brief: Ctrl-Left;
Eclipse: Ctrl-Left; Emacs: Ctrl-Left; OS X: Option-Left; VI/VIM: Ctrl-Left; Visual
Studio: Ctrl-Left; XCode: Option-Left

backward-word-extend ()

Move backward one word, extending the selection Key Bindings: Wing IDE:
Ctrl-Shift-Left; Brief: Ctrl-Shift-Left; Eclipse: Ctrl-Shift-Left; Emacs: Ctrl-Shift-Left;
OS X: Ctrl-Shift-Left invokes
backward-word-extend(delimiters="_`~!@#$%^&*()+-={}[]\|;:'",.<>/? trn"); VI/VIM:

Command Reference

298

Ctrl-Shift-Left; Visual Studio: Ctrl-Shift-Left; XCode: Ctrl-Shift-Left invokes
backward-word-extend(delimiters="_`~!@#$%^&*()+-={}[]\|;:'",.<>/? trn")

beginning-of-line ()

Move to the beginning of the toolbar search entry Key Bindings: Brief: Shift-Home;
Emacs: Home; OS X: Command-Left; VI/VIM: 0 invokes
beginning-of-line(toggle=0); XCode: Command-Left

beginning-of-line-extend ()

Move to the beginning of the toolbar search entry, extending the selection Key
Bindings: Emacs: Shift-Home; OS X: Command-Shift-Left; XCode:
Command-Shift-Left

copy ()

Cut selection Key Bindings: Wing IDE: Ctrl-Insert; Brief: Ctrl-Insert; Eclipse:
Ctrl-Insert; Emacs: Ctrl-Insert; OS X: Command-C; VI/VIM: Ctrl-Insert; Visual
Studio: Ctrl-Insert; XCode: Command-C

cut ()

Cut selection Key Bindings: Wing IDE: Shift-Delete; Brief: Shift-Delete; Eclipse:
Shift-Delete; Emacs: Shift-Delete; OS X: Command-X; VI/VIM: Shift-Delete; Visual
Studio: Shift-Delete; XCode: Command-X

end-of-line ()

Move to the end of the toolbar search entry Key Bindings: Wing IDE: End; Brief:
End; Eclipse: End; Emacs: End; OS X: Command-Right; VI/VIM: End; Visual
Studio: End; XCode: Command-Right

end-of-line-extend ()

Move to the end of the toolbar search entry, extending the selection Key Bindings:
Wing IDE: Shift-End; Brief: Shift-End; Eclipse: Shift-End; Emacs: Shift-End; OS X:
Command-Shift-Right; VI/VIM: Shift-End; Visual Studio: Shift-End; XCode:
Command-Shift-Right

forward-char ()

Move forward one character Key Binding: Right

forward-char-extend ()

Move forward one character, extending the selection Key Binding: Shift-Right

forward-delete-char ()

Delete character in front of the cursor Key Binding: Delete

forward-delete-word ()

Command Reference

299

Delete word in front of the cursor Key Bindings: Wing IDE: Ctrl-Delete; Brief:
Ctrl-Delete; Eclipse: Ctrl-Delete; Emacs: Ctrl-Delete; OS X: Option-Delete; VI/VIM:
Ctrl-Delete; Visual Studio: Ctrl-Delete; XCode: Option-Delete

forward-word ()

Move forward one word Key Bindings: Wing IDE: Ctrl-Right; Brief: Ctrl-Right;
Eclipse: Ctrl-Right; Emacs: Ctrl-Right; OS X: Ctrl-Right invokes
forward-word(delimiters="_`~!@#$%^&*()+-={}[]\|;:'",.<>/? trn"); VI/VIM: Ctrl-Right;
Visual Studio: Ctrl-Right; XCode: Ctrl-Right invokes
forward-word(delimiters="_`~!@#$%^&*()+-={}[]\|;:'",.<>/? trn")

forward-word-extend ()

Move forward one word, extending the selection Key Bindings: Wing IDE:
Ctrl-Shift-Right; Brief: Ctrl-Shift-Right; Eclipse: Ctrl-Shift-Right; Emacs:
Ctrl-Shift-Right; OS X: Option-Shift-Right; VI/VIM: Ctrl-Shift-Right; Visual Studio:
Ctrl-Shift-Right; XCode: Option-Shift-Right

paste ()

Paste from clipboard Key Bindings: Wing IDE: Shift-Insert; Brief: Shift-Insert;
Eclipse: Shift-Insert; Emacs: Shift-Insert; OS X: Ctrl-y; VI/VIM: Shift-Insert; Visual
Studio: Shift-Insert; XCode: Ctrl-y

Search Manager Commands

Globally available commands defined for the search manager. These commands
are available regardless of whether a search manager is visible or has keyboard
focus.

batch-replace (look_in=None, use_selection=True)

Display search and replace in files tool. Key Bindings: Wing IDE: Ctrl-Shift-R;
Eclipse: Ctrl-Shift-R; Emacs: Ctrl-); OS X: Command-Shift-R; VI/VIM: Ctrl-Shift-G;
Visual Studio: Ctrl-Shift-R; XCode: Command-Shift-R

batch-search (look_in=None, use_selection=True, search_text=None)

Search on current selection using the Search in Files tool. The look_in argument
gets entered in the look in field if not None or ''. The current selection is put into the
search field if it doesn't span multiple lines and either use_selection is true or
there's nothing in the search field. The given search text is used instead, if
provided Key Bindings: Wing IDE: Ctrl-Shift-F; Eclipse: Ctrl-Shift-F; Emacs: Ctrl-(;
OS X: Command-Shift-F; VI/VIM: Ctrl-Shift-F; Visual Studio: Ctrl-Shift-F; XCode:
Command-Shift-F

batch-search-backward ()

Move to the previous found match in the Search in Files tool.

batch-search-forward ()

Command Reference

300

Move to the next found match in the Search in Files tool.

batch-search-pause ()

Pause the currently running batch search, if any

replace ()

Bring up the search manager in replace mode. Key Bindings: Wing IDE: Ctrl-R;
Brief: F6; Eclipse: Ctrl-R; Emacs: Ctrl-0; OS X: Command-R; Visual Studio: Ctrl-R;
XCode: Command-R

replace-again ()

Replace current selection with the search manager.

replace-and-search ()

Replace current selection and search again. Key Bindings: Wing IDE: Ctrl-I; Brief:
Shift-F6; Eclipse: Ctrl-I; OS X: Command-Ctrl-R; XCode: Command-Ctrl-R

search ()

Bring up the search manager in search mode. Key Bindings: Wing IDE: Alt-F3;
Brief: Alt-F3; Eclipse: Alt-F3; Emacs: Alt-F3; OS X: Option-F3; VI/VIM: Alt-F3;
Visual Studio: Alt-F3; XCode: Option-F3

search-again (search_string='', direction=1)

Search again using the search manager's current settings.

search-backward (search_string=None)

Search again using the search manager's current settings in backward direction
Key Binding: Shift-F3

search-forward (search_string='')

Search again using the search manager's current settings in forward direction Key
Binding: F3

search-sel ()

Search forward using current selection

search-sel-backward ()

Search backward using current selection Key Bindings: Wing IDE: Ctrl-Shift-F3;
Brief: Ctrl-Shift-F3; Eclipse: Ctrl-Shift-F3; Emacs: Ctrl-Shift-F3; OS X:
Command-Shift-F3; VI/VIM: Ctrl-Shift-F3; Visual Studio: Ctrl-Shift-F3; XCode:
Command-Shift-F3

search-sel-forward ()

Search forward using current selection Key Bindings: Wing IDE: Ctrl-F3; Brief:
Ctrl-F3; Eclipse: Ctrl-F3; Emacs: Ctrl-F3; OS X: Command-F3; VI/VIM: Ctrl-F3;
Visual Studio: Ctrl-F3; XCode: Command-F3

Command Reference

301

Search Manager Instance Commands

Commands for a particular search manager instance. These are only available
when the search manager has they keyboard focus.

clear ()

Clear selected text

copy ()

Copy selected text Key Bindings: Wing IDE: Ctrl-Insert; Brief: Ctrl-Insert; Eclipse:
Ctrl-Insert; Emacs: Ctrl-Insert; OS X: Command-C; VI/VIM: Ctrl-Insert; Visual
Studio: Ctrl-Insert; XCode: Command-C

cut ()

Cut selected text Key Bindings: Wing IDE: Shift-Delete; Brief: Shift-Delete; Eclipse:
Shift-Delete; Emacs: Shift-Delete; OS X: Command-X; VI/VIM: Shift-Delete; Visual
Studio: Shift-Delete; XCode: Command-X

forward-tab ()

Place a forward tab at the current cursor position in search or replace string Key
Binding: Ctrl-T

paste ()

Paste text from clipboard Key Bindings: Wing IDE: Shift-Insert; Brief: Shift-Insert;
Eclipse: Shift-Insert; Emacs: Shift-Insert; OS X: Ctrl-y; VI/VIM: Shift-Insert; Visual
Studio: Shift-Insert; XCode: Ctrl-y

Subversion Commands

Subversion revision control system commands

svn-update (locs=<selected files>)

Update the selected files from the Subversion repository

svn-add ()

Add the files to %(label)s

svn-commit-project ()

Not documented

svn-revert ()

Revert selected files.

svn-project-status ()

View status for entire project.

svn-blame (locs=<selected files>)

Command Reference

302

Show blame / praise / annotate for selected files.

svn-diff ()

Show differences between files in working directory and last committed version.

svn-diff-recent (locs=<selected files>)

Show diffs for most recent checkin

svn-log (locs=<selected files>)

Show the revision log for the selected files in the Subversion repository

svn-configure ()

Show preferences page for selected VCS

svn-status ()

View status of the selected files in the working directory

svn-remove ()

Remove files

svn-update-project ()

Update files in project

svn-resolved (locs=<selected files>)

Indicate that any conflicts are resolved

svn-checkout ()

Start the initial checkout from svn repository. Repository and working directory
must be entered before the checkout.

svn-commit ()

Commit selected files.

Git Commands

git revision control system commands

git-diff ()

Show differences between files in working directory and last committed version.

git-fetch-repository (locs=<selected files>)

Pull from repository.

git-remove ()

Remove files

git-list (locs=<selected files>)

Command Reference

303

Show the status of the given files in the git repository

git-commit-project ()

Not documented

git-project-status ()

View status for entire project.

git-pull-branch (locs=<selected files>)

Pull branch from other git repository

git-list-branches (locs=<selected files>)

List all branches

git-add ()

Add the files to %(label)s

git-log (locs=<selected files>)

Show the revision log for the selected files in the git repository

git-push-branch (locs=<selected files>)

Push branch to other git repository

git-commit ()

Commit selected files.

git-status ()

View status of the selected files in the working directory

git-switch-branch (locs=<selected files>)

Switch to another branch

git-configure ()

Show preferences page for selected VCS

git-blame (locs=<selected files>)

Show the annotated blame/praise for the selected files in the git repository

Bazaar Commands

Subversion revision control system commands

bzr-commit ()

Commit selected files.

bzr-add ()

Add the files to %(label)s

Command Reference

304

bzr-commit-project ()

Not documented

bzr-remove ()

Remove files

bzr-project-status ()

View status for entire project.

bzr-status ()

View status of the selected files in the working directory

bzr-push-entire-branch (locs=<selected files>)

Update the selected files from the bzr repository

bzr-log (locs=<selected files>)

Show the revision log for the selected files in the bzr repository

bzr-configure ()

Show preferences page for selected VCS

bzr-revert ()

Revert selected files.

bzr-merge-entire-branch (locs=<selected files>)

Update the selected files from the bzr repository

bzr-annotate ()

Show blame / praise / annotate for selected files.

bzr-diff ()

Show differences between files in working directory and last committed version.

C V S Commands

CVS revision control system commands

cvs-revert (locs=<selected files>)

Revert the selected files

cvs-log (locs=<selected files>)

Show the revision log for the selected files in the CVS repository

cvs-diff (locs=<selected files>)

Show the differences between working version of given files and the corresponding
revision in the CVS repository

Command Reference

305

cvs-configure ()

Configure the CVS integration

cvs-project-status ()

Run status for entire project.

cvs-update (locs=<selected files>)

Update the selected files from the CVS repository

cvs-update-project ()

Update files in project

cvs-checkout ()

Start the initial checkout from cvs repository. Repository and working directory
must be entered before the checkout.

cvs-add (locs=<selected files>)

Add the files to cvs

cvs-commit (locs=<selected files>)

Commit the selected files to the CVS repository

cvs-status (locs=<selected files>)

View the CVS repository status for the selected files

cvs-commit-project ()

Commit files in project

cvs-remove (locs=<selected files>)

Remove the selected files

Mercurial Commands

Mercurial revision control system commands

hg-diff ()

Show differences between files in working directory and last committed version.

hg-status ()

View status of the selected files in the working directory

hg-revert ()

Revert selected files.

hg-pull-entire-repository (locs=<selected files>)

Pull all changes from remote repository to local repository

Command Reference

306

hg-commit ()

Commit selected files.

hg-update (locs=<selected files>)

Update working directory from repository

hg-annotate (locs=<selected files>)

Show user and revision for every line in the file(s)

hg-configure ()

Show preferences page for selected VCS

hg-remove ()

Remove files

hg-add ()

Add the files to %(label)s

hg-log (locs=<selected files>)

Show the revision log for the selected files in the hg repository

hg-push-entire-repository (locs=<selected files>)

Update the selected files from the hg repository

hg-merge (locs=<selected files>)

Merge working directory with changes in repository

hg-commit-project ()

Not documented

hg-project-status ()

View status for entire project.

Perforce Commands

Perforce revision control system commands

perforce-log (locs=<selected files>)

Show the revision log for the selected files in the Perforce repository

perforce-blame (locs=<selected files>)

Show blame / praise / annotate for selected files.

perforce-status (locs=<selected files>)

View the Perforce repository status for the selected files

perforce-commit (locs=<selected files>)

Command Reference

307

Commit the selected files to the Perforce repository

perforce-remove (locs=<selected files>)

Remove the selected files

perforce-commit-project ()

Commit files in project

perforce-revert (locs=<selected files>)

Revert the selected files

perforce-add (locs=<selected files>)

Add the files to perforce

perforce-sync-project ()

Update files in project

perforce-sync (locs=<selected files>)

Copy the selected files from the Perforce repository

perforce-configure ()

Show preferences page for selected VCS

perforce-edit (locs=<selected files>)

Copy the selected files from the Perforce repository

perforce-project-status ()

Run status for entire project.

perforce-diff (locs=<selected files>)

Show the differences between working version of given files and the corresponding
revision in the Perforce repository

perforce-resolved (locs=<selected files>)

Indicate that any conflicts are resolved

perforce-annotate ()

Show blame / praise / annotate for selected files.

20.5. Unit Testing Commands

Unit Testing Commands

Globally available commands defined for the unit testing manager. These
commands are available regardless of whether a testing manager is visible or has
keyboard focus.

Command Reference

308

abort-tests ()

Abort any running tests.

add-testing-file (add_current=False)

Add a file to the set of unit tests. Adds the current editor file if add_current=True.
Otherwise, asks the user to select a file.

add-testing-files (locs=None)

Add a file or files to the set of unit tests. locs can be a list of filenames or locations
or a single filename or location. Adds the current editor file if locs is None.

clear-test-results ()

Not documented

debug-all-tests ()

Debug all the tests in testing panel. Key Bindings: Wing IDE: Ctrl-Shift-F6; Brief:
Ctrl-Shift-F6; Eclipse: Ctrl-Shift-F6; Emacs: Ctrl-Shift-F6; OS X:
Command-Shift-F6; VI/VIM: Ctrl-Shift-F6; Visual Studio: Ctrl-Shift-F6; XCode:
Command-Shift-F6

debug-clicked-tests ()

Runs the clicked test or tests, if possible. The tests are determined by the last
clicked position in the active view.

debug-current-tests ()

Runs the current test or tests, if possible. The current tests are determined by the
current position in the active view. Key Bindings: Wing IDE: Ctrl-Shift-F7; Brief:
Ctrl-Shift-F7; Eclipse: Ctrl-Shift-F7; Emacs: Ctrl-Shift-F7; OS X:
Command-Shift-F7; VI/VIM: Ctrl-Shift-F7; Visual Studio: Ctrl-Shift-F7; XCode:
Command-Shift-F7

debug-failed-tests ()

Re-run all the previously failed tests in the debugger. Key Bindings: Wing IDE:
Ctrl-Alt-F6; Brief: Ctrl-Alt-F6; Eclipse: Ctrl-Alt-F6; Emacs: Ctrl-Alt-F6; OS X:
Command-Option-F6; VI/VIM: Ctrl-Alt-F6; Visual Studio: Ctrl-Alt-F6; XCode:
Command-Option-F6

debug-last-tests ()

Debug the last group of tests that were run. Key Bindings: Wing IDE: Ctrl-Alt-F7;
Brief: Ctrl-Alt-F7; Eclipse: Ctrl-Alt-F7; Emacs: Ctrl-Alt-F7; OS X:
Command-Option-F7; VI/VIM: Ctrl-Alt-F7; Visual Studio: Ctrl-Alt-F7; XCode:
Command-Option-F7

debug-selected-tests ()

Debug the tests currently selected in the testing panel.

Command Reference

309

debug-test-files (locs=None)

Debug the tests in the current editor. Uses the given file or files if locs is not None.
The locations can be a list of filenames or locations or a single filename or location.

load-test-results (filename)

Load all test results from a file.

run-all-tests (debug=False)

Runs all the tests in testing panel. Key Binding: Shift-F6

run-clicked-tests (debug=False)

Runs the clicked test or tests, if possible. The tests are determined by the last
clicked position in the active view. The tests are debugged when debug is True.

run-current-tests (debug=False)

Runs the current test or tests, if possible. The current tests are determined by the
current position in the active view. The tests are debugged when debug is True.
Key Binding: Shift-F7

run-failed-tests (debug=False)

Re-run all the previously failed tests. The tests are debugged when debug is True.
Key Bindings: Wing IDE: Alt-F6; Brief: Alt-F6; Eclipse: Alt-F6; Emacs: Alt-F6; OS X:
Option-F6; VI/VIM: Alt-F6; Visual Studio: Alt-F6; XCode: Option-F6

run-last-tests (debug=False)

Run again the last group of tests that were run. The tests are debugged when
debug is True. Key Bindings: Wing IDE: Alt-F7; Brief: Alt-F7; Eclipse: Alt-F7;
Emacs: Alt-F7; OS X: Option-F7; VI/VIM: Alt-F7; Visual Studio: Alt-F7; XCode:
Option-F7

run-selected-tests (debug=False)

Run the tests currently selected in the testing panel. The tests are debugged when
debug is True.

run-test-files (locs=None, debug=False)

Run or debug the tests in the current editor. Uses the given file or files instead if
locs is not None. The locations list may be a list of locations or filenames or a
single location or filename. The tests are debugged if debug=True.

save-all-test-results (filename)

Save all test results to a file.

scan-for-unittests (doc=None)

Scan or re-scan the current editor file for unittests

Command Reference

310

Subversion Commands

Subversion revision control system commands

svn-update (locs=<selected files>)

Update the selected files from the Subversion repository

svn-add ()

Add the files to %(label)s

svn-commit-project ()

Not documented

svn-revert ()

Revert selected files.

svn-project-status ()

View status for entire project.

svn-blame (locs=<selected files>)

Show blame / praise / annotate for selected files.

svn-diff ()

Show differences between files in working directory and last committed version.

svn-diff-recent (locs=<selected files>)

Show diffs for most recent checkin

svn-log (locs=<selected files>)

Show the revision log for the selected files in the Subversion repository

svn-configure ()

Show preferences page for selected VCS

svn-status ()

View status of the selected files in the working directory

svn-remove ()

Remove files

svn-update-project ()

Update files in project

svn-resolved (locs=<selected files>)

Indicate that any conflicts are resolved

svn-checkout ()

Command Reference

311

Start the initial checkout from svn repository. Repository and working directory
must be entered before the checkout.

svn-commit ()

Commit selected files.

Git Commands

git revision control system commands

git-diff ()

Show differences between files in working directory and last committed version.

git-fetch-repository (locs=<selected files>)

Pull from repository.

git-remove ()

Remove files

git-list (locs=<selected files>)

Show the status of the given files in the git repository

git-commit-project ()

Not documented

git-project-status ()

View status for entire project.

git-pull-branch (locs=<selected files>)

Pull branch from other git repository

git-list-branches (locs=<selected files>)

List all branches

git-add ()

Add the files to %(label)s

git-log (locs=<selected files>)

Show the revision log for the selected files in the git repository

git-push-branch (locs=<selected files>)

Push branch to other git repository

git-commit ()

Commit selected files.

git-status ()

Command Reference

312

View status of the selected files in the working directory

git-switch-branch (locs=<selected files>)

Switch to another branch

git-configure ()

Show preferences page for selected VCS

git-blame (locs=<selected files>)

Show the annotated blame/praise for the selected files in the git repository

Bazaar Commands

Subversion revision control system commands

bzr-commit ()

Commit selected files.

bzr-add ()

Add the files to %(label)s

bzr-commit-project ()

Not documented

bzr-remove ()

Remove files

bzr-project-status ()

View status for entire project.

bzr-status ()

View status of the selected files in the working directory

bzr-push-entire-branch (locs=<selected files>)

Update the selected files from the bzr repository

bzr-log (locs=<selected files>)

Show the revision log for the selected files in the bzr repository

bzr-configure ()

Show preferences page for selected VCS

bzr-revert ()

Revert selected files.

bzr-merge-entire-branch (locs=<selected files>)

Update the selected files from the bzr repository

Command Reference

313

bzr-annotate ()

Show blame / praise / annotate for selected files.

bzr-diff ()

Show differences between files in working directory and last committed version.

C V S Commands

CVS revision control system commands

cvs-revert (locs=<selected files>)

Revert the selected files

cvs-log (locs=<selected files>)

Show the revision log for the selected files in the CVS repository

cvs-diff (locs=<selected files>)

Show the differences between working version of given files and the corresponding
revision in the CVS repository

cvs-configure ()

Configure the CVS integration

cvs-project-status ()

Run status for entire project.

cvs-update (locs=<selected files>)

Update the selected files from the CVS repository

cvs-update-project ()

Update files in project

cvs-checkout ()

Start the initial checkout from cvs repository. Repository and working directory
must be entered before the checkout.

cvs-add (locs=<selected files>)

Add the files to cvs

cvs-commit (locs=<selected files>)

Commit the selected files to the CVS repository

cvs-status (locs=<selected files>)

View the CVS repository status for the selected files

cvs-commit-project ()

Command Reference

314

Commit files in project

cvs-remove (locs=<selected files>)

Remove the selected files

Mercurial Commands

Mercurial revision control system commands

hg-diff ()

Show differences between files in working directory and last committed version.

hg-status ()

View status of the selected files in the working directory

hg-revert ()

Revert selected files.

hg-pull-entire-repository (locs=<selected files>)

Pull all changes from remote repository to local repository

hg-commit ()

Commit selected files.

hg-update (locs=<selected files>)

Update working directory from repository

hg-annotate (locs=<selected files>)

Show user and revision for every line in the file(s)

hg-configure ()

Show preferences page for selected VCS

hg-remove ()

Remove files

hg-add ()

Add the files to %(label)s

hg-log (locs=<selected files>)

Show the revision log for the selected files in the hg repository

hg-push-entire-repository (locs=<selected files>)

Update the selected files from the hg repository

hg-merge (locs=<selected files>)

Merge working directory with changes in repository

Command Reference

315

hg-commit-project ()

Not documented

hg-project-status ()

View status for entire project.

Perforce Commands

Perforce revision control system commands

perforce-log (locs=<selected files>)

Show the revision log for the selected files in the Perforce repository

perforce-blame (locs=<selected files>)

Show blame / praise / annotate for selected files.

perforce-status (locs=<selected files>)

View the Perforce repository status for the selected files

perforce-commit (locs=<selected files>)

Commit the selected files to the Perforce repository

perforce-remove (locs=<selected files>)

Remove the selected files

perforce-commit-project ()

Commit files in project

perforce-revert (locs=<selected files>)

Revert the selected files

perforce-add (locs=<selected files>)

Add the files to perforce

perforce-sync-project ()

Update files in project

perforce-sync (locs=<selected files>)

Copy the selected files from the Perforce repository

perforce-configure ()

Show preferences page for selected VCS

perforce-edit (locs=<selected files>)

Copy the selected files from the Perforce repository

perforce-project-status ()

Command Reference

316

Run status for entire project.

perforce-diff (locs=<selected files>)

Show the differences between working version of given files and the corresponding
revision in the Perforce repository

perforce-resolved (locs=<selected files>)

Indicate that any conflicts are resolved

perforce-annotate ()

Show blame / praise / annotate for selected files.

20.6. Version Control Commands

Subversion Commands

Subversion revision control system commands

svn-update (locs=<selected files>)

Update the selected files from the Subversion repository

svn-add ()

Add the files to %(label)s

svn-commit-project ()

Not documented

svn-revert ()

Revert selected files.

svn-project-status ()

View status for entire project.

svn-blame (locs=<selected files>)

Show blame / praise / annotate for selected files.

svn-diff ()

Show differences between files in working directory and last committed version.

svn-diff-recent (locs=<selected files>)

Show diffs for most recent checkin

svn-log (locs=<selected files>)

Show the revision log for the selected files in the Subversion repository

svn-configure ()

Show preferences page for selected VCS

Command Reference

317

svn-status ()

View status of the selected files in the working directory

svn-remove ()

Remove files

svn-update-project ()

Update files in project

svn-resolved (locs=<selected files>)

Indicate that any conflicts are resolved

svn-checkout ()

Start the initial checkout from svn repository. Repository and working directory
must be entered before the checkout.

svn-commit ()

Commit selected files.

Git Commands

git revision control system commands

git-diff ()

Show differences between files in working directory and last committed version.

git-fetch-repository (locs=<selected files>)

Pull from repository.

git-remove ()

Remove files

git-list (locs=<selected files>)

Show the status of the given files in the git repository

git-commit-project ()

Not documented

git-project-status ()

View status for entire project.

git-pull-branch (locs=<selected files>)

Pull branch from other git repository

git-list-branches (locs=<selected files>)

List all branches

Command Reference

318

git-add ()

Add the files to %(label)s

git-log (locs=<selected files>)

Show the revision log for the selected files in the git repository

git-push-branch (locs=<selected files>)

Push branch to other git repository

git-commit ()

Commit selected files.

git-status ()

View status of the selected files in the working directory

git-switch-branch (locs=<selected files>)

Switch to another branch

git-configure ()

Show preferences page for selected VCS

git-blame (locs=<selected files>)

Show the annotated blame/praise for the selected files in the git repository

Bazaar Commands

Subversion revision control system commands

bzr-commit ()

Commit selected files.

bzr-add ()

Add the files to %(label)s

bzr-commit-project ()

Not documented

bzr-remove ()

Remove files

bzr-project-status ()

View status for entire project.

bzr-status ()

View status of the selected files in the working directory

bzr-push-entire-branch (locs=<selected files>)

Command Reference

319

Update the selected files from the bzr repository

bzr-log (locs=<selected files>)

Show the revision log for the selected files in the bzr repository

bzr-configure ()

Show preferences page for selected VCS

bzr-revert ()

Revert selected files.

bzr-merge-entire-branch (locs=<selected files>)

Update the selected files from the bzr repository

bzr-annotate ()

Show blame / praise / annotate for selected files.

bzr-diff ()

Show differences between files in working directory and last committed version.

C V S Commands

CVS revision control system commands

cvs-revert (locs=<selected files>)

Revert the selected files

cvs-log (locs=<selected files>)

Show the revision log for the selected files in the CVS repository

cvs-diff (locs=<selected files>)

Show the differences between working version of given files and the corresponding
revision in the CVS repository

cvs-configure ()

Configure the CVS integration

cvs-project-status ()

Run status for entire project.

cvs-update (locs=<selected files>)

Update the selected files from the CVS repository

cvs-update-project ()

Update files in project

cvs-checkout ()

Command Reference

320

Start the initial checkout from cvs repository. Repository and working directory
must be entered before the checkout.

cvs-add (locs=<selected files>)

Add the files to cvs

cvs-commit (locs=<selected files>)

Commit the selected files to the CVS repository

cvs-status (locs=<selected files>)

View the CVS repository status for the selected files

cvs-commit-project ()

Commit files in project

cvs-remove (locs=<selected files>)

Remove the selected files

Mercurial Commands

Mercurial revision control system commands

hg-diff ()

Show differences between files in working directory and last committed version.

hg-status ()

View status of the selected files in the working directory

hg-revert ()

Revert selected files.

hg-pull-entire-repository (locs=<selected files>)

Pull all changes from remote repository to local repository

hg-commit ()

Commit selected files.

hg-update (locs=<selected files>)

Update working directory from repository

hg-annotate (locs=<selected files>)

Show user and revision for every line in the file(s)

hg-configure ()

Show preferences page for selected VCS

hg-remove ()

Command Reference

321

Remove files

hg-add ()

Add the files to %(label)s

hg-log (locs=<selected files>)

Show the revision log for the selected files in the hg repository

hg-push-entire-repository (locs=<selected files>)

Update the selected files from the hg repository

hg-merge (locs=<selected files>)

Merge working directory with changes in repository

hg-commit-project ()

Not documented

hg-project-status ()

View status for entire project.

Perforce Commands

Perforce revision control system commands

perforce-log (locs=<selected files>)

Show the revision log for the selected files in the Perforce repository

perforce-blame (locs=<selected files>)

Show blame / praise / annotate for selected files.

perforce-status (locs=<selected files>)

View the Perforce repository status for the selected files

perforce-commit (locs=<selected files>)

Commit the selected files to the Perforce repository

perforce-remove (locs=<selected files>)

Remove the selected files

perforce-commit-project ()

Commit files in project

perforce-revert (locs=<selected files>)

Revert the selected files

perforce-add (locs=<selected files>)

Add the files to perforce

Command Reference

322

perforce-sync-project ()

Update files in project

perforce-sync (locs=<selected files>)

Copy the selected files from the Perforce repository

perforce-configure ()

Show preferences page for selected VCS

perforce-edit (locs=<selected files>)

Copy the selected files from the Perforce repository

perforce-project-status ()

Run status for entire project.

perforce-diff (locs=<selected files>)

Show the differences between working version of given files and the corresponding
revision in the Perforce repository

perforce-resolved (locs=<selected files>)

Indicate that any conflicts are resolved

perforce-annotate ()

Show blame / praise / annotate for selected files.

20.7. Debugger Commands

Debugger Commands

Commands that control the debugger and current debug process, if any.

break-clear ()

Clear the breakpoint on the current line Key Binding: F9

break-clear-all ()

Clear all breakpoints Key Bindings: Wing IDE: Ctrl-F9; Brief: Ctrl-F9; Eclipse:
Ctrl-F9; Emacs: Ctrl-F9; OS X: Command-F9; VI/VIM: Ctrl-F9; Visual Studio:
Ctrl-F9; XCode: Command-F9

break-clear-clicked ()

Clear the breakpoint at current click location

break-disable ()

Disable the breakpoint on current line Key Binding: Shift-F9

break-disable-all ()

Command Reference

323

Disable all breakpoints Key Bindings: Wing IDE: Ctrl-Shift-F9; Brief: Ctrl-Shift-F9;
Eclipse: Ctrl-Shift-F9; Emacs: Ctrl-Shift-F9; VI/VIM: Ctrl-Shift-F9; Visual Studio:
Ctrl-Shift-F9

break-disable-clicked ()

Disable the breakpoint at current click location

break-edit-cond ()

Edit condition for the breakpoint on current line

break-edit-cond-clicked ()

Edit condition for the breakpoint at the current mouse click location

break-enable ()

Enable the breakpoint on the current line Key Binding: Shift-F9

break-enable-all ()

Enable all breakpoints Key Bindings: Wing IDE: Ctrl-Shift-F9; Brief: Ctrl-Shift-F9;
Eclipse: Ctrl-Shift-F9; Emacs: Ctrl-Shift-F9; VI/VIM: Ctrl-Shift-F9; Visual Studio:
Ctrl-Shift-F9

break-enable-clicked ()

Enable the breakpoint at current click location

break-enable-toggle ()

Toggle whether breakpoint on current line is enabled or disabled

break-ignore ()

Ignore the breakpoint on current line for N iterations

break-ignore-clicked ()

Ignore the breakpoint at the current mouse click location for N iterations

break-set ()

Set a new regular breakpoint on current line Key Binding: F9

break-set-clicked ()

Set a new regular breakpoint at the current mouse click location

break-set-cond ()

Set a new conditional breakpoint on current line

break-set-cond-clicked ()

Set a new conditionalbreakpoint at the current mouse click location

break-set-temp ()

Command Reference

324

Set a new temporary breakpoint on current line

break-set-temp-clicked ()

Set a new temporary breakpoint at the current mouse click location

break-toggle ()

Toggle breakpoint at current line (creates new regular bp when one is created) Key
Bindings: XCode: Command-Y

clear-exception-ignores-list ()

Clear list of exceptions being ignored during debugging

clear-var-errors ()

Clear stored variable errors so they get refetched

collapse-tree-more ()

Collapse whole selected variables display subtree one more level

create-launch-config (name)

Create a new launch configuration with the given name if it does not already exist,
and then open the launch configuration attribute dialog.

create-named-entry-point (name)

Create a new named entry point if it does not already exist, and then open the
named entry point attribute dialog.

debug-attach ()

Attach to an already-running debug process

debug-continue (show_dialog=None)

Continue (or start) debugging, to next breakpoint (press Alt to continue all paused
debug processes) Key Binding: F5

debug-continue-all ()

Continue all paused debug processes Key Bindings: Wing IDE: Shift-Alt-F5; Brief:
Shift-Alt-F5; Eclipse: Shift-Alt-F5; Emacs: Shift-Alt-F5; VI/VIM: Shift-Alt-F5; Visual
Studio: Shift-Alt-F5

debug-detach ()

Detach from the debug process and let it run

debug-file (show_dialog=None)

Start debugging the current file (rather than the main entry point) Key Binding:
Shift-F5

debug-kill ()

Command Reference

325

Terminate current debug process (press Alt to terminate all debug processes) Key
Bindings: Wing IDE: Ctrl-F5; Brief: Ctrl-F5; Eclipse: Ctrl-F5; Emacs: Ctrl-F5; OS X:
Command-F5; VI/VIM: Ctrl-F5; Visual Studio: Ctrl-F5; XCode: Command-F5

debug-kill-all ()

Terminate all debug processes Key Bindings: Wing IDE: Ctrl-Alt-F5; Brief:
Ctrl-Alt-F5; Eclipse: Ctrl-Alt-F5; Emacs: Ctrl-Alt-F5; VI/VIM: Ctrl-Alt-F5; Visual
Studio: Ctrl-Alt-F5

debug-move-counter ()

Move program counter to caret

debug-named-entry-point (name)

Debug the named entry point

debug-new-process (show_dialog=None)

Start a new debug process running

debug-probe-clear ()

Clear debug probe.

debug-probe-evaluate-active-range ()

Evaluate the active range in the Debug Probe, if any is set

debug-probe-show-active-range ()

Show the active range set in the Debug Probe in the editor.

debug-probe-toggle-active-range ()

Toggle the active range in the Debug Probe: The active range is cleared if already
set, or otherwise set using the current editor selection.

debug-rerun ()

Re-run the latest debug session that was launched from the IDE

debug-restart ()

Stop and restart debugging (press Alt to restart all debug processes)

debug-restart-all ()

Stop and restart all debug processes that were launched from the IDE

debug-show-environment ()

Show the debug run arguments and environment configuration dialog for the main
entry point or current file

debug-stack-menu-items ()

Not documented

Command Reference

326

debug-stop ()

Pause debug at current program counter (press Alt to pause all debug processes)
Key Bindings: Wing IDE: Ctrl-Shift-F5; Brief: Ctrl-Shift-F5; Eclipse: Ctrl-Shift-F5;
Emacs: Ctrl-Shift-F5; OS X: Command-Shift-F5; VI/VIM: Ctrl-Shift-F5; Visual
Studio: Ctrl-Shift-F5; XCode: Command-Shift-F5

debug-stop-all ()

Pause all free-running debug processes at the current program counter Key
Bindings: Wing IDE: Ctrl-Shift-Alt-F5; Brief: Ctrl-Shift-Alt-F5; Eclipse:
Ctrl-Shift-Alt-F5; Emacs: Ctrl-Shift-Alt-F5; VI/VIM: Ctrl-Shift-Alt-F5; Visual Studio:
Ctrl-Shift-Alt-F5

debug-to-clicked (new_process=False)

Debug to the line at the current mouse click location

exception-always-stop ()

Always stop on exceptions, even if they are handled by the code

exception-never-stop ()

Never stop on exceptions, even if they are unhandled in the code

exception-stop-when-printed ()

Stop only on exceptions when they are about to be printed

exception-unhandled-stop ()

Stop only on exceptions that are not handled by the code

execute-named-entry-point (name)

Execute (without debugging) the named entry point

expand-tree-more ()

Expand whole selected variables display subtree deeper

force-var-reload ()

Force refetch of a value from server

frame-down ()

Move down the current debug stack Key Binding: F12

frame-show ()

Show the position (thread and stack frame) where the debugger originally stopped
Key Bindings: Wing IDE: Shift-F11; Brief: Shift-F11; Eclipse: Shift-F11; Emacs:
Shift-F11; VI/VIM: Shift-F11; Visual Studio: Shift-F11

frame-up ()

Command Reference

327

Move up the current debug stack Key Binding: F11

hide-detail ()

Show the textual value detail area

internal-extra-debugger-logging-start ()

Turn on additional logging for diagnosing problems with the debugger

internal-extra-debugger-logging-stop ()

Turn off additional logging for diagnosing problems with the debugger

manage-launch-configs ()

Display the launch config manager

manage-named-entry-points ()

Display the named entry point manager

python-shell-clear (show=False, focus=False)

Clear python shell.

python-shell-evaluate-active-range ()

Evaluate the active range in the Python Shell, if any is set

python-shell-kill ()

Kill python shell process.

python-shell-restart (show=False, focus=False, prompt=False)

Restart python shell, optionally showing the Python Shell tool and/or placing
keyboard focus on it. Prompts the user first when prompt is True or when prompt is
'pref' and the user has not asked to bypass the prompt.

python-shell-show-active-range ()

Show the active range set in the Python Shell in the editor.

python-shell-toggle-active-range ()

Toggle the active range in the Python Shell: The active range is cleared if already
set, or otherwise set using the current editor selection.

run-build-command ()

Execute the build command defined in the project, if any Key Bindings: XCode:
Command-B

run-to-cursor (new_process=False)

Run to current cursor position Key Bindings: Wing IDE: Alt-F5; Brief: Alt-F5;
Eclipse: Alt-F5; Emacs: Alt-F5; VI/VIM: Alt-F5; Visual Studio: Alt-F5

shell-copy-with-prompts (shell=None)

Command Reference

328

Copy text from shell, including all prompts

shell-ctrl-down ()

Not documented

shell-ctrl-return ()

Not documented

shell-ctrl-up ()

Not documented

show-detail ()

Show the textual value detail area

step-into (show_dialog=None, new_process=False)

Step into current execution point, or start debugging at first line Key Binding: F7

step-out ()

Step out of the current function or method Key Binding: F8

step-out-to-frame (frame_idx=None)

Step out of the given frame (0=outermost). Frame is None to step out to the
currently selected stack frame.

step-over ()

Step over current instruction Key Bindings: Wing IDE: Ctrl-F6; Brief: Ctrl-F6;
Eclipse: Ctrl-F6; Emacs: Ctrl-F6; VI/VIM: Ctrl-F6; Visual Studio: Ctrl-F6

step-over-block ()

Step over current block

step-over-line ()

Step over current line

step-over-statement ()

Step over current statement Key Binding: F6

watch (style='ref')

Watch selected variable using a direct object reference to track it

watch-expression (expr=None)

Add a new expression to the watch list

watch-module-ref ()

Watch selected value relative to a module looked up by name in sys.modules

watch-parent-ref ()

Command Reference

329

Watch selected variable using a reference to the value's parent and the key slot for
the value

watch-ref ()

Watch selected variable using a direct object reference to track it

watch-symbolic ()

Watch selected value using the symbolic path to it

Debugger Watch Commands

Commands for the debugger's Watch tool (Wing IDE Professional only). These are
available only when the watch tool has key board focus.

watch-clear-all ()

Clear all entries from the watch list

watch-clear-selected ()

Clear selected entry from the watch list

Call Stack View Commands

Commands available on a specific instance of the call stack tool

callstack-copy-to-clipboard ()

Copy the call stack to the clipboard, as text

callstack-set-codeline-mode (mode)

Set the code line display mode for this call stack

callstack-show-docs ()

Show documentation for the call stack manager

Exceptions Commands

Commands available when the debugger's Exceptions tool has the keyboard
focus.

clear ()

Clear the exception currently shown on the display

copy ()

Copy the exception traceback to the clipboard Key Bindings: Wing IDE: Ctrl-Insert;
Brief: Ctrl-Insert; Eclipse: Ctrl-Insert; Emacs: Ctrl-Insert; OS X: Command-C;
VI/VIM: Ctrl-Insert; Visual Studio: Ctrl-Insert; XCode: Command-C

Command Reference

330

Breakpoint View Commands

Commands available on a specific instance of the breakpoint manager tool

bpmanager-clear-selected ()

Clear breakpoints currently selected on the breakpoint manager

bpmanager-show-docs ()

Show documentation for the breakpoint manager

bpmanager-show-selected ()

Show source location for breakpoint currently selected on the breakpoint manager

Subversion Commands

Subversion revision control system commands

svn-update (locs=<selected files>)

Update the selected files from the Subversion repository

svn-add ()

Add the files to %(label)s

svn-commit-project ()

Not documented

svn-revert ()

Revert selected files.

svn-project-status ()

View status for entire project.

svn-blame (locs=<selected files>)

Show blame / praise / annotate for selected files.

svn-diff ()

Show differences between files in working directory and last committed version.

svn-diff-recent (locs=<selected files>)

Show diffs for most recent checkin

svn-log (locs=<selected files>)

Show the revision log for the selected files in the Subversion repository

svn-configure ()

Show preferences page for selected VCS

svn-status ()

Command Reference

331

View status of the selected files in the working directory

svn-remove ()

Remove files

svn-update-project ()

Update files in project

svn-resolved (locs=<selected files>)

Indicate that any conflicts are resolved

svn-checkout ()

Start the initial checkout from svn repository. Repository and working directory
must be entered before the checkout.

svn-commit ()

Commit selected files.

Git Commands

git revision control system commands

git-diff ()

Show differences between files in working directory and last committed version.

git-fetch-repository (locs=<selected files>)

Pull from repository.

git-remove ()

Remove files

git-list (locs=<selected files>)

Show the status of the given files in the git repository

git-commit-project ()

Not documented

git-project-status ()

View status for entire project.

git-pull-branch (locs=<selected files>)

Pull branch from other git repository

git-list-branches (locs=<selected files>)

List all branches

git-add ()

Command Reference

332

Add the files to %(label)s

git-log (locs=<selected files>)

Show the revision log for the selected files in the git repository

git-push-branch (locs=<selected files>)

Push branch to other git repository

git-commit ()

Commit selected files.

git-status ()

View status of the selected files in the working directory

git-switch-branch (locs=<selected files>)

Switch to another branch

git-configure ()

Show preferences page for selected VCS

git-blame (locs=<selected files>)

Show the annotated blame/praise for the selected files in the git repository

Bazaar Commands

Subversion revision control system commands

bzr-commit ()

Commit selected files.

bzr-add ()

Add the files to %(label)s

bzr-commit-project ()

Not documented

bzr-remove ()

Remove files

bzr-project-status ()

View status for entire project.

bzr-status ()

View status of the selected files in the working directory

bzr-push-entire-branch (locs=<selected files>)

Update the selected files from the bzr repository

Command Reference

333

bzr-log (locs=<selected files>)

Show the revision log for the selected files in the bzr repository

bzr-configure ()

Show preferences page for selected VCS

bzr-revert ()

Revert selected files.

bzr-merge-entire-branch (locs=<selected files>)

Update the selected files from the bzr repository

bzr-annotate ()

Show blame / praise / annotate for selected files.

bzr-diff ()

Show differences between files in working directory and last committed version.

C V S Commands

CVS revision control system commands

cvs-revert (locs=<selected files>)

Revert the selected files

cvs-log (locs=<selected files>)

Show the revision log for the selected files in the CVS repository

cvs-diff (locs=<selected files>)

Show the differences between working version of given files and the corresponding
revision in the CVS repository

cvs-configure ()

Configure the CVS integration

cvs-project-status ()

Run status for entire project.

cvs-update (locs=<selected files>)

Update the selected files from the CVS repository

cvs-update-project ()

Update files in project

cvs-checkout ()

Command Reference

334

Start the initial checkout from cvs repository. Repository and working directory
must be entered before the checkout.

cvs-add (locs=<selected files>)

Add the files to cvs

cvs-commit (locs=<selected files>)

Commit the selected files to the CVS repository

cvs-status (locs=<selected files>)

View the CVS repository status for the selected files

cvs-commit-project ()

Commit files in project

cvs-remove (locs=<selected files>)

Remove the selected files

Mercurial Commands

Mercurial revision control system commands

hg-diff ()

Show differences between files in working directory and last committed version.

hg-status ()

View status of the selected files in the working directory

hg-revert ()

Revert selected files.

hg-pull-entire-repository (locs=<selected files>)

Pull all changes from remote repository to local repository

hg-commit ()

Commit selected files.

hg-update (locs=<selected files>)

Update working directory from repository

hg-annotate (locs=<selected files>)

Show user and revision for every line in the file(s)

hg-configure ()

Show preferences page for selected VCS

hg-remove ()

Command Reference

335

Remove files

hg-add ()

Add the files to %(label)s

hg-log (locs=<selected files>)

Show the revision log for the selected files in the hg repository

hg-push-entire-repository (locs=<selected files>)

Update the selected files from the hg repository

hg-merge (locs=<selected files>)

Merge working directory with changes in repository

hg-commit-project ()

Not documented

hg-project-status ()

View status for entire project.

Perforce Commands

Perforce revision control system commands

perforce-log (locs=<selected files>)

Show the revision log for the selected files in the Perforce repository

perforce-blame (locs=<selected files>)

Show blame / praise / annotate for selected files.

perforce-status (locs=<selected files>)

View the Perforce repository status for the selected files

perforce-commit (locs=<selected files>)

Commit the selected files to the Perforce repository

perforce-remove (locs=<selected files>)

Remove the selected files

perforce-commit-project ()

Commit files in project

perforce-revert (locs=<selected files>)

Revert the selected files

perforce-add (locs=<selected files>)

Add the files to perforce

Command Reference

336

perforce-sync-project ()

Update files in project

perforce-sync (locs=<selected files>)

Copy the selected files from the Perforce repository

perforce-configure ()

Show preferences page for selected VCS

perforce-edit (locs=<selected files>)

Copy the selected files from the Perforce repository

perforce-project-status ()

Run status for entire project.

perforce-diff (locs=<selected files>)

Show the differences between working version of given files and the corresponding
revision in the Perforce repository

perforce-resolved (locs=<selected files>)

Indicate that any conflicts are resolved

perforce-annotate ()

Show blame / praise / annotate for selected files.

20.8. Script-provided Add-on Commands

Subversion Commands

Subversion revision control system commands

svn-update (locs=<selected files>)

Update the selected files from the Subversion repository

svn-add ()

Add the files to %(label)s

svn-commit-project ()

Not documented

svn-revert ()

Revert selected files.

svn-project-status ()

View status for entire project.

svn-blame (locs=<selected files>)

Command Reference

337

Show blame / praise / annotate for selected files.

svn-diff ()

Show differences between files in working directory and last committed version.

svn-diff-recent (locs=<selected files>)

Show diffs for most recent checkin

svn-log (locs=<selected files>)

Show the revision log for the selected files in the Subversion repository

svn-configure ()

Show preferences page for selected VCS

svn-status ()

View status of the selected files in the working directory

svn-remove ()

Remove files

svn-update-project ()

Update files in project

svn-resolved (locs=<selected files>)

Indicate that any conflicts are resolved

svn-checkout ()

Start the initial checkout from svn repository. Repository and working directory
must be entered before the checkout.

svn-commit ()

Commit selected files.

Git Commands

git revision control system commands

git-diff ()

Show differences between files in working directory and last committed version.

git-fetch-repository (locs=<selected files>)

Pull from repository.

git-remove ()

Remove files

git-list (locs=<selected files>)

Command Reference

338

Show the status of the given files in the git repository

git-commit-project ()

Not documented

git-project-status ()

View status for entire project.

git-pull-branch (locs=<selected files>)

Pull branch from other git repository

git-list-branches (locs=<selected files>)

List all branches

git-add ()

Add the files to %(label)s

git-log (locs=<selected files>)

Show the revision log for the selected files in the git repository

git-push-branch (locs=<selected files>)

Push branch to other git repository

git-commit ()

Commit selected files.

git-status ()

View status of the selected files in the working directory

git-switch-branch (locs=<selected files>)

Switch to another branch

git-configure ()

Show preferences page for selected VCS

git-blame (locs=<selected files>)

Show the annotated blame/praise for the selected files in the git repository

Bazaar Commands

Subversion revision control system commands

bzr-commit ()

Commit selected files.

bzr-add ()

Add the files to %(label)s

Command Reference

339

bzr-commit-project ()

Not documented

bzr-remove ()

Remove files

bzr-project-status ()

View status for entire project.

bzr-status ()

View status of the selected files in the working directory

bzr-push-entire-branch (locs=<selected files>)

Update the selected files from the bzr repository

bzr-log (locs=<selected files>)

Show the revision log for the selected files in the bzr repository

bzr-configure ()

Show preferences page for selected VCS

bzr-revert ()

Revert selected files.

bzr-merge-entire-branch (locs=<selected files>)

Update the selected files from the bzr repository

bzr-annotate ()

Show blame / praise / annotate for selected files.

bzr-diff ()

Show differences between files in working directory and last committed version.

C V S Commands

CVS revision control system commands

cvs-revert (locs=<selected files>)

Revert the selected files

cvs-log (locs=<selected files>)

Show the revision log for the selected files in the CVS repository

cvs-diff (locs=<selected files>)

Show the differences between working version of given files and the corresponding
revision in the CVS repository

Command Reference

340

cvs-configure ()

Configure the CVS integration

cvs-project-status ()

Run status for entire project.

cvs-update (locs=<selected files>)

Update the selected files from the CVS repository

cvs-update-project ()

Update files in project

cvs-checkout ()

Start the initial checkout from cvs repository. Repository and working directory
must be entered before the checkout.

cvs-add (locs=<selected files>)

Add the files to cvs

cvs-commit (locs=<selected files>)

Commit the selected files to the CVS repository

cvs-status (locs=<selected files>)

View the CVS repository status for the selected files

cvs-commit-project ()

Commit files in project

cvs-remove (locs=<selected files>)

Remove the selected files

Mercurial Commands

Mercurial revision control system commands

hg-diff ()

Show differences between files in working directory and last committed version.

hg-status ()

View status of the selected files in the working directory

hg-revert ()

Revert selected files.

hg-pull-entire-repository (locs=<selected files>)

Pull all changes from remote repository to local repository

Command Reference

341

hg-commit ()

Commit selected files.

hg-update (locs=<selected files>)

Update working directory from repository

hg-annotate (locs=<selected files>)

Show user and revision for every line in the file(s)

hg-configure ()

Show preferences page for selected VCS

hg-remove ()

Remove files

hg-add ()

Add the files to %(label)s

hg-log (locs=<selected files>)

Show the revision log for the selected files in the hg repository

hg-push-entire-repository (locs=<selected files>)

Update the selected files from the hg repository

hg-merge (locs=<selected files>)

Merge working directory with changes in repository

hg-commit-project ()

Not documented

hg-project-status ()

View status for entire project.

Perforce Commands

Perforce revision control system commands

perforce-log (locs=<selected files>)

Show the revision log for the selected files in the Perforce repository

perforce-blame (locs=<selected files>)

Show blame / praise / annotate for selected files.

perforce-status (locs=<selected files>)

View the Perforce repository status for the selected files

perforce-commit (locs=<selected files>)

Command Reference

342

Commit the selected files to the Perforce repository

perforce-remove (locs=<selected files>)

Remove the selected files

perforce-commit-project ()

Commit files in project

perforce-revert (locs=<selected files>)

Revert the selected files

perforce-add (locs=<selected files>)

Add the files to perforce

perforce-sync-project ()

Update files in project

perforce-sync (locs=<selected files>)

Copy the selected files from the Perforce repository

perforce-configure ()

Show preferences page for selected VCS

perforce-edit (locs=<selected files>)

Copy the selected files from the Perforce repository

perforce-project-status ()

Run status for entire project.

perforce-diff (locs=<selected files>)

Show the differences between working version of given files and the corresponding
revision in the Perforce repository

perforce-resolved (locs=<selected files>)

Indicate that any conflicts are resolved

perforce-annotate ()

Show blame / praise / annotate for selected files.

Debugger Extensions Script

Scripts that extend the debugger in various ways.

set-breaks-from-markers (app=[])

Scan current file for markers in the form %BP% and places breakpoints on all lines
where those markers are found. A conditional breakpoint can be set if a condition
follows the marker, for example %BP%:x > 10. Removes all old breakpoints first.

Command Reference

343

Django Script

A plugin that provides Django-specific functionality when a project looks like it
contains Django files.

django-validate ()

Run manage.py validate

django-sql (appname)

Run manage.py sql for given app name and display the output in a scratch buffer.

django-show-docs ()

Show documentation for using Wing IDE and Django together

django-start-project (django_admin, parent_directory, site_name, superuser,
superuser_email, superuser_password, pyexec=None)

Start a new Django project with given site name and superuser account. This will
prompt for the location of django-admin.py, the parent directory, and the site name
to use. It then runs django-admin.py startproject, edits settings.py fields
DATABASE_ENGINE and DATABASE_NAME to use sqlite3 by default, adds
django.contrib.admin to INSTALLED_APPS in settings.py, runs syncdb/migrate
(creating superuser account if one was given), sets up the default admin templates
by copying base_site.html into the project, and then offers to create a new project
in Wing and run the django-setup-wing-project command to configure the Wing IDE
project for use with the new Django project.

django-run-tests-to-scratch-buffer ()

Run manage.py tests with output in a scratch buffer

django-setup-wing-project ()

Sets up a Wing project to work with an existing Django project. This assumes that
you have already added files to the project so that your manage.py and settings.py
files are in the project. It sets up the Python Executable project property, sets
"manage.py runserver 8000" as the main debug file, sets up the Wing project
environment by defining DJANGO_SITENAME and
DJANGO_SETTINGS_MODULE, adds the site directory to the Python Path in the
Wing project, turns on child process debugging (for auto-reload) sets
TEMPLATE_DEBUG = True in the settings.py file, ensures that the Template
Debugging project property is enabled, sets up the unit testing framework and file
patterns in project properties.

django-start-app (appname)

Start a new application within the current Django project and add it to the
INSTALLED_APPS list in the project's settings.py file.

django-sync-db ()

Command Reference

344

Run manage.py syncdb (or migrate in Django 1.8+)

django-run-tests ()

Run manage.py unit tests in the Testing tool

django-restart-shell ()

Show and restart the Python Shell tool, which works in the same environment as
"manage.py shell". To show the tool without restarting it, use the Tools menu.

Django Script

A plugin that provides Django-specific functionality when a project looks like it
contains Django files.

django-setup-wing-project ()

Sets up a Wing project to work with an existing Django project. This assumes that
you have already added files to the project so that your manage.py and settings.py
files are in the project. It sets up the Python Executable project property, sets
"manage.py runserver 8000" as the main debug file, sets up the Wing project
environment by defining DJANGO_SITENAME and
DJANGO_SETTINGS_MODULE, adds the site directory to the Python Path in the
Wing project, turns on child process debugging (for auto-reload) sets
TEMPLATE_DEBUG = True in the settings.py file, ensures that the Template
Debugging project property is enabled, sets up the unit testing framework and file
patterns in project properties.

django-start-project (django_admin, parent_directory, site_name, superuser,
superuser_email, superuser_password, pyexec=None)

Start a new Django project with given site name and superuser account. This will
prompt for the location of django-admin.py, the parent directory, and the site name
to use. It then runs django-admin.py startproject, edits settings.py fields
DATABASE_ENGINE and DATABASE_NAME to use sqlite3 by default, adds
django.contrib.admin to INSTALLED_APPS in settings.py, runs syncdb/migrate
(creating superuser account if one was given), sets up the default admin templates
by copying base_site.html into the project, and then offers to create a new project
in Wing and run the django-setup-wing-project command to configure the Wing IDE
project for use with the new Django project.

Editor Extensions Script

Editor extensions that also serve as examples for scripting Wing IDE.

set-executable-bit (set_bit=True, doc=[])

Set the current file's executable bit in its permissions. If set_bit is true (the default),
the executable bit is set; if set_bit is false, the executable bit is cleared. This
doesn't do anything on windows.

Command Reference

345

toggle-case (editor=[])

Toggle current selection or current word between common name formats:
my_symbol_name, MySymbolName, and mySymbolName

fold-python-methods ()

Fold up all Python methods, expand all classes, and leave other fold points alone
Key Bindings: Wing IDE: Alt-1; Brief: Alt-1; Eclipse: Alt-1; Emacs: Alt-1; OS X:
Command-Alt--; VI/VIM: Alt-1; Visual Studio: Alt-1; XCode: Command-Alt--

word-list-completion (word)

Provide simple word-list driven auto-completion on the current editor

smart-cut ()

Implement a variant of clipboard cut that cuts the whole current line if there is no
selection on the editor.

kill-line-with-eol (ed=[])

Variant of emacs style kill-line command that always kills the eol characters

upper-case (editor=[])

Change current selection or current word to all upper case Key Bindings: Eclipse:
Ctrl-Shift-Y

smart-copy ()

Implement a variant of clipboard copy that copies the whole current line if there is
no selection on the editor.

hyphen-to-under (editor=[])

Change hyphens (dashes) to underscores in current selection or current word

batch-search-current-directory ()

Initial batch search for the current editor['s directory

lower-case (editor=[])

Change current selection or current word to all lower case Key Bindings: Eclipse:
Ctrl-Shift-X

cc-checkout (app=[])

Check the current file out of clearcase. This is best used with Wing configured to
auto-reload unchanged files.

describe-key-briefly (key)

Display the commands that a key is bound to in the status area. Does not fully
work for the vi binding.

insert-spaces-to-tab-stop (tab_size=0)

Command Reference

346

Insert spaces to reach the next tab stop (units of given tab size or editor's tab size
if none is given)

vs-tab (app=[])

Modified tab indentation command that acts like tab in Visual Studio.

vi-fold-more ()

Approximation of zr key binding in vim Key Bindings: VI/VIM: z r

fold-python-classes ()

Fold up all Python classes but leave other fold points alone Key Bindings: Wing
IDE: Alt-2; Brief: Alt-2; Eclipse: Alt-2; Emacs: Alt-2; OS X: Command-Ctrl-/; VI/VIM:
Alt-2; Visual Studio: Alt-2; XCode: Command-Ctrl-/

vi-fold-less ()

Approximation of zm key binding in vim Key Bindings: VI/VIM: z m

indent-new-comment-line (app=[], ed=[])

Enter a newline, indent to match previous line and insert a comment character and
a space. Assumes that auto-indent is enabled.

cursor-home ()

Bring cursor to start of line, to start of visible area, or to start of document each
successive consecutive invocation of this command. Key Bindings: Brief: Home

open-filename-from-editor ()

Open the filename at the caret in current editor

open-clicked-url-from-editor ()

Open the url being clicked in the current editor

sort-selected (app=[])

Sort selected lines of text alphabetically

search-python-docs ()

Do a search on the Python documentation for the selected text in the current editor

toggle-mark-command (style='char', select_right=0)

Change between text-marking and non-text-marking mode. Style is "char" for
stream select, "block" for rectangular select, and "line" for line select. Set
select_right=1 to select the character to right of the cursor when marking is toggled
on. Key Bindings: Brief: Alt-M invokes toggle-mark-command(select_right=1)

delete-selected-lines (app=[])

Delete the line or range of lines that contain the current selection. This duplicates
what the editor command delete-line does. Key Bindings: Brief: Alt-D

Command Reference

347

insert-debug-print (app=[])

Insert a print statement to print a selected variable name and value, along with the
file and line number.

under-to-hyphen (editor=[])

Change underscores to hyphens (dashes) in current selection or current word

open-url-from-editor ()

Open the url at caret in the current editor

smart-paste (editor=[])

A variant of paste that inserts line just copied with smart-copy above current line.

remove-prompts-and-paste (ed=[])

Paste from clipboard after removing any >>> and ... prompts

convert-to-lf-lineends (app=[])

Convert the current editor to use LF style line endings

close-all-readonly ()

Close all readonly files

insert-text (text)

Insert given text at current caret location, replacing any existing selected text

convert-to-cr-lineends (app=[])

Convert the current editor to use CR style line endings

cursor-end ()

Bring cursor to end of line, to end of visible area, or to end of document each
successive consecutive invocation of this command. Key Bindings: Brief: End

title-case (editor=[])

Change current selection or current word to capitalize first letter of each word Key
Bindings: Emacs: Alt-C

watch-selection ()

Add a debug watch for the selected text in the current editor

copy-filename-to-clipboard (fn=[])

Copy the filename for the currently selected file to the clipboard

comment-block-toggle ()

Toggle block comment (with ## at start) on the selected lines in editor. This is a
different style of block commenting than Wing implements by default (the default in

Command Reference

348

Wing is intended to work better with some of the other editor functionality) Key
Bindings: Eclipse: Ctrl-Shift-C

surround (char)

Surround selected text with (), [], {}, "", '', <>, or ``. Arg char should be the opening
character. If there is no selection, the current word is surrounded.

copy-reference (include_text=True)

Copy 'filename, lineno (scope)' optionally followed by the current line or selected
lines to the clipboard. The scope is omitted if there isn't one or in a non-Python file.

open-clicked-filename-from-editor ()

Open the filename being clicked in the current editor

toggle-vertical-split ()

If editor is split, unsplit it and show the vertical tools panel. Otherwise, hide the
vertical tools and split the editor left-right Assumes default windowing policy
(combined toolbox & editor windows). Thanks to Jonathan March for this script.

convert-to-crlf-lineends (app=[])

Convert the current editor to use CR + LF style line endings

fold-python-classes-and-defs ()

Fold up all Python classes, methods, and functions but leave other fold points
alone Key Bindings: Wing IDE: Alt-3; Brief: Alt-3; Eclipse: Alt-3; Emacs: Alt-3; OS
X: Command-=; VI/VIM: Alt-3; Visual Studio: Alt-3; XCode: Command-=

toggle-toolbox-separate ()

Toggle between moving the toolboxes to a separate window and the default
single-window mode

Emacs Extensions Script

This file contains scripts that add emacs-like functionality not found in Wing's
internal emacs support layer.

add-change-log-entry (user_name=None, email=None, changelog=None,
changed_file=None, func=None, other_window=False, new_entry=False)

Add a change log entry Key Bindings: Emacs: Ctrl-X 4 A

Pylintpanel Script

PyLint integration for Wing IDE.

pylint-copy-selected-line-number ()

Copy the line number for the currently selected pylint result.

Command Reference

349

pylint-copy-results ()

Copies all results from the displayed pylint results list.

pylint-package-execute (show_panel=True)

Execute pylint on all files in the package to which the file in the current editor
belongs

pylint-show-docs ()

Show the Wing IDE documentation section for the PyLint integration

pylint-copy-selected-message ()

Copy the currently selected pylint result message.

pylint-copy-selected-results ()

Copy the selected pylint results to the clipboard.

pylint-execute (show_panel=True)

Execute pylint for the current editor Key Bindings: XCode: Command-Shift-B

pylint-configure ()

Show the pylint configuration file so it can be edited

Testapi Script

Tests for Wing's scripting API.

test-api (verbose=0)

Test Wing's scripting API

Key Binding Reference
This chapter documents all the default key bindings found in the keyboard
personalities provided by Wing, set by the Personality preference. Key bindings
are listed alphabetically. In some cases commands of the same name are provided
by different implementations that are selected according to keyboard focus.

When multiple commands are defined for a single key binding, the first available
command in the list is invoked. In this way a single binding can, for example, show
or hide a tool panel.

Additional key bindings can be added as described in keyboard bindings. All
available commands are documented in the Command Reference.

21.1. Wing IDE Personality
This section documents all the default key bindings for the Wing IDE keyboard
personality, set by the Personality preference.

Key Binding Reference

350

http://wingware.com/doc/custom/key-equivalents
http://wingware.com/doc/commands/index

Alt-1: fold-python-methods - Fold up all Python methods, expand all classes, and
leave other fold points alone

Alt-2: fold-python-classes - Fold up all Python classes but leave other fold points
alone

Alt-3: fold-python-classes-and-defs - Fold up all Python classes, methods, and
functions but leave other fold points alone

Alt-BackSpace: backward-delete-word - Action varies according to focus: Active
Editor Commands: Delete one word behind of the cursor ; Toolbar Search
Commands: Delete word behind the cursor

Alt-Delete: backward-delete-word - Action varies according to focus: Active
Editor Commands: Delete one word behind of the cursor ; Toolbar Search
Commands: Delete word behind the cursor

Alt-Down: fold-expand-more-current - Expand the current fold point one more
level

Alt-End: fold-expand-all - Expand all fold points in the current file

Alt-F11: prev-points-of-use-match - Display the previous match in the active
points of use tool

Alt-F12: next-points-of-use-match - Display the next match in the active points of
use tool

Alt-F3: search - Bring up the search manager in search mode.

Alt-F4: close-window - Close the current window and all documents and panels in
it

Alt-F5: run-to-cursor - Run to current cursor position

Alt-F6: run-failed-tests - Re-run all the previously failed tests. The tests are
debugged when debug is True.

Alt-F7: run-last-tests - Run again the last group of tests that were run. The tests
are debugged when debug is True.

Alt-Home: fold-collapse-all - Collapse all fold points in the current file

Alt-Left: visit-history-previous - Move back in history to previous visited editor
position

Alt-Page_Down: fold-expand-all-current - Expand the current fold point
completely

Alt-Page_Up: fold-collapse-all-current - Collapse the current fold point
completely

Alt-Return: new-line - Place a new line at the current cursor position

Key Binding Reference

351

Alt-Right: visit-history-next - Move forward in history to next visited editor
position

Alt-Slash: fold-toggle - Toggle the current fold point

Alt-Up: fold-collapse-more-current - Collapse the current fold point one more
level

Alt-comma: query-replace - Initiate incremental mini-search query/replace from
the cursor position.

Alt-period: replace-string - Replace all occurrences of a string from the cursor
position to end of file.

BackSpace: backward-delete-char - Action varies according to focus: Active
Editor Commands: Delete one character behind the cursor, or the current selection
if not empty. ; Toolbar Search Commands: Delete character behind the cursor

Ctrl-0: next-document - Move to the next document alphabetically in the list of
documents open in the current window

Ctrl-1: activate-file-option-menu - Activate the file menu for the editor.

Ctrl-2: activate-symbol-option-menu-1 - Activate the 1st symbol menu for the
editor.

Ctrl-3: activate-symbol-option-menu-2 - Activate the 2nd symbol menu for the
editor.

Ctrl-4: activate-symbol-option-menu-3 - Activate the 3rd symbol menu for the
editor.

Ctrl-5: activate-symbol-option-menu-4 - Activate the 4th symbol menu for the
editor.

Ctrl-6: activate-symbol-option-menu-5 - Activate the 5th symbol menu for the
editor.

Ctrl-7 C: use-lexer-cpp - Force syntax highlighting for C/C++ source

Ctrl-7 H: use-lexer-html - Force syntax highlighting for HTML

Ctrl-7 M: use-lexer-makefile - Force syntax highlighting for make files

Ctrl-7 N: use-lexer-none - Use no syntax highlighting

Ctrl-7 P: use-lexer-python - Force syntax highlighting for Python source

Ctrl-7 S: use-lexer-sql - Force syntax highlighting for SQL

Ctrl-7 X: use-lexer-xml - Force syntax highlighting for XML files

Ctrl-8: recent-document - Switches to previous document most recently visited in
the current window or window set if in one-window-per-editor windowing mode.

Key Binding Reference

352

Ctrl-9: previous-document - Move to the previous document alphabetically in the
list of documents open in the current window

Ctrl-=: indent-to-match - Indent the current line or selected region to match
indentation of preceding non-blank line. Set toggle=True to indent instead of one
level higher if already at the matching position.

Ctrl-A: select-all - Select all text in the editor

Ctrl-Alt-B: search-sel-backward - Search backward using current selection

Ctrl-Alt-Comma: query-replace-regex - Initiate incremental mini-search
query/replace from the cursor position. The search string is treated as a regular
expression.

Ctrl-Alt-D: evaluate-sel-in-debug-probe - Evaluate the current selection from the
editor within the Debug Probe tool. When whole_lines is set, the selection is
rounded to whole lines before evaluation. When unspecified (set to None), the
setting from the Shell's Option menu is used instead.

Ctrl-Alt-D: selection-add-next-occurence(skip_current=True) - Add another
selection containing the text of the current selection. If skip_current is true, the
current selection will be deselected. If nothing is currently selected, select the
current word. Searches backwards if reverse is true.

Ctrl-Alt-Down: goto-next-bookmark(current_file_only=True) - Go to the next
bookmark, or the first one if no bookmark is selected. Stays within the file in the
current editor when current_file_only is True.

Ctrl-Alt-E: evaluate-sel-in-shell - Evaluate the current selection from the editor
within the Python Shell tool, optionally restarting the shell first. When whole_lines is
set, the selection is rounded to whole lines before evaluation. When unspecified
(set to None), the setting from the Shell's Option menu is used instead.

Ctrl-Alt-F: search-sel-forward - Search forward using current selection

Ctrl-Alt-F5: debug-kill-all - Terminate all debug processes

Ctrl-Alt-F6: debug-failed-tests - Re-run all the previously failed tests in the
debugger.

Ctrl-Alt-F7: debug-last-tests - Debug the last group of tests that were run.

Ctrl-Alt-G: goto-bookmark - Goto named bookmark

Ctrl-Alt-K: show-bookmarks - Show a list of all currently defined bookmarks

Ctrl-Alt-Left: goto-previous-bookmark - Go to the previous bookmark in the
bookmark list, or the last one if no bookmark is selected. Stays within the file in the
current editor when current_file_only is True.

Ctrl-Alt-M: set-bookmark - Set a bookmark at current location on the editor. Mark
is the project-wide textual name of the bookmark.

Key Binding Reference

353

Ctrl-Alt-Right: goto-next-bookmark - Go to the next bookmark, or the first one if
no bookmark is selected. Stays within the file in the current editor when
current_file_only is True.

Ctrl-Alt-T: toggle-bookmark - Set or remove a bookmark at current location on
the editor. When set, the name of the bookmark is set to an auto-generated
default.

Ctrl-Alt-Up: goto-previous-bookmark(current_file_only=True) - Go to the
previous bookmark in the bookmark list, or the last one if no bookmark is selected.
Stays within the file in the current editor when current_file_only is True.

Ctrl-Alt-V: evaluate-file-in-shell - Run the contents of the editor within the Python
Shell

Ctrl-Alt-period: replace-string-regex - Replace all occurrences of a string from
the cursor position to end of file. The search string is treated as a regular
expression.

Ctrl-Apostrophe: enclose(start="'", end="'") - Enclose the selection or the rest
of the current line when there is no selection with the given start and end strings.
The caret is moved to the end of the enclosed text.

Ctrl-B: isearch-sel-forward - Action varies according to focus: Active Editor
Commands: Initiate incremental mini-search forward from the cursor position, using
current selection as the search string. Set persist=False to do the search but end
the interactive search session immediately.; Document Viewer Commands: Initiate
incremental mini-search forward from the cursor position, using current selection
as the search string. Set persist=False to do the search but end the interactive
search session immediately.

Ctrl-BackSpace: backward-delete-word - Action varies according to focus: Active
Editor Commands: Delete one word behind of the cursor ; Toolbar Search
Commands: Delete word behind the cursor

Ctrl-Braceleft: enclose(start="{", end="}") - Enclose the selection or the rest of
the current line when there is no selection with the given start and end strings. The
caret is moved to the end of the enclosed text.

Ctrl-Bracketleft: enclose(start="[", end="]") - Enclose the selection or the rest of
the current line when there is no selection with the given start and end strings. The
caret is moved to the end of the enclosed text.

Ctrl-C: copy - Action varies according to focus: Active Editor Commands: Copy
selected text ; Document Viewer Commands: Copy any selected text. ; Exceptions
Commands: Copy the exception traceback to the clipboard ; Search Manager
Instance Commands: Copy selected text ; Toolbar Search Commands: Cut
selection

Ctrl-Comma: next-window - Switch to the next window alphabetically by title

Key Binding Reference

354

Ctrl-D: toolbar-search-focus - Move focus to toolbar search entry.

Ctrl-Delete: forward-delete-word - Action varies according to focus: Active Editor
Commands: Delete one word in front of the cursor ; Toolbar Search Commands:
Delete word in front of the cursor

Ctrl-Down: select-less - Select less code; undoes the last select-more command

Ctrl-E: brace-match - Match brace at current cursor position, selecting all text
between the two and hilighting the braces

Ctrl-End: end-of-document - Move cursor to end of document

Ctrl-Equal: zoom-in - Action varies according to focus: Document Viewer
Commands: Increase documentation font size; General Editor Commands: Zoom
in, increasing the text display size temporarily by one font size

Ctrl-F: search - Bring up the search manager in search mode.

Ctrl-F12: command-by-name - Execute given command by name, collecting any
args as needed

Ctrl-F3: search-sel-forward - Search forward using current selection

Ctrl-F4: close - Close active document. Abandon any changes when
ignore_changes is True. Close empty windows when close_window is true and quit
if all document windows closed when can_quit is true.

Ctrl-F5: debug-kill - Terminate current debug process (press Alt to terminate all
debug processes)

Ctrl-F6: step-over - Step over current instruction

Ctrl-F8: start-select-line - Turn on auto-select mode line by line

Ctrl-F9: break-clear-all - Clear all breakpoints

Ctrl-G: search-forward - Search again using the search manager's current
settings in forward direction

Ctrl-H: replace - Bring up the search manager in replace mode.

Ctrl-Home: start-of-document - Move cursor to start of document

Ctrl-I: replace-and-search - Replace current selection and search again.

Ctrl-Insert: copy - Action varies according to focus: Active Editor Commands:
Copy selected text ; Document Viewer Commands: Copy any selected text. ;
Exceptions Commands: Copy the exception traceback to the clipboard ; Search
Manager Instance Commands: Copy selected text ; Toolbar Search Commands:
Cut selection

Ctrl-J: fill-paragraph - Attempt to auto-justify the paragraph around the current
start of selection

Key Binding Reference

355

Ctrl-K: open-from-keyboard - Open a file from disk using keyboard-driven
selection of the file

Ctrl-L: goto-line - Position cursor at start of given line number

Ctrl-Left: backward-word - Action varies according to focus: Active Editor
Commands: Move cursor backward one word. Optionally, provide a string that
contains the delimiters to define which characters are part of a word. Gravity may
be "start" or "end" to indicate whether cursor is placed at start or end of the word.;
Toolbar Search Commands: Move backward one word

Ctrl-Less: enclose(start="<", end=">") - Enclose the selection or the rest of the
current line when there is no selection with the given start and end strings. The
caret is moved to the end of the enclosed text.

Ctrl-M: execute-kbd-macro - Execute most recently recorded keyboard macro. If
register is None then the user is asked to enter a letter a-z for the register where
the macro is filed. Otherwise, register 'a' is used by default.

Ctrl-Minus: zoom-out - Action varies according to focus: Document Viewer
Commands: Decrease documentation font size; General Editor Commands: Zoom
out, increasing the text display size temporarily by one font size

Ctrl-N: new-file - Create a new file

Ctrl-Next: forward-page - Move cursor forward one page

Ctrl-O: open-gui - Open a file from disk, prompting with file selection dialog if
necessary

Ctrl-P: print-view - Print active editor document

Ctrl-Page_Down: next-document - Move to the next document alphabetically in
the list of documents open in the current window

Ctrl-Page_Up: previous-document - Move to the previous document
alphabetically in the list of documents open in the current window

Ctrl-Parenleft: enclose(start="(", end=")") - Enclose the selection or the rest of
the current line when there is no selection with the given start and end strings. The
caret is moved to the end of the enclosed text.

Ctrl-Period: comment-toggle - Toggle commenting out of the selected lines. The
style of commenting can be controlled with the style argument: 'indented' uses the
default comment style indented at end of leading white space and 'block' uses a
block comment in column zero. If not given, the style configured with the Editor /
Block Comment Style preference is used.

Ctrl-Plus: zoom-in - Action varies according to focus: Document Viewer
Commands: Increase documentation font size; General Editor Commands: Zoom
in, increasing the text display size temporarily by one font size

Key Binding Reference

356

Ctrl-Pointer_Button1: goto-clicked-symbol-defn - Goto the definition of the
source symbol that was last clicked on, optionally showing the definition in another
split if one is available and other_split is True.

Ctrl-Prior: backward-page - Move cursor backward one page

Ctrl-Q: quit - Quit the application.

Ctrl-Quotedbl: enclose(start='"', end='"') - Enclose the selection or the rest of
the current line when there is no selection with the given start and end strings. The
caret is moved to the end of the enclosed text.

Ctrl-Quoteleft: begin-visited-document-cycle(move_back=True,
back_key="Ctrl-Quoteleft", forward_key="Ctrl-AsciiTilde") - Start moving
between documents in the order they were visited. Starts modal key interaction
that ends when a key other than tab is seen or ctrl is released.

Ctrl-R: replace - Bring up the search manager in replace mode.

Ctrl-Return: new-line-after - Place a new line after the current line

Ctrl-Right: forward-word - Action varies according to focus: Active Editor
Commands: Move cursor forward one word. Optionally, provide a string that
contains the delimiters to define which characters are part of a word. Gravity may
be "start" or "end" to indicate whether cursor is placed at start or end of the word.;
Toolbar Search Commands: Move forward one word

Ctrl-S: save - Save active document. Also close it if close is True.

Ctrl-Shift-Alt-F5: debug-stop-all - Pause all free-running debug processes at the
current program counter

Ctrl-Shift-B: isearch-sel-backward - Initiate incremental mini-search backward
from the cursor position, using current selection as the search string. Set
persist=False to do the search but end the interactive search session immediately.

Ctrl-Shift-C: delete-line - Delete the current line or lines when the selection spans
multiple lines or given repeat is > 1

Ctrl-Shift-D: selection-add-next-occurence - Add another selection containing
the text of the current selection. If skip_current is true, the current selection will be
deselected. If nothing is currently selected, select the current word. Searches
backwards if reverse is true.

Ctrl-Shift-Delete: delete-lines

Ctrl-Shift-Down: move-line-down - Move the current line or lines up down line,
optionally indenting to match the new position

Ctrl-Shift-Down: scroll-text-down - Scroll text down a line w/o moving cursor's
relative position on screen. Repeat is number of lines or if >0 and <1.0 then

Key Binding Reference

357

percent of screen. Set move_cursor to False to leave cursor in current position
within the source, otherwise it is moved so the cursor remains on same screen line.

Ctrl-Shift-End: end-of-document-extend - Move cursor to end of document,
adjusting the selection range to new position

Ctrl-Shift-F: batch-search - Search on current selection using the Search in Files
tool. The look_in argument gets entered in the look in field if not None or ''. The
current selection is put into the search field if it doesn't span multiple lines and
either use_selection is true or there's nothing in the search field. The given search
text is used instead, if provided

Ctrl-Shift-F3: search-sel-backward - Search backward using current selection

Ctrl-Shift-F5: debug-stop - Pause debug at current program counter (press Alt to
pause all debug processes)

Ctrl-Shift-F6: debug-all-tests - Debug all the tests in testing panel.

Ctrl-Shift-F7: debug-current-tests - Runs the current test or tests, if possible. The
current tests are determined by the current position in the active view.

Ctrl-Shift-F9: Multiple commands (first available is executed):

• break-disable-all - Disable all breakpoints
• break-enable-all - Enable all breakpoints

Ctrl-Shift-G: search-backward - Search again using the search manager's
current settings in backward direction

Ctrl-Shift-H: batch-replace - Display search and replace in files tool.

Ctrl-Shift-Home: start-of-document-extend - Move cursor to start of document,
adjusting the selection range to new position

Ctrl-Shift-I: add-current-file-to-project - Add the frontmost currently open file to
project

Ctrl-Shift-ISO_Left_Tab: begin-visited-document-cycle(move_back=False) -
Start moving between documents in the order they were visited. Starts modal key
interaction that ends when a key other than tab is seen or ctrl is released.

Ctrl-Shift-L: swap-lines - Swap the line at start of current selection with the line
that follows it, or the preceding line if previous is True.

Ctrl-Shift-Left: backward-word-extend - Action varies according to focus: Active
Editor Commands: Move cursor backward one word, adjusting the selection range
to new position. Optionally, provide a string that contains the delimiters to define
which characters are part of a word. Gravity may be "start" or "end" to indicate
whether cursor is placed at start or end of the word.; Toolbar Search Commands:
Move backward one word, extending the selection

Key Binding Reference

358

Ctrl-Shift-Next: forward-page-extend - Move cursor forward one page, adjusting
the selection range to new position

Ctrl-Shift-O: open-from-project - Open document from the project via the Open
From Project dialog. The given fragment is used as the initial fragment filter and if it
is None, the selected text or the symbol under the cursor is used. If skip_if_unique
is true, the file is opened without the dialog being displayed if only one filename
matches the fragment.

Ctrl-Shift-P: find-symbol-in-project - Allow user to visit point of definition of a
source symbol in the any file in the project by typing a fragment of the name

Ctrl-Shift-Page_Down: forward-page-extend - Move cursor forward one page,
adjusting the selection range to new position

Ctrl-Shift-Page_Up: backward-page-extend - Move cursor backward one page,
adjusting the selection range to new position

Ctrl-Shift-Prior: backward-page-extend - Move cursor backward one page,
adjusting the selection range to new position

Ctrl-Shift-R: batch-replace - Display search and replace in files tool.

Ctrl-Shift-Right: forward-word-extend - Action varies according to focus: Active
Editor Commands: Move cursor forward one word, adjusting the selection range to
new position. Optionally, provide a string that contains the delimiters to define
which characters are part of a word. Gravity may be "start" or "end" to indicate
whether cursor is placed at start or end of the word.; Toolbar Search Commands:
Move forward one word, extending the selection

Ctrl-Shift-S: save-as - Save active document to a new file

Ctrl-Shift-T: find-symbol - Allow user to visit point of definition of a source symbol
in the current editor context by typing a fragment of the name

Ctrl-Shift-Tab: begin-visited-document-cycle(move_back=False) - Start
moving between documents in the order they were visited. Starts modal key
interaction that ends when a key other than tab is seen or ctrl is released.

Ctrl-Shift-U: isearch-backward - Action varies according to focus: Active Editor
Commands: Initiate incremental mini-search backward from the cursor position,
optionally entering the given search string ; Document Viewer Commands: Initiate
incremental mini-search backward from the cursor position, optionally entering the
given search string.

Ctrl-Shift-Up: move-line-up - Move the current line or lines up one line, optionally
indenting to match the new position

Ctrl-Shift-Up: scroll-text-up - Scroll text up a line w/o moving cursor's relative
position on screen. Repeat is number of lines or if >0 and <1.0 then percent of

Key Binding Reference

359

screen. Set move_cursor to False to leave cursor in current position within the
source, otherwise it is moved so the cursor remains on same screen line.

Ctrl-Shift-V: duplicate-line - Duplicate the current line or lines. Places the
duplicate on the line following the selection if pos is 'below' or before the selection
if it is 'above'.

Ctrl-Shift-Y: duplicate-line-above - Duplicate the current line or lines above the
selection.

Ctrl-Slash: comment-out-region - Comment out the selected region. The style of
commenting can be controlled with the style argument: 'indented' uses the default
comment style indented at end of leading white space and 'block' uses a block
comment in column zero. If not given, the style configured with the Editor / Block
Comment Style preference is used. Each call adds a level of commenting.

Ctrl-T: forward-tab - Action varies according to focus: Active Editor Commands:
Place a tab character at the current cursor position ; Search Manager Instance
Commands: Place a forward tab at the current cursor position in search or replace
string

Ctrl-Tab: begin-visited-document-cycle(move_back=True) - Start moving
between documents in the order they were visited. Starts modal key interaction
that ends when a key other than tab is seen or ctrl is released.

Ctrl-U: isearch-forward - Action varies according to focus: Active Editor
Commands: Initiate incremental mini-search forward from the cursor position,
optionally entering the given search string ; Document Viewer Commands: Initiate
incremental mini-search forward from the cursor position, optionally entering the
given search string.

Ctrl-Underscore: zoom-reset - Action varies according to focus: Document
Viewer Commands: Reset documentation font size to default; General Editor
Commands: Reset font zoom factor back to zero

Ctrl-Up: select-more - Select more code on either the current line or larger
multi-line blocks.

Ctrl-V: paste - Action varies according to focus: Active Editor Commands: Paste
text from clipboard ; Search Manager Instance Commands: Paste text from
clipboard ; Toolbar Search Commands: Paste from clipboard

Ctrl-W: close - Close active document. Abandon any changes when
ignore_changes is True. Close empty windows when close_window is true and quit
if all document windows closed when can_quit is true.

Ctrl-X: cut - Action varies according to focus: Active Editor Commands: Cut
selected text ; Search Manager Instance Commands: Cut selected text ; Toolbar
Search Commands: Cut selection

Ctrl-Y: redo - Redo last action

Key Binding Reference

360

Ctrl-Z: undo - Undo last action

Ctrl-]: brace-match - Match brace at current cursor position, selecting all text
between the two and hilighting the braces

Ctrl-greater: indent-region - Indent the selected region one level of indentation.
Set sel to None to use preference to determine selection behavior, or
"never-select" to unselect after indent, "always-select" to always select after indent,
or "retain-select" to retain current selection after indent.

Ctrl-less: outdent-region - Outdent the selected region one level of indentation.
Set sel to None to use preference to determine selection behavior, or
"never-select" to unselect after indent, "always-select" to always select after indent,
or "retain-select" to retain current selection after indent.

Ctrl-parenleft: start-kbd-macro - Start definition of a keyboard macro. If
register=None then the user is prompted to enter a letter a-z under which to file the
macro. Otherwise, register 'a' is used by default.

Ctrl-parenright: stop-kbd-macro - Stop definition of a keyboard macro

Ctrl-question: uncomment-out-region - Uncomment out the selected region if
commented out. If one_level is True then each call removes only one level of
commenting.

Ctrl-space: show-autocompleter - Show the auto-completer for current cursor
position

Delete: forward-delete-char - Action varies according to focus: Active Editor
Commands: Delete one character in front of the cursor ; Toolbar Search
Commands: Delete character in front of the cursor

Down: next-line - Move to screen next line, optionally repositioning character
within line: 'same' to leave in same horizontal position, 'start' at start, 'end' at end,
or 'fnb' for first non-blank char.

End: end-of-line - Action varies according to focus: Active Editor Commands:
Move to end of current line; Toolbar Search Commands: Move to the end of the
toolbar search entry

F1: Multiple commands (first available is executed):

• show-horizontal-tools - Show the horizontal tool area
• minimize-horizontal-tools - Minimize the horizontal tool area

F11: frame-up - Move up the current debug stack

F12: frame-down - Move down the current debug stack

F2: Multiple commands (first available is executed):

Key Binding Reference

361

• show-vertical-tools - Show the vertical tool area
• minimize-vertical-tools - Minimize the vertical tool area

F3: search-forward - Search again using the search manager's current settings in
forward direction

F4: goto-selected-symbol-defn - Goto the definition of the selected source
symbol, optionally showing the definition in another split if one is available and
other_split is True.

F5: debug-continue - Continue (or start) debugging, to next breakpoint (press Alt
to continue all paused debug processes)

F6: step-over-statement - Step over current statement

F7: step-into - Step into current execution point, or start debugging at first line

F8: step-out - Step out of the current function or method

F9: Multiple commands (first available is executed):

• break-set - Set a new regular breakpoint on current line
• break-clear - Clear the breakpoint on the current line

Home: beginning-of-line-text - Move to end of the leading white space, if any, on
the current line. If toggle is True, moves to the beginning of the line if already at the
end of the leading white space (and vice versa).

ISO_Left_Tab: backward-tab - Outdent line at current position

Insert: toggle-overtype - Toggle status of overtyping mode

Left: backward-char - Action varies according to focus: Active Editor Commands:
Move cursor backward one character ; Toolbar Search Commands: Move
backward one character

Next: forward-page - Move cursor forward one page

Page_Down: forward-page - Move cursor forward one page

Page_Up: backward-page - Move cursor backward one page

Prior: backward-page - Move cursor backward one page

Return: new-line - Place a new line at the current cursor position

Right: forward-char - Action varies according to focus: Active Editor Commands:
Move cursor forward one character ; Toolbar Search Commands: Move forward
one character

Shift-Alt-A: diff-merge-a-b

Shift-Alt-B: diff-merge-b-a

Key Binding Reference

362

Shift-Alt-Down: next-line-extend-rect - Move to next screen line, adjusting the
rectangular selection range to new position, optionally repositioning character
within line: same' to leave in same horizontal position, 'start' at start, 'end' at end,
or 'fnb' for first non-blank char.

Shift-Alt-F5: debug-continue-all - Continue all paused debug processes

Shift-Alt-Left: backward-char-extend-rect - Move cursor backward one
character, adjusting the rectangular selection range to new position

Shift-Alt-N: diff-next

Shift-Alt-P: diff-previous

Shift-Alt-Right: forward-char-extend-rect - Move cursor forward one character,
adjusting the rectangular selection range to new position

Shift-Alt-Up: previous-line-extend-rect - Move to previous screen line, adjusting
the rectangular selection range to new position, optionally repositioning character
within line: same' to leave in same horizontal position, 'start' at start, 'end' at end,
or 'fnb' for first non-blank char.

Shift-BackSpace: backward-delete-char - Action varies according to focus:
Active Editor Commands: Delete one character behind the cursor, or the current
selection if not empty. ; Toolbar Search Commands: Delete character behind the
cursor

Shift-Ctrl-F8: start-select-block - Turn on auto-select block mode

Shift-Delete: cut - Action varies according to focus: Active Editor Commands: Cut
selected text ; Search Manager Instance Commands: Cut selected text ; Toolbar
Search Commands: Cut selection

Shift-Down: next-line-extend - Move to next screen line, adjusting the selection
range to new position, optionally repositioning character within line: same' to leave
in same horizontal position, 'start' at start, 'end' at end, 'fnb' for first non-blank char,
or 'xcode' to simulate XCode style Shift-Alt line selection.

Shift-End: end-of-line-extend - Action varies according to focus: Active Editor
Commands: Move to end of current line, adjusting the selection range to new
position ; Toolbar Search Commands: Move to the end of the toolbar search entry,
extending the selection

Shift-F1: move-focus - Move the keyboard focus forward within the Window to the
next editable area

Shift-F11: frame-show - Show the position (thread and stack frame) where the
debugger originally stopped

Shift-F2: Multiple commands (first available is executed):

Key Binding Reference

363

• enter-fullscreen - Hide both the vertical and horizontal tool areas and
toolbar, saving previous state so it can be restored later with
exit_fullscreen

• exit-fullscreen - Restore previous non-fullscreen state of all tools and tool
bar

Shift-F3: search-backward - Search again using the search manager's current
settings in backward direction

Shift-F4: find-points-of-use - Find points of use for a symbol. The symbol defaults
to the active selection.

Shift-F5: debug-file - Start debugging the current file (rather than the main entry
point)

Shift-F6: run-all-tests - Runs all the tests in testing panel.

Shift-F7: run-current-tests - Runs the current test or tests, if possible. The current
tests are determined by the current position in the active view. The tests are
debugged when debug is True.

Shift-F8: start-select-char - Turn on auto-select mode character by character

Shift-F9: Multiple commands (first available is executed):

• break-enable - Enable the breakpoint on the current line
• break-disable - Disable the breakpoint on current line

Shift-Home: beginning-of-line-text-extend - Move to end of the leading white
space, if any, on the current line, adjusting the selection range to the new position.
If toggle is True, moves to the beginning of the line if already at the end of the
leading white space (and vice versa).

Shift-Insert: paste - Action varies according to focus: Active Editor Commands:
Paste text from clipboard ; Search Manager Instance Commands: Paste text from
clipboard ; Toolbar Search Commands: Paste from clipboard

Shift-Left: backward-char-extend - Action varies according to focus: Active Editor
Commands: Move cursor backward one character, adjusting the selection range to
new position ; Toolbar Search Commands: Move backward one character,
extending the selection

Shift-Next: forward-page-extend - Move cursor forward one page, adjusting the
selection range to new position

Shift-Page_Down: forward-page-extend - Move cursor forward one page,
adjusting the selection range to new position

Shift-Page_Up: backward-page-extend - Move cursor backward one page,
adjusting the selection range to new position

Key Binding Reference

364

Shift-Prior: backward-page-extend - Move cursor backward one page, adjusting
the selection range to new position

Shift-Return: new-line-before - Place a new line before the current line

Shift-Right: forward-char-extend - Action varies according to focus: Active Editor
Commands: Move cursor forward one character, adjusting the selection range to
new position ; Toolbar Search Commands: Move forward one character, extending
the selection

Shift-Tab: backward-tab - Outdent line at current position

Shift-Up: previous-line-extend - Move to previous screen line, adjusting the
selection range to new position, optionally repositioning character within line: same'
to leave in same horizontal position, 'start' at start, 'end' at end, 'fnb' for first
non-blank char, or 'xcode' to simulate XCode style Shift-Alt line selection.

Tab: tab-key - Implement the tab key, the action of which is configurable by
preference

Up: previous-line - Move to previous screen line, optionally repositioning
character within line: same' to leave in same horizontal position, 'start' at start, 'end'
at end, or 'fnb' for first non-blank char.

Visual-Esc: exit-visual-mode - Exit visual mode and return back to default mode

21.2. Emacs Personality
This section documents all the default key bindings for the Emacs keyboard
personality, set by the Personality preference.

Alt-!: execute-process - Execute the given command line in the OS Commands
tool using default run directory and environment as defined in project properties, or
the values set in an existing command with the same command line in the OS
Commands tool.

Alt-0: initiate-repeat-0 - Enter a sequence of digits indicating number of times to
repeat the subsequent command or keystroke.

Alt-1: fold-python-methods - Fold up all Python methods, expand all classes, and
leave other fold points alone

Alt-1: initiate-repeat-1 - Enter a sequence of digits indicating number of times to
repeat the subsequent command or keystroke.

Alt-2: fold-python-classes - Fold up all Python classes but leave other fold points
alone

Alt-2: initiate-repeat-2 - Enter a sequence of digits indicating number of times to
repeat the subsequent command or keystroke.

Key Binding Reference

365

Alt-3: fold-python-classes-and-defs - Fold up all Python classes, methods, and
functions but leave other fold points alone

Alt-3: initiate-repeat-3 - Enter a sequence of digits indicating number of times to
repeat the subsequent command or keystroke.

Alt-4: initiate-repeat-4 - Enter a sequence of digits indicating number of times to
repeat the subsequent command or keystroke.

Alt-5: initiate-repeat-5 - Enter a sequence of digits indicating number of times to
repeat the subsequent command or keystroke.

Alt-6: initiate-repeat-6 - Enter a sequence of digits indicating number of times to
repeat the subsequent command or keystroke.

Alt-7: initiate-repeat-7 - Enter a sequence of digits indicating number of times to
repeat the subsequent command or keystroke.

Alt-8: initiate-repeat-8 - Enter a sequence of digits indicating number of times to
repeat the subsequent command or keystroke.

Alt-9: initiate-repeat-9 - Enter a sequence of digits indicating number of times to
repeat the subsequent command or keystroke.

Alt-@: replace-string - Replace all occurrences of a string from the cursor position
to end of file.

Alt-B: backward-word - Action varies according to focus: Active Editor
Commands: Move cursor backward one word. Optionally, provide a string that
contains the delimiters to define which characters are part of a word. Gravity may
be "start" or "end" to indicate whether cursor is placed at start or end of the word.;
Toolbar Search Commands: Move backward one word

Alt-BackSpace: backward-delete-word - Action varies according to focus: Active
Editor Commands: Delete one word behind of the cursor ; Toolbar Search
Commands: Delete word behind the cursor

Alt-Backslash: fold-toggle - Toggle the current fold point

Alt-C: title-case - Change current selection or current word to capitalize first letter
of each word

Alt-D: forward-delete-word - Action varies according to focus: Active Editor
Commands: Delete one word in front of the cursor ; Toolbar Search Commands:
Delete word in front of the cursor

Alt-Delete: backward-delete-word - Action varies according to focus: Active
Editor Commands: Delete one word behind of the cursor ; Toolbar Search
Commands: Delete word behind the cursor

Alt-Down: fold-expand-more-current - Expand the current fold point one more
level

Key Binding Reference

366

Alt-End: fold-expand-all - Expand all fold points in the current file

Alt-F: forward-word - Action varies according to focus: Active Editor Commands:
Move cursor forward one word. Optionally, provide a string that contains the
delimiters to define which characters are part of a word. Gravity may be "start" or
"end" to indicate whether cursor is placed at start or end of the word.; Toolbar
Search Commands: Move forward one word

Alt-F11: prev-points-of-use-match - Display the previous match in the active
points of use tool

Alt-F12: next-points-of-use-match - Display the next match in the active points of
use tool

Alt-F3: search - Bring up the search manager in search mode.

Alt-F4: close-window - Close the current window and all documents and panels in
it

Alt-F5: run-to-cursor - Run to current cursor position

Alt-F6: run-failed-tests - Re-run all the previously failed tests. The tests are
debugged when debug is True.

Alt-F7: run-last-tests - Run again the last group of tests that were run. The tests
are debugged when debug is True.

Alt-G: goto-line - Position cursor at start of given line number

Alt-Home: fold-collapse-all - Collapse all fold points in the current file

Alt-L: goto-line - Position cursor at start of given line number

Alt-Left: visit-history-previous - Move back in history to previous visited editor
position

Alt-Page_Down: fold-expand-all-current - Expand the current fold point
completely

Alt-Page_Up: fold-collapse-all-current - Collapse the current fold point
completely

Alt-Period: goto-selected-symbol-defn - Goto the definition of the selected
source symbol, optionally showing the definition in another split if one is available
and other_split is True.

Alt-Q: fill-paragraph - Attempt to auto-justify the paragraph around the current
start of selection

Alt-Return: new-line - Place a new line at the current cursor position

Alt-Right: visit-history-next - Move forward in history to next visited editor
position

Alt-Slash: fold-toggle - Toggle the current fold point

Key Binding Reference

367

Alt-Slash: show-autocompleter - Show the auto-completer for current cursor
position

Alt-Tab: show-autocompleter - Show the auto-completer for current cursor
position

Alt-Up: fold-collapse-more-current - Collapse the current fold point one more
level

Alt-V: backward-page - Move cursor backward one page

Alt-W: copy - Action varies according to focus: Active Editor Commands: Copy
selected text ; Document Viewer Commands: Copy any selected text. ; Exceptions
Commands: Copy the exception traceback to the clipboard ; Search Manager
Instance Commands: Copy selected text ; Toolbar Search Commands: Cut
selection

Alt-X: command-by-name - Execute given command by name, collecting any
args as needed

Alt-g: goto-line - Position cursor at start of given line number

Alt-greater: end-of-document - Move cursor to end of document

Alt-less: start-of-document - Move cursor to start of document

Alt-percent: query-replace - Initiate incremental mini-search query/replace from
the cursor position.

Alt-percent: query-replace - Initiate incremental mini-search query/replace from
the cursor position.

Alt-{: previous-blank-line(threshold=1) - Move to the previous blank line in the
file, if any. If threshold>0 then a line is considered blank if it contains less than that
many characters after leading and trailing whitespace are removed.

Alt-}: next-blank-line(threshold=1) - Move to the next blank line in the file, if any.
If threshold>0 then a line is considered blank if it contains less than that many
characters after leading and trailing whitespace are removed.

BackSpace: backward-delete-char - Action varies according to focus: Active
Editor Commands: Delete one character behind the cursor, or the current selection
if not empty. ; Toolbar Search Commands: Delete character behind the cursor

Ctrl-0: replace - Bring up the search manager in replace mode.

Ctrl-1: activate-file-option-menu - Activate the file menu for the editor.

Ctrl-2: activate-symbol-option-menu-1 - Activate the 1st symbol menu for the
editor.

Ctrl-3: activate-symbol-option-menu-2 - Activate the 2nd symbol menu for the
editor.

Key Binding Reference

368

Ctrl-4: activate-symbol-option-menu-3 - Activate the 3rd symbol menu for the
editor.

Ctrl-5: activate-symbol-option-menu-4 - Activate the 4th symbol menu for the
editor.

Ctrl-6: activate-symbol-option-menu-5 - Activate the 5th symbol menu for the
editor.

Ctrl-9: search - Bring up the search manager in search mode.

Ctrl-=: indent-to-match - Indent the current line or selected region to match
indentation of preceding non-blank line. Set toggle=True to indent instead of one
level higher if already at the matching position.

Ctrl-@: set-mark-command - Set start of text marking for selection at current
cursor position. Subsequently, all cursor move operations will automatically extend
the text selection until stop-mark-command is issued. Unit defines what is selected:
can be one of char, line, or block (rectangle).

Ctrl-A: beginning-of-line - Action varies according to focus: Active Editor
Commands: Move to beginning of current line. When toggle is True, moves to the
end of the leading white space if already at the beginning of the line (and vice
versa).; Toolbar Search Commands: Move to the beginning of the toolbar search
entry

Ctrl-Alt-@: replace-string-regex - Replace all occurrences of a string from the
cursor position to end of file. The search string is treated as a regular expression.

Ctrl-Alt-B: search-sel-backward - Search backward using current selection

Ctrl-Alt-Down: goto-next-bookmark(current_file_only=True) - Go to the next
bookmark, or the first one if no bookmark is selected. Stays within the file in the
current editor when current_file_only is True.

Ctrl-Alt-F: search-sel-forward - Search forward using current selection

Ctrl-Alt-F5: debug-kill-all - Terminate all debug processes

Ctrl-Alt-F6: debug-failed-tests - Re-run all the previously failed tests in the
debugger.

Ctrl-Alt-F7: debug-last-tests - Debug the last group of tests that were run.

Ctrl-Alt-Left: goto-previous-bookmark - Go to the previous bookmark in the
bookmark list, or the last one if no bookmark is selected. Stays within the file in the
current editor when current_file_only is True.

Ctrl-Alt-R: isearch-backward-regex - Action varies according to focus: Active
Editor Commands: Initiate incremental regular expression mini-search backward
from the cursor position, optionally entering the given search string ; Document

Key Binding Reference

369

Viewer Commands: Initiate incremental regular expression mini-search backward
from the cursor position, optionally entering the given search string.

Ctrl-Alt-Right: goto-next-bookmark - Go to the next bookmark, or the first one if
no bookmark is selected. Stays within the file in the current editor when
current_file_only is True.

Ctrl-Alt-S: isearch-forward-regex - Action varies according to focus: Active Editor
Commands: Initiate incremental regular expression mini-search forward from the
cursor position, optionally entering the given search string ; Document Viewer
Commands: Initiate incremental regular expression mini-search forward from the
cursor position, optionally entering the given search string.

Ctrl-Alt-Up: goto-previous-bookmark(current_file_only=True) - Go to the
previous bookmark in the bookmark list, or the last one if no bookmark is selected.
Stays within the file in the current editor when current_file_only is True.

Ctrl-Alt-percent: query-replace-regex - Initiate incremental mini-search
query/replace from the cursor position. The search string is treated as a regular
expression.

Ctrl-Apostrophe: enclose(start="'", end="'") - Enclose the selection or the rest
of the current line when there is no selection with the given start and end strings.
The caret is moved to the end of the enclosed text.

Ctrl-B: backward-char - Action varies according to focus: Active Editor
Commands: Move cursor backward one character ; Toolbar Search Commands:
Move backward one character

Ctrl-BackSpace: backward-delete-word - Action varies according to focus: Active
Editor Commands: Delete one word behind of the cursor ; Toolbar Search
Commands: Delete word behind the cursor

Ctrl-Braceleft: enclose(start="{", end="}") - Enclose the selection or the rest of
the current line when there is no selection with the given start and end strings. The
caret is moved to the end of the enclosed text.

Ctrl-Bracketleft: enclose(start="[", end="]") - Enclose the selection or the rest of
the current line when there is no selection with the given start and end strings. The
caret is moved to the end of the enclosed text.

Ctrl-C Bar: evaluate-sel-in-shell - Evaluate the current selection from the editor
within the Python Shell tool, optionally restarting the shell first. When whole_lines is
set, the selection is rounded to whole lines before evaluation. When unspecified
(set to None), the setting from the Shell's Option menu is used instead.

Ctrl-C C: comment-out-region - Comment out the selected region. The style of
commenting can be controlled with the style argument: 'indented' uses the default
comment style indented at end of leading white space and 'block' uses a block

Key Binding Reference

370

comment in column zero. If not given, the style configured with the Editor / Block
Comment Style preference is used. Each call adds a level of commenting.

Ctrl-C Ctrl-C: debug-continue - Continue (or start) debugging, to next breakpoint
(press Alt to continue all paused debug processes)

Ctrl-C Ctrl-K: debug-kill - Terminate current debug process (press Alt to terminate
all debug processes)

Ctrl-C Ctrl-S: debug-stop - Pause debug at current program counter (press Alt to
pause all debug processes)

Ctrl-C M: isearch-sel

Ctrl-C R: isearch-sel-backward - Initiate incremental mini-search backward from
the cursor position, using current selection as the search string. Set persist=False
to do the search but end the interactive search session immediately.

Ctrl-C S: isearch-sel-forward - Action varies according to focus: Active Editor
Commands: Initiate incremental mini-search forward from the cursor position, using
current selection as the search string. Set persist=False to do the search but end
the interactive search session immediately.; Document Viewer Commands: Initiate
incremental mini-search forward from the cursor position, using current selection
as the search string. Set persist=False to do the search but end the interactive
search session immediately.

Ctrl-C U: uncomment-out-region - Uncomment out the selected region if
commented out. If one_level is True then each call removes only one level of
commenting.

Ctrl-C greater: indent-region - Indent the selected region one level of indentation.
Set sel to None to use preference to determine selection behavior, or
"never-select" to unselect after indent, "always-select" to always select after indent,
or "retain-select" to retain current selection after indent.

Ctrl-C less: outdent-region - Outdent the selected region one level of indentation.
Set sel to None to use preference to determine selection behavior, or
"never-select" to unselect after indent, "always-select" to always select after indent,
or "retain-select" to retain current selection after indent.

Ctrl-C numbersign: comment-toggle - Toggle commenting out of the selected
lines. The style of commenting can be controlled with the style argument: 'indented'
uses the default comment style indented at end of leading white space and 'block'
uses a block comment in column zero. If not given, the style configured with the
Editor / Block Comment Style preference is used.

Ctrl-D: forward-delete-char - Action varies according to focus: Active Editor
Commands: Delete one character in front of the cursor ; Toolbar Search
Commands: Delete character in front of the cursor

Key Binding Reference

371

Ctrl-Delete: forward-delete-word - Action varies according to focus: Active Editor
Commands: Delete one word in front of the cursor ; Toolbar Search Commands:
Delete word in front of the cursor

Ctrl-Down: select-less - Select less code; undoes the last select-more command

Ctrl-E: end-of-line - Action varies according to focus: Active Editor Commands:
Move to end of current line; Toolbar Search Commands: Move to the end of the
toolbar search entry

Ctrl-End: end-of-document - Move cursor to end of document

Ctrl-Equal: zoom-in - Action varies according to focus: Document Viewer
Commands: Increase documentation font size; General Editor Commands: Zoom
in, increasing the text display size temporarily by one font size

Ctrl-F: forward-char - Action varies according to focus: Active Editor Commands:
Move cursor forward one character ; Toolbar Search Commands: Move forward
one character

Ctrl-F12: command-by-name - Execute given command by name, collecting any
args as needed

Ctrl-F3: search-sel-forward - Search forward using current selection

Ctrl-F4: close - Close active document. Abandon any changes when
ignore_changes is True. Close empty windows when close_window is true and quit
if all document windows closed when can_quit is true.

Ctrl-F5: debug-kill - Terminate current debug process (press Alt to terminate all
debug processes)

Ctrl-F6: step-over - Step over current instruction

Ctrl-F8: start-select-line - Turn on auto-select mode line by line

Ctrl-F9: break-clear-all - Clear all breakpoints

Ctrl-G: stop-mark-command - Stop text marking for selection at current cursor
position, leaving the selection set as is. Subsequent cursor move operations will
deselect the range and set selection to cursor position. Deselect immediately when
deselect is True.

Ctrl-H: backward-delete-char - Action varies according to focus: Active Editor
Commands: Delete one character behind the cursor, or the current selection if not
empty. ; Toolbar Search Commands: Delete character behind the cursor

Ctrl-Home: start-of-document - Move cursor to start of document

Ctrl-Insert: copy - Action varies according to focus: Active Editor Commands:
Copy selected text ; Document Viewer Commands: Copy any selected text. ;
Exceptions Commands: Copy the exception traceback to the clipboard ; Search

Key Binding Reference

372

Manager Instance Commands: Copy selected text ; Toolbar Search Commands:
Cut selection

Ctrl-J: fill-paragraph - Attempt to auto-justify the paragraph around the current
start of selection

Ctrl-K: kill-line - Kill rest of line from cursor to end of line, and place it into the
clipboard with any other contiguously removed lines. End-of-line is removed only if
there is nothing between the cursor and the end of the line.

Ctrl-L: center-cursor - Scroll so cursor is centered on display

Ctrl-Left: backward-word - Action varies according to focus: Active Editor
Commands: Move cursor backward one word. Optionally, provide a string that
contains the delimiters to define which characters are part of a word. Gravity may
be "start" or "end" to indicate whether cursor is placed at start or end of the word.;
Toolbar Search Commands: Move backward one word

Ctrl-Less: enclose(start="<", end=">") - Enclose the selection or the rest of the
current line when there is no selection with the given start and end strings. The
caret is moved to the end of the enclosed text.

Ctrl-M: brace-match - Match brace at current cursor position, selecting all text
between the two and hilighting the braces

Ctrl-Minus: zoom-out - Action varies according to focus: Document Viewer
Commands: Decrease documentation font size; General Editor Commands: Zoom
out, increasing the text display size temporarily by one font size

Ctrl-N: next-line - Move to screen next line, optionally repositioning character
within line: 'same' to leave in same horizontal position, 'start' at start, 'end' at end,
or 'fnb' for first non-blank char.

Ctrl-Next: forward-page - Move cursor forward one page

Ctrl-O: next-window - Switch to the next window alphabetically by title

Ctrl-O: open-line - Open the current line by inserting a newline after the caret

Ctrl-P: previous-line - Move to previous screen line, optionally repositioning
character within line: same' to leave in same horizontal position, 'start' at start, 'end'
at end, or 'fnb' for first non-blank char.

Ctrl-Page_Down: next-document - Move to the next document alphabetically in
the list of documents open in the current window

Ctrl-Page_Up: previous-document - Move to the previous document
alphabetically in the list of documents open in the current window

Ctrl-Parenleft: enclose(start="(", end=")") - Enclose the selection or the rest of
the current line when there is no selection with the given start and end strings. The
caret is moved to the end of the enclosed text.

Key Binding Reference

373

Ctrl-Period: redo - Redo last action

Ctrl-Plus: zoom-in - Action varies according to focus: Document Viewer
Commands: Increase documentation font size; General Editor Commands: Zoom
in, increasing the text display size temporarily by one font size

Ctrl-Pointer_Button1: goto-clicked-symbol-defn - Goto the definition of the
source symbol that was last clicked on, optionally showing the definition in another
split if one is available and other_split is True.

Ctrl-Prior: backward-page - Move cursor backward one page

Ctrl-Quotedbl: enclose(start='"', end='"') - Enclose the selection or the rest of
the current line when there is no selection with the given start and end strings. The
caret is moved to the end of the enclosed text.

Ctrl-Quoteleft: begin-visited-document-cycle(move_back=True,
back_key="Ctrl-Quoteleft", forward_key="Ctrl-AsciiTilde") - Start moving
between documents in the order they were visited. Starts modal key interaction
that ends when a key other than tab is seen or ctrl is released.

Ctrl-R: isearch-backward - Action varies according to focus: Active Editor
Commands: Initiate incremental mini-search backward from the cursor position,
optionally entering the given search string ; Document Viewer Commands: Initiate
incremental mini-search backward from the cursor position, optionally entering the
given search string.

Ctrl-Return: new-line-after - Place a new line after the current line

Ctrl-Right: forward-word - Action varies according to focus: Active Editor
Commands: Move cursor forward one word. Optionally, provide a string that
contains the delimiters to define which characters are part of a word. Gravity may
be "start" or "end" to indicate whether cursor is placed at start or end of the word.;
Toolbar Search Commands: Move forward one word

Ctrl-Right: forward-word(gravity="end") - Action varies according to focus:
Active Editor Commands: Move cursor forward one word. Optionally, provide a
string that contains the delimiters to define which characters are part of a word.
Gravity may be "start" or "end" to indicate whether cursor is placed at start or end
of the word.; Toolbar Search Commands: Move forward one word

Ctrl-S: isearch-forward - Action varies according to focus: Active Editor
Commands: Initiate incremental mini-search forward from the cursor position,
optionally entering the given search string ; Document Viewer Commands: Initiate
incremental mini-search forward from the cursor position, optionally entering the
given search string.

Ctrl-Shift-Alt-F5: debug-stop-all - Pause all free-running debug processes at the
current program counter

Ctrl-Shift-Delete: delete-lines

Key Binding Reference

374

Ctrl-Shift-Down: scroll-text-down - Scroll text down a line w/o moving cursor's
relative position on screen. Repeat is number of lines or if >0 and <1.0 then
percent of screen. Set move_cursor to False to leave cursor in current position
within the source, otherwise it is moved so the cursor remains on same screen line.

Ctrl-Shift-End: end-of-document-extend - Move cursor to end of document,
adjusting the selection range to new position

Ctrl-Shift-F3: search-sel-backward - Search backward using current selection

Ctrl-Shift-F5: debug-stop - Pause debug at current program counter (press Alt to
pause all debug processes)

Ctrl-Shift-F6: debug-all-tests - Debug all the tests in testing panel.

Ctrl-Shift-F7: debug-current-tests - Runs the current test or tests, if possible. The
current tests are determined by the current position in the active view.

Ctrl-Shift-F9: Multiple commands (first available is executed):

• break-disable-all - Disable all breakpoints
• break-enable-all - Enable all breakpoints

Ctrl-Shift-Home: start-of-document-extend - Move cursor to start of document,
adjusting the selection range to new position

Ctrl-Shift-I: add-current-file-to-project - Add the frontmost currently open file to
project

Ctrl-Shift-ISO_Left_Tab: begin-visited-document-cycle(move_back=False) -
Start moving between documents in the order they were visited. Starts modal key
interaction that ends when a key other than tab is seen or ctrl is released.

Ctrl-Shift-Left: backward-word-extend - Action varies according to focus: Active
Editor Commands: Move cursor backward one word, adjusting the selection range
to new position. Optionally, provide a string that contains the delimiters to define
which characters are part of a word. Gravity may be "start" or "end" to indicate
whether cursor is placed at start or end of the word.; Toolbar Search Commands:
Move backward one word, extending the selection

Ctrl-Shift-Next: forward-page-extend - Move cursor forward one page, adjusting
the selection range to new position

Ctrl-Shift-Page_Down: forward-page-extend - Move cursor forward one page,
adjusting the selection range to new position

Ctrl-Shift-Page_Up: backward-page-extend - Move cursor backward one page,
adjusting the selection range to new position

Ctrl-Shift-Prior: backward-page-extend - Move cursor backward one page,
adjusting the selection range to new position

Key Binding Reference

375

Ctrl-Shift-Right: forward-word-extend - Action varies according to focus: Active
Editor Commands: Move cursor forward one word, adjusting the selection range to
new position. Optionally, provide a string that contains the delimiters to define
which characters are part of a word. Gravity may be "start" or "end" to indicate
whether cursor is placed at start or end of the word.; Toolbar Search Commands:
Move forward one word, extending the selection

Ctrl-Shift-Tab: begin-visited-document-cycle(move_back=False) - Start
moving between documents in the order they were visited. Starts modal key
interaction that ends when a key other than tab is seen or ctrl is released.

Ctrl-Shift-Up: scroll-text-up - Scroll text up a line w/o moving cursor's relative
position on screen. Repeat is number of lines or if >0 and <1.0 then percent of
screen. Set move_cursor to False to leave cursor in current position within the
source, otherwise it is moved so the cursor remains on same screen line.

Ctrl-Slash: undo - Undo last action

Ctrl-Space: set-mark-command - Set start of text marking for selection at current
cursor position. Subsequently, all cursor move operations will automatically extend
the text selection until stop-mark-command is issued. Unit defines what is selected:
can be one of char, line, or block (rectangle).

Ctrl-T: forward-tab - Action varies according to focus: Active Editor Commands:
Place a tab character at the current cursor position ; Search Manager Instance
Commands: Place a forward tab at the current cursor position in search or replace
string

Ctrl-Tab: begin-visited-document-cycle(move_back=True) - Start moving
between documents in the order they were visited. Starts modal key interaction
that ends when a key other than tab is seen or ctrl is released.

Ctrl-U: initiate-repeat - Enter a sequence of digits indicating number of times to
repeat the subsequent command or keystroke.

Ctrl-Underscore: zoom-reset - Action varies according to focus: Document
Viewer Commands: Reset documentation font size to default; General Editor
Commands: Reset font zoom factor back to zero

Ctrl-Up: select-more - Select more code on either the current line or larger
multi-line blocks.

Ctrl-V: forward-page - Move cursor forward one page

Ctrl-W: cut - Action varies according to focus: Active Editor Commands: Cut
selected text ; Search Manager Instance Commands: Cut selected text ; Toolbar
Search Commands: Cut selection

Ctrl-X 1: unsplit - Unsplit all editors so there's only one. Action specifies how to
choose the remaining displayed editor. One of:

Key Binding Reference

376

current -- Show current editor
close -- Close current editor before unsplitting
recent -- Change to recent buffer before unsplitting
recent-or-close -- Change to recent buffer before closing
split, or close the current buffer if there is only
one split left.

NOTE: The parameters for this command are subject to change in the future.

Ctrl-X 2: split-vertically - Split current view vertically. Create new editor in new
view when new==1.

Ctrl-X 3: split-horizontally - Split current view horizontally.

Ctrl-X 4 A: add-change-log-entry - Add a change log entry

Ctrl-X 5 0: close-window - Close the current window and all documents and
panels in it

Ctrl-X 5 2: new-document-window - Create a new document window with same
documents and panels as in the current document window (if any; otherwise empty
with default panels)

Ctrl-X 5 3: new-document-window - Create a new document window with same
documents and panels as in the current document window (if any; otherwise empty
with default panels)

Ctrl-X 5 O: next-window - Switch to the next window alphabetically by title

Ctrl-X B: switch-document - Switches to named document. Name may either be
the complete name or the last path component of a path name.

Ctrl-X Bracketleft: start-of-document - Move cursor to start of document

Ctrl-X Bracketright: end-of-document - Move cursor to end of document

Ctrl-X Ctrl-C: quit - Quit the application.

Ctrl-X Ctrl-F: open-from-keyboard - Open a file from disk using keyboard-driven
selection of the file

Ctrl-X Ctrl-G: find-symbol-in-project - Allow user to visit point of definition of a
source symbol in the any file in the project by typing a fragment of the name

Ctrl-X Ctrl-O: open-from-project - Open document from the project via the Open
From Project dialog. The given fragment is used as the initial fragment filter and if it
is None, the selected text or the symbol under the cursor is used. If skip_if_unique
is true, the file is opened without the dialog being displayed if only one filename
matches the fragment.

Ctrl-X Ctrl-S: save - Save active document. Also close it if close is True.

Ctrl-X Ctrl-T: swap-lines(previous=True) - Swap the line at start of current
selection with the line that follows it, or the preceding line if previous is True.

Key Binding Reference

377

Ctrl-X Ctrl-W: write-file - Write current file to a new location, optionally omitting all
but the lines in the given range. The editor is changed to point to the new location
when follow is True. If follow is 'untitled' then the editor is changed to point to the
new location only if starting with an untitled buffer and saving the whole file. Note
that the editor contents will be truncated to the given start/end lines when follow is
True.

Ctrl-X Ctrl-X: exchange-point-and-mark - When currently marking text, this
exchanges the current position and mark ends of the current selection

Ctrl-X D: recent-document - Switches to previous document most recently visited
in the current window or window set if in one-window-per-editor windowing mode.

Ctrl-X E: execute-kbd-macro - Execute most recently recorded keyboard macro.
If register is None then the user is asked to enter a letter a-z for the register where
the macro is filed. Otherwise, register 'a' is used by default.

Ctrl-X G: find-symbol - Allow user to visit point of definition of a source symbol in
the current editor context by typing a fragment of the name

Ctrl-X I: insert-file - Insert a file at current cursor position, prompting user for file
selection

Ctrl-X K: kill-buffer - Close the current text file

Ctrl-X L C: use-lexer-cpp - Force syntax highlighting for C/C++ source

Ctrl-X L H: use-lexer-html - Force syntax highlighting for HTML

Ctrl-X L M: use-lexer-makefile - Force syntax highlighting for make files

Ctrl-X L N: use-lexer-none - Use no syntax highlighting

Ctrl-X L P: use-lexer-python - Force syntax highlighting for Python source

Ctrl-X L S: use-lexer-sql - Force syntax highlighting for SQL

Ctrl-X L X: use-lexer-Xml

Ctrl-X N: next-document - Move to the next document alphabetically in the list of
documents open in the current window

Ctrl-X O: move-editor-focus - Move focus to next or previous editor split,
optionally wrapping when the end is reached.

Ctrl-X P: previous-document - Move to the previous document alphabetically in
the list of documents open in the current window

Ctrl-X R B: goto-bookmark - Goto named bookmark

Ctrl-X R M: set-bookmark - Set a bookmark at current location on the editor. Mark
is the project-wide textual name of the bookmark.

Ctrl-X R Return: show-bookmarks - Show a list of all currently defined
bookmarks

Key Binding Reference

378

Ctrl-X R T: toggle-bookmark - Set or remove a bookmark at current location on
the editor. When set, the name of the bookmark is set to an auto-generated
default.

Ctrl-X Space: Multiple commands (first available is executed):

• break-set - Set a new regular breakpoint on current line
• break-clear - Clear the breakpoint on the current line

Ctrl-X U: undo - Undo last action

Ctrl-X parenleft: start-kbd-macro - Start definition of a keyboard macro. If
register=None then the user is prompted to enter a letter a-z under which to file the
macro. Otherwise, register 'a' is used by default.

Ctrl-X parenright: stop-kbd-macro - Stop definition of a keyboard macro

Ctrl-Y: Multiple commands (first available is executed):

• yank-line - Yank contents of kill buffer created with kill-line into the edit
buffer

• paste - Action varies according to focus: Active Editor Commands: Paste
text from clipboard ; Search Manager Instance Commands: Paste text from
clipboard ; Toolbar Search Commands: Paste from clipboard

Ctrl-parenleft: batch-search - Search on current selection using the Search in
Files tool. The look_in argument gets entered in the look in field if not None or ''.
The current selection is put into the search field if it doesn't span multiple lines and
either use_selection is true or there's nothing in the search field. The given search
text is used instead, if provided

Ctrl-parenright: batch-replace - Display search and replace in files tool.

Ctrl-underscore: undo - Undo last action

Delete: forward-delete-char - Action varies according to focus: Active Editor
Commands: Delete one character in front of the cursor ; Toolbar Search
Commands: Delete character in front of the cursor

Down: next-line - Move to screen next line, optionally repositioning character
within line: 'same' to leave in same horizontal position, 'start' at start, 'end' at end,
or 'fnb' for first non-blank char.

End: end-of-line - Action varies according to focus: Active Editor Commands:
Move to end of current line; Toolbar Search Commands: Move to the end of the
toolbar search entry

Esc X: command-by-name - Execute given command by name, collecting any
args as needed

Key Binding Reference

379

F1: Multiple commands (first available is executed):

• show-horizontal-tools - Show the horizontal tool area
• minimize-horizontal-tools - Minimize the horizontal tool area

F11: frame-up - Move up the current debug stack

F12: frame-down - Move down the current debug stack

F2: Multiple commands (first available is executed):

• show-vertical-tools - Show the vertical tool area
• minimize-vertical-tools - Minimize the vertical tool area

F3: search-forward - Search again using the search manager's current settings in
forward direction

F4: goto-selected-symbol-defn - Goto the definition of the selected source
symbol, optionally showing the definition in another split if one is available and
other_split is True.

F5: debug-continue - Continue (or start) debugging, to next breakpoint (press Alt
to continue all paused debug processes)

F6: step-over-statement - Step over current statement

F7: step-into - Step into current execution point, or start debugging at first line

F8: step-out - Step out of the current function or method

F9: Multiple commands (first available is executed):

• break-set - Set a new regular breakpoint on current line
• break-clear - Clear the breakpoint on the current line

Home: beginning-of-line - Action varies according to focus: Active Editor
Commands: Move to beginning of current line. When toggle is True, moves to the
end of the leading white space if already at the beginning of the line (and vice
versa).; Toolbar Search Commands: Move to the beginning of the toolbar search
entry

Home: beginning-of-line-text - Move to end of the leading white space, if any, on
the current line. If toggle is True, moves to the beginning of the line if already at the
end of the leading white space (and vice versa).

ISO_Left_Tab: backward-tab - Outdent line at current position

Insert: toggle-overtype - Toggle status of overtyping mode

Key Binding Reference

380

Left: backward-char - Action varies according to focus: Active Editor Commands:
Move cursor backward one character ; Toolbar Search Commands: Move
backward one character

Next: forward-page - Move cursor forward one page

Page_Down: forward-page - Move cursor forward one page

Page_Up: backward-page - Move cursor backward one page

Prior: backward-page - Move cursor backward one page

Return: new-line - Place a new line at the current cursor position

Right: forward-char - Action varies according to focus: Active Editor Commands:
Move cursor forward one character ; Toolbar Search Commands: Move forward
one character

Shift-Alt-A: diff-merge-a-b

Shift-Alt-B: diff-merge-b-a

Shift-Alt-Down: next-line-extend-rect - Move to next screen line, adjusting the
rectangular selection range to new position, optionally repositioning character
within line: same' to leave in same horizontal position, 'start' at start, 'end' at end,
or 'fnb' for first non-blank char.

Shift-Alt-F5: debug-continue-all - Continue all paused debug processes

Shift-Alt-Left: backward-char-extend-rect - Move cursor backward one
character, adjusting the rectangular selection range to new position

Shift-Alt-N: diff-next

Shift-Alt-P: diff-previous

Shift-Alt-Right: forward-char-extend-rect - Move cursor forward one character,
adjusting the rectangular selection range to new position

Shift-Alt-Up: previous-line-extend-rect - Move to previous screen line, adjusting
the rectangular selection range to new position, optionally repositioning character
within line: same' to leave in same horizontal position, 'start' at start, 'end' at end,
or 'fnb' for first non-blank char.

Shift-BackSpace: backward-delete-char - Action varies according to focus:
Active Editor Commands: Delete one character behind the cursor, or the current
selection if not empty. ; Toolbar Search Commands: Delete character behind the
cursor

Shift-Ctrl-F8: start-select-block - Turn on auto-select block mode

Shift-Delete: cut - Action varies according to focus: Active Editor Commands: Cut
selected text ; Search Manager Instance Commands: Cut selected text ; Toolbar
Search Commands: Cut selection

Key Binding Reference

381

Shift-Down: next-line-extend - Move to next screen line, adjusting the selection
range to new position, optionally repositioning character within line: same' to leave
in same horizontal position, 'start' at start, 'end' at end, 'fnb' for first non-blank char,
or 'xcode' to simulate XCode style Shift-Alt line selection.

Shift-End: end-of-line-extend - Action varies according to focus: Active Editor
Commands: Move to end of current line, adjusting the selection range to new
position ; Toolbar Search Commands: Move to the end of the toolbar search entry,
extending the selection

Shift-F1: move-focus - Move the keyboard focus forward within the Window to the
next editable area

Shift-F11: frame-show - Show the position (thread and stack frame) where the
debugger originally stopped

Shift-F2: Multiple commands (first available is executed):

• enter-fullscreen - Hide both the vertical and horizontal tool areas and
toolbar, saving previous state so it can be restored later with
exit_fullscreen

• exit-fullscreen - Restore previous non-fullscreen state of all tools and tool
bar

Shift-F3: search-backward - Search again using the search manager's current
settings in backward direction

Shift-F4: find-points-of-use - Find points of use for a symbol. The symbol defaults
to the active selection.

Shift-F5: debug-file - Start debugging the current file (rather than the main entry
point)

Shift-F6: run-all-tests - Runs all the tests in testing panel.

Shift-F7: run-current-tests - Runs the current test or tests, if possible. The current
tests are determined by the current position in the active view. The tests are
debugged when debug is True.

Shift-F8: start-select-char - Turn on auto-select mode character by character

Shift-F9: Multiple commands (first available is executed):

• break-enable - Enable the breakpoint on the current line
• break-disable - Disable the breakpoint on current line

Shift-Home: beginning-of-line-extend - Action varies according to focus: Active
Editor Commands: Move to beginning of current line, adjusting the selection range
to the new position. When toggle is True, moves to the end of the leading white

Key Binding Reference

382

space if already at the beginning of the line (and vice versa).; Toolbar Search
Commands: Move to the beginning of the toolbar search entry, extending the
selection

Shift-Home: beginning-of-line-text-extend - Move to end of the leading white
space, if any, on the current line, adjusting the selection range to the new position.
If toggle is True, moves to the beginning of the line if already at the end of the
leading white space (and vice versa).

Shift-Insert: paste - Action varies according to focus: Active Editor Commands:
Paste text from clipboard ; Search Manager Instance Commands: Paste text from
clipboard ; Toolbar Search Commands: Paste from clipboard

Shift-Left: backward-char-extend - Action varies according to focus: Active Editor
Commands: Move cursor backward one character, adjusting the selection range to
new position ; Toolbar Search Commands: Move backward one character,
extending the selection

Shift-Next: forward-page-extend - Move cursor forward one page, adjusting the
selection range to new position

Shift-Page_Down: forward-page-extend - Move cursor forward one page,
adjusting the selection range to new position

Shift-Page_Up: backward-page-extend - Move cursor backward one page,
adjusting the selection range to new position

Shift-Prior: backward-page-extend - Move cursor backward one page, adjusting
the selection range to new position

Shift-Return: new-line-before - Place a new line before the current line

Shift-Right: forward-char-extend - Action varies according to focus: Active Editor
Commands: Move cursor forward one character, adjusting the selection range to
new position ; Toolbar Search Commands: Move forward one character, extending
the selection

Shift-Tab: backward-tab - Outdent line at current position

Shift-Up: previous-line-extend - Move to previous screen line, adjusting the
selection range to new position, optionally repositioning character within line: same'
to leave in same horizontal position, 'start' at start, 'end' at end, 'fnb' for first
non-blank char, or 'xcode' to simulate XCode style Shift-Alt line selection.

Tab: tab-key - Implement the tab key, the action of which is configurable by
preference

Up: previous-line - Move to previous screen line, optionally repositioning
character within line: same' to leave in same horizontal position, 'start' at start, 'end'
at end, or 'fnb' for first non-blank char.

Visual-Esc: exit-visual-mode - Exit visual mode and return back to default mode

Key Binding Reference

383

21.3. VI/VIM Personality
This section documents all the default key bindings for the VI/VIM keyboard
personality, set by the Personality preference.

Alt-1: fold-python-methods - Fold up all Python methods, expand all classes, and
leave other fold points alone

Alt-2: fold-python-classes - Fold up all Python classes but leave other fold points
alone

Alt-3: fold-python-classes-and-defs - Fold up all Python classes, methods, and
functions but leave other fold points alone

Alt-BackSpace: backward-delete-word - Action varies according to focus: Active
Editor Commands: Delete one word behind of the cursor ; Toolbar Search
Commands: Delete word behind the cursor

Alt-Delete: backward-delete-word - Action varies according to focus: Active
Editor Commands: Delete one word behind of the cursor ; Toolbar Search
Commands: Delete word behind the cursor

Alt-Down: fold-expand-more-current - Expand the current fold point one more
level

Alt-End: fold-expand-all - Expand all fold points in the current file

Alt-F11: prev-points-of-use-match - Display the previous match in the active
points of use tool

Alt-F12: next-points-of-use-match - Display the next match in the active points of
use tool

Alt-F3: search - Bring up the search manager in search mode.

Alt-F4: close-window - Close the current window and all documents and panels in
it

Alt-F5: run-to-cursor - Run to current cursor position

Alt-F6: run-failed-tests - Re-run all the previously failed tests. The tests are
debugged when debug is True.

Alt-F7: run-last-tests - Run again the last group of tests that were run. The tests
are debugged when debug is True.

Alt-Home: fold-collapse-all - Collapse all fold points in the current file

Alt-Left: visit-history-previous - Move back in history to previous visited editor
position

Alt-Page_Down: fold-expand-all-current - Expand the current fold point
completely

Key Binding Reference

384

Alt-Page_Up: fold-collapse-all-current - Collapse the current fold point
completely

Alt-Return: new-line - Place a new line at the current cursor position

Alt-Right: visit-history-next - Move forward in history to next visited editor
position

Alt-Slash: fold-toggle - Toggle the current fold point

Alt-Up: fold-collapse-more-current - Collapse the current fold point one more
level

BackSpace: backward-delete-char - Action varies according to focus: Active
Editor Commands: Delete one character behind the cursor, or the current selection
if not empty. ; Toolbar Search Commands: Delete character behind the cursor

Browse-!: filter-next-move - Filter the lines covered by the next cursor move
command through an external command and replace the lines with the result

Browse-": set-register - Set the register to use for subsequent cut/copy/paste
operations

Browse-#: isearch-sel-backward(persist=0, whole_word=1) - Initiate
incremental mini-search backward from the cursor position, using current selection
as the search string. Set persist=False to do the search but end the interactive
search session immediately.

Browse-$: end-of-line - Action varies according to focus: Active Editor
Commands: Move to end of current line; Toolbar Search Commands: Move to the
end of the toolbar search entry

Browse-%: goto-percent-line(cursor="fnb") - Position cursor at start of line at
given percent in file. This uses the previously entered numeric modifier or defaults
to going to line one. The cursor can be positioned at 'start', 'end', or 'fnb' for first
non-blank character, or in VI mode it will do brace matching operation to reflect
how VI overrides this command.

Browse-&: repeat-replace - Repeat the last query replace or range replace
operation on the current line. The first match is replaced without confirmation.

Browse-+: next-line-in-file(cursor="fnb") - Move to next line in file, repositioning
character within line: 'start' at start, 'end' at end, or 'fnb' for first non-blank char.

Browse-,: repeat-search-char(opposite=1) - Repeat the last search_char
operation, optionally in the opposite direction.

Browse-.: repeat-command - Repeat the last editor command

Browse-/: isearch-forward-regex - Action varies according to focus: Active Editor
Commands: Initiate incremental regular expression mini-search forward from the
cursor position, optionally entering the given search string ; Document Viewer

Key Binding Reference

385

Commands: Initiate incremental regular expression mini-search forward from the
cursor position, optionally entering the given search string.

Browse-0: beginning-of-line(toggle=0) - Action varies according to focus: Active
Editor Commands: Move to beginning of current line. When toggle is True, moves
to the end of the leading white space if already at the beginning of the line (and
vice versa).; Toolbar Search Commands: Move to the beginning of the toolbar
search entry

Browse-1: initiate-numeric-modifier(digit=1) - VI style repeat/numeric modifier
for following command

Browse-2: initiate-numeric-modifier(digit=2) - VI style repeat/numeric modifier
for following command

Browse-3: initiate-numeric-modifier(digit=3) - VI style repeat/numeric modifier
for following command

Browse-4: initiate-numeric-modifier(digit=4) - VI style repeat/numeric modifier
for following command

Browse-5: initiate-numeric-modifier(digit=5) - VI style repeat/numeric modifier
for following command

Browse-6: initiate-numeric-modifier(digit=6) - VI style repeat/numeric modifier
for following command

Browse-7: initiate-numeric-modifier(digit=7) - VI style repeat/numeric modifier
for following command

Browse-8: initiate-numeric-modifier(digit=8) - VI style repeat/numeric modifier
for following command

Browse-9: initiate-numeric-modifier(digit=9) - VI style repeat/numeric modifier
for following command

Browse-;: repeat-search-char - Repeat the last search_char operation, optionally
in the opposite direction.

Browse-<: outdent-next-move - Outdent lines spanned by next cursor move

Browse-=: indent-to-match-next-move - Indent lines spanned by next cursor
move to match, based on the preceding line

Browse->: indent-next-move - Indent lines spanned by next cursor move

Browse-?: isearch-backward-regex - Action varies according to focus: Active
Editor Commands: Initiate incremental regular expression mini-search backward
from the cursor position, optionally entering the given search string ; Document
Viewer Commands: Initiate incremental regular expression mini-search backward
from the cursor position, optionally entering the given search string.

Key Binding Reference

386

Browse-@: execute-kbd-macro(register=None) - Execute most recently
recorded keyboard macro. If register is None then the user is asked to enter a
letter a-z for the register where the macro is filed. Otherwise, register 'a' is used by
default.

Browse-A: enter-insert-mode(pos="after") - Enter editor insert mode

Browse-Apostrophe: vi-goto-bookmark - Goto bookmark using single character
name defined by the next pressed key

Browse-BackSpace: backward-char - Action varies according to focus: Active
Editor Commands: Move cursor backward one character ; Toolbar Search
Commands: Move backward one character

Browse-Ctrl-B: backward-page - Move cursor backward one page

Browse-Ctrl-C: vi-ctrl-c

Browse-Ctrl-D: scroll-text-down(repeat=0.5) - Scroll text down a line w/o moving
cursor's relative position on screen. Repeat is number of lines or if >0 and <1.0
then percent of screen. Set move_cursor to False to leave cursor in current
position within the source, otherwise it is moved so the cursor remains on same
screen line.

Browse-Ctrl-E: scroll-text-down(move_cursor=False) - Scroll text down a line
w/o moving cursor's relative position on screen. Repeat is number of lines or if >0
and <1.0 then percent of screen. Set move_cursor to False to leave cursor in
current position within the source, otherwise it is moved so the cursor remains on
same screen line.

Browse-Ctrl-F: forward-page - Move cursor forward one page

Browse-Ctrl-I: visit-history-next - Move forward in history to next visited editor
position

Browse-Ctrl-J: next-line - Move to screen next line, optionally repositioning
character within line: 'same' to leave in same horizontal position, 'start' at start,
'end' at end, or 'fnb' for first non-blank char.

Browse-Ctrl-M: next-line-in-file(cursor="fnb") - Move to next line in file,
repositioning character within line: 'start' at start, 'end' at end, or 'fnb' for first
non-blank char.

Browse-Ctrl-N: next-line - Move to screen next line, optionally repositioning
character within line: 'same' to leave in same horizontal position, 'start' at start,
'end' at end, or 'fnb' for first non-blank char.

Browse-Ctrl-O: visit-history-previous - Move back in history to previous visited
editor position

Key Binding Reference

387

Browse-Ctrl-P: previous-line - Move to previous screen line, optionally
repositioning character within line: same' to leave in same horizontal position, 'start'
at start, 'end' at end, or 'fnb' for first non-blank char.

Browse-Ctrl-Q: start-select-block - Turn on auto-select block mode

Browse-Ctrl-R: redo - Redo last action

Browse-Ctrl-Shift-O: open-from-project - Open document from the project via
the Open From Project dialog. The given fragment is used as the initial fragment
filter and if it is None, the selected text or the symbol under the cursor is used. If
skip_if_unique is true, the file is opened without the dialog being displayed if only
one filename matches the fragment.

Browse-Ctrl-Shift-P: find-symbol-in-project - Allow user to visit point of definition
of a source symbol in the any file in the project by typing a fragment of the name

Browse-Ctrl-Shift-T: find-symbol - Allow user to visit point of definition of a
source symbol in the current editor context by typing a fragment of the name

Browse-Ctrl-U: scroll-text-up(repeat=0.5) - Scroll text up a line w/o moving
cursor's relative position on screen. Repeat is number of lines or if >0 and <1.0
then percent of screen. Set move_cursor to False to leave cursor in current
position within the source, otherwise it is moved so the cursor remains on same
screen line.

Browse-Ctrl-V: vi-ctrl-v

Browse-Ctrl-W Browse-+: grow-split-vertically - Increase height of this split

Browse-Ctrl-W Browse-Ctrl-W: move-editor-focus - Move focus to next or
previous editor split, optionally wrapping when the end is reached.

Browse-Ctrl-W Browse-Ctrl-^: vi-split-edit-alternate

Browse-Ctrl-W Browse-Down: move-editor-focus(wrap=False) - Move focus to
next or previous editor split, optionally wrapping when the end is reached.

Browse-Ctrl-W Browse-Minus: shrink-split-vertically - Decrease height of this
split

Browse-Ctrl-W Browse-Up: move-editor-focus(dir=-1, wrap=False) - Move
focus to next or previous editor split, optionally wrapping when the end is reached.

Browse-Ctrl-W Browse-W: move-editor-focus(dir=-1) - Move focus to next or
previous editor split, optionally wrapping when the end is reached.

Browse-Ctrl-W Browse-b: move-editor-focus-last - Move focus to last editor
split

Browse-Ctrl-W Browse-c: unsplit(action="recent-or-close") - Unsplit all editors
so there's only one. Action specifies how to choose the remaining displayed editor.
One of:

Key Binding Reference

388

current -- Show current editor
close -- Close current editor before unsplitting
recent -- Change to recent buffer before unsplitting
recent-or-close -- Change to recent buffer before closing
split, or close the current buffer if there is only
one split left.

NOTE: The parameters for this command are subject to change in the future.

Browse-Ctrl-W Browse-j: move-editor-focus(wrap=False) - Move focus to next
or previous editor split, optionally wrapping when the end is reached.

Browse-Ctrl-W Browse-k: move-editor-focus(dir=-1, wrap=False) - Move focus
to next or previous editor split, optionally wrapping when the end is reached.

Browse-Ctrl-W Browse-n: split-vertically(new=1) - Split current view vertically.
Create new editor in new view when new==1.

Browse-Ctrl-W Browse-o: unsplit - Unsplit all editors so there's only one. Action
specifies how to choose the remaining displayed editor. One of:

current -- Show current editor
close -- Close current editor before unsplitting
recent -- Change to recent buffer before unsplitting
recent-or-close -- Change to recent buffer before closing
split, or close the current buffer if there is only
one split left.

NOTE: The parameters for this command are subject to change in the future.

Browse-Ctrl-W Browse-p: move-editor-focus-previous - Move focus to previous
editor split

Browse-Ctrl-W Browse-q: Multiple commands (first available is executed):

• unsplit(action="close") - Unsplit all editors so there's only one. Action
specifies how to choose the remaining displayed editor. One of:

current -- Show current editor
close -- Close current editor before unsplitting
recent -- Change to recent buffer before unsplitting
recent-or-close -- Change to recent buffer before closing
split, or close the current buffer if there is only
one split left.

NOTE: The parameters for this command are subject to change in the
future.

• close(close_window=1) - Close active document. Abandon any
changes when ignore_changes is True. Close empty windows when

Key Binding Reference

389

close_window is true and quit if all document windows closed when
can_quit is true.

Browse-Ctrl-W Browse-s: split-vertically - Split current view vertically. Create
new editor in new view when new==1.

Browse-Ctrl-W Browse-t: move-editor-focus-first - Move focus to first editor
split

Browse-Ctrl-W Browse-v: split-horizontally - Split current view horizontally.

Browse-Ctrl-X: vi-ctrl-x

Browse-Ctrl-Y: scroll-text-up(move_cursor=False) - Scroll text up a line w/o
moving cursor's relative position on screen. Repeat is number of lines or if >0 and
<1.0 then percent of screen. Set move_cursor to False to leave cursor in current
position within the source, otherwise it is moved so the cursor remains on same
screen line.

Browse-Ctrl-^: nth-document - Move to the nth document alphabetically in the
list of documents open in the current window

Browse-Ctrl-h: backward-char - Action varies according to focus: Active Editor
Commands: Move cursor backward one character ; Toolbar Search Commands:
Move backward one character

Browse-Esc: clear-move-command - Clear any pending move command action,
as for VI mode

Browse-F: search-char(dir=1, single_line=1) - Search for the given character.
Searches to right if dir > 0 and to left if dir < 0. Optionally place cursor pos
characters to left or right of the target (e.g., use -1 to place one to left). If repeat >
1, the Nth match is found. Set single_line=1 to search only within the current line.

Browse-G Browse-Shift-I: enter-insert-mode(pos="sol") - Enter editor insert
mode

Browse-Grave: vi-goto-bookmark - Goto bookmark using single character name
defined by the next pressed key

Browse-I: enter-insert-mode(pos="before") - Enter editor insert mode

Browse-Insert: enter-insert-mode(pos="before") - Enter editor insert mode

Browse-Minus: previous-line-in-file(cursor="fnb") - Move to previous line in file,
repositioning character within line: 'start' at start, 'end' at end, or 'fnb' for first
non-blank char.

Browse-O: enter-insert-mode(pos="new-below") - Enter editor insert mode

Key Binding Reference

390

Browse-Return: next-line(cursor="start") - Move to screen next line, optionally
repositioning character within line: 'same' to leave in same horizontal position,
'start' at start, 'end' at end, or 'fnb' for first non-blank char.

Browse-Shift-A: enter-insert-mode(pos="eol") - Enter editor insert mode

Browse-Shift-B: backward-word(delimiters=" tnr") - Action varies according to
focus: Active Editor Commands: Move cursor backward one word. Optionally,
provide a string that contains the delimiters to define which characters are part of a
word. Gravity may be "start" or "end" to indicate whether cursor is placed at start or
end of the word.; Toolbar Search Commands: Move backward one word

Browse-Shift-C: delete-to-end-of-line-insert - Delete everything between the
cursor and end of line and enter insert move (when working in a modal editor key
binding)

Browse-Shift-D: delete-to-end-of-line(post_offset=-1) - Delete everything
between the cursor and end of line

Browse-Shift-E: forward-word(delimiters=" tnr", gravity="endm1") - Action
varies according to focus: Active Editor Commands: Move cursor forward one
word. Optionally, provide a string that contains the delimiters to define which
characters are part of a word. Gravity may be "start" or "end" to indicate whether
cursor is placed at start or end of the word.; Toolbar Search Commands: Move
forward one word

Browse-Shift-F: search-char(dir=-1, single_line=1) - Search for the given
character. Searches to right if dir > 0 and to left if dir < 0. Optionally place cursor
pos characters to left or right of the target (e.g., use -1 to place one to left). If
repeat > 1, the Nth match is found. Set single_line=1 to search only within the
current line.

Browse-Shift-G: goto-nth-line-default-end(cursor="fnb") - Same as
goto_nth_line but defaults to end of file if no lineno is given

Browse-Shift-H: cursor-move-to-top - Move cursor to top of display (without
scrolling), optionally at an offset of given number of lines below top

Browse-Shift-I: enter-insert-mode(pos="fnb") - Enter editor insert mode

Browse-Shift-J: join-lines - Join together specified number of lines after current
line (replace newlines with the given delimiter (single space by default)

Browse-Shift-L: cursor-move-to-bottom - Move cursor to bottom of display
(without scrolling), optionally at an offset of given number of lines before bottom

Browse-Shift-M: cursor-move-to-center - Move cursor to center of display
(without scrolling)

Browse-Shift-N: isearch-repeat(reverse=1) - Repeat the most recent isearch,
using same string and regex/text. Reverse direction when reverse is True.

Key Binding Reference

391

Browse-Shift-O: enter-insert-mode(pos="new-above") - Enter editor insert
mode

Browse-Shift-P: paste-register(pos=-1) - Paste text from register as before or
after the current position. If the register contains only lines, then the lines are
pasted before or after current line (rather than at cursor). If the register contains
fragments of lines, the text is pasted over the current selection or either before or
after the cursor. Set pos = 1 to paste after, or -1 to paste before. Set indent=1 to
indent the pasted text to match current line. Set cursor=-1 to place cursor before
lines or cursor=1 to place it after lines after paste completes.

Browse-Shift-R: enter-replace-mode - Enter editor replace mode

Browse-Shift-S: delete-line-insert - Delete the current line or lines when the
selection spans multiple lines or given repeat is > 1. Enters insert mode (when
working with modal key bindings).

Browse-Shift-T: search-char(dir=-1, pos=1, single_line=1) - Search for the
given character. Searches to right if dir > 0 and to left if dir < 0. Optionally place
cursor pos characters to left or right of the target (e.g., use -1 to place one to left).
If repeat > 1, the Nth match is found. Set single_line=1 to search only within the
current line.

Browse-Shift-V: start-select-line - Turn on auto-select mode line by line

Browse-Shift-W: forward-word(delimiters=" tnr") - Action varies according to
focus: Active Editor Commands: Move cursor forward one word. Optionally,
provide a string that contains the delimiters to define which characters are part of a
word. Gravity may be "start" or "end" to indicate whether cursor is placed at start or
end of the word.; Toolbar Search Commands: Move forward one word

Browse-Shift-Y: move-to-register(unit="line") - Cut or copy a specified number
of characters or lines, or the current selection. Set cut=1 to remove the range of
text from the editor after moving to register (otherwise it is just copied). Unit should
be one of 'char' or 'line' or 'sel' for current selection.

Browse-Shift-Z Browse-Shift-Q: close(ignore_changes=1, close_window=1) -
Close active document. Abandon any changes when ignore_changes is True.
Close empty windows when close_window is true and quit if all document windows
closed when can_quit is true.

Browse-Shift-Z Browse-Shift-Z: write-file-and-close(filename=None) - Write
current document to given location and close it. Saves to current file name if the
given filename is None.

Browse-Shift-x: backward-delete-char - Action varies according to focus: Active
Editor Commands: Delete one character behind the cursor, or the current selection
if not empty. ; Toolbar Search Commands: Delete character behind the cursor

Key Binding Reference

392

Browse-Space: forward-char - Action varies according to focus: Active Editor
Commands: Move cursor forward one character ; Toolbar Search Commands:
Move forward one character

Browse-T: search-char(dir=1, pos=1, single_line=1) - Search for the given
character. Searches to right if dir > 0 and to left if dir < 0. Optionally place cursor
pos characters to left or right of the target (e.g., use -1 to place one to left). If
repeat > 1, the Nth match is found. Set single_line=1 to search only within the
current line.

Browse-Underscore: beginning-of-line-text - Move to end of the leading white
space, if any, on the current line. If toggle is True, moves to the beginning of the
line if already at the end of the leading white space (and vice versa).

Browse-[Browse-p: paste-register(pos=-1, indent=1) - Paste text from register
as before or after the current position. If the register contains only lines, then the
lines are pasted before or after current line (rather than at cursor). If the register
contains fragments of lines, the text is pasted over the current selection or either
before or after the cursor. Set pos = 1 to paste after, or -1 to paste before. Set
indent=1 to indent the pasted text to match current line. Set cursor=-1 to place
cursor before lines or cursor=1 to place it after lines after paste completes.

Browse-*: isearch-sel-forward(persist=0, whole_word=1) - Action varies
according to focus: Active Editor Commands: Initiate incremental mini-search
forward from the cursor position, using current selection as the search string. Set
persist=False to do the search but end the interactive search session immediately.;
Document Viewer Commands: Initiate incremental mini-search forward from the
cursor position, using current selection as the search string. Set persist=False to
do the search but end the interactive search session immediately.

Browse-] Browse-p: paste-register(indent=1) - Paste text from register as before
or after the current position. If the register contains only lines, then the lines are
pasted before or after current line (rather than at cursor). If the register contains
fragments of lines, the text is pasted over the current selection or either before or
after the cursor. Set pos = 1 to paste after, or -1 to paste before. Set indent=1 to
indent the pasted text to match current line. Set cursor=-1 to place cursor before
lines or cursor=1 to place it after lines after paste completes.

Browse-^: beginning-of-line-text(toggle=0) - Move to end of the leading white
space, if any, on the current line. If toggle is True, moves to the beginning of the
line if already at the end of the leading white space (and vice versa).

Browse-b: backward-word - Action varies according to focus: Active Editor
Commands: Move cursor backward one word. Optionally, provide a string that
contains the delimiters to define which characters are part of a word. Gravity may
be "start" or "end" to indicate whether cursor is placed at start or end of the word.;
Toolbar Search Commands: Move backward one word

Key Binding Reference

393

Browse-c: delete-next-move-insert - Delete the text covered by the next cursor
move command and then enter insert mode (when working in a modal editor key
binding)

Browse-colon: vi-command-by-name - Execute a VI command (implements ":"
commands from VI)

Browse-d: delete-next-move - Delete the text covered by the next cursor move
command.

Browse-e: forward-word(gravity="endm1") - Action varies according to focus:
Active Editor Commands: Move cursor forward one word. Optionally, provide a
string that contains the delimiters to define which characters are part of a word.
Gravity may be "start" or "end" to indicate whether cursor is placed at start or end
of the word.; Toolbar Search Commands: Move forward one word

Browse-g Browse-$: end-of-screen-line - Move to end of current wrapped line

Browse-g Browse-0: beginning-of-screen-line - Move to beginning of current
wrapped line

Browse-g Browse-Shift-D: goto-selected-symbol-defn - Goto the definition of
the selected source symbol, optionally showing the definition in another split if one
is available and other_split is True.

Browse-g Browse-Shift-E: backward-word(delimiters=" tnr",
gravity="endm1") - Action varies according to focus: Active Editor Commands:
Move cursor backward one word. Optionally, provide a string that contains the
delimiters to define which characters are part of a word. Gravity may be "start" or
"end" to indicate whether cursor is placed at start or end of the word.; Toolbar
Search Commands: Move backward one word

Browse-g Browse-Shift-J: join-lines(delim="") - Join together specified number
of lines after current line (replace newlines with the given delimiter (single space by
default)

Browse-g Browse-Shift-P: paste-register(pos=-1, cursor=1) - Paste text from
register as before or after the current position. If the register contains only lines,
then the lines are pasted before or after current line (rather than at cursor). If the
register contains fragments of lines, the text is pasted over the current selection or
either before or after the cursor. Set pos = 1 to paste after, or -1 to paste before.
Set indent=1 to indent the pasted text to match current line. Set cursor=-1 to place
cursor before lines or cursor=1 to place it after lines after paste completes.

Browse-g Browse-Shift-T: previous-document - Move to the previous document
alphabetically in the list of documents open in the current window

Browse-g Browse-Shift-U: case-upper-next-move - Change case of text
spanned by next cursor movement to upper case

Key Binding Reference

394

Browse-g Browse-T: next-document - Move to the next document alphabetically
in the list of documents open in the current window

Browse-g Browse-^: beginning-of-screen-line-text - Move to first non-blank
character at beginning of current wrapped line

Browse-g Browse-d: goto-selected-symbol-defn - Goto the definition of the
selected source symbol, optionally showing the definition in another split if one is
available and other_split is True.

Browse-g Browse-e: backward-word(gravity="endm1") - Action varies
according to focus: Active Editor Commands: Move cursor backward one word.
Optionally, provide a string that contains the delimiters to define which characters
are part of a word. Gravity may be "start" or "end" to indicate whether cursor is
placed at start or end of the word.; Toolbar Search Commands: Move backward
one word

Browse-g Browse-g: goto-nth-line(cursor="fnb") - Position cursor at start of
given line number (1=first, -1 = last). This differs from goto-line in that it never
prompts for a line number but instead uses the previously entered numeric modifier
or defaults to going to line one. The cursor can be positioned at 'start', 'end', or 'fnb'
for first non-blank character.

Browse-g Browse-j: next-line - Move to screen next line, optionally repositioning
character within line: 'same' to leave in same horizontal position, 'start' at start,
'end' at end, or 'fnb' for first non-blank char.

Browse-g Browse-k: previous-line - Move to previous screen line, optionally
repositioning character within line: same' to leave in same horizontal position, 'start'
at start, 'end' at end, or 'fnb' for first non-blank char.

Browse-g Browse-m: middle-of-screen-line - Move to middle of current wrapped
line

Browse-g Browse-p: paste-register(cursor=1) - Paste text from register as
before or after the current position. If the register contains only lines, then the lines
are pasted before or after current line (rather than at cursor). If the register
contains fragments of lines, the text is pasted over the current selection or either
before or after the cursor. Set pos = 1 to paste after, or -1 to paste before. Set
indent=1 to indent the pasted text to match current line. Set cursor=-1 to place
cursor before lines or cursor=1 to place it after lines after paste completes.

Browse-g Browse-q Browse-q: fill-paragraph - Attempt to auto-justify the
paragraph around the current start of selection

Browse-g Browse-r: replace-char(line_mode="extend") - Replace num
characters with given character. Set line_mode to multiline to allow replacing
across lines, extend to replace on current line and then extend the line length, and

Key Binding Reference

395

restrict to replace only if enough characters exist on current line after cursor
position.

Browse-g Browse-u: case-lower-next-move - Change case of text spanned by
next cursor movement to lower case

Browse-g Browse-v: previous-select - Turn on auto-select using previous mode
and selection

Browse-g Browse-~: case-swap-next-move - Change case of text spanned by
next cursor movement so each letter is the opposite of its current case

Browse-h: backward-char(wrap=0) - Action varies according to focus: Active
Editor Commands: Move cursor backward one character ; Toolbar Search
Commands: Move backward one character

Browse-j: next-line - Move to screen next line, optionally repositioning character
within line: 'same' to leave in same horizontal position, 'start' at start, 'end' at end,
or 'fnb' for first non-blank char.

Browse-k: previous-line - Move to previous screen line, optionally repositioning
character within line: same' to leave in same horizontal position, 'start' at start, 'end'
at end, or 'fnb' for first non-blank char.

Browse-l: forward-char(wrap=0) - Action varies according to focus: Active Editor
Commands: Move cursor forward one character ; Toolbar Search Commands:
Move forward one character

Browse-m: vi-set-bookmark - Set a bookmark at current location on the editor
using the next key press as the name of the bookmark.

Browse-n: isearch-repeat - Repeat the most recent isearch, using same string
and regex/text. Reverse direction when reverse is True.

Browse-p: paste-register - Paste text from register as before or after the current
position. If the register contains only lines, then the lines are pasted before or after
current line (rather than at cursor). If the register contains fragments of lines, the
text is pasted over the current selection or either before or after the cursor. Set pos
= 1 to paste after, or -1 to paste before. Set indent=1 to indent the pasted text to
match current line. Set cursor=-1 to place cursor before lines or cursor=1 to place it
after lines after paste completes.

Browse-q: Multiple commands (first available is executed):

• start-kbd-macro(register=None) - Start definition of a keyboard macro. If
register=None then the user is prompted to enter a letter a-z under which
to file the macro. Otherwise, register 'a' is used by default.

• stop-kbd-macro - Stop definition of a keyboard macro

Key Binding Reference

396

Browse-r: replace-char(line_mode="restrict") - Replace num characters with
given character. Set line_mode to multiline to allow replacing across lines, extend
to replace on current line and then extend the line length, and restrict to replace
only if enough characters exist on current line after cursor position.

Browse-s: forward-delete-char-insert - Delete one char in front of the cursor and
enter insert mode (when working in modal key bindings)

Browse-u: undo - Undo last action

Browse-v: start-select-char - Turn on auto-select mode character by character

Browse-w: forward-word - Action varies according to focus: Active Editor
Commands: Move cursor forward one word. Optionally, provide a string that
contains the delimiters to define which characters are part of a word. Gravity may
be "start" or "end" to indicate whether cursor is placed at start or end of the word.;
Toolbar Search Commands: Move forward one word

Browse-x: forward-delete-char-within-line - Delete one character in front of the
cursor unless at end of line, in which case delete backward. Do nothing if the line is
empty. This is VI style 'x' in browser mode.

Browse-y: move-to-register-next-move - Move the text spanned by the next
cursor motion to a register

Browse-z Browse-.: center-cursor - Scroll so cursor is centered on display

Browse-z Browse-Minus: cursor-to-bottom - Scroll so cursor is centered at
bottom of display

Browse-z Browse-Plus: cursor-to-top - Scroll so cursor is centered at top of
display

Browse-z Browse-Return: cursor-to-top - Scroll so cursor is centered at top of
display

Browse-z Browse-Shift-H: scroll-text-right(repeat=0.5) - Scroll text right a
column w/o moving cursor's relative position on screen. Repeat is number of
columns or if >0 and <1.0 then percent of screen.

Browse-z Browse-Shift-L: scroll-text-left(repeat=0.5) - Scroll text left a column
w/o moving cursor's relative position on screen. Repeat is number of columns or if
>0 and <1.0 then percent of screen.

Browse-z Browse-Shift-M: fold-collapse-all - Collapse all fold points in the
current file

Browse-z Browse-Shift-O: fold-expand-all-current - Expand the current fold
point completely

Browse-z Browse-Shift-R: fold-expand-all - Expand all fold points in the current
file

Key Binding Reference

397

Browse-z Browse-b: cursor-to-bottom - Scroll so cursor is centered at bottom of
display

Browse-z Browse-c: fold-collapse-current - Collapse the current fold point

Browse-z Browse-h: scroll-text-right - Scroll text right a column w/o moving
cursor's relative position on screen. Repeat is number of columns or if >0 and <1.0
then percent of screen.

Browse-z Browse-l: scroll-text-left - Scroll text left a column w/o moving cursor's
relative position on screen. Repeat is number of columns or if >0 and <1.0 then
percent of screen.

Browse-z Browse-m: vi-fold-less - Approximation of zm key binding in vim

Browse-z Browse-o: fold-expand-current - Expand the current fold point

Browse-z Browse-r: vi-fold-more - Approximation of zr key binding in vim

Browse-z Browse-t: cursor-to-top - Scroll so cursor is centered at top of display

Browse-z Browse-z: center-cursor - Scroll so cursor is centered on display

Browse-{: backward-paragraph - Move cursor backward one paragraph (to next
all-whitespace line).

Browse-|: goto-column - Move cursor to given column

Browse-}: forward-paragraph - Move cursor forward one paragraph (to next
all-whitespace line).

Browse-~: case-swap - Change case of the current selection, or character ahead
of the cursor if there is no selection, so each letter is the opposite of its current
case

Ctrl-1: activate-file-option-menu - Activate the file menu for the editor.

Ctrl-2: activate-symbol-option-menu-1 - Activate the 1st symbol menu for the
editor.

Ctrl-3: activate-symbol-option-menu-2 - Activate the 2nd symbol menu for the
editor.

Ctrl-4: activate-symbol-option-menu-3 - Activate the 3rd symbol menu for the
editor.

Ctrl-5: activate-symbol-option-menu-4 - Activate the 4th symbol menu for the
editor.

Ctrl-6: activate-symbol-option-menu-5 - Activate the 5th symbol menu for the
editor.

Ctrl-=: indent-to-match - Indent the current line or selected region to match
indentation of preceding non-blank line. Set toggle=True to indent instead of one
level higher if already at the matching position.

Key Binding Reference

398

Ctrl-Alt-Down: goto-next-bookmark(current_file_only=True) - Go to the next
bookmark, or the first one if no bookmark is selected. Stays within the file in the
current editor when current_file_only is True.

Ctrl-Alt-F5: debug-kill-all - Terminate all debug processes

Ctrl-Alt-F6: debug-failed-tests - Re-run all the previously failed tests in the
debugger.

Ctrl-Alt-F7: debug-last-tests - Debug the last group of tests that were run.

Ctrl-Alt-Left: goto-previous-bookmark - Go to the previous bookmark in the
bookmark list, or the last one if no bookmark is selected. Stays within the file in the
current editor when current_file_only is True.

Ctrl-Alt-Right: goto-next-bookmark - Go to the next bookmark, or the first one if
no bookmark is selected. Stays within the file in the current editor when
current_file_only is True.

Ctrl-Alt-Up: goto-previous-bookmark(current_file_only=True) - Go to the
previous bookmark in the bookmark list, or the last one if no bookmark is selected.
Stays within the file in the current editor when current_file_only is True.

Ctrl-Apostrophe: enclose(start="'", end="'") - Enclose the selection or the rest
of the current line when there is no selection with the given start and end strings.
The caret is moved to the end of the enclosed text.

Ctrl-BackSpace: backward-delete-word - Action varies according to focus: Active
Editor Commands: Delete one word behind of the cursor ; Toolbar Search
Commands: Delete word behind the cursor

Ctrl-Braceleft: enclose(start="{", end="}") - Enclose the selection or the rest of
the current line when there is no selection with the given start and end strings. The
caret is moved to the end of the enclosed text.

Ctrl-Bracketleft: enclose(start="[", end="]") - Enclose the selection or the rest of
the current line when there is no selection with the given start and end strings. The
caret is moved to the end of the enclosed text.

Ctrl-Delete: forward-delete-word - Action varies according to focus: Active Editor
Commands: Delete one word in front of the cursor ; Toolbar Search Commands:
Delete word in front of the cursor

Ctrl-Down: select-less - Select less code; undoes the last select-more command

Ctrl-End: end-of-document - Move cursor to end of document

Ctrl-Equal: zoom-in - Action varies according to focus: Document Viewer
Commands: Increase documentation font size; General Editor Commands: Zoom
in, increasing the text display size temporarily by one font size

Key Binding Reference

399

Ctrl-F12: command-by-name - Execute given command by name, collecting any
args as needed

Ctrl-F3: search-sel-forward - Search forward using current selection

Ctrl-F4: close - Close active document. Abandon any changes when
ignore_changes is True. Close empty windows when close_window is true and quit
if all document windows closed when can_quit is true.

Ctrl-F5: debug-kill - Terminate current debug process (press Alt to terminate all
debug processes)

Ctrl-F6: step-over - Step over current instruction

Ctrl-F8: start-select-line - Turn on auto-select mode line by line

Ctrl-F9: break-clear-all - Clear all breakpoints

Ctrl-Home: start-of-document - Move cursor to start of document

Ctrl-Insert: copy - Action varies according to focus: Active Editor Commands:
Copy selected text ; Document Viewer Commands: Copy any selected text. ;
Exceptions Commands: Copy the exception traceback to the clipboard ; Search
Manager Instance Commands: Copy selected text ; Toolbar Search Commands:
Cut selection

Ctrl-Left: backward-word - Action varies according to focus: Active Editor
Commands: Move cursor backward one word. Optionally, provide a string that
contains the delimiters to define which characters are part of a word. Gravity may
be "start" or "end" to indicate whether cursor is placed at start or end of the word.;
Toolbar Search Commands: Move backward one word

Ctrl-Less: enclose(start="<", end=">") - Enclose the selection or the rest of the
current line when there is no selection with the given start and end strings. The
caret is moved to the end of the enclosed text.

Ctrl-Minus: zoom-out - Action varies according to focus: Document Viewer
Commands: Decrease documentation font size; General Editor Commands: Zoom
out, increasing the text display size temporarily by one font size

Ctrl-Next: forward-page - Move cursor forward one page

Ctrl-Page_Down: next-document - Move to the next document alphabetically in
the list of documents open in the current window

Ctrl-Page_Up: previous-document - Move to the previous document
alphabetically in the list of documents open in the current window

Ctrl-Parenleft: enclose(start="(", end=")") - Enclose the selection or the rest of
the current line when there is no selection with the given start and end strings. The
caret is moved to the end of the enclosed text.

Key Binding Reference

400

Ctrl-Plus: zoom-in - Action varies according to focus: Document Viewer
Commands: Increase documentation font size; General Editor Commands: Zoom
in, increasing the text display size temporarily by one font size

Ctrl-Pointer_Button1: goto-clicked-symbol-defn - Goto the definition of the
source symbol that was last clicked on, optionally showing the definition in another
split if one is available and other_split is True.

Ctrl-Prior: backward-page - Move cursor backward one page

Ctrl-Quotedbl: enclose(start='"', end='"') - Enclose the selection or the rest of
the current line when there is no selection with the given start and end strings. The
caret is moved to the end of the enclosed text.

Ctrl-Quoteleft: begin-visited-document-cycle(move_back=True,
back_key="Ctrl-Quoteleft", forward_key="Ctrl-AsciiTilde") - Start moving
between documents in the order they were visited. Starts modal key interaction
that ends when a key other than tab is seen or ctrl is released.

Ctrl-Return: new-line-after - Place a new line after the current line

Ctrl-Right: forward-word - Action varies according to focus: Active Editor
Commands: Move cursor forward one word. Optionally, provide a string that
contains the delimiters to define which characters are part of a word. Gravity may
be "start" or "end" to indicate whether cursor is placed at start or end of the word.;
Toolbar Search Commands: Move forward one word

Ctrl-S: save - Save active document. Also close it if close is True.

Ctrl-Shift-Alt-F5: debug-stop-all - Pause all free-running debug processes at the
current program counter

Ctrl-Shift-Delete: delete-lines

Ctrl-Shift-Down: scroll-text-down - Scroll text down a line w/o moving cursor's
relative position on screen. Repeat is number of lines or if >0 and <1.0 then
percent of screen. Set move_cursor to False to leave cursor in current position
within the source, otherwise it is moved so the cursor remains on same screen line.

Ctrl-Shift-End: end-of-document-extend - Move cursor to end of document,
adjusting the selection range to new position

Ctrl-Shift-F: batch-search - Search on current selection using the Search in Files
tool. The look_in argument gets entered in the look in field if not None or ''. The
current selection is put into the search field if it doesn't span multiple lines and
either use_selection is true or there's nothing in the search field. The given search
text is used instead, if provided

Ctrl-Shift-F3: search-sel-backward - Search backward using current selection

Ctrl-Shift-F5: debug-stop - Pause debug at current program counter (press Alt to
pause all debug processes)

Key Binding Reference

401

Ctrl-Shift-F6: debug-all-tests - Debug all the tests in testing panel.

Ctrl-Shift-F7: debug-current-tests - Runs the current test or tests, if possible. The
current tests are determined by the current position in the active view.

Ctrl-Shift-F9: Multiple commands (first available is executed):

• break-disable-all - Disable all breakpoints
• break-enable-all - Enable all breakpoints

Ctrl-Shift-G: batch-replace - Display search and replace in files tool.

Ctrl-Shift-Home: start-of-document-extend - Move cursor to start of document,
adjusting the selection range to new position

Ctrl-Shift-I: add-current-file-to-project - Add the frontmost currently open file to
project

Ctrl-Shift-ISO_Left_Tab: begin-visited-document-cycle(move_back=False) -
Start moving between documents in the order they were visited. Starts modal key
interaction that ends when a key other than tab is seen or ctrl is released.

Ctrl-Shift-Left: backward-word-extend - Action varies according to focus: Active
Editor Commands: Move cursor backward one word, adjusting the selection range
to new position. Optionally, provide a string that contains the delimiters to define
which characters are part of a word. Gravity may be "start" or "end" to indicate
whether cursor is placed at start or end of the word.; Toolbar Search Commands:
Move backward one word, extending the selection

Ctrl-Shift-Next: forward-page-extend - Move cursor forward one page, adjusting
the selection range to new position

Ctrl-Shift-Page_Down: forward-page-extend - Move cursor forward one page,
adjusting the selection range to new position

Ctrl-Shift-Page_Up: backward-page-extend - Move cursor backward one page,
adjusting the selection range to new position

Ctrl-Shift-Prior: backward-page-extend - Move cursor backward one page,
adjusting the selection range to new position

Ctrl-Shift-Right: forward-word-extend - Action varies according to focus: Active
Editor Commands: Move cursor forward one word, adjusting the selection range to
new position. Optionally, provide a string that contains the delimiters to define
which characters are part of a word. Gravity may be "start" or "end" to indicate
whether cursor is placed at start or end of the word.; Toolbar Search Commands:
Move forward one word, extending the selection

Key Binding Reference

402

Ctrl-Shift-Tab: begin-visited-document-cycle(move_back=False) - Start
moving between documents in the order they were visited. Starts modal key
interaction that ends when a key other than tab is seen or ctrl is released.

Ctrl-Shift-Up: scroll-text-up - Scroll text up a line w/o moving cursor's relative
position on screen. Repeat is number of lines or if >0 and <1.0 then percent of
screen. Set move_cursor to False to leave cursor in current position within the
source, otherwise it is moved so the cursor remains on same screen line.

Ctrl-T: forward-tab - Action varies according to focus: Active Editor Commands:
Place a tab character at the current cursor position ; Search Manager Instance
Commands: Place a forward tab at the current cursor position in search or replace
string

Ctrl-Tab: begin-visited-document-cycle(move_back=True) - Start moving
between documents in the order they were visited. Starts modal key interaction
that ends when a key other than tab is seen or ctrl is released.

Ctrl-Underscore: zoom-reset - Action varies according to focus: Document
Viewer Commands: Reset documentation font size to default; General Editor
Commands: Reset font zoom factor back to zero

Ctrl-Up: select-more - Select more code on either the current line or larger
multi-line blocks.

Delete: forward-delete-char - Action varies according to focus: Active Editor
Commands: Delete one character in front of the cursor ; Toolbar Search
Commands: Delete character in front of the cursor

Down: next-line - Move to screen next line, optionally repositioning character
within line: 'same' to leave in same horizontal position, 'start' at start, 'end' at end,
or 'fnb' for first non-blank char.

End: end-of-line - Action varies according to focus: Active Editor Commands:
Move to end of current line; Toolbar Search Commands: Move to the end of the
toolbar search entry

F1: Multiple commands (first available is executed):

• show-horizontal-tools - Show the horizontal tool area
• minimize-horizontal-tools - Minimize the horizontal tool area

F11: frame-up - Move up the current debug stack

F12: frame-down - Move down the current debug stack

F2: Multiple commands (first available is executed):

Key Binding Reference

403

• show-vertical-tools - Show the vertical tool area
• minimize-vertical-tools - Minimize the vertical tool area

F3: search-forward - Search again using the search manager's current settings in
forward direction

F4: goto-selected-symbol-defn - Goto the definition of the selected source
symbol, optionally showing the definition in another split if one is available and
other_split is True.

F5: debug-continue - Continue (or start) debugging, to next breakpoint (press Alt
to continue all paused debug processes)

F6: step-over-statement - Step over current statement

F7: step-into - Step into current execution point, or start debugging at first line

F8: step-out - Step out of the current function or method

F9: Multiple commands (first available is executed):

• break-set - Set a new regular breakpoint on current line
• break-clear - Clear the breakpoint on the current line

Home: beginning-of-line-text - Move to end of the leading white space, if any, on
the current line. If toggle is True, moves to the beginning of the line if already at the
end of the leading white space (and vice versa).

ISO_Left_Tab: backward-tab - Outdent line at current position

Insert: toggle-overtype - Toggle status of overtyping mode

Insert-Ctrl-C: vi-ctrl-c

Insert-Ctrl-D: outdent-region - Outdent the selected region one level of
indentation. Set sel to None to use preference to determine selection behavior, or
"never-select" to unselect after indent, "always-select" to always select after indent,
or "retain-select" to retain current selection after indent.

Insert-Ctrl-H: backward-delete-char - Action varies according to focus: Active
Editor Commands: Delete one character behind the cursor, or the current selection
if not empty. ; Toolbar Search Commands: Delete character behind the cursor

Insert-Ctrl-J: new-line - Place a new line at the current cursor position

Insert-Ctrl-M: new-line - Place a new line at the current cursor position

Insert-Ctrl-N: next-line - Move to screen next line, optionally repositioning
character within line: 'same' to leave in same horizontal position, 'start' at start,
'end' at end, or 'fnb' for first non-blank char.

Key Binding Reference

404

Insert-Ctrl-O: enter-browse-mode(provisional=True) - Enter editor browse
mode

Insert-Ctrl-P: previous-line - Move to previous screen line, optionally
repositioning character within line: same' to leave in same horizontal position, 'start'
at start, 'end' at end, or 'fnb' for first non-blank char.

Insert-Ctrl-Q: start-select-block - Turn on auto-select block mode

Insert-Ctrl-T: indent-region - Indent the selected region one level of indentation.
Set sel to None to use preference to determine selection behavior, or
"never-select" to unselect after indent, "always-select" to always select after indent,
or "retain-select" to retain current selection after indent.

Insert-Ctrl-U: delete-to-start-of-line - Delete everything between the cursor and
start of line

Insert-Ctrl-V: vi-ctrl-v

Insert-Ctrl-W: backward-delete-word - Action varies according to focus: Active
Editor Commands: Delete one word behind of the cursor ; Toolbar Search
Commands: Delete word behind the cursor

Insert-Ctrl-X: vi-ctrl-x

Insert-Ctrl-[: enter-browse-mode - Enter editor browse mode

Insert-Esc: enter-browse-mode - Enter editor browse mode

Left: backward-char - Action varies according to focus: Active Editor Commands:
Move cursor backward one character ; Toolbar Search Commands: Move
backward one character

Left: backward-char(wrap=0) - Action varies according to focus: Active Editor
Commands: Move cursor backward one character ; Toolbar Search Commands:
Move backward one character

Next: forward-page - Move cursor forward one page

Page_Down: forward-page - Move cursor forward one page

Page_Up: backward-page - Move cursor backward one page

Prior: backward-page - Move cursor backward one page

Replace-Ctrl-C: enter-browse-mode - Enter editor browse mode

Replace-Ctrl-D: outdent-region - Outdent the selected region one level of
indentation. Set sel to None to use preference to determine selection behavior, or
"never-select" to unselect after indent, "always-select" to always select after indent,
or "retain-select" to retain current selection after indent.

Key Binding Reference

405

Replace-Ctrl-H: backward-char - Action varies according to focus: Active Editor
Commands: Move cursor backward one character ; Toolbar Search Commands:
Move backward one character

Replace-Ctrl-J: new-line - Place a new line at the current cursor position

Replace-Ctrl-M: new-line - Place a new line at the current cursor position

Replace-Ctrl-T: indent-region - Indent the selected region one level of
indentation. Set sel to None to use preference to determine selection behavior, or
"never-select" to unselect after indent, "always-select" to always select after indent,
or "retain-select" to retain current selection after indent.

Replace-Ctrl-U: delete-to-start-of-line - Delete everything between the cursor
and start of line

Replace-Ctrl-W: backward-word - Action varies according to focus: Active Editor
Commands: Move cursor backward one word. Optionally, provide a string that
contains the delimiters to define which characters are part of a word. Gravity may
be "start" or "end" to indicate whether cursor is placed at start or end of the word.;
Toolbar Search Commands: Move backward one word

Replace-Ctrl-[: enter-browse-mode - Enter editor browse mode

Replace-Esc: enter-browse-mode - Enter editor browse mode

Return: new-line - Place a new line at the current cursor position

Right: forward-char - Action varies according to focus: Active Editor Commands:
Move cursor forward one character ; Toolbar Search Commands: Move forward
one character

Right: forward-char(wrap=0) - Action varies according to focus: Active Editor
Commands: Move cursor forward one character ; Toolbar Search Commands:
Move forward one character

Shift-Alt-A: diff-merge-a-b

Shift-Alt-B: diff-merge-b-a

Shift-Alt-Down: next-line-extend-rect - Move to next screen line, adjusting the
rectangular selection range to new position, optionally repositioning character
within line: same' to leave in same horizontal position, 'start' at start, 'end' at end,
or 'fnb' for first non-blank char.

Shift-Alt-F5: debug-continue-all - Continue all paused debug processes

Shift-Alt-Left: backward-char-extend-rect - Move cursor backward one
character, adjusting the rectangular selection range to new position

Shift-Alt-N: diff-next

Shift-Alt-P: diff-previous

Key Binding Reference

406

Shift-Alt-Right: forward-char-extend-rect - Move cursor forward one character,
adjusting the rectangular selection range to new position

Shift-Alt-Up: previous-line-extend-rect - Move to previous screen line, adjusting
the rectangular selection range to new position, optionally repositioning character
within line: same' to leave in same horizontal position, 'start' at start, 'end' at end,
or 'fnb' for first non-blank char.

Shift-BackSpace: backward-delete-char - Action varies according to focus:
Active Editor Commands: Delete one character behind the cursor, or the current
selection if not empty. ; Toolbar Search Commands: Delete character behind the
cursor

Shift-Ctrl-F8: start-select-block - Turn on auto-select block mode

Shift-Delete: cut - Action varies according to focus: Active Editor Commands: Cut
selected text ; Search Manager Instance Commands: Cut selected text ; Toolbar
Search Commands: Cut selection

Shift-Down: forward-page - Move cursor forward one page

Shift-Down: next-line-extend - Move to next screen line, adjusting the selection
range to new position, optionally repositioning character within line: same' to leave
in same horizontal position, 'start' at start, 'end' at end, 'fnb' for first non-blank char,
or 'xcode' to simulate XCode style Shift-Alt line selection.

Shift-End: end-of-line-extend - Action varies according to focus: Active Editor
Commands: Move to end of current line, adjusting the selection range to new
position ; Toolbar Search Commands: Move to the end of the toolbar search entry,
extending the selection

Shift-F1: move-focus - Move the keyboard focus forward within the Window to the
next editable area

Shift-F11: frame-show - Show the position (thread and stack frame) where the
debugger originally stopped

Shift-F2: Multiple commands (first available is executed):

• enter-fullscreen - Hide both the vertical and horizontal tool areas and
toolbar, saving previous state so it can be restored later with
exit_fullscreen

• exit-fullscreen - Restore previous non-fullscreen state of all tools and tool
bar

Shift-F3: search-backward - Search again using the search manager's current
settings in backward direction

Shift-F4: find-points-of-use - Find points of use for a symbol. The symbol defaults
to the active selection.

Key Binding Reference

407

Shift-F5: debug-file - Start debugging the current file (rather than the main entry
point)

Shift-F6: run-all-tests - Runs all the tests in testing panel.

Shift-F7: run-current-tests - Runs the current test or tests, if possible. The current
tests are determined by the current position in the active view. The tests are
debugged when debug is True.

Shift-F8: start-select-char - Turn on auto-select mode character by character

Shift-F9: Multiple commands (first available is executed):

• break-enable - Enable the breakpoint on the current line
• break-disable - Disable the breakpoint on current line

Shift-Home: beginning-of-line-text-extend - Move to end of the leading white
space, if any, on the current line, adjusting the selection range to the new position.
If toggle is True, moves to the beginning of the line if already at the end of the
leading white space (and vice versa).

Shift-Insert: paste - Action varies according to focus: Active Editor Commands:
Paste text from clipboard ; Search Manager Instance Commands: Paste text from
clipboard ; Toolbar Search Commands: Paste from clipboard

Shift-Left: backward-char-extend - Action varies according to focus: Active Editor
Commands: Move cursor backward one character, adjusting the selection range to
new position ; Toolbar Search Commands: Move backward one character,
extending the selection

Shift-Left: backward-word - Action varies according to focus: Active Editor
Commands: Move cursor backward one word. Optionally, provide a string that
contains the delimiters to define which characters are part of a word. Gravity may
be "start" or "end" to indicate whether cursor is placed at start or end of the word.;
Toolbar Search Commands: Move backward one word

Shift-Next: forward-page-extend - Move cursor forward one page, adjusting the
selection range to new position

Shift-Page_Down: forward-page-extend - Move cursor forward one page,
adjusting the selection range to new position

Shift-Page_Up: backward-page-extend - Move cursor backward one page,
adjusting the selection range to new position

Shift-Prior: backward-page-extend - Move cursor backward one page, adjusting
the selection range to new position

Shift-Return: new-line-before - Place a new line before the current line

Key Binding Reference

408

Shift-Right: forward-char-extend - Action varies according to focus: Active Editor
Commands: Move cursor forward one character, adjusting the selection range to
new position ; Toolbar Search Commands: Move forward one character, extending
the selection

Shift-Right: forward-word - Action varies according to focus: Active Editor
Commands: Move cursor forward one word. Optionally, provide a string that
contains the delimiters to define which characters are part of a word. Gravity may
be "start" or "end" to indicate whether cursor is placed at start or end of the word.;
Toolbar Search Commands: Move forward one word

Shift-Tab: backward-tab - Outdent line at current position

Shift-Up: backward-page - Move cursor backward one page

Shift-Up: previous-line-extend - Move to previous screen line, adjusting the
selection range to new position, optionally repositioning character within line: same'
to leave in same horizontal position, 'start' at start, 'end' at end, 'fnb' for first
non-blank char, or 'xcode' to simulate XCode style Shift-Alt line selection.

Tab: tab-key - Implement the tab key, the action of which is configurable by
preference

Up: previous-line - Move to previous screen line, optionally repositioning
character within line: same' to leave in same horizontal position, 'start' at start, 'end'
at end, or 'fnb' for first non-blank char.

Visual-!: filter-selection - Filter the current selection through an external
command and replace the lines with the result

Visual-1: initiate-numeric-modifier(digit=1) - VI style repeat/numeric modifier for
following command

Visual-2: initiate-numeric-modifier(digit=2) - VI style repeat/numeric modifier for
following command

Visual-3: initiate-numeric-modifier(digit=3) - VI style repeat/numeric modifier for
following command

Visual-4: initiate-numeric-modifier(digit=4) - VI style repeat/numeric modifier for
following command

Visual-5: initiate-numeric-modifier(digit=5) - VI style repeat/numeric modifier for
following command

Visual-6: initiate-numeric-modifier(digit=6) - VI style repeat/numeric modifier for
following command

Visual-7: initiate-numeric-modifier(digit=7) - VI style repeat/numeric modifier for
following command

Key Binding Reference

409

Visual-8: initiate-numeric-modifier(digit=8) - VI style repeat/numeric modifier for
following command

Visual-9: initiate-numeric-modifier(digit=9) - VI style repeat/numeric modifier for
following command

Visual-<: outdent-lines - Outdent selected number of lines from cursor position.
Set lines to None to indent all the lines in current selection. Set levels to outdent
more than one level at a time.

Visual->: indent-lines - Indent selected number of lines from cursor position. Set
lines to None to indent all the lines in current selection. Set levels to indent more
than one level at a time.

Visual-Ctrl-V: enter-browse-mode - Enter editor browse mode

Visual-Ctrl-[: exit-visual-mode - Exit visual mode and return back to default mode

Visual-Esc: exit-visual-mode - Exit visual mode and return back to default mode

Visual-Esc: exit-visual-mode - Exit visual mode and return back to default mode

Visual-Shift-A: enter-insert-mode(pos="after") - Enter editor insert mode

Visual-Shift-I: enter-insert-mode(pos="before") - Enter editor insert mode

Visual-Shift-J: join-selection - Join together all lines in given selection (replace
newlines with the given delimiter (single space by default)

Visual-Shift-O: exchange-point-and-mark - When currently marking text, this
exchanges the current position and mark ends of the current selection

Visual-Shift-R: enter-insert-mode(pos="delete-lines") - Enter editor insert mode

Visual-Shift-V: enter-browse-mode - Enter editor browse mode

Visual-Shift-Y: move-to-register(unit="line") - Cut or copy a specified number of
characters or lines, or the current selection. Set cut=1 to remove the range of text
from the editor after moving to register (otherwise it is just copied). Unit should be
one of 'char' or 'line' or 'sel' for current selection.

Visual-c: enter-insert-mode(pos="delete-sel") - Enter editor insert mode

Visual-colon: vi-command-by-name - Execute a VI command (implements ":"
commands from VI)

Visual-d: move-to-register(unit="sel", cut=1) - Cut or copy a specified number of
characters or lines, or the current selection. Set cut=1 to remove the range of text
from the editor after moving to register (otherwise it is just copied). Unit should be
one of 'char' or 'line' or 'sel' for current selection.

Visual-g Visual-Shift-J: join-selection(delim="") - Join together all lines in given
selection (replace newlines with the given delimiter (single space by default)

Key Binding Reference

410

Visual-g Visual-q: fill-paragraph - Attempt to auto-justify the paragraph around
the current start of selection

Visual-o: exchange-point-and-mark - When currently marking text, this
exchanges the current position and mark ends of the current selection

Visual-r: replace-char - Replace num characters with given character. Set
line_mode to multiline to allow replacing across lines, extend to replace on current
line and then extend the line length, and restrict to replace only if enough
characters exist on current line after cursor position.

Visual-s: enter-insert-mode(pos="delete-sel") - Enter editor insert mode

Visual-v: enter-browse-mode - Enter editor browse mode

Visual-x: move-to-register(unit="sel", cut=1) - Cut or copy a specified number of
characters or lines, or the current selection. Set cut=1 to remove the range of text
from the editor after moving to register (otherwise it is just copied). Unit should be
one of 'char' or 'line' or 'sel' for current selection.

Visual-y: move-to-register(unit="sel") - Cut or copy a specified number of
characters or lines, or the current selection. Set cut=1 to remove the range of text
from the editor after moving to register (otherwise it is just copied). Unit should be
one of 'char' or 'line' or 'sel' for current selection.

21.4. Visual Studio Personality
This section documents all the default key bindings for the Visual Studio keyboard
personality, set by the Personality preference.

Alt-1: fold-python-methods - Fold up all Python methods, expand all classes, and
leave other fold points alone

Alt-2: fold-python-classes - Fold up all Python classes but leave other fold points
alone

Alt-3: fold-python-classes-and-defs - Fold up all Python classes, methods, and
functions but leave other fold points alone

Alt-BackSpace: backward-delete-word - Action varies according to focus: Active
Editor Commands: Delete one word behind of the cursor ; Toolbar Search
Commands: Delete word behind the cursor

Alt-Delete: backward-delete-word - Action varies according to focus: Active
Editor Commands: Delete one word behind of the cursor ; Toolbar Search
Commands: Delete word behind the cursor

Alt-Down: fold-expand-more-current - Expand the current fold point one more
level

Alt-End: fold-expand-all - Expand all fold points in the current file

Key Binding Reference

411

Alt-F11: prev-points-of-use-match - Display the previous match in the active
points of use tool

Alt-F12: next-points-of-use-match - Display the next match in the active points of
use tool

Alt-F3: search - Bring up the search manager in search mode.

Alt-F4: close-window - Close the current window and all documents and panels in
it

Alt-F5: run-to-cursor - Run to current cursor position

Alt-F6: run-failed-tests - Re-run all the previously failed tests. The tests are
debugged when debug is True.

Alt-F7: run-last-tests - Run again the last group of tests that were run. The tests
are debugged when debug is True.

Alt-F7: view-project-properties - View or change project-wide properties

Alt-Home: fold-collapse-all - Collapse all fold points in the current file

Alt-Left: visit-history-previous - Move back in history to previous visited editor
position

Alt-Page_Down: fold-expand-all-current - Expand the current fold point
completely

Alt-Page_Up: fold-collapse-all-current - Collapse the current fold point
completely

Alt-Return: new-line - Place a new line at the current cursor position

Alt-Right: visit-history-next - Move forward in history to next visited editor
position

Alt-Slash: fold-toggle - Toggle the current fold point

Alt-Up: fold-collapse-more-current - Collapse the current fold point one more
level

Alt-comma: query-replace - Initiate incremental mini-search query/replace from
the cursor position.

Alt-period: replace-string - Replace all occurrences of a string from the cursor
position to end of file.

BackSpace: backward-delete-char - Action varies according to focus: Active
Editor Commands: Delete one character behind the cursor, or the current selection
if not empty. ; Toolbar Search Commands: Delete character behind the cursor

Ctrl-0: next-document - Move to the next document alphabetically in the list of
documents open in the current window

Key Binding Reference

412

Ctrl-1: activate-file-option-menu - Activate the file menu for the editor.

Ctrl-2: activate-symbol-option-menu-1 - Activate the 1st symbol menu for the
editor.

Ctrl-3: activate-symbol-option-menu-2 - Activate the 2nd symbol menu for the
editor.

Ctrl-4: activate-symbol-option-menu-3 - Activate the 3rd symbol menu for the
editor.

Ctrl-5: activate-symbol-option-menu-4 - Activate the 4th symbol menu for the
editor.

Ctrl-6: activate-symbol-option-menu-5 - Activate the 5th symbol menu for the
editor.

Ctrl-7 C: use-lexer-cpp - Force syntax highlighting for C/C++ source

Ctrl-7 H: use-lexer-html - Force syntax highlighting for HTML

Ctrl-7 M: use-lexer-makefile - Force syntax highlighting for make files

Ctrl-7 N: use-lexer-none - Use no syntax highlighting

Ctrl-7 P: use-lexer-python - Force syntax highlighting for Python source

Ctrl-7 S: use-lexer-sql - Force syntax highlighting for SQL

Ctrl-7 X: use-lexer-xml - Force syntax highlighting for XML files

Ctrl-8: recent-document - Switches to previous document most recently visited in
the current window or window set if in one-window-per-editor windowing mode.

Ctrl-9: previous-document - Move to the previous document alphabetically in the
list of documents open in the current window

Ctrl-=: indent-to-match - Indent the current line or selected region to match
indentation of preceding non-blank line. Set toggle=True to indent instead of one
level higher if already at the matching position.

Ctrl-A: select-all - Select all text in the editor

Ctrl-Alt-B: search-sel-backward - Search backward using current selection

Ctrl-Alt-Comma: query-replace-regex - Initiate incremental mini-search
query/replace from the cursor position. The search string is treated as a regular
expression.

Ctrl-Alt-D: selection-add-next-occurence(skip_current=True) - Add another
selection containing the text of the current selection. If skip_current is true, the
current selection will be deselected. If nothing is currently selected, select the
current word. Searches backwards if reverse is true.

Key Binding Reference

413

Ctrl-Alt-Down: goto-next-bookmark(current_file_only=True) - Go to the next
bookmark, or the first one if no bookmark is selected. Stays within the file in the
current editor when current_file_only is True.

Ctrl-Alt-F: search-sel-forward - Search forward using current selection

Ctrl-Alt-F5: debug-kill-all - Terminate all debug processes

Ctrl-Alt-F6: debug-failed-tests - Re-run all the previously failed tests in the
debugger.

Ctrl-Alt-F7: debug-last-tests - Debug the last group of tests that were run.

Ctrl-Alt-G: goto-bookmark - Goto named bookmark

Ctrl-Alt-K: show-bookmarks - Show a list of all currently defined bookmarks

Ctrl-Alt-Left: goto-previous-bookmark - Go to the previous bookmark in the
bookmark list, or the last one if no bookmark is selected. Stays within the file in the
current editor when current_file_only is True.

Ctrl-Alt-M: set-bookmark - Set a bookmark at current location on the editor. Mark
is the project-wide textual name of the bookmark.

Ctrl-Alt-Right: goto-next-bookmark - Go to the next bookmark, or the first one if
no bookmark is selected. Stays within the file in the current editor when
current_file_only is True.

Ctrl-Alt-T: toggle-bookmark - Set or remove a bookmark at current location on
the editor. When set, the name of the bookmark is set to an auto-generated
default.

Ctrl-Alt-Up: goto-previous-bookmark(current_file_only=True) - Go to the
previous bookmark in the bookmark list, or the last one if no bookmark is selected.
Stays within the file in the current editor when current_file_only is True.

Ctrl-Alt-period: replace-string-regex - Replace all occurrences of a string from
the cursor position to end of file. The search string is treated as a regular
expression.

Ctrl-Apostrophe: enclose(start="'", end="'") - Enclose the selection or the rest
of the current line when there is no selection with the given start and end strings.
The caret is moved to the end of the enclosed text.

Ctrl-B: isearch-sel-forward - Action varies according to focus: Active Editor
Commands: Initiate incremental mini-search forward from the cursor position, using
current selection as the search string. Set persist=False to do the search but end
the interactive search session immediately.; Document Viewer Commands: Initiate
incremental mini-search forward from the cursor position, using current selection
as the search string. Set persist=False to do the search but end the interactive
search session immediately.

Key Binding Reference

414

Ctrl-BackSpace: backward-delete-word - Action varies according to focus: Active
Editor Commands: Delete one word behind of the cursor ; Toolbar Search
Commands: Delete word behind the cursor

Ctrl-Braceleft: enclose(start="{", end="}") - Enclose the selection or the rest of
the current line when there is no selection with the given start and end strings. The
caret is moved to the end of the enclosed text.

Ctrl-Bracketleft: enclose(start="[", end="]") - Enclose the selection or the rest of
the current line when there is no selection with the given start and end strings. The
caret is moved to the end of the enclosed text.

Ctrl-C: copy - Action varies according to focus: Active Editor Commands: Copy
selected text ; Document Viewer Commands: Copy any selected text. ; Exceptions
Commands: Copy the exception traceback to the clipboard ; Search Manager
Instance Commands: Copy selected text ; Toolbar Search Commands: Cut
selection

Ctrl-Comma: next-window - Switch to the next window alphabetically by title

Ctrl-D: toolbar-search-focus - Move focus to toolbar search entry.

Ctrl-Delete: forward-delete-word - Action varies according to focus: Active Editor
Commands: Delete one word in front of the cursor ; Toolbar Search Commands:
Delete word in front of the cursor

Ctrl-Down: select-less - Select less code; undoes the last select-more command

Ctrl-E: brace-match - Match brace at current cursor position, selecting all text
between the two and hilighting the braces

Ctrl-End: end-of-document - Move cursor to end of document

Ctrl-Equal: zoom-in - Action varies according to focus: Document Viewer
Commands: Increase documentation font size; General Editor Commands: Zoom
in, increasing the text display size temporarily by one font size

Ctrl-F: search - Bring up the search manager in search mode.

Ctrl-F10: debug-to-cursor

Ctrl-F12: command-by-name - Execute given command by name, collecting any
args as needed

Ctrl-F3: search-sel-forward - Search forward using current selection

Ctrl-F4: close - Close active document. Abandon any changes when
ignore_changes is True. Close empty windows when close_window is true and quit
if all document windows closed when can_quit is true.

Ctrl-F5: debug-file - Start debugging the current file (rather than the main entry
point)

Key Binding Reference

415

Ctrl-F5: debug-kill - Terminate current debug process (press Alt to terminate all
debug processes)

Ctrl-F6: step-over - Step over current instruction

Ctrl-F8: start-select-line - Turn on auto-select mode line by line

Ctrl-F9: break-clear-all - Clear all breakpoints

Ctrl-G: goto-line - Position cursor at start of given line number

Ctrl-H: replace - Bring up the search manager in replace mode.

Ctrl-Home: start-of-document - Move cursor to start of document

Ctrl-I: isearch-forward - Action varies according to focus: Active Editor
Commands: Initiate incremental mini-search forward from the cursor position,
optionally entering the given search string ; Document Viewer Commands: Initiate
incremental mini-search forward from the cursor position, optionally entering the
given search string.

Ctrl-Insert: copy - Action varies according to focus: Active Editor Commands:
Copy selected text ; Document Viewer Commands: Copy any selected text. ;
Exceptions Commands: Copy the exception traceback to the clipboard ; Search
Manager Instance Commands: Copy selected text ; Toolbar Search Commands:
Cut selection

Ctrl-J: show-autocompleter - Show the auto-completer for current cursor position

Ctrl-K Ctrl-C: comment-out-region - Comment out the selected region. The style
of commenting can be controlled with the style argument: 'indented' uses the
default comment style indented at end of leading white space and 'block' uses a
block comment in column zero. If not given, the style configured with the Editor /
Block Comment Style preference is used. Each call adds a level of commenting.

Ctrl-K Ctrl-F: fill-paragraph - Attempt to auto-justify the paragraph around the
current start of selection

Ctrl-K Ctrl-K: toggle-bookmark - Set or remove a bookmark at current location on
the editor. When set, the name of the bookmark is set to an auto-generated
default.

Ctrl-K Ctrl-N: goto-next-bookmark - Go to the next bookmark, or the first one if
no bookmark is selected. Stays within the file in the current editor when
current_file_only is True.

Ctrl-K Ctrl-O: open-from-keyboard - Open a file from disk using keyboard-driven
selection of the file

Ctrl-K Ctrl-P: goto-previous-bookmark - Go to the previous bookmark in the
bookmark list, or the last one if no bookmark is selected. Stays within the file in the
current editor when current_file_only is True.

Key Binding Reference

416

Ctrl-K Ctrl-S: switch-document - Switches to named document. Name may either
be the complete name or the last path component of a path name.

Ctrl-K Ctrl-T: comment-toggle - Toggle commenting out of the selected lines. The
style of commenting can be controlled with the style argument: 'indented' uses the
default comment style indented at end of leading white space and 'block' uses a
block comment in column zero. If not given, the style configured with the Editor /
Block Comment Style preference is used.

Ctrl-K Ctrl-U: uncomment-out-region - Uncomment out the selected region if
commented out. If one_level is True then each call removes only one level of
commenting.

Ctrl-L: cut-line - Cut the current line(s) to clipboard.

Ctrl-Left: backward-word - Action varies according to focus: Active Editor
Commands: Move cursor backward one word. Optionally, provide a string that
contains the delimiters to define which characters are part of a word. Gravity may
be "start" or "end" to indicate whether cursor is placed at start or end of the word.;
Toolbar Search Commands: Move backward one word

Ctrl-Less: enclose(start="<", end=">") - Enclose the selection or the rest of the
current line when there is no selection with the given start and end strings. The
caret is moved to the end of the enclosed text.

Ctrl-M: execute-kbd-macro - Execute most recently recorded keyboard macro. If
register is None then the user is asked to enter a letter a-z for the register where
the macro is filed. Otherwise, register 'a' is used by default.

Ctrl-Minus: visit-history-previous - Move back in history to previous visited editor
position

Ctrl-Minus: zoom-out - Action varies according to focus: Document Viewer
Commands: Decrease documentation font size; General Editor Commands: Zoom
out, increasing the text display size temporarily by one font size

Ctrl-N: new-file - Create a new file

Ctrl-Next: forward-page - Move cursor forward one page

Ctrl-O: open-gui - Open a file from disk, prompting with file selection dialog if
necessary

Ctrl-P: print-view - Print active editor document

Ctrl-Page_Down: next-document - Move to the next document alphabetically in
the list of documents open in the current window

Ctrl-Page_Up: previous-document - Move to the previous document
alphabetically in the list of documents open in the current window

Key Binding Reference

417

Ctrl-Parenleft: enclose(start="(", end=")") - Enclose the selection or the rest of
the current line when there is no selection with the given start and end strings. The
caret is moved to the end of the enclosed text.

Ctrl-Plus: zoom-in - Action varies according to focus: Document Viewer
Commands: Increase documentation font size; General Editor Commands: Zoom
in, increasing the text display size temporarily by one font size

Ctrl-Pointer_Button1: goto-clicked-symbol-defn - Goto the definition of the
source symbol that was last clicked on, optionally showing the definition in another
split if one is available and other_split is True.

Ctrl-Prior: backward-page - Move cursor backward one page

Ctrl-Q: quit - Quit the application.

Ctrl-Quotedbl: enclose(start='"', end='"') - Enclose the selection or the rest of
the current line when there is no selection with the given start and end strings. The
caret is moved to the end of the enclosed text.

Ctrl-Quoteleft: begin-visited-document-cycle(move_back=True,
back_key="Ctrl-Quoteleft", forward_key="Ctrl-AsciiTilde") - Start moving
between documents in the order they were visited. Starts modal key interaction
that ends when a key other than tab is seen or ctrl is released.

Ctrl-R: replace - Bring up the search manager in replace mode.

Ctrl-Return: new-line-after - Place a new line after the current line

Ctrl-Right: forward-word - Action varies according to focus: Active Editor
Commands: Move cursor forward one word. Optionally, provide a string that
contains the delimiters to define which characters are part of a word. Gravity may
be "start" or "end" to indicate whether cursor is placed at start or end of the word.;
Toolbar Search Commands: Move forward one word

Ctrl-S: save - Save active document. Also close it if close is True.

Ctrl-Shift-Alt-F5: debug-stop-all - Pause all free-running debug processes at the
current program counter

Ctrl-Shift-B: isearch-sel-backward - Initiate incremental mini-search backward
from the cursor position, using current selection as the search string. Set
persist=False to do the search but end the interactive search session immediately.

Ctrl-Shift-D: selection-add-next-occurence - Add another selection containing
the text of the current selection. If skip_current is true, the current selection will be
deselected. If nothing is currently selected, select the current word. Searches
backwards if reverse is true.

Ctrl-Shift-Delete: delete-lines

Key Binding Reference

418

Ctrl-Shift-Down: scroll-text-down - Scroll text down a line w/o moving cursor's
relative position on screen. Repeat is number of lines or if >0 and <1.0 then
percent of screen. Set move_cursor to False to leave cursor in current position
within the source, otherwise it is moved so the cursor remains on same screen line.

Ctrl-Shift-End: end-of-document-extend - Move cursor to end of document,
adjusting the selection range to new position

Ctrl-Shift-F: batch-search - Search on current selection using the Search in Files
tool. The look_in argument gets entered in the look in field if not None or ''. The
current selection is put into the search field if it doesn't span multiple lines and
either use_selection is true or there's nothing in the search field. The given search
text is used instead, if provided

Ctrl-Shift-F3: search-sel-backward - Search backward using current selection

Ctrl-Shift-F5: debug-stop - Pause debug at current program counter (press Alt to
pause all debug processes)

Ctrl-Shift-F6: debug-all-tests - Debug all the tests in testing panel.

Ctrl-Shift-F7: debug-current-tests - Runs the current test or tests, if possible. The
current tests are determined by the current position in the active view.

Ctrl-Shift-F9: Multiple commands (first available is executed):

• break-disable-all - Disable all breakpoints
• break-enable-all - Enable all breakpoints

Ctrl-Shift-G: search-backward - Search again using the search manager's
current settings in backward direction

Ctrl-Shift-H: batch-replace - Display search and replace in files tool.

Ctrl-Shift-Home: start-of-document-extend - Move cursor to start of document,
adjusting the selection range to new position

Ctrl-Shift-I: add-current-file-to-project - Add the frontmost currently open file to
project

Ctrl-Shift-ISO_Left_Tab: begin-visited-document-cycle(move_back=False) -
Start moving between documents in the order they were visited. Starts modal key
interaction that ends when a key other than tab is seen or ctrl is released.

Ctrl-Shift-Left: backward-word-extend - Action varies according to focus: Active
Editor Commands: Move cursor backward one word, adjusting the selection range
to new position. Optionally, provide a string that contains the delimiters to define
which characters are part of a word. Gravity may be "start" or "end" to indicate
whether cursor is placed at start or end of the word.; Toolbar Search Commands:
Move backward one word, extending the selection

Key Binding Reference

419

Ctrl-Shift-Next: forward-page-extend - Move cursor forward one page, adjusting
the selection range to new position

Ctrl-Shift-O: open-from-project - Open document from the project via the Open
From Project dialog. The given fragment is used as the initial fragment filter and if it
is None, the selected text or the symbol under the cursor is used. If skip_if_unique
is true, the file is opened without the dialog being displayed if only one filename
matches the fragment.

Ctrl-Shift-P: find-symbol-in-project - Allow user to visit point of definition of a
source symbol in the any file in the project by typing a fragment of the name

Ctrl-Shift-Page_Down: forward-page-extend - Move cursor forward one page,
adjusting the selection range to new position

Ctrl-Shift-Page_Up: backward-page-extend - Move cursor backward one page,
adjusting the selection range to new position

Ctrl-Shift-Prior: backward-page-extend - Move cursor backward one page,
adjusting the selection range to new position

Ctrl-Shift-R: batch-replace - Display search and replace in files tool.

Ctrl-Shift-Right: forward-word-extend - Action varies according to focus: Active
Editor Commands: Move cursor forward one word, adjusting the selection range to
new position. Optionally, provide a string that contains the delimiters to define
which characters are part of a word. Gravity may be "start" or "end" to indicate
whether cursor is placed at start or end of the word.; Toolbar Search Commands:
Move forward one word, extending the selection

Ctrl-Shift-S: save-all - Save all unsaved items, prompting for names for any new
items that don't have a filename already.

Ctrl-Shift-T: find-symbol - Allow user to visit point of definition of a source symbol
in the current editor context by typing a fragment of the name

Ctrl-Shift-Tab: begin-visited-document-cycle(move_back=False) - Start
moving between documents in the order they were visited. Starts modal key
interaction that ends when a key other than tab is seen or ctrl is released.

Ctrl-Shift-U: case-upper - Change case of the current selection, or character
ahead of the cursor if there is no selection, to upper case

Ctrl-Shift-U: isearch-backward - Action varies according to focus: Active Editor
Commands: Initiate incremental mini-search backward from the cursor position,
optionally entering the given search string ; Document Viewer Commands: Initiate
incremental mini-search backward from the cursor position, optionally entering the
given search string.

Ctrl-Shift-Up: scroll-text-up - Scroll text up a line w/o moving cursor's relative
position on screen. Repeat is number of lines or if >0 and <1.0 then percent of

Key Binding Reference

420

screen. Set move_cursor to False to leave cursor in current position within the
source, otherwise it is moved so the cursor remains on same screen line.

Ctrl-Slash: command-by-name - Execute given command by name, collecting
any args as needed

Ctrl-T: forward-tab - Action varies according to focus: Active Editor Commands:
Place a tab character at the current cursor position ; Search Manager Instance
Commands: Place a forward tab at the current cursor position in search or replace
string

Ctrl-Tab: begin-visited-document-cycle(move_back=True) - Start moving
between documents in the order they were visited. Starts modal key interaction
that ends when a key other than tab is seen or ctrl is released.

Ctrl-U: case-lower - Change case of the current selection, or character ahead of
the cursor if there is no selection, to lower case

Ctrl-Underscore: visit-history-next - Move forward in history to next visited editor
position

Ctrl-Underscore: zoom-reset - Action varies according to focus: Document
Viewer Commands: Reset documentation font size to default; General Editor
Commands: Reset font zoom factor back to zero

Ctrl-Up: select-more - Select more code on either the current line or larger
multi-line blocks.

Ctrl-V: paste - Action varies according to focus: Active Editor Commands: Paste
text from clipboard ; Search Manager Instance Commands: Paste text from
clipboard ; Toolbar Search Commands: Paste from clipboard

Ctrl-W: close - Close active document. Abandon any changes when
ignore_changes is True. Close empty windows when close_window is true and quit
if all document windows closed when can_quit is true.

Ctrl-X: cut - Action varies according to focus: Active Editor Commands: Cut
selected text ; Search Manager Instance Commands: Cut selected text ; Toolbar
Search Commands: Cut selection

Ctrl-Y: redo - Redo last action

Ctrl-Z: undo - Undo last action

Ctrl-]: brace-match - Match brace at current cursor position, selecting all text
between the two and hilighting the braces

Ctrl-greater: indent-region - Indent the selected region one level of indentation.
Set sel to None to use preference to determine selection behavior, or
"never-select" to unselect after indent, "always-select" to always select after indent,
or "retain-select" to retain current selection after indent.

Key Binding Reference

421

Ctrl-less: outdent-region - Outdent the selected region one level of indentation.
Set sel to None to use preference to determine selection behavior, or
"never-select" to unselect after indent, "always-select" to always select after indent,
or "retain-select" to retain current selection after indent.

Ctrl-parenleft: start-kbd-macro - Start definition of a keyboard macro. If
register=None then the user is prompted to enter a letter a-z under which to file the
macro. Otherwise, register 'a' is used by default.

Ctrl-parenright: stop-kbd-macro - Stop definition of a keyboard macro

Ctrl-space: show-autocompleter - Show the auto-completer for current cursor
position

Delete: forward-delete-char - Action varies according to focus: Active Editor
Commands: Delete one character in front of the cursor ; Toolbar Search
Commands: Delete character in front of the cursor

Down: next-line - Move to screen next line, optionally repositioning character
within line: 'same' to leave in same horizontal position, 'start' at start, 'end' at end,
or 'fnb' for first non-blank char.

End: end-of-line - Action varies according to focus: Active Editor Commands:
Move to end of current line; Toolbar Search Commands: Move to the end of the
toolbar search entry

F1: Multiple commands (first available is executed):

• show-horizontal-tools - Show the horizontal tool area
• minimize-horizontal-tools - Minimize the horizontal tool area

F10: step-over-statement - Step over current statement

F11: frame-up - Move up the current debug stack

F11: step-into - Step into current execution point, or start debugging at first line

F12: frame-down - Move down the current debug stack

F2: Multiple commands (first available is executed):

• show-vertical-tools - Show the vertical tool area
• minimize-vertical-tools - Minimize the vertical tool area

F3: search-forward - Search again using the search manager's current settings in
forward direction

F4: goto-selected-symbol-defn - Goto the definition of the selected source
symbol, optionally showing the definition in another split if one is available and
other_split is True.

Key Binding Reference

422

F5: debug-continue - Continue (or start) debugging, to next breakpoint (press Alt
to continue all paused debug processes)

F6: step-over-statement - Step over current statement

F7: step-into - Step into current execution point, or start debugging at first line

F8: step-out - Step out of the current function or method

F9: Multiple commands (first available is executed):

• break-set - Set a new regular breakpoint on current line
• break-clear - Clear the breakpoint on the current line

Home: beginning-of-line-text - Move to end of the leading white space, if any, on
the current line. If toggle is True, moves to the beginning of the line if already at the
end of the leading white space (and vice versa).

ISO_Left_Tab: backward-tab - Outdent line at current position

Insert: toggle-overtype - Toggle status of overtyping mode

Left: backward-char - Action varies according to focus: Active Editor Commands:
Move cursor backward one character ; Toolbar Search Commands: Move
backward one character

Next: forward-page - Move cursor forward one page

Page_Down: forward-page - Move cursor forward one page

Page_Up: backward-page - Move cursor backward one page

Prior: backward-page - Move cursor backward one page

Return: new-line - Place a new line at the current cursor position

Right: forward-char - Action varies according to focus: Active Editor Commands:
Move cursor forward one character ; Toolbar Search Commands: Move forward
one character

Shift-Alt-A: diff-merge-a-b

Shift-Alt-B: diff-merge-b-a

Shift-Alt-Down: next-line-extend-rect - Move to next screen line, adjusting the
rectangular selection range to new position, optionally repositioning character
within line: same' to leave in same horizontal position, 'start' at start, 'end' at end,
or 'fnb' for first non-blank char.

Shift-Alt-F5: debug-continue-all - Continue all paused debug processes

Shift-Alt-Left: backward-char-extend-rect - Move cursor backward one
character, adjusting the rectangular selection range to new position

Shift-Alt-N: diff-next

Key Binding Reference

423

Shift-Alt-P: diff-previous

Shift-Alt-Right: forward-char-extend-rect - Move cursor forward one character,
adjusting the rectangular selection range to new position

Shift-Alt-Up: previous-line-extend-rect - Move to previous screen line, adjusting
the rectangular selection range to new position, optionally repositioning character
within line: same' to leave in same horizontal position, 'start' at start, 'end' at end,
or 'fnb' for first non-blank char.

Shift-BackSpace: backward-delete-char - Action varies according to focus:
Active Editor Commands: Delete one character behind the cursor, or the current
selection if not empty. ; Toolbar Search Commands: Delete character behind the
cursor

Shift-Ctrl-F8: start-select-block - Turn on auto-select block mode

Shift-Delete: cut - Action varies according to focus: Active Editor Commands: Cut
selected text ; Search Manager Instance Commands: Cut selected text ; Toolbar
Search Commands: Cut selection

Shift-Delete: cut-selection-or-line - Cut the current selection or current line if
there is no selection. The text is placed on the clipboard.

Shift-Down: next-line-extend - Move to next screen line, adjusting the selection
range to new position, optionally repositioning character within line: same' to leave
in same horizontal position, 'start' at start, 'end' at end, 'fnb' for first non-blank char,
or 'xcode' to simulate XCode style Shift-Alt line selection.

Shift-End: end-of-line-extend - Action varies according to focus: Active Editor
Commands: Move to end of current line, adjusting the selection range to new
position ; Toolbar Search Commands: Move to the end of the toolbar search entry,
extending the selection

Shift-F1: move-focus - Move the keyboard focus forward within the Window to the
next editable area

Shift-F11: frame-show - Show the position (thread and stack frame) where the
debugger originally stopped

Shift-F11: step-out - Step out of the current function or method

Shift-F2: Multiple commands (first available is executed):

• enter-fullscreen - Hide both the vertical and horizontal tool areas and
toolbar, saving previous state so it can be restored later with
exit_fullscreen

• exit-fullscreen - Restore previous non-fullscreen state of all tools and tool
bar

Key Binding Reference

424

Shift-F3: search-backward - Search again using the search manager's current
settings in backward direction

Shift-F4: find-points-of-use - Find points of use for a symbol. The symbol defaults
to the active selection.

Shift-F5: debug-file - Start debugging the current file (rather than the main entry
point)

Shift-F5: debug-kill - Terminate current debug process (press Alt to terminate all
debug processes)

Shift-F6: run-all-tests - Runs all the tests in testing panel.

Shift-F7: run-current-tests - Runs the current test or tests, if possible. The current
tests are determined by the current position in the active view. The tests are
debugged when debug is True.

Shift-F8: start-select-char - Turn on auto-select mode character by character

Shift-F9: Multiple commands (first available is executed):

• break-enable - Enable the breakpoint on the current line
• break-disable - Disable the breakpoint on current line

Shift-Home: beginning-of-line-text-extend - Move to end of the leading white
space, if any, on the current line, adjusting the selection range to the new position.
If toggle is True, moves to the beginning of the line if already at the end of the
leading white space (and vice versa).

Shift-Insert: paste - Action varies according to focus: Active Editor Commands:
Paste text from clipboard ; Search Manager Instance Commands: Paste text from
clipboard ; Toolbar Search Commands: Paste from clipboard

Shift-Left: backward-char-extend - Action varies according to focus: Active Editor
Commands: Move cursor backward one character, adjusting the selection range to
new position ; Toolbar Search Commands: Move backward one character,
extending the selection

Shift-Next: forward-page-extend - Move cursor forward one page, adjusting the
selection range to new position

Shift-Page_Down: forward-page-extend - Move cursor forward one page,
adjusting the selection range to new position

Shift-Page_Up: backward-page-extend - Move cursor backward one page,
adjusting the selection range to new position

Shift-Prior: backward-page-extend - Move cursor backward one page, adjusting
the selection range to new position

Shift-Return: new-line-before - Place a new line before the current line

Key Binding Reference

425

Shift-Right: forward-char-extend - Action varies according to focus: Active Editor
Commands: Move cursor forward one character, adjusting the selection range to
new position ; Toolbar Search Commands: Move forward one character, extending
the selection

Shift-Tab: backward-tab - Outdent line at current position

Shift-Up: previous-line-extend - Move to previous screen line, adjusting the
selection range to new position, optionally repositioning character within line: same'
to leave in same horizontal position, 'start' at start, 'end' at end, 'fnb' for first
non-blank char, or 'xcode' to simulate XCode style Shift-Alt line selection.

Tab: tab-key - Implement the tab key, the action of which is configurable by
preference

Up: previous-line - Move to previous screen line, optionally repositioning
character within line: same' to leave in same horizontal position, 'start' at start, 'end'
at end, or 'fnb' for first non-blank char.

Visual-Esc: exit-visual-mode - Exit visual mode and return back to default mode

21.5. OS X Personality
This section documents all the default key bindings for the OS X keyboard
personality, set by the Personality preference.

Alt-Down: next-line(cursor="end") - Move to screen next line, optionally
repositioning character within line: 'same' to leave in same horizontal position,
'start' at start, 'end' at end, or 'fnb' for first non-blank char.

Alt-Up: previous-line(cursor="start") - Move to previous screen line, optionally
repositioning character within line: same' to leave in same horizontal position, 'start'
at start, 'end' at end, or 'fnb' for first non-blank char.

Backspace: backward-delete-char - Action varies according to focus: Active
Editor Commands: Delete one character behind the cursor, or the current selection
if not empty. ; Toolbar Search Commands: Delete character behind the cursor

Command-0: next-document - Move to the next document alphabetically in the
list of documents open in the current window

Command-1: activate-file-option-menu - Activate the file menu for the editor.

Command-2: activate-symbol-option-menu-1 - Activate the 1st symbol menu for
the editor.

Command-3: activate-symbol-option-menu-2 - Activate the 2nd symbol menu
for the editor.

Command-4: activate-symbol-option-menu-3 - Activate the 3rd symbol menu for
the editor.

Key Binding Reference

426

Command-5: activate-symbol-option-menu-4 - Activate the 4th symbol menu for
the editor.

Command-6: activate-symbol-option-menu-5 - Activate the 5th symbol menu for
the editor.

Command-7 C: use-lexer-cpp - Force syntax highlighting for C/C++ source

Command-7 H: use-lexer-html - Force syntax highlighting for HTML

Command-7 M: use-lexer-makefile - Force syntax highlighting for make files

Command-7 N: use-lexer-none - Use no syntax highlighting

Command-7 P: use-lexer-python - Force syntax highlighting for Python source

Command-7 S: use-lexer-sql - Force syntax highlighting for SQL

Command-7 X: use-lexer-xml - Force syntax highlighting for XML files

Command-8: recent-document - Switches to previous document most recently
visited in the current window or window set if in one-window-per-editor windowing
mode.

Command-9: previous-document - Move to the previous document alphabetically
in the list of documents open in the current window

Command-A: select-all - Select all text in the editor

Command-Alt-Minus: fold-python-methods - Fold up all Python methods,
expand all classes, and leave other fold points alone

Command-Apostrophe: comment-out-region - Comment out the selected
region. The style of commenting can be controlled with the style argument:
'indented' uses the default comment style indented at end of leading white space
and 'block' uses a block comment in column zero. If not given, the style configured
with the Editor / Block Comment Style preference is used. Each call adds a level of
commenting.

Command-Asterisk: fold-expand-all-current - Expand the current fold point
completely

Command-B: brace-match - Match brace at current cursor position, selecting all
text between the two and hilighting the braces

Command-Backslash: indent-to-match - Indent the current line or selected
region to match indentation of preceding non-blank line. Set toggle=True to indent
instead of one level higher if already at the matching position.

Command-Bracketleft: outdent-region - Outdent the selected region one level of
indentation. Set sel to None to use preference to determine selection behavior, or
"never-select" to unselect after indent, "always-select" to always select after indent,
or "retain-select" to retain current selection after indent.

Key Binding Reference

427

Command-Bracketright: indent-region - Indent the selected region one level of
indentation. Set sel to None to use preference to determine selection behavior, or
"never-select" to unselect after indent, "always-select" to always select after indent,
or "retain-select" to retain current selection after indent.

Command-C: copy - Action varies according to focus: Active Editor Commands:
Copy selected text ; Document Viewer Commands: Copy any selected text. ;
Exceptions Commands: Copy the exception traceback to the clipboard ; Search
Manager Instance Commands: Copy selected text ; Toolbar Search Commands:
Cut selection

Command-Comma: show-preferences-gui - Edit the preferences file using the
preferences GUI, optionally opening to the section that contains the given
preference by name

Command-Ctrl-Asterisk: fold-expand-all - Expand all fold points in the current
file

Command-Ctrl-Minus: fold-collapse-all - Collapse all fold points in the current
file

Command-Ctrl-R: replace-and-search - Replace current selection and search
again.

Command-Ctrl-Slash: fold-python-classes - Fold up all Python classes but leave
other fold points alone

Command-D: set-bookmark - Set a bookmark at current location on the editor.
Mark is the project-wide textual name of the bookmark.

Command-Down: end-of-document - Move cursor to end of document

Command-E: search-sel-forward - Search forward using current selection

Command-Equal: fold-python-classes-and-defs - Fold up all Python classes,
methods, and functions but leave other fold points alone

Command-F: search - Bring up the search manager in search mode.

Command-F12: command-by-name - Execute given command by name,
collecting any args as needed

Command-F3: search-sel-forward - Search forward using current selection

Command-F4: close - Close active document. Abandon any changes when
ignore_changes is True. Close empty windows when close_window is true and quit
if all document windows closed when can_quit is true.

Command-F5: debug-kill - Terminate current debug process (press Alt to
terminate all debug processes)

Command-F8: start-select-line - Turn on auto-select mode line by line

Command-F9: break-clear-all - Clear all breakpoints

Key Binding Reference

428

Command-G: search-forward - Search again using the search manager's current
settings in forward direction

Command-I: view-file-properties - View project properties for a particular file
(current file if none is given)

Command-J: fill-paragraph - Attempt to auto-justify the paragraph around the
current start of selection

Command-L: goto-line - Position cursor at start of given line number

Command-Left: beginning-of-line - Action varies according to focus: Active
Editor Commands: Move to beginning of current line. When toggle is True, moves
to the end of the leading white space if already at the beginning of the line (and
vice versa).; Toolbar Search Commands: Move to the beginning of the toolbar
search entry

Command-M: execute-kbd-macro - Execute most recently recorded keyboard
macro. If register is None then the user is asked to enter a letter a-z for the register
where the macro is filed. Otherwise, register 'a' is used by default.

Command-Minus: fold-collapse-all-current - Collapse the current fold point
completely

Command-N: new-file - Create a new file

Command-O: open-gui - Open a file from disk, prompting with file selection dialog
if necessary

Command-Option-F6: debug-failed-tests - Re-run all the previously failed tests
in the debugger.

Command-Option-F7: debug-last-tests - Debug the last group of tests that were
run.

Command-P: print-view - Print active editor document

Command-Plus: fold-expand-more-current - Expand the current fold point one
more level

Command-Pointer_Button1: goto-clicked-symbol-defn - Goto the definition of
the source symbol that was last clicked on, optionally showing the definition in
another split if one is available and other_split is True.

Command-Q: quit - Quit the application.

Command-Question: show-document - Show the given documentation section

Command-Quotedbl: uncomment-out-region - Uncomment out the selected
region if commented out. If one_level is True then each call removes only one level
of commenting.

Command-R: replace - Bring up the search manager in replace mode.

Key Binding Reference

429

Command-Return: new-line - Place a new line at the current cursor position

Command-Right: end-of-line - Action varies according to focus: Active Editor
Commands: Move to end of current line; Toolbar Search Commands: Move to the
end of the toolbar search entry

Command-S: save - Save active document. Also close it if close is True.

Command-Semicolon: comment-toggle - Toggle commenting out of the selected
lines. The style of commenting can be controlled with the style argument: 'indented'
uses the default comment style indented at end of leading white space and 'block'
uses a block comment in column zero. If not given, the style configured with the
Editor / Block Comment Style preference is used.

Command-Shift-B: toggle-bookmark - Set or remove a bookmark at current
location on the editor. When set, the name of the bookmark is set to an
auto-generated default.

Command-Shift-D: goto-bookmark - Goto named bookmark

Command-Shift-Down: end-of-document-extend - Move cursor to end of
document, adjusting the selection range to new position

Command-Shift-F: batch-search - Search on current selection using the Search
in Files tool. The look_in argument gets entered in the look in field if not None or ''.
The current selection is put into the search field if it doesn't span multiple lines and
either use_selection is true or there's nothing in the search field. The given search
text is used instead, if provided

Command-Shift-F3: search-sel-backward - Search backward using current
selection

Command-Shift-F5: debug-stop - Pause debug at current program counter
(press Alt to pause all debug processes)

Command-Shift-F6: debug-all-tests - Debug all the tests in testing panel.

Command-Shift-F7: debug-current-tests - Runs the current test or tests, if
possible. The current tests are determined by the current position in the active
view.

Command-Shift-G: search-backward - Search again using the search manager's
current settings in backward direction

Command-Shift-I: add-current-file-to-project - Add the frontmost currently open
file to project

Command-Shift-K: show-bookmarks - Show a list of all currently defined
bookmarks

Command-Shift-Left: beginning-of-line-extend - Action varies according to
focus: Active Editor Commands: Move to beginning of current line, adjusting the

Key Binding Reference

430

selection range to the new position. When toggle is True, moves to the end of the
leading white space if already at the beginning of the line (and vice versa).; Toolbar
Search Commands: Move to the beginning of the toolbar search entry, extending
the selection

Command-Shift-O: open-from-project - Open document from the project via the
Open From Project dialog. The given fragment is used as the initial fragment filter
and if it is None, the selected text or the symbol under the cursor is used. If
skip_if_unique is true, the file is opened without the dialog being displayed if only
one filename matches the fragment.

Command-Shift-P: find-symbol-in-project - Allow user to visit point of definition
of a source symbol in the any file in the project by typing a fragment of the name

Command-Shift-R: batch-replace - Display search and replace in files tool.

Command-Shift-Right: end-of-line-extend - Action varies according to focus:
Active Editor Commands: Move to end of current line, adjusting the selection range
to new position ; Toolbar Search Commands: Move to the end of the toolbar
search entry, extending the selection

Command-Shift-S: save-as - Save active document to a new file

Command-Shift-T: find-symbol - Allow user to visit point of definition of a source
symbol in the current editor context by typing a fragment of the name

Command-Shift-U: isearch-backward - Action varies according to focus: Active
Editor Commands: Initiate incremental mini-search backward from the cursor
position, optionally entering the given search string ; Document Viewer
Commands: Initiate incremental mini-search backward from the cursor position,
optionally entering the given search string.

Command-Shift-Up: start-of-document-extend - Move cursor to start of
document, adjusting the selection range to new position

Command-Shift-W: close - Close active document. Abandon any changes when
ignore_changes is True. Close empty windows when close_window is true and quit
if all document windows closed when can_quit is true.

Command-Shift-Y: selection-add-next-occurence(skip_current=True) - Add
another selection containing the text of the current selection. If skip_current is true,
the current selection will be deselected. If nothing is currently selected, select the
current word. Searches backwards if reverse is true.

Command-Shift-Z: redo - Redo last action

Command-Slash: fold-toggle - Toggle the current fold point

Command-T: search - Bring up the search manager in search mode.

Command-U: isearch-forward - Action varies according to focus: Active Editor
Commands: Initiate incremental mini-search forward from the cursor position,

Key Binding Reference

431

optionally entering the given search string ; Document Viewer Commands: Initiate
incremental mini-search forward from the cursor position, optionally entering the
given search string.

Command-Underscore: fold-collapse-more-current - Collapse the current fold
point one more level

Command-Up: start-of-document - Move cursor to start of document

Command-V: paste - Action varies according to focus: Active Editor Commands:
Paste text from clipboard ; Search Manager Instance Commands: Paste text from
clipboard ; Toolbar Search Commands: Paste from clipboard

Command-W: close - Close active document. Abandon any changes when
ignore_changes is True. Close empty windows when close_window is true and quit
if all document windows closed when can_quit is true.

Command-X: cut - Action varies according to focus: Active Editor Commands: Cut
selected text ; Search Manager Instance Commands: Cut selected text ; Toolbar
Search Commands: Cut selection

Command-Y: selection-add-next-occurence - Add another selection containing
the text of the current selection. If skip_current is true, the current selection will be
deselected. If nothing is currently selected, select the current word. Searches
backwards if reverse is true.

Command-Z: undo - Undo last action

Command-parenleft: start-kbd-macro - Start definition of a keyboard macro. If
register=None then the user is prompted to enter a letter a-z under which to file the
macro. Otherwise, register 'a' is used by default.

Command-parenright: stop-kbd-macro - Stop definition of a keyboard macro

Command-period: debug-kill - Terminate current debug process (press Alt to
terminate all debug processes)

Ctrl-=: indent-to-match - Indent the current line or selected region to match
indentation of preceding non-blank line. Set toggle=True to indent instead of one
level higher if already at the matching position.

Ctrl-Comma: visit-history-previous - Move back in history to previous visited
editor position

Ctrl-Down: forward-page - Move cursor forward one page

Ctrl-Equal: zoom-in - Action varies according to focus: Document Viewer
Commands: Increase documentation font size; General Editor Commands: Zoom
in, increasing the text display size temporarily by one font size

Ctrl-F12: command-by-name - Execute given command by name, collecting any
args as needed

Key Binding Reference

432

Ctrl-ISO_Left_Tab: begin-visited-document-cycle(move_back=False) - Start
moving between documents in the order they were visited. Starts modal key
interaction that ends when a key other than tab is seen or ctrl is released.

Ctrl-Left: backward-word(delimiters="_`~!@#$%^&*()+-={}[]\|;:'",.<>/? trn") -
Action varies according to focus: Active Editor Commands: Move cursor backward
one word. Optionally, provide a string that contains the delimiters to define which
characters are part of a word. Gravity may be "start" or "end" to indicate whether
cursor is placed at start or end of the word.; Toolbar Search Commands: Move
backward one word

Ctrl-Minus: zoom-out - Action varies according to focus: Document Viewer
Commands: Decrease documentation font size; General Editor Commands: Zoom
out, increasing the text display size temporarily by one font size

Ctrl-Option-Delete: backward-delete-word - Action varies according to focus:
Active Editor Commands: Delete one word behind of the cursor ; Toolbar Search
Commands: Delete word behind the cursor

Ctrl-Option-Down: next-line-extend-rect - Move to next screen line, adjusting the
rectangular selection range to new position, optionally repositioning character
within line: same' to leave in same horizontal position, 'start' at start, 'end' at end,
or 'fnb' for first non-blank char.

Ctrl-Option-Left: backward-char-extend-rect - Move cursor backward one
character, adjusting the rectangular selection range to new position

Ctrl-Option-Right: forward-char-extend-rect - Move cursor forward one
character, adjusting the rectangular selection range to new position

Ctrl-Option-Up: previous-line-extend-rect - Move to previous screen line,
adjusting the rectangular selection range to new position, optionally repositioning
character within line: same' to leave in same horizontal position, 'start' at start, 'end'
at end, or 'fnb' for first non-blank char.

Ctrl-Period: visit-history-next - Move forward in history to next visited editor
position

Ctrl-Plus: zoom-in - Action varies according to focus: Document Viewer
Commands: Increase documentation font size; General Editor Commands: Zoom
in, increasing the text display size temporarily by one font size

Ctrl-R: query-replace - Initiate incremental mini-search query/replace from the
cursor position.

Ctrl-Return: new-line - Place a new line at the current cursor position

Ctrl-Right: forward-word(delimiters="_`~!@#$%^&*()+-={}[]\|;:'",.<>/? trn") -
Action varies according to focus: Active Editor Commands: Move cursor forward
one word. Optionally, provide a string that contains the delimiters to define which
characters are part of a word. Gravity may be "start" or "end" to indicate whether

Key Binding Reference

433

cursor is placed at start or end of the word.; Toolbar Search Commands: Move
forward one word

Ctrl-Shift-Left:
backward-word-extend(delimiters="_`~!@#$%^&*()+-={}[]\|;:'",.<>/? trn") -
Action varies according to focus: Active Editor Commands: Move cursor backward
one word, adjusting the selection range to new position. Optionally, provide a string
that contains the delimiters to define which characters are part of a word. Gravity
may be "start" or "end" to indicate whether cursor is placed at start or end of the
word.; Toolbar Search Commands: Move backward one word, extending the
selection

Ctrl-Shift-Right:
forward-word-extend(delimiters="_`~!@#$%^&*()+-={}[]\|;:'",.<>/? trn") - Action
varies according to focus: Active Editor Commands: Move cursor forward one
word, adjusting the selection range to new position. Optionally, provide a string that
contains the delimiters to define which characters are part of a word. Gravity may
be "start" or "end" to indicate whether cursor is placed at start or end of the word.;
Toolbar Search Commands: Move forward one word, extending the selection

Ctrl-T: forward-tab - Action varies according to focus: Active Editor Commands:
Place a tab character at the current cursor position ; Search Manager Instance
Commands: Place a forward tab at the current cursor position in search or replace
string

Ctrl-Tab: begin-visited-document-cycle(move_back=True) - Start moving
between documents in the order they were visited. Starts modal key interaction
that ends when a key other than tab is seen or ctrl is released.

Ctrl-Underscore: zoom-reset - Action varies according to focus: Document
Viewer Commands: Reset documentation font size to default; General Editor
Commands: Reset font zoom factor back to zero

Ctrl-Up: backward-page - Move cursor backward one page

Ctrl-a: beginning-of-line - Action varies according to focus: Active Editor
Commands: Move to beginning of current line. When toggle is True, moves to the
end of the leading white space if already at the beginning of the line (and vice
versa).; Toolbar Search Commands: Move to the beginning of the toolbar search
entry

Ctrl-b: backward-char - Action varies according to focus: Active Editor
Commands: Move cursor backward one character ; Toolbar Search Commands:
Move backward one character

Ctrl-d: forward-delete-char - Action varies according to focus: Active Editor
Commands: Delete one character in front of the cursor ; Toolbar Search
Commands: Delete character in front of the cursor

Key Binding Reference

434

Ctrl-e: end-of-line - Action varies according to focus: Active Editor Commands:
Move to end of current line; Toolbar Search Commands: Move to the end of the
toolbar search entry

Ctrl-f: forward-char - Action varies according to focus: Active Editor Commands:
Move cursor forward one character ; Toolbar Search Commands: Move forward
one character

Ctrl-h: backward-delete-char - Action varies according to focus: Active Editor
Commands: Delete one character behind the cursor, or the current selection if not
empty. ; Toolbar Search Commands: Delete character behind the cursor

Ctrl-k: kill-line - Kill rest of line from cursor to end of line, and place it into the
clipboard with any other contiguously removed lines. End-of-line is removed only if
there is nothing between the cursor and the end of the line.

Ctrl-n: next-line - Move to screen next line, optionally repositioning character
within line: 'same' to leave in same horizontal position, 'start' at start, 'end' at end,
or 'fnb' for first non-blank char.

Ctrl-p: previous-line - Move to previous screen line, optionally repositioning
character within line: same' to leave in same horizontal position, 'start' at start, 'end'
at end, or 'fnb' for first non-blank char.

Ctrl-space: show-autocompleter - Show the auto-completer for current cursor
position

Ctrl-v: forward-page - Move cursor forward one page

Ctrl-y: paste - Action varies according to focus: Active Editor Commands: Paste
text from clipboard ; Search Manager Instance Commands: Paste text from
clipboard ; Toolbar Search Commands: Paste from clipboard

Delete: forward-delete-char - Action varies according to focus: Active Editor
Commands: Delete one character in front of the cursor ; Toolbar Search
Commands: Delete character in front of the cursor

Down: next-line - Move to screen next line, optionally repositioning character
within line: 'same' to leave in same horizontal position, 'start' at start, 'end' at end,
or 'fnb' for first non-blank char.

End: scroll-to-end - Scroll to the end of the text in the editor. Set move_caret to
control whether the caret is moved.

F1: Multiple commands (first available is executed):

• show-horizontal-tools - Show the horizontal tool area
• minimize-horizontal-tools - Minimize the horizontal tool area

F11: frame-up - Move up the current debug stack

Key Binding Reference

435

F12: frame-down - Move down the current debug stack

F2: Multiple commands (first available is executed):

• show-vertical-tools - Show the vertical tool area
• minimize-vertical-tools - Minimize the vertical tool area

F3: search-forward - Search again using the search manager's current settings in
forward direction

F4: goto-selected-symbol-defn - Goto the definition of the selected source
symbol, optionally showing the definition in another split if one is available and
other_split is True.

F5: debug-continue - Continue (or start) debugging, to next breakpoint (press Alt
to continue all paused debug processes)

F6: step-over-statement - Step over current statement

F7: step-into - Step into current execution point, or start debugging at first line

F8: step-out - Step out of the current function or method

F9: Multiple commands (first available is executed):

• break-set - Set a new regular breakpoint on current line
• break-clear - Clear the breakpoint on the current line

Home: scroll-to-start - Scroll to the top of the text in the editor. Set move_caret to
control whether the the caret is moved.

ISO_Left_Tab: backward-tab - Outdent line at current position

Left: backward-char - Action varies according to focus: Active Editor Commands:
Move cursor backward one character ; Toolbar Search Commands: Move
backward one character

Option-Backspace: backward-delete-word - Action varies according to focus:
Active Editor Commands: Delete one word behind of the cursor ; Toolbar Search
Commands: Delete word behind the cursor

Option-Delete: forward-delete-word - Action varies according to focus: Active
Editor Commands: Delete one word in front of the cursor ; Toolbar Search
Commands: Delete word in front of the cursor

Option-F3: search - Bring up the search manager in search mode.

Option-F4: close-window - Close the current window and all documents and
panels in it

Key Binding Reference

436

Option-F6: run-failed-tests - Re-run all the previously failed tests. The tests are
debugged when debug is True.

Option-F7: run-last-tests - Run again the last group of tests that were run. The
tests are debugged when debug is True.

Option-Left: backward-word - Action varies according to focus: Active Editor
Commands: Move cursor backward one word. Optionally, provide a string that
contains the delimiters to define which characters are part of a word. Gravity may
be "start" or "end" to indicate whether cursor is placed at start or end of the word.;
Toolbar Search Commands: Move backward one word

Option-Page_Down: forward-page - Move cursor forward one page

Option-Page_Up: backward-page - Move cursor backward one page

Option-Return: new-line - Place a new line at the current cursor position

Option-Right: forward-word - Action varies according to focus: Active Editor
Commands: Move cursor forward one word. Optionally, provide a string that
contains the delimiters to define which characters are part of a word. Gravity may
be "start" or "end" to indicate whether cursor is placed at start or end of the word.;
Toolbar Search Commands: Move forward one word

Option-Shift-Left: backward-word-extend - Action varies according to focus:
Active Editor Commands: Move cursor backward one word, adjusting the selection
range to new position. Optionally, provide a string that contains the delimiters to
define which characters are part of a word. Gravity may be "start" or "end" to
indicate whether cursor is placed at start or end of the word.; Toolbar Search
Commands: Move backward one word, extending the selection

Option-Shift-Right: forward-word-extend - Action varies according to focus:
Active Editor Commands: Move cursor forward one word, adjusting the selection
range to new position. Optionally, provide a string that contains the delimiters to
define which characters are part of a word. Gravity may be "start" or "end" to
indicate whether cursor is placed at start or end of the word.; Toolbar Search
Commands: Move forward one word, extending the selection

Option-Up: select-more - Select more code on either the current line or larger
multi-line blocks.

Page_Down: forward-page - Move cursor forward one page

Page_Up: backward-page - Move cursor backward one page

Return: new-line - Place a new line at the current cursor position

Right: forward-char - Action varies according to focus: Active Editor Commands:
Move cursor forward one character ; Toolbar Search Commands: Move forward
one character

Key Binding Reference

437

Shift-Alt-Down: next-line-extend(cursor="xcode") - Move to next screen line,
adjusting the selection range to new position, optionally repositioning character
within line: same' to leave in same horizontal position, 'start' at start, 'end' at end,
'fnb' for first non-blank char, or 'xcode' to simulate XCode style Shift-Alt line
selection.

Shift-Alt-Up: previous-line-extend(cursor="xcode") - Move to previous screen
line, adjusting the selection range to new position, optionally repositioning
character within line: same' to leave in same horizontal position, 'start' at start, 'end'
at end, 'fnb' for first non-blank char, or 'xcode' to simulate XCode style Shift-Alt line
selection.

Shift-Backspace: backward-delete-char - Action varies according to focus:
Active Editor Commands: Delete one character behind the cursor, or the current
selection if not empty. ; Toolbar Search Commands: Delete character behind the
cursor

Shift-Command-F8: start-select-block - Turn on auto-select block mode

Shift-Delete: forward-delete-char - Action varies according to focus: Active Editor
Commands: Delete one character in front of the cursor ; Toolbar Search
Commands: Delete character in front of the cursor

Shift-Down: next-line-extend - Move to next screen line, adjusting the selection
range to new position, optionally repositioning character within line: same' to leave
in same horizontal position, 'start' at start, 'end' at end, 'fnb' for first non-blank char,
or 'xcode' to simulate XCode style Shift-Alt line selection.

Shift-End: end-of-document-extend - Move cursor to end of document, adjusting
the selection range to new position

Shift-F1: move-focus - Move the keyboard focus forward within the Window to the
next editable area

Shift-F2: Multiple commands (first available is executed):

• enter-fullscreen - Hide both the vertical and horizontal tool areas and
toolbar, saving previous state so it can be restored later with
exit_fullscreen

• exit-fullscreen - Restore previous non-fullscreen state of all tools and tool
bar

Shift-F3: search-backward - Search again using the search manager's current
settings in backward direction

Shift-F4: new-document-window - Create a new document window with same
documents and panels as in the current document window (if any; otherwise empty
with default panels)

Key Binding Reference

438

Shift-F5: debug-file - Start debugging the current file (rather than the main entry
point)

Shift-F6: run-all-tests - Runs all the tests in testing panel.

Shift-F7: run-current-tests - Runs the current test or tests, if possible. The current
tests are determined by the current position in the active view. The tests are
debugged when debug is True.

Shift-F8: start-select-char - Turn on auto-select mode character by character

Shift-F9: Multiple commands (first available is executed):

• break-enable - Enable the breakpoint on the current line
• break-disable - Disable the breakpoint on current line

Shift-Home: start-of-document-extend - Move cursor to start of document,
adjusting the selection range to new position

Shift-Left: backward-char-extend - Action varies according to focus: Active Editor
Commands: Move cursor backward one character, adjusting the selection range to
new position ; Toolbar Search Commands: Move backward one character,
extending the selection

Shift-Page_Down: forward-page-extend - Move cursor forward one page,
adjusting the selection range to new position

Shift-Page_Up: backward-page-extend - Move cursor backward one page,
adjusting the selection range to new position

Shift-Return: new-line - Place a new line at the current cursor position

Shift-Right: forward-char-extend - Action varies according to focus: Active Editor
Commands: Move cursor forward one character, adjusting the selection range to
new position ; Toolbar Search Commands: Move forward one character, extending
the selection

Shift-Tab: backward-tab - Outdent line at current position

Shift-Up: previous-line-extend - Move to previous screen line, adjusting the
selection range to new position, optionally repositioning character within line: same'
to leave in same horizontal position, 'start' at start, 'end' at end, 'fnb' for first
non-blank char, or 'xcode' to simulate XCode style Shift-Alt line selection.

Tab: tab-key - Implement the tab key, the action of which is configurable by
preference

Up: previous-line - Move to previous screen line, optionally repositioning
character within line: same' to leave in same horizontal position, 'start' at start, 'end'
at end, or 'fnb' for first non-blank char.

Visual-Esc: exit-visual-mode - Exit visual mode and return back to default mode

Key Binding Reference

439

21.6. Eclipse Personality
This section documents all the default key bindings for the Eclipse keyboard
personality, set by the Personality preference.

Alt-1: fold-python-methods - Fold up all Python methods, expand all classes, and
leave other fold points alone

Alt-1: fold-python-methods - Fold up all Python methods, expand all classes, and
leave other fold points alone

Alt-2: fold-python-classes - Fold up all Python classes but leave other fold points
alone

Alt-2: fold-python-classes - Fold up all Python classes but leave other fold points
alone

Alt-3: fold-python-classes-and-defs - Fold up all Python classes, methods, and
functions but leave other fold points alone

Alt-3: fold-python-classes-and-defs - Fold up all Python classes, methods, and
functions but leave other fold points alone

Alt-BackSpace: backward-delete-word - Action varies according to focus: Active
Editor Commands: Delete one word behind of the cursor ; Toolbar Search
Commands: Delete word behind the cursor

Alt-BackSpace: backward-delete-word - Action varies according to focus: Active
Editor Commands: Delete one word behind of the cursor ; Toolbar Search
Commands: Delete word behind the cursor

Alt-Delete: backward-delete-word - Action varies according to focus: Active
Editor Commands: Delete one word behind of the cursor ; Toolbar Search
Commands: Delete word behind the cursor

Alt-Delete: backward-delete-word - Action varies according to focus: Active
Editor Commands: Delete one word behind of the cursor ; Toolbar Search
Commands: Delete word behind the cursor

Alt-Down: fold-expand-more-current - Expand the current fold point one more
level

Alt-Down: fold-expand-more-current - Expand the current fold point one more
level

Alt-Down: move-line-down(indent=True) - Move the current line or lines up down
line, optionally indenting to match the new position

Alt-End: fold-expand-all - Expand all fold points in the current file

Alt-End: fold-expand-all - Expand all fold points in the current file

Key Binding Reference

440

Alt-Enter: view-file-properties - View project properties for a particular file
(current file if none is given)

Alt-F11: prev-points-of-use-match - Display the previous match in the active
points of use tool

Alt-F11: prev-points-of-use-match - Display the previous match in the active
points of use tool

Alt-F12: next-points-of-use-match - Display the next match in the active points of
use tool

Alt-F12: next-points-of-use-match - Display the next match in the active points of
use tool

Alt-F3: search - Bring up the search manager in search mode.

Alt-F3: search - Bring up the search manager in search mode.

Alt-F4: close-window - Close the current window and all documents and panels in
it

Alt-F4: close-window - Close the current window and all documents and panels in
it

Alt-F5: run-to-cursor - Run to current cursor position

Alt-F5: run-to-cursor - Run to current cursor position

Alt-F6: run-failed-tests - Re-run all the previously failed tests. The tests are
debugged when debug is True.

Alt-F6: run-failed-tests - Re-run all the previously failed tests. The tests are
debugged when debug is True.

Alt-F7: run-last-tests - Run again the last group of tests that were run. The tests
are debugged when debug is True.

Alt-F7: run-last-tests - Run again the last group of tests that were run. The tests
are debugged when debug is True.

Alt-Home: fold-collapse-all - Collapse all fold points in the current file

Alt-Home: fold-collapse-all - Collapse all fold points in the current file

Alt-Left: visit-history-previous - Move back in history to previous visited editor
position

Alt-Left: visit-history-previous - Move back in history to previous visited editor
position

Alt-Left: visit-history-previous - Move back in history to previous visited editor
position

Key Binding Reference

441

Alt-Page_Down: fold-expand-all-current - Expand the current fold point
completely

Alt-Page_Down: fold-expand-all-current - Expand the current fold point
completely

Alt-Page_Up: fold-collapse-all-current - Collapse the current fold point
completely

Alt-Page_Up: fold-collapse-all-current - Collapse the current fold point
completely

Alt-Return: new-line - Place a new line at the current cursor position

Alt-Return: new-line - Place a new line at the current cursor position

Alt-Right: visit-history-next - Move forward in history to next visited editor
position

Alt-Right: visit-history-next - Move forward in history to next visited editor
position

Alt-Right: visit-history-next - Move forward in history to next visited editor
position

Alt-Shift-Down: select-less - Select less code; undoes the last select-more
command

Alt-Shift-L: introduce-variable - Introduce named variable set to the current
selected expression or to the range in the active editor specified by pos_range.
The new_name argument is used as the default variable name if it is specified.

Alt-Shift-Left: previous-statement - Select the previous statement. Will ignore
indented statements under the current statements unless ignore_indented is False.
Specify a count of more than 1 to go back multiple statements.

Alt-Shift-M: extract-def - Extract selected lines to a new function or method. The
new_name argument is used as the default for the name field if specified.

Alt-Shift-O: show_preferences_gui(prefname="edit.highlight-occurrences")

Alt-Shift-R: rename-symbol - Rename currently selected symbol. The new_name
argument is used as the default for the name field if specified.

Alt-Shift-Right: next-statement - Select the next statement. Will ignore indented
statements under the current statements unless ignore_indented is False. Specify
a count of more than 1 to go forward multiple statements.

Alt-Shift-T: show-panel(panel_type="refactoring") - Show most recently visited
panel instance of given type. If no such panel exists, add one to the primary
window and show it. Returns the panel view object or None if not shown. Focus is
shifted to panel if grab_focus is specified and is true; if grab_focus is not specified,
it defaults to the value of flash.

Key Binding Reference

442

The valid panel types are:

project (*) browser (**) batch-search (*) interactive-search source-assistant (**)
debug-data debug-stack debug-io debug-exceptions debug-breakpoints (**)
debug-probe (**) debug-watch (**) debug-modules (**) python-shell messages (*)
help indent (**) bookmarks (**) testing (**) open-files (*) os-command (**) snippets
(**) diff (**) uses (**) refactoring (**) versioncontrol.svn (**) versioncontrol.hg (**)
versioncontrol.git (**) versioncontrol.bzr (**) versioncontrol.cvs (**)
versioncontrol.perforce (**)

(*) Wing Personal and Pro only (**) Wing Pro only

Alt-Shift-U: show_preferences_gui(prefname="edit.highlight-occurrences")

Alt-Shift-Up: select-more - Select more code on either the current line or larger
multi-line blocks.

Alt-Shift-V: move-symbol - Move the currently selected symbol to another
module, class, or function. The new_filename and new_scope_name arguments
are used as default values in the filename and scope name fields if specified.

Alt-Slash: fold-toggle - Toggle the current fold point

Alt-Slash: fold-toggle - Toggle the current fold point

Alt-Up: fold-collapse-more-current - Collapse the current fold point one more
level

Alt-Up: fold-collapse-more-current - Collapse the current fold point one more
level

Alt-Up: move-line-up(indent=True) - Move the current line or lines up one line,
optionally indenting to match the new position

Alt-comma: query-replace - Initiate incremental mini-search query/replace from
the cursor position.

Alt-period: replace-string - Replace all occurrences of a string from the cursor
position to end of file.

BackSpace: backward-delete-char - Action varies according to focus: Active
Editor Commands: Delete one character behind the cursor, or the current selection
if not empty. ; Toolbar Search Commands: Delete character behind the cursor

BackSpace: backward-delete-char - Action varies according to focus: Active
Editor Commands: Delete one character behind the cursor, or the current selection
if not empty. ; Toolbar Search Commands: Delete character behind the cursor

Ctrl-/: comment-block-toggle - Toggle block comment (with ## at start) on the
selected lines in editor. This is a different style of block commenting than Wing
implements by default (the default in Wing is intended to work better with some of
the other editor functionality)

Key Binding Reference

443

Ctrl-0: next-document - Move to the next document alphabetically in the list of
documents open in the current window

Ctrl-1: activate-file-option-menu - Activate the file menu for the editor.

Ctrl-1: activate-file-option-menu - Activate the file menu for the editor.

Ctrl-2: activate-symbol-option-menu-1 - Activate the 1st symbol menu for the
editor.

Ctrl-2: activate-symbol-option-menu-1 - Activate the 1st symbol menu for the
editor.

Ctrl-3: activate-symbol-option-menu-2 - Activate the 2nd symbol menu for the
editor.

Ctrl-3: activate-symbol-option-menu-2 - Activate the 2nd symbol menu for the
editor.

Ctrl-4: activate-symbol-option-menu-3 - Activate the 3rd symbol menu for the
editor.

Ctrl-4: activate-symbol-option-menu-3 - Activate the 3rd symbol menu for the
editor.

Ctrl-5: activate-symbol-option-menu-4 - Activate the 4th symbol menu for the
editor.

Ctrl-5: activate-symbol-option-menu-4 - Activate the 4th symbol menu for the
editor.

Ctrl-6: activate-symbol-option-menu-5 - Activate the 5th symbol menu for the
editor.

Ctrl-6: activate-symbol-option-menu-5 - Activate the 5th symbol menu for the
editor.

Ctrl-7 C: use-lexer-cpp - Force syntax highlighting for C/C++ source

Ctrl-7 H: use-lexer-html - Force syntax highlighting for HTML

Ctrl-7 M: use-lexer-makefile - Force syntax highlighting for make files

Ctrl-7 N: use-lexer-none - Use no syntax highlighting

Ctrl-7 P: use-lexer-python - Force syntax highlighting for Python source

Ctrl-7 S: use-lexer-sql - Force syntax highlighting for SQL

Ctrl-7 X: use-lexer-xml - Force syntax highlighting for XML files

Ctrl-8: recent-document - Switches to previous document most recently visited in
the current window or window set if in one-window-per-editor windowing mode.

Ctrl-9: previous-document - Move to the previous document alphabetically in the
list of documents open in the current window

Key Binding Reference

444

Ctrl-=: indent-to-match - Indent the current line or selected region to match
indentation of preceding non-blank line. Set toggle=True to indent instead of one
level higher if already at the matching position.

Ctrl-=: indent-to-match - Indent the current line or selected region to match
indentation of preceding non-blank line. Set toggle=True to indent instead of one
level higher if already at the matching position.

Ctrl-A: select-all - Select all text in the editor

Ctrl-Alt-B: search-sel-backward - Search backward using current selection

Ctrl-Alt-Comma: query-replace-regex - Initiate incremental mini-search
query/replace from the cursor position. The search string is treated as a regular
expression.

Ctrl-Alt-D: evaluate-sel-in-debug-probe - Evaluate the current selection from the
editor within the Debug Probe tool. When whole_lines is set, the selection is
rounded to whole lines before evaluation. When unspecified (set to None), the
setting from the Shell's Option menu is used instead.

Ctrl-Alt-D: selection-add-next-occurence(skip_current=True) - Add another
selection containing the text of the current selection. If skip_current is true, the
current selection will be deselected. If nothing is currently selected, select the
current word. Searches backwards if reverse is true.

Ctrl-Alt-Down: duplicate-line - Duplicate the current line or lines. Places the
duplicate on the line following the selection if pos is 'below' or before the selection
if it is 'above'.

Ctrl-Alt-Down: goto-next-bookmark(current_file_only=True) - Go to the next
bookmark, or the first one if no bookmark is selected. Stays within the file in the
current editor when current_file_only is True.

Ctrl-Alt-Down: goto-next-bookmark(current_file_only=True) - Go to the next
bookmark, or the first one if no bookmark is selected. Stays within the file in the
current editor when current_file_only is True.

Ctrl-Alt-E: evaluate-sel-in-shell - Evaluate the current selection from the editor
within the Python Shell tool, optionally restarting the shell first. When whole_lines is
set, the selection is rounded to whole lines before evaluation. When unspecified
(set to None), the setting from the Shell's Option menu is used instead.

Ctrl-Alt-F: search-sel-forward - Search forward using current selection

Ctrl-Alt-F5: debug-kill-all - Terminate all debug processes

Ctrl-Alt-F5: debug-kill-all - Terminate all debug processes

Ctrl-Alt-F6: debug-failed-tests - Re-run all the previously failed tests in the
debugger.

Key Binding Reference

445

Ctrl-Alt-F6: debug-failed-tests - Re-run all the previously failed tests in the
debugger.

Ctrl-Alt-F7: debug-last-tests - Debug the last group of tests that were run.

Ctrl-Alt-F7: debug-last-tests - Debug the last group of tests that were run.

Ctrl-Alt-G: goto-bookmark - Goto named bookmark

Ctrl-Alt-K: show-bookmarks - Show a list of all currently defined bookmarks

Ctrl-Alt-Left: goto-previous-bookmark - Go to the previous bookmark in the
bookmark list, or the last one if no bookmark is selected. Stays within the file in the
current editor when current_file_only is True.

Ctrl-Alt-Left: goto-previous-bookmark - Go to the previous bookmark in the
bookmark list, or the last one if no bookmark is selected. Stays within the file in the
current editor when current_file_only is True.

Ctrl-Alt-M: set-bookmark - Set a bookmark at current location on the editor. Mark
is the project-wide textual name of the bookmark.

Ctrl-Alt-Right: goto-next-bookmark - Go to the next bookmark, or the first one if
no bookmark is selected. Stays within the file in the current editor when
current_file_only is True.

Ctrl-Alt-Right: goto-next-bookmark - Go to the next bookmark, or the first one if
no bookmark is selected. Stays within the file in the current editor when
current_file_only is True.

Ctrl-Alt-T: toggle-bookmark - Set or remove a bookmark at current location on
the editor. When set, the name of the bookmark is set to an auto-generated
default.

Ctrl-Alt-Up: duplicate-line-above - Duplicate the current line or lines above the
selection.

Ctrl-Alt-Up: goto-previous-bookmark(current_file_only=True) - Go to the
previous bookmark in the bookmark list, or the last one if no bookmark is selected.
Stays within the file in the current editor when current_file_only is True.

Ctrl-Alt-Up: goto-previous-bookmark(current_file_only=True) - Go to the
previous bookmark in the bookmark list, or the last one if no bookmark is selected.
Stays within the file in the current editor when current_file_only is True.

Ctrl-Alt-V: evaluate-file-in-shell - Run the contents of the editor within the Python
Shell

Ctrl-Alt-period: replace-string-regex - Replace all occurrences of a string from
the cursor position to end of file. The search string is treated as a regular
expression.

Key Binding Reference

446

Ctrl-Apostrophe: enclose(start="'", end="'") - Enclose the selection or the rest
of the current line when there is no selection with the given start and end strings.
The caret is moved to the end of the enclosed text.

Ctrl-Apostrophe: enclose(start="'", end="'") - Enclose the selection or the rest
of the current line when there is no selection with the given start and end strings.
The caret is moved to the end of the enclosed text.

Ctrl-Asterisk: fold-expand-all - Expand all fold points in the current file

Ctrl-B: isearch-sel-forward - Action varies according to focus: Active Editor
Commands: Initiate incremental mini-search forward from the cursor position, using
current selection as the search string. Set persist=False to do the search but end
the interactive search session immediately.; Document Viewer Commands: Initiate
incremental mini-search forward from the cursor position, using current selection
as the search string. Set persist=False to do the search but end the interactive
search session immediately.

Ctrl-BackSpace: backward-delete-word - Action varies according to focus: Active
Editor Commands: Delete one word behind of the cursor ; Toolbar Search
Commands: Delete word behind the cursor

Ctrl-BackSpace: backward-delete-word - Action varies according to focus: Active
Editor Commands: Delete one word behind of the cursor ; Toolbar Search
Commands: Delete word behind the cursor

Ctrl-Braceleft: enclose(start="{", end="}") - Enclose the selection or the rest of
the current line when there is no selection with the given start and end strings. The
caret is moved to the end of the enclosed text.

Ctrl-Braceleft: enclose(start="{", end="}") - Enclose the selection or the rest of
the current line when there is no selection with the given start and end strings. The
caret is moved to the end of the enclosed text.

Ctrl-Bracketleft: enclose(start="[", end="]") - Enclose the selection or the rest of
the current line when there is no selection with the given start and end strings. The
caret is moved to the end of the enclosed text.

Ctrl-Bracketleft: enclose(start="[", end="]") - Enclose the selection or the rest of
the current line when there is no selection with the given start and end strings. The
caret is moved to the end of the enclosed text.

Ctrl-C: copy - Action varies according to focus: Active Editor Commands: Copy
selected text ; Document Viewer Commands: Copy any selected text. ; Exceptions
Commands: Copy the exception traceback to the clipboard ; Search Manager
Instance Commands: Copy selected text ; Toolbar Search Commands: Cut
selection

Ctrl-Comma: next-window - Switch to the next window alphabetically by title

Key Binding Reference

447

Ctrl-D: delete-line - Delete the current line or lines when the selection spans
multiple lines or given repeat is > 1

Ctrl-D: toolbar-search-focus - Move focus to toolbar search entry.

Ctrl-Delete: forward-delete-word - Action varies according to focus: Active Editor
Commands: Delete one word in front of the cursor ; Toolbar Search Commands:
Delete word in front of the cursor

Ctrl-Delete: forward-delete-word - Action varies according to focus: Active Editor
Commands: Delete one word in front of the cursor ; Toolbar Search Commands:
Delete word in front of the cursor

Ctrl-Down: select-less - Select less code; undoes the last select-more command

Ctrl-Down: select-less - Select less code; undoes the last select-more command

Ctrl-E: brace-match - Match brace at current cursor position, selecting all text
between the two and hilighting the braces

Ctrl-E: show-panel(panel_type="open-files") - Show most recently visited panel
instance of given type. If no such panel exists, add one to the primary window and
show it. Returns the panel view object or None if not shown. Focus is shifted to
panel if grab_focus is specified and is true; if grab_focus is not specified, it defaults
to the value of flash.

The valid panel types are:

project (*) browser (**) batch-search (*) interactive-search source-assistant (**)
debug-data debug-stack debug-io debug-exceptions debug-breakpoints (**)
debug-probe (**) debug-watch (**) debug-modules (**) python-shell messages (*)
help indent (**) bookmarks (**) testing (**) open-files (*) os-command (**) snippets
(**) diff (**) uses (**) refactoring (**) versioncontrol.svn (**) versioncontrol.hg (**)
versioncontrol.git (**) versioncontrol.bzr (**) versioncontrol.cvs (**)
versioncontrol.perforce (**)

(*) Wing Personal and Pro only (**) Wing Pro only

Ctrl-End: end-of-document - Move cursor to end of document

Ctrl-End: end-of-document - Move cursor to end of document

Ctrl-Equal: zoom-in - Action varies according to focus: Document Viewer
Commands: Increase documentation font size; General Editor Commands: Zoom
in, increasing the text display size temporarily by one font size

Ctrl-Equal: zoom-in - Action varies according to focus: Document Viewer
Commands: Increase documentation font size; General Editor Commands: Zoom
in, increasing the text display size temporarily by one font size

Ctrl-F: search - Bring up the search manager in search mode.

Key Binding Reference

448

Ctrl-F12: command-by-name - Execute given command by name, collecting any
args as needed

Ctrl-F12: command-by-name - Execute given command by name, collecting any
args as needed

Ctrl-F3: search-sel-forward - Search forward using current selection

Ctrl-F3: search-sel-forward - Search forward using current selection

Ctrl-F4: close - Close active document. Abandon any changes when
ignore_changes is True. Close empty windows when close_window is true and quit
if all document windows closed when can_quit is true.

Ctrl-F4: close - Close active document. Abandon any changes when
ignore_changes is True. Close empty windows when close_window is true and quit
if all document windows closed when can_quit is true.

Ctrl-F5: debug-kill - Terminate current debug process (press Alt to terminate all
debug processes)

Ctrl-F5: debug-kill - Terminate current debug process (press Alt to terminate all
debug processes)

Ctrl-F5: run-to-cursor - Run to current cursor position

Ctrl-F6: next-document - Move to the next document alphabetically in the list of
documents open in the current window

Ctrl-F6: step-over - Step over current instruction

Ctrl-F6: step-over - Step over current instruction

Ctrl-F8: start-select-line - Turn on auto-select mode line by line

Ctrl-F8: start-select-line - Turn on auto-select mode line by line

Ctrl-F9: break-clear-all - Clear all breakpoints

Ctrl-F9: break-clear-all - Clear all breakpoints

Ctrl-G: goto-selected-symbol-defn - Goto the definition of the selected source
symbol, optionally showing the definition in another split if one is available and
other_split is True.

Ctrl-G: search-forward - Search again using the search manager's current
settings in forward direction

Ctrl-H: batch-search - Search on current selection using the Search in Files tool.
The look_in argument gets entered in the look in field if not None or ''. The current
selection is put into the search field if it doesn't span multiple lines and either
use_selection is true or there's nothing in the search field. The given search text is
used instead, if provided

Ctrl-H: replace - Bring up the search manager in replace mode.

Key Binding Reference

449

Ctrl-Home: start-of-document - Move cursor to start of document

Ctrl-Home: start-of-document - Move cursor to start of document

Ctrl-I: replace-and-search - Replace current selection and search again.

Ctrl-Insert: copy - Action varies according to focus: Active Editor Commands:
Copy selected text ; Document Viewer Commands: Copy any selected text. ;
Exceptions Commands: Copy the exception traceback to the clipboard ; Search
Manager Instance Commands: Copy selected text ; Toolbar Search Commands:
Cut selection

Ctrl-Insert: copy - Action varies according to focus: Active Editor Commands:
Copy selected text ; Document Viewer Commands: Copy any selected text. ;
Exceptions Commands: Copy the exception traceback to the clipboard ; Search
Manager Instance Commands: Copy selected text ; Toolbar Search Commands:
Cut selection

Ctrl-J: fill-paragraph - Attempt to auto-justify the paragraph around the current
start of selection

Ctrl-J: isearch-forward - Action varies according to focus: Active Editor
Commands: Initiate incremental mini-search forward from the cursor position,
optionally entering the given search string ; Document Viewer Commands: Initiate
incremental mini-search forward from the cursor position, optionally entering the
given search string.

Ctrl-K: open-from-keyboard - Open a file from disk using keyboard-driven
selection of the file

Ctrl-K: search-forward - Search again using the search manager's current
settings in forward direction

Ctrl-L: goto-line - Position cursor at start of given line number

Ctrl-L: goto-line - Position cursor at start of given line number

Ctrl-Left: backward-word - Action varies according to focus: Active Editor
Commands: Move cursor backward one word. Optionally, provide a string that
contains the delimiters to define which characters are part of a word. Gravity may
be "start" or "end" to indicate whether cursor is placed at start or end of the word.;
Toolbar Search Commands: Move backward one word

Ctrl-Left: backward-word - Action varies according to focus: Active Editor
Commands: Move cursor backward one word. Optionally, provide a string that
contains the delimiters to define which characters are part of a word. Gravity may
be "start" or "end" to indicate whether cursor is placed at start or end of the word.;
Toolbar Search Commands: Move backward one word

Key Binding Reference

450

Ctrl-Less: enclose(start="<", end=">") - Enclose the selection or the rest of the
current line when there is no selection with the given start and end strings. The
caret is moved to the end of the enclosed text.

Ctrl-Less: enclose(start="<", end=">") - Enclose the selection or the rest of the
current line when there is no selection with the given start and end strings. The
caret is moved to the end of the enclosed text.

Ctrl-M: Multiple commands (first available is executed):

• enter-fullscreen - Hide both the vertical and horizontal tool areas and
toolbar, saving previous state so it can be restored later with
exit_fullscreen

• exit-fullscreen - Restore previous non-fullscreen state of all tools and tool
bar

Ctrl-M: execute-kbd-macro - Execute most recently recorded keyboard macro. If
register is None then the user is asked to enter a letter a-z for the register where
the macro is filed. Otherwise, register 'a' is used by default.

Ctrl-Minus: fold-collapse-current - Collapse the current fold point

Ctrl-Minus: zoom-out - Action varies according to focus: Document Viewer
Commands: Decrease documentation font size; General Editor Commands: Zoom
out, increasing the text display size temporarily by one font size

Ctrl-Minus: zoom-out - Action varies according to focus: Document Viewer
Commands: Decrease documentation font size; General Editor Commands: Zoom
out, increasing the text display size temporarily by one font size

Ctrl-N: new-file - Create a new file

Ctrl-Next: forward-page - Move cursor forward one page

Ctrl-Next: forward-page - Move cursor forward one page

Ctrl-O: find-symbol - Allow user to visit point of definition of a source symbol in
the current editor context by typing a fragment of the name

Ctrl-O: open-gui - Open a file from disk, prompting with file selection dialog if
necessary

Ctrl-P: print-view - Print active editor document

Ctrl-Page_Down: next-document - Move to the next document alphabetically in
the list of documents open in the current window

Ctrl-Page_Down: next-document - Move to the next document alphabetically in
the list of documents open in the current window

Ctrl-Page_Up: previous-document - Move to the previous document
alphabetically in the list of documents open in the current window

Key Binding Reference

451

Ctrl-Page_Up: previous-document - Move to the previous document
alphabetically in the list of documents open in the current window

Ctrl-Parenleft: enclose(start="(", end=")") - Enclose the selection or the rest of
the current line when there is no selection with the given start and end strings. The
caret is moved to the end of the enclosed text.

Ctrl-Parenleft: enclose(start="(", end=")") - Enclose the selection or the rest of
the current line when there is no selection with the given start and end strings. The
caret is moved to the end of the enclosed text.

Ctrl-Period: comment-toggle - Toggle commenting out of the selected lines. The
style of commenting can be controlled with the style argument: 'indented' uses the
default comment style indented at end of leading white space and 'block' uses a
block comment in column zero. If not given, the style configured with the Editor /
Block Comment Style preference is used.

Ctrl-Plus: fold-expand-current - Expand the current fold point

Ctrl-Plus: zoom-in - Action varies according to focus: Document Viewer
Commands: Increase documentation font size; General Editor Commands: Zoom
in, increasing the text display size temporarily by one font size

Ctrl-Plus: zoom-in - Action varies according to focus: Document Viewer
Commands: Increase documentation font size; General Editor Commands: Zoom
in, increasing the text display size temporarily by one font size

Ctrl-Pointer_Button1: goto-clicked-symbol-defn - Goto the definition of the
source symbol that was last clicked on, optionally showing the definition in another
split if one is available and other_split is True.

Ctrl-Pointer_Button1: goto-clicked-symbol-defn - Goto the definition of the
source symbol that was last clicked on, optionally showing the definition in another
split if one is available and other_split is True.

Ctrl-Prior: backward-page - Move cursor backward one page

Ctrl-Prior: backward-page - Move cursor backward one page

Ctrl-Q: quit - Quit the application.

Ctrl-Q: visit-history-previous - Move back in history to previous visited editor
position

Ctrl-Quotedbl: enclose(start='"', end='"') - Enclose the selection or the rest of
the current line when there is no selection with the given start and end strings. The
caret is moved to the end of the enclosed text.

Ctrl-Quotedbl: enclose(start='"', end='"') - Enclose the selection or the rest of
the current line when there is no selection with the given start and end strings. The
caret is moved to the end of the enclosed text.

Key Binding Reference

452

Ctrl-Quoteleft: begin-visited-document-cycle(move_back=True,
back_key="Ctrl-Quoteleft", forward_key="Ctrl-AsciiTilde") - Start moving
between documents in the order they were visited. Starts modal key interaction
that ends when a key other than tab is seen or ctrl is released.

Ctrl-Quoteleft: begin-visited-document-cycle(move_back=True,
back_key="Ctrl-Quoteleft", forward_key="Ctrl-AsciiTilde") - Start moving
between documents in the order they were visited. Starts modal key interaction
that ends when a key other than tab is seen or ctrl is released.

Ctrl-R: replace - Bring up the search manager in replace mode.

Ctrl-R: run-to-cursor - Run to current cursor position

Ctrl-Return: new-line-after - Place a new line after the current line

Ctrl-Return: new-line-after - Place a new line after the current line

Ctrl-Right: forward-word - Action varies according to focus: Active Editor
Commands: Move cursor forward one word. Optionally, provide a string that
contains the delimiters to define which characters are part of a word. Gravity may
be "start" or "end" to indicate whether cursor is placed at start or end of the word.;
Toolbar Search Commands: Move forward one word

Ctrl-Right: forward-word - Action varies according to focus: Active Editor
Commands: Move cursor forward one word. Optionally, provide a string that
contains the delimiters to define which characters are part of a word. Gravity may
be "start" or "end" to indicate whether cursor is placed at start or end of the word.;
Toolbar Search Commands: Move forward one word

Ctrl-S: save - Save active document. Also close it if close is True.

Ctrl-Shift-Alt-F5: debug-stop-all - Pause all free-running debug processes at the
current program counter

Ctrl-Shift-Alt-F5: debug-stop-all - Pause all free-running debug processes at the
current program counter

Ctrl-Shift-B: Multiple commands (first available is executed):

• break-set - Set a new regular breakpoint on current line
• break-clear - Clear the breakpoint on the current line

Ctrl-Shift-B: isearch-sel-backward - Initiate incremental mini-search backward
from the cursor position, using current selection as the search string. Set
persist=False to do the search but end the interactive search session immediately.

Ctrl-Shift-C: comment-block-toggle - Toggle block comment (with ## at start) on
the selected lines in editor. This is a different style of block commenting than Wing

Key Binding Reference

453

implements by default (the default in Wing is intended to work better with some of
the other editor functionality)

Ctrl-Shift-C: delete-line - Delete the current line or lines when the selection spans
multiple lines or given repeat is > 1

Ctrl-Shift-D: selection-add-next-occurence - Add another selection containing
the text of the current selection. If skip_current is true, the current selection will be
deselected. If nothing is currently selected, select the current word. Searches
backwards if reverse is true.

Ctrl-Shift-Delete: delete-lines

Ctrl-Shift-Delete: delete-lines

Ctrl-Shift-Down: move-line-down - Move the current line or lines up down line,
optionally indenting to match the new position

Ctrl-Shift-Down: next-scope - Select the next scope. Specify a count of more
than 1 to go forward multiple scopes. If sibling_only is true, move only to other
scopes of the same parent.

Ctrl-Shift-Down: scroll-text-down - Scroll text down a line w/o moving cursor's
relative position on screen. Repeat is number of lines or if >0 and <1.0 then
percent of screen. Set move_cursor to False to leave cursor in current position
within the source, otherwise it is moved so the cursor remains on same screen line.

Ctrl-Shift-Down: scroll-text-down - Scroll text down a line w/o moving cursor's
relative position on screen. Repeat is number of lines or if >0 and <1.0 then
percent of screen. Set move_cursor to False to leave cursor in current position
within the source, otherwise it is moved so the cursor remains on same screen line.

Ctrl-Shift-E: focus-current-editor - Move focus back to the current editor, out of
any tool, if there is an active editor.

Ctrl-Shift-End: end-of-document-extend - Move cursor to end of document,
adjusting the selection range to new position

Ctrl-Shift-End: end-of-document-extend - Move cursor to end of document,
adjusting the selection range to new position

Ctrl-Shift-Enter: new-line-before - Place a new line before the current line

Ctrl-Shift-F: batch-search - Search on current selection using the Search in Files
tool. The look_in argument gets entered in the look in field if not None or ''. The
current selection is put into the search field if it doesn't span multiple lines and
either use_selection is true or there's nothing in the search field. The given search
text is used instead, if provided

Ctrl-Shift-F: fill-paragraph - Attempt to auto-justify the paragraph around the
current start of selection

Key Binding Reference

454

Ctrl-Shift-F2: close-all - Close all documents in the current window, or in all
windows if in one-window-per-editor windowing policy. Leave currently visible
documents (or active window in one-window-per-editor-mode) if omit_current is
True. Abandons changes rather than saving them when ignore_changes is True.
Close empty window and quit if all document windows closed when close_window
is True.

Ctrl-Shift-F3: search-sel-backward - Search backward using current selection

Ctrl-Shift-F3: search-sel-backward - Search backward using current selection

Ctrl-Shift-F4: close-all - Close all documents in the current window, or in all
windows if in one-window-per-editor windowing policy. Leave currently visible
documents (or active window in one-window-per-editor-mode) if omit_current is
True. Abandons changes rather than saving them when ignore_changes is True.
Close empty window and quit if all document windows closed when close_window
is True.

Ctrl-Shift-F5: debug-stop - Pause debug at current program counter (press Alt to
pause all debug processes)

Ctrl-Shift-F5: debug-stop - Pause debug at current program counter (press Alt to
pause all debug processes)

Ctrl-Shift-F6: debug-all-tests - Debug all the tests in testing panel.

Ctrl-Shift-F6: debug-all-tests - Debug all the tests in testing panel.

Ctrl-Shift-F7: debug-current-tests - Runs the current test or tests, if possible. The
current tests are determined by the current position in the active view.

Ctrl-Shift-F7: debug-current-tests - Runs the current test or tests, if possible. The
current tests are determined by the current position in the active view.

Ctrl-Shift-F9: Multiple commands (first available is executed):

• break-disable-all - Disable all breakpoints
• break-enable-all - Enable all breakpoints

Ctrl-Shift-F9: Multiple commands (first available is executed):

• break-disable-all - Disable all breakpoints
• break-enable-all - Enable all breakpoints

Ctrl-Shift-G: find-points-of-use - Find points of use for a symbol. The symbol
defaults to the active selection.

Ctrl-Shift-G: search-backward - Search again using the search manager's
current settings in backward direction

Key Binding Reference

455

Ctrl-Shift-H: batch-replace - Display search and replace in files tool.

Ctrl-Shift-Home: start-of-document-extend - Move cursor to start of document,
adjusting the selection range to new position

Ctrl-Shift-Home: start-of-document-extend - Move cursor to start of document,
adjusting the selection range to new position

Ctrl-Shift-I: add-current-file-to-project - Add the frontmost currently open file to
project

Ctrl-Shift-I: add-current-file-to-project - Add the frontmost currently open file to
project

Ctrl-Shift-I: debug-stop - Pause debug at current program counter (press Alt to
pause all debug processes)

Ctrl-Shift-ISO_Left_Tab: begin-visited-document-cycle(move_back=False) -
Start moving between documents in the order they were visited. Starts modal key
interaction that ends when a key other than tab is seen or ctrl is released.

Ctrl-Shift-ISO_Left_Tab: begin-visited-document-cycle(move_back=False) -
Start moving between documents in the order they were visited. Starts modal key
interaction that ends when a key other than tab is seen or ctrl is released.

Ctrl-Shift-Insert: toggle-overtype - Toggle status of overtyping mode

Ctrl-Shift-J: isearch-backward - Action varies according to focus: Active Editor
Commands: Initiate incremental mini-search backward from the cursor position,
optionally entering the given search string ; Document Viewer Commands: Initiate
incremental mini-search backward from the cursor position, optionally entering the
given search string.

Ctrl-Shift-K: search-backward - Search again using the search manager's current
settings in backward direction

Ctrl-Shift-L: swap-lines - Swap the line at start of current selection with the line
that follows it, or the preceding line if previous is True.

Ctrl-Shift-Left: backward-word-extend - Action varies according to focus: Active
Editor Commands: Move cursor backward one word, adjusting the selection range
to new position. Optionally, provide a string that contains the delimiters to define
which characters are part of a word. Gravity may be "start" or "end" to indicate
whether cursor is placed at start or end of the word.; Toolbar Search Commands:
Move backward one word, extending the selection

Ctrl-Shift-Left: backward-word-extend - Action varies according to focus: Active
Editor Commands: Move cursor backward one word, adjusting the selection range
to new position. Optionally, provide a string that contains the delimiters to define
which characters are part of a word. Gravity may be "start" or "end" to indicate

Key Binding Reference

456

whether cursor is placed at start or end of the word.; Toolbar Search Commands:
Move backward one word, extending the selection

Ctrl-Shift-Next: forward-page-extend - Move cursor forward one page, adjusting
the selection range to new position

Ctrl-Shift-Next: forward-page-extend - Move cursor forward one page, adjusting
the selection range to new position

Ctrl-Shift-O: open-from-project - Open document from the project via the Open
From Project dialog. The given fragment is used as the initial fragment filter and if it
is None, the selected text or the symbol under the cursor is used. If skip_if_unique
is true, the file is opened without the dialog being displayed if only one filename
matches the fragment.

Ctrl-Shift-P: brace-match - Match brace at current cursor position, selecting all
text between the two and hilighting the braces

Ctrl-Shift-P: find-symbol-in-project - Allow user to visit point of definition of a
source symbol in the any file in the project by typing a fragment of the name

Ctrl-Shift-Page_Down: forward-page-extend - Move cursor forward one page,
adjusting the selection range to new position

Ctrl-Shift-Page_Down: forward-page-extend - Move cursor forward one page,
adjusting the selection range to new position

Ctrl-Shift-Page_Up: backward-page-extend - Move cursor backward one page,
adjusting the selection range to new position

Ctrl-Shift-Page_Up: backward-page-extend - Move cursor backward one page,
adjusting the selection range to new position

Ctrl-Shift-Prior: backward-page-extend - Move cursor backward one page,
adjusting the selection range to new position

Ctrl-Shift-Prior: backward-page-extend - Move cursor backward one page,
adjusting the selection range to new position

Ctrl-Shift-R: batch-replace - Display search and replace in files tool.

Ctrl-Shift-R: open-from-project - Open document from the project via the Open
From Project dialog. The given fragment is used as the initial fragment filter and if it
is None, the selected text or the symbol under the cursor is used. If skip_if_unique
is true, the file is opened without the dialog being displayed if only one filename
matches the fragment.

Ctrl-Shift-Right: forward-word-extend - Action varies according to focus: Active
Editor Commands: Move cursor forward one word, adjusting the selection range to
new position. Optionally, provide a string that contains the delimiters to define
which characters are part of a word. Gravity may be "start" or "end" to indicate

Key Binding Reference

457

whether cursor is placed at start or end of the word.; Toolbar Search Commands:
Move forward one word, extending the selection

Ctrl-Shift-Right: forward-word-extend - Action varies according to focus: Active
Editor Commands: Move cursor forward one word, adjusting the selection range to
new position. Optionally, provide a string that contains the delimiters to define
which characters are part of a word. Gravity may be "start" or "end" to indicate
whether cursor is placed at start or end of the word.; Toolbar Search Commands:
Move forward one word, extending the selection

Ctrl-Shift-S: save-all - Save all unsaved items, prompting for names for any new
items that don't have a filename already.

Ctrl-Shift-S: save-as - Save active document to a new file

Ctrl-Shift-Space: show-panel(panel_type="source-assistant") - Show most
recently visited panel instance of given type. If no such panel exists, add one to the
primary window and show it. Returns the panel view object or None if not shown.
Focus is shifted to panel if grab_focus is specified and is true; if grab_focus is not
specified, it defaults to the value of flash.

The valid panel types are:

project (*) browser (**) batch-search (*) interactive-search source-assistant (**)
debug-data debug-stack debug-io debug-exceptions debug-breakpoints (**)
debug-probe (**) debug-watch (**) debug-modules (**) python-shell messages (*)
help indent (**) bookmarks (**) testing (**) open-files (*) os-command (**) snippets
(**) diff (**) uses (**) refactoring (**) versioncontrol.svn (**) versioncontrol.hg (**)
versioncontrol.git (**) versioncontrol.bzr (**) versioncontrol.cvs (**)
versioncontrol.perforce (**)

(*) Wing Personal and Pro only (**) Wing Pro only

Ctrl-Shift-T: find-symbol - Allow user to visit point of definition of a source symbol
in the current editor context by typing a fragment of the name

Ctrl-Shift-T: find-symbol-in-project - Allow user to visit point of definition of a
source symbol in the any file in the project by typing a fragment of the name

Ctrl-Shift-Tab: begin-visited-document-cycle(move_back=False) - Start
moving between documents in the order they were visited. Starts modal key
interaction that ends when a key other than tab is seen or ctrl is released.

Ctrl-Shift-Tab: begin-visited-document-cycle(move_back=False) - Start
moving between documents in the order they were visited. Starts modal key
interaction that ends when a key other than tab is seen or ctrl is released.

Ctrl-Shift-U: batch-search(look_in="Current File") - Search on current selection
using the Search in Files tool. The look_in argument gets entered in the look in
field if not None or ''. The current selection is put into the search field if it doesn't

Key Binding Reference

458

span multiple lines and either use_selection is true or there's nothing in the search
field. The given search text is used instead, if provided

Ctrl-Shift-U: isearch-backward - Action varies according to focus: Active Editor
Commands: Initiate incremental mini-search backward from the cursor position,
optionally entering the given search string ; Document Viewer Commands: Initiate
incremental mini-search backward from the cursor position, optionally entering the
given search string.

Ctrl-Shift-Up: move-line-up - Move the current line or lines up one line, optionally
indenting to match the new position

Ctrl-Shift-Up: previous-scope - Select the previous scope. Specify a count of
more than 1 to go backward multiple scopes. If sibling_only is true, move only to
other scopes of the same parent.

Ctrl-Shift-Up: scroll-text-up - Scroll text up a line w/o moving cursor's relative
position on screen. Repeat is number of lines or if >0 and <1.0 then percent of
screen. Set move_cursor to False to leave cursor in current position within the
source, otherwise it is moved so the cursor remains on same screen line.

Ctrl-Shift-Up: scroll-text-up - Scroll text up a line w/o moving cursor's relative
position on screen. Repeat is number of lines or if >0 and <1.0 then percent of
screen. Set move_cursor to False to leave cursor in current position within the
source, otherwise it is moved so the cursor remains on same screen line.

Ctrl-Shift-V: duplicate-line - Duplicate the current line or lines. Places the
duplicate on the line following the selection if pos is 'below' or before the selection
if it is 'above'.

Ctrl-Shift-W: close-all - Close all documents in the current window, or in all
windows if in one-window-per-editor windowing policy. Leave currently visible
documents (or active window in one-window-per-editor-mode) if omit_current is
True. Abandons changes rather than saving them when ignore_changes is True.
Close empty window and quit if all document windows closed when close_window
is True.

Ctrl-Shift-X: lower-case - Change current selection or current word to all lower
case

Ctrl-Shift-Y: duplicate-line-above - Duplicate the current line or lines above the
selection.

Ctrl-Shift-Y: upper-case - Change current selection or current word to all upper
case

Ctrl-Slash: comment-out-region - Comment out the selected region. The style of
commenting can be controlled with the style argument: 'indented' uses the default
comment style indented at end of leading white space and 'block' uses a block

Key Binding Reference

459

comment in column zero. If not given, the style configured with the Editor / Block
Comment Style preference is used. Each call adds a level of commenting.

Ctrl-Slash: fold-toggle - Toggle the current fold point

Ctrl-T: forward-tab - Action varies according to focus: Active Editor Commands:
Place a tab character at the current cursor position ; Search Manager Instance
Commands: Place a forward tab at the current cursor position in search or replace
string

Ctrl-T: forward-tab - Action varies according to focus: Active Editor Commands:
Place a tab character at the current cursor position ; Search Manager Instance
Commands: Place a forward tab at the current cursor position in search or replace
string

Ctrl-Tab: begin-visited-document-cycle(move_back=True) - Start moving
between documents in the order they were visited. Starts modal key interaction
that ends when a key other than tab is seen or ctrl is released.

Ctrl-Tab: begin-visited-document-cycle(move_back=True) - Start moving
between documents in the order they were visited. Starts modal key interaction
that ends when a key other than tab is seen or ctrl is released.

Ctrl-U: execute-file - Execute the file at the given location or use the active view if
loc is None.

Ctrl-U: isearch-forward - Action varies according to focus: Active Editor
Commands: Initiate incremental mini-search forward from the cursor position,
optionally entering the given search string ; Document Viewer Commands: Initiate
incremental mini-search forward from the cursor position, optionally entering the
given search string.

Ctrl-Underscore: zoom-reset - Action varies according to focus: Document
Viewer Commands: Reset documentation font size to default; General Editor
Commands: Reset font zoom factor back to zero

Ctrl-Underscore: zoom-reset - Action varies according to focus: Document
Viewer Commands: Reset documentation font size to default; General Editor
Commands: Reset font zoom factor back to zero

Ctrl-Up: select-more - Select more code on either the current line or larger
multi-line blocks.

Ctrl-Up: select-more - Select more code on either the current line or larger
multi-line blocks.

Ctrl-V: paste - Action varies according to focus: Active Editor Commands: Paste
text from clipboard ; Search Manager Instance Commands: Paste text from
clipboard ; Toolbar Search Commands: Paste from clipboard

Key Binding Reference

460

Ctrl-W: close - Close active document. Abandon any changes when
ignore_changes is True. Close empty windows when close_window is true and quit
if all document windows closed when can_quit is true.

Ctrl-X: cut - Action varies according to focus: Active Editor Commands: Cut
selected text ; Search Manager Instance Commands: Cut selected text ; Toolbar
Search Commands: Cut selection

Ctrl-Y: redo - Redo last action

Ctrl-Z: undo - Undo last action

Ctrl-**: **uncomment-out-region - Uncomment out the selected region if
commented out. If one_level is True then each call removes only one level of
commenting.

Ctrl-]: brace-match - Match brace at current cursor position, selecting all text
between the two and hilighting the braces

Ctrl-greater: indent-region - Indent the selected region one level of indentation.
Set sel to None to use preference to determine selection behavior, or
"never-select" to unselect after indent, "always-select" to always select after indent,
or "retain-select" to retain current selection after indent.

Ctrl-less: outdent-region - Outdent the selected region one level of indentation.
Set sel to None to use preference to determine selection behavior, or
"never-select" to unselect after indent, "always-select" to always select after indent,
or "retain-select" to retain current selection after indent.

Ctrl-parenleft: start-kbd-macro - Start definition of a keyboard macro. If
register=None then the user is prompted to enter a letter a-z under which to file the
macro. Otherwise, register 'a' is used by default.

Ctrl-parenright: stop-kbd-macro - Stop definition of a keyboard macro

Ctrl-question: uncomment-out-region - Uncomment out the selected region if
commented out. If one_level is True then each call removes only one level of
commenting.

Ctrl-space: show-autocompleter - Show the auto-completer for current cursor
position

Ctrl-|: indent-lines(lines=1) - Indent selected number of lines from cursor position.
Set lines to None to indent all the lines in current selection. Set levels to indent
more than one level at a time.

Delete: forward-delete-char - Action varies according to focus: Active Editor
Commands: Delete one character in front of the cursor ; Toolbar Search
Commands: Delete character in front of the cursor

Key Binding Reference

461

Delete: forward-delete-char - Action varies according to focus: Active Editor
Commands: Delete one character in front of the cursor ; Toolbar Search
Commands: Delete character in front of the cursor

Down: next-line - Move to screen next line, optionally repositioning character
within line: 'same' to leave in same horizontal position, 'start' at start, 'end' at end,
or 'fnb' for first non-blank char.

Down: next-line - Move to screen next line, optionally repositioning character
within line: 'same' to leave in same horizontal position, 'start' at start, 'end' at end,
or 'fnb' for first non-blank char.

End: end-of-line - Action varies according to focus: Active Editor Commands:
Move to end of current line; Toolbar Search Commands: Move to the end of the
toolbar search entry

End: end-of-line - Action varies according to focus: Active Editor Commands:
Move to end of current line; Toolbar Search Commands: Move to the end of the
toolbar search entry

F1: Multiple commands (first available is executed):

• show-horizontal-tools - Show the horizontal tool area
• minimize-horizontal-tools - Minimize the horizontal tool area

F1: Multiple commands (first available is executed):

• show-horizontal-tools - Show the horizontal tool area
• minimize-horizontal-tools - Minimize the horizontal tool area

F11: debug-continue - Continue (or start) debugging, to next breakpoint (press Alt
to continue all paused debug processes)

F11: frame-up - Move up the current debug stack

F11: frame-up - Move up the current debug stack

F12: focus-current-editor - Move focus back to the current editor, out of any tool,
if there is an active editor.

F12: frame-down - Move down the current debug stack

F12: frame-down - Move down the current debug stack

F2: Multiple commands (first available is executed):

• show-vertical-tools - Show the vertical tool area
• minimize-vertical-tools - Minimize the vertical tool area

Key Binding Reference

462

F2: Multiple commands (first available is executed):

• show-vertical-tools - Show the vertical tool area
• minimize-vertical-tools - Minimize the vertical tool area

F3: goto-selected-symbol-defn - Goto the definition of the selected source
symbol, optionally showing the definition in another split if one is available and
other_split is True.

F3: search-forward - Search again using the search manager's current settings in
forward direction

F3: search-forward - Search again using the search manager's current settings in
forward direction

F4: goto-selected-symbol-defn - Goto the definition of the selected source
symbol, optionally showing the definition in another split if one is available and
other_split is True.

F4: goto-selected-symbol-defn - Goto the definition of the selected source
symbol, optionally showing the definition in another split if one is available and
other_split is True.

F4: show-panel(panel_type="browser") - Show most recently visited panel
instance of given type. If no such panel exists, add one to the primary window and
show it. Returns the panel view object or None if not shown. Focus is shifted to
panel if grab_focus is specified and is true; if grab_focus is not specified, it defaults
to the value of flash.

The valid panel types are:

project (*) browser (**) batch-search (*) interactive-search source-assistant (**)
debug-data debug-stack debug-io debug-exceptions debug-breakpoints (**)
debug-probe (**) debug-watch (**) debug-modules (**) python-shell messages (*)
help indent (**) bookmarks (**) testing (**) open-files (*) os-command (**) snippets
(**) diff (**) uses (**) refactoring (**) versioncontrol.svn (**) versioncontrol.hg (**)
versioncontrol.git (**) versioncontrol.bzr (**) versioncontrol.cvs (**)
versioncontrol.perforce (**)

(*) Wing Personal and Pro only (**) Wing Pro only

F5: debug-continue - Continue (or start) debugging, to next breakpoint (press Alt
to continue all paused debug processes)

F5: debug-continue - Continue (or start) debugging, to next breakpoint (press Alt
to continue all paused debug processes)

F5: step-into - Step into current execution point, or start debugging at first line

F6: step-over-statement - Step over current statement

Key Binding Reference

463

F6: step-over-statement - Step over current statement

F6: step-over-statement - Step over current statement

F7: step-into - Step into current execution point, or start debugging at first line

F7: step-into - Step into current execution point, or start debugging at first line

F7: step-out - Step out of the current function or method

F8: debug-continue - Continue (or start) debugging, to next breakpoint (press Alt
to continue all paused debug processes)

F8: step-out - Step out of the current function or method

F8: step-out - Step out of the current function or method

F9: Multiple commands (first available is executed):

• break-set - Set a new regular breakpoint on current line
• break-clear - Clear the breakpoint on the current line

F9: Multiple commands (first available is executed):

• break-set - Set a new regular breakpoint on current line
• break-clear - Clear the breakpoint on the current line

Home: beginning-of-line-text - Move to end of the leading white space, if any, on
the current line. If toggle is True, moves to the beginning of the line if already at the
end of the leading white space (and vice versa).

Home: beginning-of-line-text - Move to end of the leading white space, if any, on
the current line. If toggle is True, moves to the beginning of the line if already at the
end of the leading white space (and vice versa).

ISO_Left_Tab: backward-tab - Outdent line at current position

ISO_Left_Tab: backward-tab - Outdent line at current position

Insert: toggle-overtype - Toggle status of overtyping mode

Insert: toggle-overtype - Toggle status of overtyping mode

Left: backward-char - Action varies according to focus: Active Editor Commands:
Move cursor backward one character ; Toolbar Search Commands: Move
backward one character

Left: backward-char - Action varies according to focus: Active Editor Commands:
Move cursor backward one character ; Toolbar Search Commands: Move
backward one character

Next: forward-page - Move cursor forward one page

Key Binding Reference

464

Next: forward-page - Move cursor forward one page

Page_Down: forward-page - Move cursor forward one page

Page_Down: forward-page - Move cursor forward one page

Page_Up: backward-page - Move cursor backward one page

Page_Up: backward-page - Move cursor backward one page

Prior: backward-page - Move cursor backward one page

Prior: backward-page - Move cursor backward one page

Return: new-line - Place a new line at the current cursor position

Return: new-line - Place a new line at the current cursor position

Right: forward-char - Action varies according to focus: Active Editor Commands:
Move cursor forward one character ; Toolbar Search Commands: Move forward
one character

Right: forward-char - Action varies according to focus: Active Editor Commands:
Move cursor forward one character ; Toolbar Search Commands: Move forward
one character

Shift-Alt-A: diff-merge-a-b

Shift-Alt-A: diff-merge-a-b

Shift-Alt-B: diff-merge-b-a

Shift-Alt-B: diff-merge-b-a

Shift-Alt-Down: next-line-extend-rect - Move to next screen line, adjusting the
rectangular selection range to new position, optionally repositioning character
within line: same' to leave in same horizontal position, 'start' at start, 'end' at end,
or 'fnb' for first non-blank char.

Shift-Alt-Down: next-line-extend-rect - Move to next screen line, adjusting the
rectangular selection range to new position, optionally repositioning character
within line: same' to leave in same horizontal position, 'start' at start, 'end' at end,
or 'fnb' for first non-blank char.

Shift-Alt-F5: debug-continue-all - Continue all paused debug processes

Shift-Alt-F5: debug-continue-all - Continue all paused debug processes

Shift-Alt-Left: backward-char-extend-rect - Move cursor backward one
character, adjusting the rectangular selection range to new position

Shift-Alt-Left: backward-char-extend-rect - Move cursor backward one
character, adjusting the rectangular selection range to new position

Shift-Alt-N: diff-next

Shift-Alt-N: diff-next

Key Binding Reference

465

Shift-Alt-P: diff-previous

Shift-Alt-P: diff-previous

Shift-Alt-Right: forward-char-extend-rect - Move cursor forward one character,
adjusting the rectangular selection range to new position

Shift-Alt-Right: forward-char-extend-rect - Move cursor forward one character,
adjusting the rectangular selection range to new position

Shift-Alt-Up: previous-line-extend-rect - Move to previous screen line, adjusting
the rectangular selection range to new position, optionally repositioning character
within line: same' to leave in same horizontal position, 'start' at start, 'end' at end,
or 'fnb' for first non-blank char.

Shift-Alt-Up: previous-line-extend-rect - Move to previous screen line, adjusting
the rectangular selection range to new position, optionally repositioning character
within line: same' to leave in same horizontal position, 'start' at start, 'end' at end,
or 'fnb' for first non-blank char.

Shift-BackSpace: backward-delete-char - Action varies according to focus:
Active Editor Commands: Delete one character behind the cursor, or the current
selection if not empty. ; Toolbar Search Commands: Delete character behind the
cursor

Shift-BackSpace: backward-delete-char - Action varies according to focus:
Active Editor Commands: Delete one character behind the cursor, or the current
selection if not empty. ; Toolbar Search Commands: Delete character behind the
cursor

Shift-Ctrl-F8: start-select-block - Turn on auto-select block mode

Shift-Ctrl-F8: start-select-block - Turn on auto-select block mode

Shift-Delete: cut - Action varies according to focus: Active Editor Commands: Cut
selected text ; Search Manager Instance Commands: Cut selected text ; Toolbar
Search Commands: Cut selection

Shift-Delete: cut - Action varies according to focus: Active Editor Commands: Cut
selected text ; Search Manager Instance Commands: Cut selected text ; Toolbar
Search Commands: Cut selection

Shift-Down: next-line-extend - Move to next screen line, adjusting the selection
range to new position, optionally repositioning character within line: same' to leave
in same horizontal position, 'start' at start, 'end' at end, 'fnb' for first non-blank char,
or 'xcode' to simulate XCode style Shift-Alt line selection.

Shift-Down: next-line-extend - Move to next screen line, adjusting the selection
range to new position, optionally repositioning character within line: same' to leave
in same horizontal position, 'start' at start, 'end' at end, 'fnb' for first non-blank char,
or 'xcode' to simulate XCode style Shift-Alt line selection.

Key Binding Reference

466

Shift-End: end-of-line-extend - Action varies according to focus: Active Editor
Commands: Move to end of current line, adjusting the selection range to new
position ; Toolbar Search Commands: Move to the end of the toolbar search entry,
extending the selection

Shift-End: end-of-line-extend - Action varies according to focus: Active Editor
Commands: Move to end of current line, adjusting the selection range to new
position ; Toolbar Search Commands: Move to the end of the toolbar search entry,
extending the selection

Shift-Enter: new-line-after - Place a new line after the current line

Shift-F1: move-focus - Move the keyboard focus forward within the Window to the
next editable area

Shift-F1: move-focus - Move the keyboard focus forward within the Window to the
next editable area

Shift-F11: frame-show - Show the position (thread and stack frame) where the
debugger originally stopped

Shift-F11: frame-show - Show the position (thread and stack frame) where the
debugger originally stopped

Shift-F2: Multiple commands (first available is executed):

• enter-fullscreen - Hide both the vertical and horizontal tool areas and
toolbar, saving previous state so it can be restored later with
exit_fullscreen

• exit-fullscreen - Restore previous non-fullscreen state of all tools and tool
bar

Shift-F2: Multiple commands (first available is executed):

• enter-fullscreen - Hide both the vertical and horizontal tool areas and
toolbar, saving previous state so it can be restored later with
exit_fullscreen

• exit-fullscreen - Restore previous non-fullscreen state of all tools and tool
bar

Shift-F3: search-backward - Search again using the search manager's current
settings in backward direction

Shift-F3: search-backward - Search again using the search manager's current
settings in backward direction

Shift-F4: find-points-of-use - Find points of use for a symbol. The symbol defaults
to the active selection.

Key Binding Reference

467

Shift-F4: find-points-of-use - Find points of use for a symbol. The symbol defaults
to the active selection.

Shift-F5: debug-file - Start debugging the current file (rather than the main entry
point)

Shift-F5: debug-file - Start debugging the current file (rather than the main entry
point)

Shift-F6: run-all-tests - Runs all the tests in testing panel.

Shift-F6: run-all-tests - Runs all the tests in testing panel.

Shift-F7: run-current-tests - Runs the current test or tests, if possible. The current
tests are determined by the current position in the active view. The tests are
debugged when debug is True.

Shift-F7: run-current-tests - Runs the current test or tests, if possible. The current
tests are determined by the current position in the active view. The tests are
debugged when debug is True.

Shift-F8: start-select-char - Turn on auto-select mode character by character

Shift-F8: start-select-char - Turn on auto-select mode character by character

Shift-F9: Multiple commands (first available is executed):

• break-enable - Enable the breakpoint on the current line
• break-disable - Disable the breakpoint on current line

Shift-F9: Multiple commands (first available is executed):

• break-enable - Enable the breakpoint on the current line
• break-disable - Disable the breakpoint on current line

Shift-Home: beginning-of-line-text-extend - Move to end of the leading white
space, if any, on the current line, adjusting the selection range to the new position.
If toggle is True, moves to the beginning of the line if already at the end of the
leading white space (and vice versa).

Shift-Home: beginning-of-line-text-extend - Move to end of the leading white
space, if any, on the current line, adjusting the selection range to the new position.
If toggle is True, moves to the beginning of the line if already at the end of the
leading white space (and vice versa).

Shift-Insert: paste - Action varies according to focus: Active Editor Commands:
Paste text from clipboard ; Search Manager Instance Commands: Paste text from
clipboard ; Toolbar Search Commands: Paste from clipboard

Key Binding Reference

468

Shift-Insert: paste - Action varies according to focus: Active Editor Commands:
Paste text from clipboard ; Search Manager Instance Commands: Paste text from
clipboard ; Toolbar Search Commands: Paste from clipboard

Shift-Left: backward-char-extend - Action varies according to focus: Active Editor
Commands: Move cursor backward one character, adjusting the selection range to
new position ; Toolbar Search Commands: Move backward one character,
extending the selection

Shift-Left: backward-char-extend - Action varies according to focus: Active Editor
Commands: Move cursor backward one character, adjusting the selection range to
new position ; Toolbar Search Commands: Move backward one character,
extending the selection

Shift-Next: forward-page-extend - Move cursor forward one page, adjusting the
selection range to new position

Shift-Next: forward-page-extend - Move cursor forward one page, adjusting the
selection range to new position

Shift-Page_Down: forward-page-extend - Move cursor forward one page,
adjusting the selection range to new position

Shift-Page_Down: forward-page-extend - Move cursor forward one page,
adjusting the selection range to new position

Shift-Page_Up: backward-page-extend - Move cursor backward one page,
adjusting the selection range to new position

Shift-Page_Up: backward-page-extend - Move cursor backward one page,
adjusting the selection range to new position

Shift-Prior: backward-page-extend - Move cursor backward one page, adjusting
the selection range to new position

Shift-Prior: backward-page-extend - Move cursor backward one page, adjusting
the selection range to new position

Shift-Return: new-line-before - Place a new line before the current line

Shift-Return: new-line-before - Place a new line before the current line

Shift-Right: forward-char-extend - Action varies according to focus: Active Editor
Commands: Move cursor forward one character, adjusting the selection range to
new position ; Toolbar Search Commands: Move forward one character, extending
the selection

Shift-Right: forward-char-extend - Action varies according to focus: Active Editor
Commands: Move cursor forward one character, adjusting the selection range to
new position ; Toolbar Search Commands: Move forward one character, extending
the selection

Key Binding Reference

469

Shift-Tab: backward-tab - Outdent line at current position

Shift-Tab: backward-tab - Outdent line at current position

Shift-Tab: outdent-region - Outdent the selected region one level of indentation.
Set sel to None to use preference to determine selection behavior, or
"never-select" to unselect after indent, "always-select" to always select after indent,
or "retain-select" to retain current selection after indent.

Shift-Up: previous-line-extend - Move to previous screen line, adjusting the
selection range to new position, optionally repositioning character within line: same'
to leave in same horizontal position, 'start' at start, 'end' at end, 'fnb' for first
non-blank char, or 'xcode' to simulate XCode style Shift-Alt line selection.

Shift-Up: previous-line-extend - Move to previous screen line, adjusting the
selection range to new position, optionally repositioning character within line: same'
to leave in same horizontal position, 'start' at start, 'end' at end, 'fnb' for first
non-blank char, or 'xcode' to simulate XCode style Shift-Alt line selection.

Tab: tab-key - Implement the tab key, the action of which is configurable by
preference

Tab: tab-key - Implement the tab key, the action of which is configurable by
preference

Up: previous-line - Move to previous screen line, optionally repositioning
character within line: same' to leave in same horizontal position, 'start' at start, 'end'
at end, or 'fnb' for first non-blank char.

Up: previous-line - Move to previous screen line, optionally repositioning
character within line: same' to leave in same horizontal position, 'start' at start, 'end'
at end, or 'fnb' for first non-blank char.

Visual-Esc: exit-visual-mode - Exit visual mode and return back to default mode

Visual-Esc: exit-visual-mode - Exit visual mode and return back to default mode

21.7. Brief Personality
This section documents all the default key bindings for the Brief keyboard
personality, set by the Personality preference.

Alt-0: set-bookmark(mark="0") - Set a bookmark at current location on the editor.
Mark is the project-wide textual name of the bookmark.

Alt-1: fold-python-methods - Fold up all Python methods, expand all classes, and
leave other fold points alone

Alt-1: set-bookmark(mark="1") - Set a bookmark at current location on the editor.
Mark is the project-wide textual name of the bookmark.

Key Binding Reference

470

Alt-2: fold-python-classes - Fold up all Python classes but leave other fold points
alone

Alt-2: set-bookmark(mark="2") - Set a bookmark at current location on the editor.
Mark is the project-wide textual name of the bookmark.

Alt-3: fold-python-classes-and-defs - Fold up all Python classes, methods, and
functions but leave other fold points alone

Alt-3: set-bookmark(mark="3") - Set a bookmark at current location on the editor.
Mark is the project-wide textual name of the bookmark.

Alt-4: set-bookmark(mark="4") - Set a bookmark at current location on the editor.
Mark is the project-wide textual name of the bookmark.

Alt-5: set-bookmark(mark="5") - Set a bookmark at current location on the editor.
Mark is the project-wide textual name of the bookmark.

Alt-6: set-bookmark(mark="6") - Set a bookmark at current location on the editor.
Mark is the project-wide textual name of the bookmark.

Alt-7: set-bookmark(mark="7") - Set a bookmark at current location on the editor.
Mark is the project-wide textual name of the bookmark.

Alt-8: set-bookmark(mark="8") - Set a bookmark at current location on the editor.
Mark is the project-wide textual name of the bookmark.

Alt-9: set-bookmark(mark="9") - Set a bookmark at current location on the editor.
Mark is the project-wide textual name of the bookmark.

Alt-A: toggle-mark-command(select_right=2) - Change between text-marking
and non-text-marking mode. Style is "char" for stream select, "block" for
rectangular select, and "line" for line select. Set select_right=1 to select the
character to right of the cursor when marking is toggled on.

Alt-BackSpace: backward-delete-word - Action varies according to focus: Active
Editor Commands: Delete one word behind of the cursor ; Toolbar Search
Commands: Delete word behind the cursor

Alt-C: toggle-mark-command(style="block") - Change between text-marking
and non-text-marking mode. Style is "char" for stream select, "block" for
rectangular select, and "line" for line select. Set select_right=1 to select the
character to right of the cursor when marking is toggled on.

Alt-D: delete-selected-lines - Delete the line or range of lines that contain the
current selection. This duplicates what the editor command delete-line does.

Alt-D: kill-line - Kill rest of line from cursor to end of line, and place it into the
clipboard with any other contiguously removed lines. End-of-line is removed only if
there is nothing between the cursor and the end of the line.

Key Binding Reference

471

Alt-Delete: backward-delete-word - Action varies according to focus: Active
Editor Commands: Delete one word behind of the cursor ; Toolbar Search
Commands: Delete word behind the cursor

Alt-Down: fold-expand-more-current - Expand the current fold point one more
level

Alt-E: open-gui - Open a file from disk, prompting with file selection dialog if
necessary

Alt-End: fold-expand-all - Expand all fold points in the current file

Alt-F11: prev-points-of-use-match - Display the previous match in the active
points of use tool

Alt-F12: next-points-of-use-match - Display the next match in the active points of
use tool

Alt-F3: search - Bring up the search manager in search mode.

Alt-F4: close-window - Close the current window and all documents and panels in
it

Alt-F5: run-to-cursor - Run to current cursor position

Alt-F5: search-sel-backward - Search backward using current selection

Alt-F6: run-failed-tests - Re-run all the previously failed tests. The tests are
debugged when debug is True.

Alt-F7: run-last-tests - Run again the last group of tests that were run. The tests
are debugged when debug is True.

Alt-G: goto-line - Position cursor at start of given line number

Alt-H: goto-selected-symbol-defn - Goto the definition of the selected source
symbol, optionally showing the definition in another split if one is available and
other_split is True.

Alt-Home: fold-collapse-all - Collapse all fold points in the current file

Alt-I: toggle-overtype - Toggle status of overtyping mode

Alt-J: show-bookmarks - Show a list of all currently defined bookmarks

Alt-K: kill-line - Kill rest of line from cursor to end of line, and place it into the
clipboard with any other contiguously removed lines. End-of-line is removed only if
there is nothing between the cursor and the end of the line.

Alt-L: toggle-mark-command(style="line") - Change between text-marking and
non-text-marking mode. Style is "char" for stream select, "block" for rectangular
select, and "line" for line select. Set select_right=1 to select the character to right of
the cursor when marking is toggled on.

Key Binding Reference

472

Alt-Left: visit-history-previous - Move back in history to previous visited editor
position

Alt-M: toggle-mark-command(select_right=1) - Change between text-marking
and non-text-marking mode. Style is "char" for stream select, "block" for
rectangular select, and "line" for line select. Set select_right=1 to select the
character to right of the cursor when marking is toggled on.

Alt-Minus: previous-document - Move to the previous document alphabetically in
the list of documents open in the current window

Alt-N: next-document - Move to the next document alphabetically in the list of
documents open in the current window

Alt-Page_Down: fold-expand-all-current - Expand the current fold point
completely

Alt-Page_Up: fold-collapse-all-current - Collapse the current fold point
completely

Alt-R: insert-file - Insert a file at current cursor position, prompting user for file
selection

Alt-Return: new-line - Place a new line at the current cursor position

Alt-Right: visit-history-next - Move forward in history to next visited editor
position

Alt-S: search - Bring up the search manager in search mode.

Alt-Slash: fold-toggle - Toggle the current fold point

Alt-T: replace - Bring up the search manager in replace mode.

Alt-U: undo - Undo last action

Alt-Up: fold-collapse-more-current - Collapse the current fold point one more
level

Alt-W: save - Save active document. Also close it if close is True.

Alt-X: quit - Quit the application.

BackSpace: backward-delete-char - Action varies according to focus: Active
Editor Commands: Delete one character behind the cursor, or the current selection
if not empty. ; Toolbar Search Commands: Delete character behind the cursor

Ctrl-1: activate-file-option-menu - Activate the file menu for the editor.

Ctrl-2: activate-symbol-option-menu-1 - Activate the 1st symbol menu for the
editor.

Ctrl-3: activate-symbol-option-menu-2 - Activate the 2nd symbol menu for the
editor.

Key Binding Reference

473

Ctrl-4: activate-symbol-option-menu-3 - Activate the 3rd symbol menu for the
editor.

Ctrl-5: activate-symbol-option-menu-4 - Activate the 4th symbol menu for the
editor.

Ctrl-6: activate-symbol-option-menu-5 - Activate the 5th symbol menu for the
editor.

Ctrl-=: indent-to-match - Indent the current line or selected region to match
indentation of preceding non-blank line. Set toggle=True to indent instead of one
level higher if already at the matching position.

Ctrl-Alt-Down: goto-next-bookmark(current_file_only=True) - Go to the next
bookmark, or the first one if no bookmark is selected. Stays within the file in the
current editor when current_file_only is True.

Ctrl-Alt-F5: debug-kill-all - Terminate all debug processes

Ctrl-Alt-F6: debug-failed-tests - Re-run all the previously failed tests in the
debugger.

Ctrl-Alt-F7: debug-last-tests - Debug the last group of tests that were run.

Ctrl-Alt-Left: goto-previous-bookmark - Go to the previous bookmark in the
bookmark list, or the last one if no bookmark is selected. Stays within the file in the
current editor when current_file_only is True.

Ctrl-Alt-Right: goto-next-bookmark - Go to the next bookmark, or the first one if
no bookmark is selected. Stays within the file in the current editor when
current_file_only is True.

Ctrl-Alt-Up: goto-previous-bookmark(current_file_only=True) - Go to the
previous bookmark in the bookmark list, or the last one if no bookmark is selected.
Stays within the file in the current editor when current_file_only is True.

Ctrl-Apostrophe: enclose(start="'", end="'") - Enclose the selection or the rest
of the current line when there is no selection with the given start and end strings.
The caret is moved to the end of the enclosed text.

Ctrl-BackSpace: backward-delete-word - Action varies according to focus: Active
Editor Commands: Delete one word behind of the cursor ; Toolbar Search
Commands: Delete word behind the cursor

Ctrl-Braceleft: enclose(start="{", end="}") - Enclose the selection or the rest of
the current line when there is no selection with the given start and end strings. The
caret is moved to the end of the enclosed text.

Ctrl-Bracketleft: enclose(start="[", end="]") - Enclose the selection or the rest of
the current line when there is no selection with the given start and end strings. The
caret is moved to the end of the enclosed text.

Key Binding Reference

474

Ctrl-C: center-cursor - Scroll so cursor is centered on display

Ctrl-C: copy - Action varies according to focus: Active Editor Commands: Copy
selected text ; Document Viewer Commands: Copy any selected text. ; Exceptions
Commands: Copy the exception traceback to the clipboard ; Search Manager
Instance Commands: Copy selected text ; Toolbar Search Commands: Cut
selection

Ctrl-D: scroll-text-down - Scroll text down a line w/o moving cursor's relative
position on screen. Repeat is number of lines or if >0 and <1.0 then percent of
screen. Set move_cursor to False to leave cursor in current position within the
source, otherwise it is moved so the cursor remains on same screen line.

Ctrl-Delete: forward-delete-word - Action varies according to focus: Active Editor
Commands: Delete one word in front of the cursor ; Toolbar Search Commands:
Delete word in front of the cursor

Ctrl-Down: select-less - Select less code; undoes the last select-more command

Ctrl-E: scroll-text-up - Scroll text up a line w/o moving cursor's relative position on
screen. Repeat is number of lines or if >0 and <1.0 then percent of screen. Set
move_cursor to False to leave cursor in current position within the source,
otherwise it is moved so the cursor remains on same screen line.

Ctrl-End: end-of-document - Move cursor to end of document

Ctrl-Equal: zoom-in - Action varies according to focus: Document Viewer
Commands: Increase documentation font size; General Editor Commands: Zoom
in, increasing the text display size temporarily by one font size

Ctrl-F12: command-by-name - Execute given command by name, collecting any
args as needed

Ctrl-F3: search-sel-forward - Search forward using current selection

Ctrl-F4: close - Close active document. Abandon any changes when
ignore_changes is True. Close empty windows when close_window is true and quit
if all document windows closed when can_quit is true.

Ctrl-F5: debug-kill - Terminate current debug process (press Alt to terminate all
debug processes)

Ctrl-F6: step-over - Step over current instruction

Ctrl-F8: start-select-line - Turn on auto-select mode line by line

Ctrl-F9: break-clear-all - Clear all breakpoints

Ctrl-Home: start-of-document - Move cursor to start of document

Ctrl-Insert: copy - Action varies according to focus: Active Editor Commands:
Copy selected text ; Document Viewer Commands: Copy any selected text. ;
Exceptions Commands: Copy the exception traceback to the clipboard ; Search

Key Binding Reference

475

Manager Instance Commands: Copy selected text ; Toolbar Search Commands:
Cut selection

Ctrl-K: forward-delete-word - Action varies according to focus: Active Editor
Commands: Delete one word in front of the cursor ; Toolbar Search Commands:
Delete word in front of the cursor

Ctrl-Left: backward-word - Action varies according to focus: Active Editor
Commands: Move cursor backward one word. Optionally, provide a string that
contains the delimiters to define which characters are part of a word. Gravity may
be "start" or "end" to indicate whether cursor is placed at start or end of the word.;
Toolbar Search Commands: Move backward one word

Ctrl-Less: enclose(start="<", end=">") - Enclose the selection or the rest of the
current line when there is no selection with the given start and end strings. The
caret is moved to the end of the enclosed text.

Ctrl-Minus: kill-buffer - Close the current text file

Ctrl-Minus: zoom-out - Action varies according to focus: Document Viewer
Commands: Decrease documentation font size; General Editor Commands: Zoom
out, increasing the text display size temporarily by one font size

Ctrl-Next: forward-page - Move cursor forward one page

Ctrl-PageDown: end-of-document - Move cursor to end of document

Ctrl-PageUp: beginning-of-document

Ctrl-Page_Down: next-document - Move to the next document alphabetically in
the list of documents open in the current window

Ctrl-Page_Up: previous-document - Move to the previous document
alphabetically in the list of documents open in the current window

Ctrl-Parenleft: enclose(start="(", end=")") - Enclose the selection or the rest of
the current line when there is no selection with the given start and end strings. The
caret is moved to the end of the enclosed text.

Ctrl-Plus: zoom-in - Action varies according to focus: Document Viewer
Commands: Increase documentation font size; General Editor Commands: Zoom
in, increasing the text display size temporarily by one font size

Ctrl-Pointer_Button1: goto-clicked-symbol-defn - Goto the definition of the
source symbol that was last clicked on, optionally showing the definition in another
split if one is available and other_split is True.

Ctrl-Prior: backward-page - Move cursor backward one page

Ctrl-Quotedbl: enclose(start='"', end='"') - Enclose the selection or the rest of
the current line when there is no selection with the given start and end strings. The
caret is moved to the end of the enclosed text.

Key Binding Reference

476

Ctrl-Quoteleft: begin-visited-document-cycle(move_back=True,
back_key="Ctrl-Quoteleft", forward_key="Ctrl-AsciiTilde") - Start moving
between documents in the order they were visited. Starts modal key interaction
that ends when a key other than tab is seen or ctrl is released.

Ctrl-R: initiate-repeat-4 - Enter a sequence of digits indicating number of times to
repeat the subsequent command or keystroke.

Ctrl-Return: new-line-after - Place a new line after the current line

Ctrl-Right: forward-word - Action varies according to focus: Active Editor
Commands: Move cursor forward one word. Optionally, provide a string that
contains the delimiters to define which characters are part of a word. Gravity may
be "start" or "end" to indicate whether cursor is placed at start or end of the word.;
Toolbar Search Commands: Move forward one word

Ctrl-Shift-Alt-F5: debug-stop-all - Pause all free-running debug processes at the
current program counter

Ctrl-Shift-Delete: delete-lines

Ctrl-Shift-Down: scroll-text-down - Scroll text down a line w/o moving cursor's
relative position on screen. Repeat is number of lines or if >0 and <1.0 then
percent of screen. Set move_cursor to False to leave cursor in current position
within the source, otherwise it is moved so the cursor remains on same screen line.

Ctrl-Shift-End: end-of-document-extend - Move cursor to end of document,
adjusting the selection range to new position

Ctrl-Shift-F3: search-sel-backward - Search backward using current selection

Ctrl-Shift-F5: debug-stop - Pause debug at current program counter (press Alt to
pause all debug processes)

Ctrl-Shift-F6: debug-all-tests - Debug all the tests in testing panel.

Ctrl-Shift-F7: debug-current-tests - Runs the current test or tests, if possible. The
current tests are determined by the current position in the active view.

Ctrl-Shift-F9: Multiple commands (first available is executed):

• break-disable-all - Disable all breakpoints
• break-enable-all - Enable all breakpoints

Ctrl-Shift-Home: start-of-document-extend - Move cursor to start of document,
adjusting the selection range to new position

Ctrl-Shift-I: add-current-file-to-project - Add the frontmost currently open file to
project

Key Binding Reference

477

Ctrl-Shift-ISO_Left_Tab: begin-visited-document-cycle(move_back=False) -
Start moving between documents in the order they were visited. Starts modal key
interaction that ends when a key other than tab is seen or ctrl is released.

Ctrl-Shift-Left: backward-word-extend - Action varies according to focus: Active
Editor Commands: Move cursor backward one word, adjusting the selection range
to new position. Optionally, provide a string that contains the delimiters to define
which characters are part of a word. Gravity may be "start" or "end" to indicate
whether cursor is placed at start or end of the word.; Toolbar Search Commands:
Move backward one word, extending the selection

Ctrl-Shift-Next: forward-page-extend - Move cursor forward one page, adjusting
the selection range to new position

Ctrl-Shift-Page_Down: forward-page-extend - Move cursor forward one page,
adjusting the selection range to new position

Ctrl-Shift-Page_Up: backward-page-extend - Move cursor backward one page,
adjusting the selection range to new position

Ctrl-Shift-Prior: backward-page-extend - Move cursor backward one page,
adjusting the selection range to new position

Ctrl-Shift-Right: forward-word-extend - Action varies according to focus: Active
Editor Commands: Move cursor forward one word, adjusting the selection range to
new position. Optionally, provide a string that contains the delimiters to define
which characters are part of a word. Gravity may be "start" or "end" to indicate
whether cursor is placed at start or end of the word.; Toolbar Search Commands:
Move forward one word, extending the selection

Ctrl-Shift-Tab: begin-visited-document-cycle(move_back=False) - Start
moving between documents in the order they were visited. Starts modal key
interaction that ends when a key other than tab is seen or ctrl is released.

Ctrl-Shift-Up: scroll-text-up - Scroll text up a line w/o moving cursor's relative
position on screen. Repeat is number of lines or if >0 and <1.0 then percent of
screen. Set move_cursor to False to leave cursor in current position within the
source, otherwise it is moved so the cursor remains on same screen line.

Ctrl-T: forward-tab - Action varies according to focus: Active Editor Commands:
Place a tab character at the current cursor position ; Search Manager Instance
Commands: Place a forward tab at the current cursor position in search or replace
string

Ctrl-Tab: begin-visited-document-cycle(move_back=True) - Start moving
between documents in the order they were visited. Starts modal key interaction
that ends when a key other than tab is seen or ctrl is released.

Ctrl-U: redo - Redo last action

Key Binding Reference

478

Ctrl-Underscore: zoom-reset - Action varies according to focus: Document
Viewer Commands: Reset documentation font size to default; General Editor
Commands: Reset font zoom factor back to zero

Ctrl-Up: select-more - Select more code on either the current line or larger
multi-line blocks.

Ctrl-V: paste - Action varies according to focus: Active Editor Commands: Paste
text from clipboard ; Search Manager Instance Commands: Paste text from
clipboard ; Toolbar Search Commands: Paste from clipboard

Ctrl-X: cut - Action varies according to focus: Active Editor Commands: Cut
selected text ; Search Manager Instance Commands: Cut selected text ; Toolbar
Search Commands: Cut selection

Ctrl-Z: undo - Undo last action

Delete: forward-delete-char - Action varies according to focus: Active Editor
Commands: Delete one character in front of the cursor ; Toolbar Search
Commands: Delete character in front of the cursor

Down: next-line - Move to screen next line, optionally repositioning character
within line: 'same' to leave in same horizontal position, 'start' at start, 'end' at end,
or 'fnb' for first non-blank char.

End: cursor-end - Bring cursor to end of line, to end of visible area, or to end of
document each successive consecutive invocation of this command.

End: end-of-document - Move cursor to end of document

End: end-of-line - Action varies according to focus: Active Editor Commands:
Move to end of current line; Toolbar Search Commands: Move to the end of the
toolbar search entry

End End End: end-of-document - Move cursor to end of document

F1: Multiple commands (first available is executed):

• show-horizontal-tools - Show the horizontal tool area
• minimize-horizontal-tools - Minimize the horizontal tool area

F10: command-by-name - Execute given command by name, collecting any args
as needed

F11: frame-up - Move up the current debug stack

F12: frame-down - Move down the current debug stack

F2: Multiple commands (first available is executed):

• show-vertical-tools - Show the vertical tool area

Key Binding Reference

479

• minimize-vertical-tools - Minimize the vertical tool area

F3: search-forward - Search again using the search manager's current settings in
forward direction

F3: split-vertically - Split current view vertically. Create new editor in new view
when new==1.

F4: goto-selected-symbol-defn - Goto the definition of the selected source
symbol, optionally showing the definition in another split if one is available and
other_split is True.

F4: unsplit - Unsplit all editors so there's only one. Action specifies how to choose
the remaining displayed editor. One of:

current -- Show current editor
close -- Close current editor before unsplitting
recent -- Change to recent buffer before unsplitting
recent-or-close -- Change to recent buffer before closing
split, or close the current buffer if there is only
one split left.

NOTE: The parameters for this command are subject to change in the future.

F5: debug-continue - Continue (or start) debugging, to next breakpoint (press Alt
to continue all paused debug processes)

F5: search - Bring up the search manager in search mode.

F6: replace - Bring up the search manager in replace mode.

F6: step-over-statement - Step over current statement

F7: start-kbd-macro - Start definition of a keyboard macro. If register=None then
the user is prompted to enter a letter a-z under which to file the macro. Otherwise,
register 'a' is used by default.

F7: step-into - Step into current execution point, or start debugging at first line

F8: execute-kbd-macro - Execute most recently recorded keyboard macro. If
register is None then the user is asked to enter a letter a-z for the register where
the macro is filed. Otherwise, register 'a' is used by default.

F8: step-out - Step out of the current function or method

F9: Multiple commands (first available is executed):

• break-set - Set a new regular breakpoint on current line
• break-clear - Clear the breakpoint on the current line

Key Binding Reference

480

Home: beginning-of-line-text - Move to end of the leading white space, if any, on
the current line. If toggle is True, moves to the beginning of the line if already at the
end of the leading white space (and vice versa).

Home: cursor-home - Bring cursor to start of line, to start of visible area, or to
start of document each successive consecutive invocation of this command.

Home: start-of-document - Move cursor to start of document

Home Home Home: start-of-document - Move cursor to start of document

ISO_Left_Tab: backward-tab - Outdent line at current position

Insert: paste - Action varies according to focus: Active Editor Commands: Paste
text from clipboard ; Search Manager Instance Commands: Paste text from
clipboard ; Toolbar Search Commands: Paste from clipboard

Insert: toggle-overtype - Toggle status of overtyping mode

Left: backward-char - Action varies according to focus: Active Editor Commands:
Move cursor backward one character ; Toolbar Search Commands: Move
backward one character

Next: forward-page - Move cursor forward one page

Page_Down: forward-page - Move cursor forward one page

Page_Up: backward-page - Move cursor backward one page

Prior: backward-page - Move cursor backward one page

Return: new-line - Place a new line at the current cursor position

Right: forward-char - Action varies according to focus: Active Editor Commands:
Move cursor forward one character ; Toolbar Search Commands: Move forward
one character

Shift-Alt-A: diff-merge-a-b

Shift-Alt-B: diff-merge-b-a

Shift-Alt-Down: next-line-extend-rect - Move to next screen line, adjusting the
rectangular selection range to new position, optionally repositioning character
within line: same' to leave in same horizontal position, 'start' at start, 'end' at end,
or 'fnb' for first non-blank char.

Shift-Alt-F5: debug-continue-all - Continue all paused debug processes

Shift-Alt-Left: backward-char-extend-rect - Move cursor backward one
character, adjusting the rectangular selection range to new position

Shift-Alt-N: diff-next

Shift-Alt-P: diff-previous

Key Binding Reference

481

Shift-Alt-Right: forward-char-extend-rect - Move cursor forward one character,
adjusting the rectangular selection range to new position

Shift-Alt-Up: previous-line-extend-rect - Move to previous screen line, adjusting
the rectangular selection range to new position, optionally repositioning character
within line: same' to leave in same horizontal position, 'start' at start, 'end' at end,
or 'fnb' for first non-blank char.

Shift-BackSpace: backward-delete-char - Action varies according to focus:
Active Editor Commands: Delete one character behind the cursor, or the current
selection if not empty. ; Toolbar Search Commands: Delete character behind the
cursor

Shift-Ctrl-F8: start-select-block - Turn on auto-select block mode

Shift-Delete: cut - Action varies according to focus: Active Editor Commands: Cut
selected text ; Search Manager Instance Commands: Cut selected text ; Toolbar
Search Commands: Cut selection

Shift-Down: next-line-extend - Move to next screen line, adjusting the selection
range to new position, optionally repositioning character within line: same' to leave
in same horizontal position, 'start' at start, 'end' at end, 'fnb' for first non-blank char,
or 'xcode' to simulate XCode style Shift-Alt line selection.

Shift-End: end-of-line - Action varies according to focus: Active Editor
Commands: Move to end of current line; Toolbar Search Commands: Move to the
end of the toolbar search entry

Shift-End: end-of-line-extend - Action varies according to focus: Active Editor
Commands: Move to end of current line, adjusting the selection range to new
position ; Toolbar Search Commands: Move to the end of the toolbar search entry,
extending the selection

Shift-F1: move-focus - Move the keyboard focus forward within the Window to the
next editable area

Shift-F11: frame-show - Show the position (thread and stack frame) where the
debugger originally stopped

Shift-F2: Multiple commands (first available is executed):

• enter-fullscreen - Hide both the vertical and horizontal tool areas and
toolbar, saving previous state so it can be restored later with
exit_fullscreen

• exit-fullscreen - Restore previous non-fullscreen state of all tools and tool
bar

Shift-F3: search-backward - Search again using the search manager's current
settings in backward direction

Key Binding Reference

482

Shift-F4: find-points-of-use - Find points of use for a symbol. The symbol defaults
to the active selection.

Shift-F5: debug-file - Start debugging the current file (rather than the main entry
point)

Shift-F5: search-forward - Search again using the search manager's current
settings in forward direction

Shift-F6: replace-and-search - Replace current selection and search again.

Shift-F6: run-all-tests - Runs all the tests in testing panel.

Shift-F7: run-current-tests - Runs the current test or tests, if possible. The current
tests are determined by the current position in the active view. The tests are
debugged when debug is True.

Shift-F7: stop-kbd-macro - Stop definition of a keyboard macro

Shift-F8: start-select-char - Turn on auto-select mode character by character

Shift-F9: Multiple commands (first available is executed):

• break-enable - Enable the breakpoint on the current line
• break-disable - Disable the breakpoint on current line

Shift-Home: beginning-of-line - Action varies according to focus: Active Editor
Commands: Move to beginning of current line. When toggle is True, moves to the
end of the leading white space if already at the beginning of the line (and vice
versa).; Toolbar Search Commands: Move to the beginning of the toolbar search
entry

Shift-Home: beginning-of-line-text-extend - Move to end of the leading white
space, if any, on the current line, adjusting the selection range to the new position.
If toggle is True, moves to the beginning of the line if already at the end of the
leading white space (and vice versa).

Shift-Insert: paste - Action varies according to focus: Active Editor Commands:
Paste text from clipboard ; Search Manager Instance Commands: Paste text from
clipboard ; Toolbar Search Commands: Paste from clipboard

Shift-Left: backward-char-extend - Action varies according to focus: Active Editor
Commands: Move cursor backward one character, adjusting the selection range to
new position ; Toolbar Search Commands: Move backward one character,
extending the selection

Shift-Next: forward-page-extend - Move cursor forward one page, adjusting the
selection range to new position

Shift-Page_Down: forward-page-extend - Move cursor forward one page,
adjusting the selection range to new position

Key Binding Reference

483

Shift-Page_Up: backward-page-extend - Move cursor backward one page,
adjusting the selection range to new position

Shift-Prior: backward-page-extend - Move cursor backward one page, adjusting
the selection range to new position

Shift-Return: new-line-before - Place a new line before the current line

Shift-Right: forward-char-extend - Action varies according to focus: Active Editor
Commands: Move cursor forward one character, adjusting the selection range to
new position ; Toolbar Search Commands: Move forward one character, extending
the selection

Shift-Tab: backward-tab - Outdent line at current position

Shift-Up: previous-line-extend - Move to previous screen line, adjusting the
selection range to new position, optionally repositioning character within line: same'
to leave in same horizontal position, 'start' at start, 'end' at end, 'fnb' for first
non-blank char, or 'xcode' to simulate XCode style Shift-Alt line selection.

Tab: tab-key - Implement the tab key, the action of which is configurable by
preference

Up: previous-line - Move to previous screen line, optionally repositioning
character within line: same' to leave in same horizontal position, 'start' at start, 'end'
at end, or 'fnb' for first non-blank char.

Visual-Esc: exit-visual-mode - Exit visual mode and return back to default mode

License Information
Wing IDE is a commercial product that is based on a number of open source
technologies. Although the product source code is available for Wing IDE
Professional users (with signed non-disclosure agreement) the product is not itself
open source.

The following sections describe the licensing of the product as a whole (the End
User License Agreement) and provide required legal statements for the
incorporated open source components.

License Information

484

22.1. Wing IDE Software License
This End User License Agreement (EULA) is a CONTRACT between you (either
an individual or a single entity) and Wingware, which covers your use of "Wing IDE
Professional" and related software components. All such software is referred to
herein as the "Software Product." A software license and a license key or serial
number ("Software Product License"), issued to a designated user, only by
Wingware or its authorized agents, is required for each user of the Software
Product. If you do not agree to the terms of this EULA, then do not install or use
the Software Product or the Software Product License. By explicitly accepting this
EULA you are acknowledging and agreeing to be bound by the following terms:

1. EVALUATION LICENSE WARNING

This Software Product can be used in conjunction with a free evaluation Software
Product License. If you are using such an evaluation Software Product License,
you may use the Software Product only to evaluate its suitability for purchase.
Evaluation Software Product Licenses have an expiration date and most of the
features of the software will be disabled after that date. WINGWARE BEARS NO
LIABILITY FOR ANY DAMAGES RESULTING FROM USE (OR ATTEMPTED
USE AFTER THE EXPIRATION DATE) OF THE SOFTWARE PRODUCT, AND
HAS NO DUTY TO PROVIDE ANY SUPPORT BEFORE OR AFTER THE
EXPIRATION DATE OF AN EVALUATION LICENSE.

2. GRANT OF NON-EXCLUSIVE LICENSE

Wingware grants the non-exclusive, non-transferable right for a single user to use
this Software Product for each license purchased. Each additional user of the
Software Product requires an additional Software Product License. This includes
users working on operating systems where the Software Product is compiled from
source code by the user or a third party.

Wingware grants you the right to modify, alter, improve, or enhance the Software
Product without limitation, except as described in this EULA.

Although rights to modification of the Software Product are granted by this EULA,
you may not tamper with, alter, or use the Software Product in a way that disables,
circumvents, or otherwise defeats its built-in licensing verification and enforcement
capabilities. The right to modification of the Software Product also does not include
the right to remove or alter any trademark, logo, copyright or other proprietary
notice, legend, symbol or label in the Software Product.

You may at your discretion distribute patch files containing any modifications or
improvements made to the Software Product, other than those that are aimed at
disabling or circumventing its built-in license verification capabilities, or that result
in the removal or alteration of any trademark, logo, copyright, or other proprietary
notice, legend, symbol or label in the Software Product. This right does not include

License Information

485

the right to distribute substantial portions of the original source, where distribution
rights are limited to contextual information normally existing in software patch files.

You may at your discretion designate license terms, open source or otherwise, for
all modifications or improvements made by you. Wingware has no special rights to
any such modifications or improvements.

You may make copies of the Software Product as reasonably necessary for its use.
Each copy must reproduce all copyright and other proprietary rights notices on or
in the Software Product.

You may install your Software Product License only on computer systems and user
accounts that are used by you, the licensee. You may also make copies of the
Software Product License as necessary for backup and/or archival purposes. No
other copies or installations may be made.

All rights not expressly granted to you are retained by Wingware.

2.1 NON-COMMERCIAL USE LICENSES

Wingware provides Non-Commercial Use licenses to the following types of users:
(a) publicly funded charities, (b) universities, colleges, and other educational
institutions (including, but not limited to elementary schools, middle schools, high
schools, and community colleges), (c) students at any of these types of educational
institutions, (d) individuals or entities who are under contract by the above-stated
organizations and using the Software Product exclusively for such charitable or
educational clients, and (d) other individual users who use the Software Product for
unpaid personal use only (for example, unpaid hobby, learning, or entertainment).

Non-Commercial Use licenses purchased by companies; organizations other than
publicly funded charities; government divisions, agencies, or offices; or any other
individual or entity deriving income, directly or indirectly, from their use of the
Software Product are invalid and may not be used until the license is upgraded by
paying the price difference between the Non-Commercial Use and Commercial
Use license for the Software Product.

Wingware, a Delaware corporation, reserves the right to further clarify the terms of
Non-Commercial Use at its sole determination.

3. INTELLECTUAL PROPERTY RIGHTS RESERVED BY WINGWARE

The Software Product is owned by Wingware and is protected by United States
and international copyright laws and treaties, as well as other intellectual property
laws and treaties. You must not remove or alter any copyright notices on any
copies of the Software Product. This Software Product copy is licensed, not sold.
You may not use, copy, or distribute the Software Product, except as granted by
this EULA, without written authorization from Wingware or its designated agents.
Furthermore, this EULA does not grant you any rights in connection with any

License Information

486

trademarks or service marks of Wingware. Wingware reserves all intellectual
property rights, including copyrights, and trademark rights.

4. LIMITED RIGHTS TO TRANSFER

You may not rent, lease, lend, or in any way distribute or transfer any rights in this
EULA or the Software Product to third parties without Wingware's written approval.

However, companies that purchase a Commercial Use license may from time to
time, as employees come and go or roles change, transfer that license to another
individual, provided that the prior user of the license ceases to use the license
immediately after the transfer has been made.

All transfers of a license to another individual are subject to the recipient's
acceptance of the terms of the EULA and are null and void in the event that the
prior user continues to use the license or otherwise fails to relinquish their rights to
the Software Product.

5. INDEMNIFICATION

You hereby agree to indemnify Wingware against and hold harmless Wingware
from any claims, lawsuits or other losses that arise out of your breach of any
provision of this EULA.

6. THIRD PARTY RIGHTS

Any software provided along with the Software Product that is associated with a
separate license agreement is licensed to you under the terms of that license
agreement. This license does not apply to those portions of the Software Product.
Copies of these third party licenses are included in all copies of the Software
Product.

7. SUPPORT SERVICES

Wingware may provide you with support services related to the Software Product.
Use of any such support services is governed by Wingware policies and programs
described in online documentation and/or other Wingware-provided materials.

As part of these support services, Wingware may make available bug lists, planned
feature lists, and other supplemental informational materials. WINGWARE MAKES
NO WARRANTY OF ANY KIND FOR THESE MATERIALS AND ASSUMES NO
LIABILITY WHATSOEVER FOR DAMAGES RESULTING FROM ANY USE OF
THESE MATERIALS. FURTHERMORE, YOU MAY NOT USE ANY MATERIALS
PROVIDED IN THIS WAY TO SUPPORT ANY CLAIM MADE AGAINST
WINGWARE.

Any supplemental software code or related materials that Wingware provides to
you as part of the support services, in periodic updates to the Software Product or

License Information

487

otherwise, is to be considered part of the Software Product and is subject to the
terms and conditions of this EULA.

With respect to any technical information you provide to Wingware as part of the
support services, Wingware may use such information for its business purposes
without restriction, including for product support and development. Wingware will
not use such technical information in a form that personally identifies you without
first obtaining your permission.

9. TERMINATION WITHOUT PREJUDICE TO ANY OTHER RIGHTS

Wingware may terminate this EULA if you fail to comply with any term or condition
of this EULA. In such event, you must destroy all copies of the Software Product
and Software Product Licenses.

10
.
U.S. GOVERNMENT USE

If the Software Product is licensed under a U.S. Government contract, you
acknowledge that the software and related documentation are "commercial items,"
as defined in 48 C.F.R 2.01, consisting of "commercial computer software" and
"commercial computer software documentation," as such terms are used in 48
C.F.R. 12.212 and 48 C.F.R. 227.7202-1. You also acknowledge that the software
is "commercial computer software" as defined in 48 C.F.R. 252.227-7014(a)(1).
U.S. Government agencies and entities and others acquiring under a U.S.
Government contract shall have only those rights, and shall be subject to all
restrictions, set forth in this EULA. Contractor/manufacturer is Wingware, P.O. Box
400527, Cambridge, MA 02140-0006, USA.

11
.
EXPORT RESTRICTIONS

You will not download, export, or re-export the Software Product, any part thereof,
or any software, tool, process, or service that is the direct product of the Software
Product, to any country, person, or entity -- even to foreign units of your own
company -- if such a transfer is in violation of U.S. export restrictions.

12
.
NO WARRANTIES

YOU ACCEPT THE SOFTWARE PRODUCT AND SOFTWARE PRODUCT
LICENSE "AS IS," AND WINGWARE AND ITS THIRD PARTY SUPPLIERS AND
LICENSORS MAKE NO WARRANTY AS TO ITS USE, PERFORMANCE, OR
OTHERWISE. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW,
WINGWARE AND ITS THIRD PARTY SUPPLIERS AND LICENSORS DISCLAIM
ALL OTHER REPRESENTATIONS, WARRANTIES, AND CONDITIONS,

License Information

488

EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING, BUT NOT
LIMITED TO, IMPLIED WARRANTIES OR CONDITIONS OF
MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
PARTICULAR PURPOSE, TITLE, AND NON-INFRINGEMENT. THE ENTIRE
RISK ARISING OUT OF USE OR PERFORMANCE OF THE SOFTWARE
PRODUCT REMAINS WITH YOU.

13
.
LIMITATION OF LIABILITY

THIS LIMITATION OF LIABILITY IS TO THE MAXIMUM EXTENT PERMITTED
BY APPLICABLE LAW. IN NO EVENT SHALL WINGWARE OR ITS THIRD
PARTY SUPPLIERS AND LICENSORS BE LIABLE FOR ANY COSTS OF
SUBSTITUTE PRODUCTS OR SERVICES, OR FOR ANY SPECIAL,
INCIDENTAL, INDIRECT, OR CONSEQUENTIAL DAMAGES WHATSOEVER
(INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
PROFITS, BUSINESS INTERRUPTION, OR LOSS OF BUSINESS
INFORMATION) ARISING OUT OF THIS EULA OR THE USE OF OR INABILITY
TO USE THE SOFTWARE PRODUCT OR THE FAILURE TO PROVIDE
SUPPORT SERVICES, EVEN IF WINGWARE HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. IN ANY CASE, WINGWARE'S, AND ITS
THIRD PARTY SUPPLIERS' AND LICENSORS', ENTIRE LIABILITY ARISING
OUT OF THIS EULA SHALL BE LIMITED TO THE LESSER OF THE AMOUNT
ACTUALLY PAID BY YOU FOR THE SOFTWARE PRODUCT OR THE
PRODUCT LIST PRICE; PROVIDED, HOWEVER, THAT IF YOU HAVE
ENTERED INTO AN WINGWARE SUPPORT SERVICES AGREEMENT,
WINGWARE'S ENTIRE LIABILITY REGARDING SUPPORT SERVICES SHALL
BE GOVERNED BY THE TERMS OF THAT AGREEMENT.

14
.
HIGH RISK ACTIVITIES

The Software Product is not fault-tolerant and is not designed, manufactured or
intended for use or resale as on-line control equipment in hazardous environments
requiring fail-safe performance, such as in the operation of nuclear facilities,
aircraft navigation or communication systems, air traffic control, direct life support
machines, or weapons systems, in which the failure of the Software Product, or
any software, tool, process, or service that was developed using the Software
Product, could lead directly to death, personal injury, or severe physical or
environmental damage ("High Risk Activities"). Accordingly, Wingware and its
suppliers and licensors specifically disclaim any express or implied warranty of
fitness for High Risk Activities. You agree that Wingware and its suppliers and
licensors will not be liable for any claims or damages arising from the use of the

License Information

489

Software Product, or any software, tool, process, or service that was developed
using the Software Product, in such applications.

15
.
GOVERNING LAW; ENTIRE AGREEMENT ; DISPUTE RESOLUTION

This EULA is governed by the laws of the Commonwealth of Massachusetts,
U.S.A., excluding the application of any conflict of law rules. The United Nations
Convention on Contracts for the International Sale of Goods shall not apply.

This EULA is the entire agreement between Wingware and you, and supersedes
any other communications or advertising with respect to the Software Product; this
EULA may be modified only by written agreement signed by authorized
representatives of you and Wingware.

Unless otherwise agreed in writing, all disputes relating to this EULA (excepting
any dispute relating to intellectual property rights) shall be subject to final and
binding arbitration in the State of Massachusetts, in accordance with the Licensing
Agreement Arbitration Rules of the American Arbitration Association, with the
losing party paying all costs of arbitration. Arbitration must be by a member of the
American Arbitration Association. If any dispute arises under this EULA, the
prevailing party shall be reimbursed by the other party for any and all legal fees
and costs associated therewith.

16
.
GENERAL

If any provision of this EULA is held invalid, the remainder of this EULA shall
continue in full force and effect.

A waiver by either party of any term or condition of this EULA or any breach
thereof, in any one instance, shall not waive such term or condition or any
subsequent breach thereof.

17
.
OUTSIDE THE U.S.

If you are located outside the U.S., then the provisions of this Section shall apply.
Les parties aux présentes confirment leur volonté que cette convention de même
que tous les documents y compris tout avis qui s'y rattache, soient redigés en
langue anglaise. (translation: "The parties confirm that this EULA and all related
documentation is and will be in the English language.") You are responsible for
complying with any local laws in your jurisdiction which might impact your right to
import, export or use the Software Product, and you represent that you have
complied with any regulations or registration procedures required by applicable law
to make this license enforceable.

License Information

490

18
.
TRADEMARKS

The following are trademarks or registered trademarks of Wingware: Wingware,
the feather logo, Wing IDE, Wing IDE 101, Wing IDE Personal, Wing IDE
Professional, Wing IDE Enterprise, Wing Debugger, and "The Intelligent
Development Environment for Python Programmers"

19
.
CONTACT INFORMATION

If you have any questions about this EULA, or if you want to contact Wingware for
any reason, please direct all correspondence to: Wingware, P.O. Box 400527,
Cambridge, MA 02140-0006, United States of America or send email to info at
wingware.com.

22.2. Open Source License Information
Wing IDE incorporates the following open source technologies, most of which are
under OSI Certified Open Source licenses except as indicated in the footnotes:

• Crystal Clear -- An icon set by Everaldo -- LGPL v. 2.1 [1]
• docutils -- reStructuredText markup processing by David Goodger and

contributors-- Public Domain [2]
• parsetools -- Python parse tree conversion tools by John Ehresman -- MIT

License
• pexpect -- Sub-process control library by Noah Spurrier, Richard Holden,

Marco Molteni, Kimberley Burchett, Robert Stone, Hartmut Goebel, Chad
Schroeder, Erick Tryzelaar, Dave Kirby, Ids vander Molen, George Todd, Noel
Taylor, Nicolas D. Cesar, Alexander Gattin, Geoffrey Marshall, Francisco
Lourenco, Glen Mabey, Karthik Gurusamy, and Fernando Perez -- MIT
License

• py2pdf -- Python source to PDF output converter by Dinu Gherman -- MIT
License

• PySide -- Python bindings for Qt by Nokia and contributors -- LGPL v. 2.1 [1]
• pysqlite -- Python bindings for sqlite by Gerhard Haering -- BSD-like custom

license [4]
• Python -- The Python programming language by Guido van Rossum,

PythonLabs, and many contributors -- Python Software Foundation License
version 2 [3]

• Python Imaging Library -- Library for image manipulation with Python, written
by Secret Labs AB and Fredrik Lundh -- MIT License

• Qt -- Graphical user interface toolkit by many contributors and Digia -- LGPL v.
2.1 [1] [6]

License Information

491

http://www.opensource.org/
http://www.kde-look.org/content/show.php/Crystal+Clear?content=25668
http://www.everaldo.com/
http://docutils.sourceforge.net/
http://wingware.com/
http://pexpect.sourceforge.net/pexpect.html
http://python.net/~gherman/py2pdf.html
http://qt-project.org/wiki/PySide
http://pysqlite.org/
http://python.org/
http://www.pythonware.com/products/pil/
http://qt-project.org/

• scintilla -- Source code editor component by Neil Hodgson and contributors --
MIT License

• sqlite -- A self-contained, serverless, zero-configuration, transactional SQL
database engine -- Public domain [5]

• Tulliana-1.0 -- An icon set by M. Umut Pulat, based on Nuvola created by
David Vignoni -- LGPL v. 2.1 [1]

• A few stock icons from the GTK GUI development framework -- LGPL v. 2.1
[1]

Notes

[1] The LGPL requires us to redistribute the source code for all libraries linked into
Wing IDE. All of these modules are readily available on the internet. In some cases
we may have modifications that have not yet been incorporated into the official
versions; if you wish to obtain a copy of our version of the sources of any of these
modules, please email us at info at wingware.com.

[2] Docutils contains a few parts under other licenses (BSD, Python 2.1, Python
2.2, Python 2.3, and GPL). See the COPYING.txt file in the source distribution for
details.

[3] The Python Software Foundation License version 2 is an OSI Approved Open
Source license. It consists of a stack of licenses that also include other licenses
that apply to older parts of the Python code base. All of these are included in the
OSI Approved license: PSF License, BeOpen Python License, CNRI Python
License, and CWI Python License. The intellectual property rights for Python are
managed by the Python Software Foundation.

[4] Not OSI Approved, but similar to other OSI approved licenses. The license
grants anyone to use the software for any purpose, including commercial
applications.

[5] The source code states the author has disclaimed copyright of the source code.
The sqllite.org website states: "All of the deliverable code in SQLite has been
dedicated to the public domain by the authors. All code authors, and
representatives of the companies they work for, have signed affidavits dedicating
their contributions to the public domain and originals of those signed affidavits are
stored in a firesafe at the main offices of Hwaci. Anyone is free to copy, modify,
publish, use, compile, sell, or distribute the original SQLite code, either in source
code form or as a compiled binary, for any purpose, commercial or
non-commercial, and by any means."

[6] Qt is available under several licenses. The LGPL v. 2.1 version of the software
was used for Wing IDE.

Scintilla Copyright

License Information

492

http://scintilla.org/
http://sqlite.org
http://www.kde-look.org/content/show.php/Tulliana?content=29610
mailto:info@wingware.com
http://python.org/psf

We are required by the license terms for Scintilla to include the following copyright
notice in this documentation:

Copyright 1998-2003 by Neil Hodgson <neilh@scintilla.org>

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation.

NEIL HODGSON DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL NEIL HODGSON BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE
OR PERFORMANCE OF THIS SOFTWARE.

Python Imaging Library Copyright

We are required by the license terms for Scintilla to include the following copyright
notice in this documentation:

The Python Imaging Library (PIL) is

 Copyright ï¿½ 1997-2011 by Secret Labs AB
 Copyright ï¿½ 1995-2011 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its associated documentation, you agree
that you have read, understood, and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and its associated documentation for
any purpose and without fee is hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission notice appear in supporting
documentation, and that the name of Secret Labs AB or the author not be used in advertising or
publicity pertaining to distribution of the software without specific, written prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

License Information

493

	Wing IDE Reference Manual
	Introduction
	1.1. Product Levels
	1.2. Licenses
	1.3. Supported Platforms
	1.4. Supported Python versions
	1.5. Technical Support
	1.6. Prerequisites for Installation
	1.7. Installing Wing IDE
	1.8. Running Wing IDE
	1.9. Installing your License
	1.10. User Settings Directory
	1.11. Upgrading
	Compatibility Notes
	1.11.1. Migrating from older versions of Wing
	Licensing
	Converting Projects
	Changes in Wing 5

	1.11.2. Fixing a Failed Upgrade

	1.12. Installation Details and Options
	1.12.1. Linux Installation Notes
	1.12.2. Remote Display on Linux
	1.12.3. Installing Extra Documentation
	1.12.4. Source Code Installation

	1.13. Backing Up and Sharing Settings
	1.14. Removing Wing IDE
	1.15. Command Line Usage

	Customization
	2.1. Keyboard Personalities
	2.1.1. Key Equivalents
	2.1.2. Key Maps
	2.1.3. Key Names

	2.2. User Interface Options
	2.2.1. Display Style and Colors
	Color Configuration
	Add Color Palettes

	2.2.2. Windowing Policies
	2.2.3. User Interface Layout
	2.2.4. Altering Text Display

	2.3. Preferences
	2.3.1. Preferences File Layers
	2.3.2. Preferences File Format

	2.4. Syntax Coloring
	Minor Adjustments
	Comprehensive Changes
	Automatic Color Adjustment

	2.5. Perspectives
	2.6. File Filters

	Project Manager
	3.1. Creating a Project
	3.2. Removing Files and Directories
	3.3. Saving the Project
	3.4. Sorting the View
	3.5. Navigating to Files
	3.5.1. Keyboard Navigation

	3.6. Sharing Projects
	3.7. Project-wide Properties
	Environment
	Debug
	Options
	Extensions
	Testing
	3.7.1. Environment Variable Expansion

	3.8. Per-file Properties
	File Attributes
	Editor
	Debug/Execute
	Testing

	3.9. Launch Configurations
	Shared Launch Configurations
	Working on Different Machines or OSes

	Source Code Editor
	4.1. Syntax Colorization
	4.2. Right-click Editor Menu
	4.3. Navigating Source
	4.4. File status and read-only files
	4.5. Transient, Sticky, and Locked Editors
	4.6. Auto-completion
	4.7. Source Assistant
	4.7.1. Docstring Type and Validity
	4.7.2. Python Documentation Links
	4.7.3. Working with Runtime Type Information
	4.7.4. Source Assistant Options

	4.8. Auto-editing
	4.9. Bookmarks
	4.10. File Sets
	Binding File Sets to Keys
	Shared File Sets

	4.11. Code Snippets
	User Interface
	Contexts
	Key Bindings
	Execution and Data Entry
	Auto-completion
	Snippet Syntax
	Indentation and Line Endings
	Cursor Placement
	Snippet Directory Layout
	File Types
	Contexts
	Configuration
	Commands
	Scripting Snippets

	4.12. Indentation
	4.12.1. How Indent Style is Determined
	4.12.2. Indentation Preferences
	4.12.3. Indentation Policy
	4.12.4. Auto-Indent
	4.12.5. The Tab Key
	4.12.6. Checking Indentation
	4.12.7. Changing Block Indentation
	4.12.8. Indentation Manager

	4.13. Folding
	4.14. Brace Matching
	4.15. Support for files in .zip or .egg files
	4.16. Keyboard Macros
	4.17. Notes on Copy/Paste
	Smart Copy

	4.18. Auto-reloading Changed Files
	4.19. Auto-save

	Search/Replace
	5.1. Toolbar Quick Search
	5.2. Keyboard-driven Mini-Search/Replace
	5.3. Search Tool
	5.4. Search in Files Tool
	5.4.1. Replace in Multiple Files

	5.5. Find Points of Use
	5.6. Wildcard Search Syntax

	Refactoring
	6.1. Rename Symbol
	6.2. Move Symbol
	6.3. Extract Function / Method
	6.4. Introduce Variable

	Diff/Merge Tool
	Diff/Merge Options

	Source Code Browser
	8.1. Display Choices
	8.1.1. Browse Project Modules
	8.1.2. Browsing Project Classes
	8.1.3. Viewing Current Module

	8.2. Display Filters
	8.2.1. Filtering Scope and Source
	8.2.2. Filtering Construct Type

	8.3. Sorting the Browser Display
	8.4. Navigating the Views
	8.5. Browser Keyboard Navigation

	Interactive Python Shell
	9.1. Python Shell Auto-completion
	9.2. Python Shell Options

	OS Commands Tool
	10.1. OS Command Properties

	Unit Testing
	11.1. Project Test Files
	11.2. Running Tests
	11.3. Running unittest Tests From the Command Line

	Debugger
	12.1. Quick Start
	12.2. Specifying Main Entry Point
	12.2.1. Named Entry Points

	12.3. Debug Properties
	12.4. Setting Breakpoints
	Breakpoint Types
	Breakpoint Attributes
	Breakpoints Tool
	Keyboard Modifiers for Breakpoint Margin

	12.5. Starting Debug
	12.6. Debugger Status
	12.7. Flow Control
	12.8. Viewing the Stack
	12.9. Viewing Debug Data
	12.9.1. Stack Data View
	12.9.1.1. Popup Menu Options
	12.9.1.2. Filtering Value Display

	12.9.2. Watching Values
	12.9.3. Evaluating Expressions
	12.9.4. Problems Handling Values

	12.10. Debug Process I/O
	12.10.1. External I/O Consoles
	12.10.2. Disabling Debug Process I/O Multiplexing

	12.11. Interactive Debug Probe
	12.11.1. Managing Program State
	12.11.2. Debug Probe Options

	12.12. Multi-Process Debugging
	12.13. Debugging Multi-threaded Code
	12.14. Managing Exceptions
	Exception Reporting Mode
	Reporting Logged Exceptions
	Exception Type Filters

	12.15. Running Without Debug

	Advanced Debugging Topics
	13.1. Debugging Externally Launched Code
	13.1.1. Importing the Debugger
	13.1.2. Debug Server Configuration
	13.1.3. Debugger API
	13.1.4. Debugging Embedded Python Code

	13.2. Remote Debugging
	13.2.1. SSH Tunneling
	13.2.2. File Location Maps
	13.2.2.1. File Location Map Examples

	13.2.3. Remote Debugging Example
	13.2.4. Installing the Debugger Core

	13.3. Using wingdb to Initiate Debug
	13.4. Attaching and Detaching
	13.4.1. Access Control
	13.4.2. Detaching
	13.4.3. Attaching
	13.4.4. Identifying Foreign Processes
	13.4.5. Constraints

	13.5. OS X Debugging Notes
	System-Provided Python
	MacPorts Python
	Debugging 32-bit Python on a 64-bit System

	13.6. Debugger Limitations

	Integrated Version Control
	14.1. Setting Up Version Control in Wing
	14.2. Version Control Tool Panel
	14.3. Common Version Control Operations
	14.4. Bazaar
	14.5. CVS
	14.6. Git
	14.7. Mercurial
	14.8. Perforce
	14.9. Subversion
	14.10. Version Control Configuration
	14.10.1. Configuring SSH
	14.10.2. Configuring Subversion
	14.10.3. Configuring CVS

	Source Code Analysis
	15.1. How Analysis Works
	15.2. Static Analysis Limitations
	15.3. Helping Wing Analyze Code
	Using Live Runtime State
	Using isinstance() to Assist Analysis
	Using *.pi Files to Assist Analysis
	Naming and Placing *.pi Files
	Merging *.pi Name Spaces
	Creating Variants by Python Version

	15.4. Analysis Disk Cache

	PyLint Integration
	Scripting and Extending Wing IDE
	17.1. Scripting Example
	17.2. Getting Started
	Naming Commands
	Reloading Scripts
	Overriding Internal Commands

	17.3. Script Syntax
	Script Attributes
	ArgInfo
	Commonly Used Types
	Commonly Used Formlets
	Magic Default Argument Values
	GUI Contexts
	Top-level Attributes
	Importing Other Modules
	Internationalization and Localization
	Plugins

	17.4. Scripting API
	17.5. Advanced Scripting
	Example
	How Script Reloading Works

	Trouble-shooting Guide
	18.1. Trouble-shooting Failure to Start
	18.2. Speeding up Wing
	18.3. Trouble-shooting Failure to Debug
	18.3.1. Failure to Start Debug
	18.3.2. Failure to Stop on Breakpoints or Show Source Code
	18.3.3. Failure to Stop on Exceptions
	18.3.4. Extra Debugger Exceptions

	18.4. Trouble-shooting Other Known Problems
	18.5. Obtaining Diagnostic Output

	Preferences Reference
	User Interface
	Projects
	Files
	Editor
	Debugger
	Source Analysis
	Version Control
	IDE Extension Scripting
	Network
	Internal Preferences
	Core Preferences
	User Interface Preferences
	Editor Preferences
	Project Manager Preferences
	Debugger Preferences
	Source Analysis Preferences

	Command Reference
	20.1. Top-level Commands
	Application Control Commands
	Dock Window Commands
	Document Viewer Commands
	Global Documentation Commands
	Window Commands
	Wing Tips Commands
	Subversion Commands
	Git Commands
	Bazaar Commands
	C V S Commands
	Mercurial Commands
	Perforce Commands

	20.2. Project Manager Commands
	Project Manager Commands
	Project View Commands
	Subversion Commands
	Git Commands
	Bazaar Commands
	C V S Commands
	Mercurial Commands
	Perforce Commands

	20.3. Editor Commands
	Editor Browse Mode Commands
	Editor Insert Mode Commands
	Editor Non Modal Commands
	Editor Panel Commands
	Editor Replace Mode Commands
	Editor Split Commands
	Editor Visual Mode Commands
	Active Editor Commands
	General Editor Commands
	Shell Or Editor Commands
	Bookmark View Commands
	Snippet Commands
	Snippet View Commands
	Subversion Commands
	Git Commands
	Bazaar Commands
	C V S Commands
	Mercurial Commands
	Perforce Commands

	20.4. Search Manager Commands
	Toolbar Search Commands
	Search Manager Commands
	Search Manager Instance Commands
	Subversion Commands
	Git Commands
	Bazaar Commands
	C V S Commands
	Mercurial Commands
	Perforce Commands

	20.5. Unit Testing Commands
	Unit Testing Commands
	Subversion Commands
	Git Commands
	Bazaar Commands
	C V S Commands
	Mercurial Commands
	Perforce Commands

	20.6. Version Control Commands
	Subversion Commands
	Git Commands
	Bazaar Commands
	C V S Commands
	Mercurial Commands
	Perforce Commands

	20.7. Debugger Commands
	Debugger Commands
	Debugger Watch Commands
	Call Stack View Commands
	Exceptions Commands
	Breakpoint View Commands
	Subversion Commands
	Git Commands
	Bazaar Commands
	C V S Commands
	Mercurial Commands
	Perforce Commands

	20.8. Script-provided Add-on Commands
	Subversion Commands
	Git Commands
	Bazaar Commands
	C V S Commands
	Mercurial Commands
	Perforce Commands
	Debugger Extensions Script
	Django Script
	Django Script
	Editor Extensions Script
	Emacs Extensions Script
	Pylintpanel Script
	Testapi Script

	Key Binding Reference
	21.1. Wing IDE Personality
	21.2. Emacs Personality
	21.3. VI/VIM Personality
	21.4. Visual Studio Personality
	21.5. OS X Personality
	21.6. Eclipse Personality
	21.7. Brief Personality

	License Information
	22.1. Wing IDE Software License
	22.2. Open Source License Information

